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Abstract

This paper examines the connection between time preference heterogeneity and economic inequal-

ity in a deterministic environment. Speci�cally, we extend the standard neoclassical growth model

by introducing three additional features, namely (i) heterogeneity in consumers� discount rates, (ii)

direct preferences for wealth, and (iii) human capital formation. The second feature prevents the

wealth distribution from collapsing into a degenerate distribution. The third feature generates a

strong positive correlation between earnings and capital income across consumers. A calibrated ver-

sion of the model is able to generate patterns of wealth and income inequality that are very similar

to those observed in the United States.
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1 Introduction

Empirical studies show that individuals do not discount future values at the same rate.1 Since indi-

viduals� asset accumulation and schooling choices are strongly a¤ected by the way they discount the

future, this type of heterogeneity would naturally lead to cross-sectional di¤erences in wealth and in-

come. To examine the connection between time preference heterogeneity and economic inequality, this

study develops a dynamic competitive equilibrium model in which consumers di¤er only in terms of

their discount rates. It is shown that a calibrated version of the model can generate patterns of wealth

and income inequality that are very similar to those observed in the United States.

The importance of time preference heterogeneity in explaining wealth inequality is well recognized

in existing studies. There is now a vast literature in macroeconomics that uses the incomplete markets

model of Huggett (1993, 1996) and Aiyagari (1994) to explain wealth and income inequality.2 The

standard incomplete markets model, however, has di¢culty in explaining certain features of the wealth

distribution in the United States. In particular, it fails to generate a high concentration of wealth at the

top end of the wealth distribution.3 Krusell and Smith (1998) show that introducing time preference

heterogeneity can signi�cantly improve the Aiyagari (1994) model in this regard. Similarly, Hendricks

(2007) shows that introducing this type of heterogeneity into the life-cycle model of Huggett (1996) can

improve the model�s ability to account for wealth inequality.

In both Krusell and Smith (1998) and Hendricks (2007), cross-sectional variation in income is

mainly driven by uninsurable idiosyncratic earnings risk, which is exogenous and independent of the

heterogeneity in discount rates. These two sources of consumer heterogeneity are then used to account

for the wide dispersion in wealth. This approach, however, ignores the e¤ects of time preferences on

lifetime earnings. Intuitively, more patient individuals are more willing to invest in �nancial assets and

human capital than less patient ones. A higher level of human capital then leads to a higher level of

lifetime earnings for those who are more patient. This intuition is consistent with empirical �ndings.

Lawrance (1991) and Warner and Pleeter (2001) �nd that more-educated households and individuals

tend to have lower discount rates than less-educated ones. This connection between patience and

educational attainment suggests that human capital formation may provide an additional channel

through which time preference heterogeneity can give rise to wealth and income inequality.

1A detailed review of these studies can be found in Frederick et al. (2002) Section 6.
2An excellent review of this literature can be found in Heathcote et al. (2009).
3See Castañeda et al. (2003) for a detailed discussion of this problem.
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The main objective of this study is to explore the quantitative implications of this additional channel.

To achieve this, we generalize the standard deterministic neoclassical growth model to allow for three

important features, namely (i) heterogeneity in time preference, (ii) human capital formation, and (iii)

consumers� direct preferences for wealth. The assumption of direct wealth preference has long been

used in economic studies. In an early paper, Kurz (1968) introduces wealth preference into the optimal

growth model and explores the long-run properties of the model. Zou (1994) interprets this type of

preference as re�ecting the �capitalist spirit,� or the tendency to treat wealth acquisition as an end in

itself rather than a means of satisfying material needs. Cole et al. (1992) suggest that the inclusion

of �nancial wealth in consumers� preferences can be viewed as a reduced-form speci�cation to capture

people�s concern for their wealth-induced status within society. Subsequent studies have followed these

traditions and interpreted this type of preference as either capturing the spirit of capitalism or re�ecting

the demand for wealth-induced status. In this paper, we refer to this feature simply as wealth preference.

There is now a rapidly growing literature that explores the implications of wealth preference on a wide

range of issues, such as asset pricing, economic growth, expectations-driven business cycles, e¤ects of

�scal policy and wealth inequality.4

The main purpose of introducing wealth preference in our model is as follows. It is now well known

that the standard neoclassical growth model has di¢culty in generating realistic wealth distribution

based on di¤erences in discount rates alone. Becker (1980) shows that when consumers have time-

additive separable preferences and di¤erent constant discount rates, all the wealth in the neoclassical

world will eventually be concentrated in the hands of the most patient consumers. In other words,

the wealth distribution is degenerate and extremely unequal in the long run. Several existing studies

have identi�ed conditions under which the long-run wealth distribution is non-degenerate.5 In this

study, we show that a non-degenerate wealth distribution can be obtained by assuming that consumers

4Studies that explore the implications of wealth preference on asset pricing include Bakshi and Chen (1996), and
Boileau and Braeu (2007) among others. Studies on economic growth include Zou (1994) and Smith (1999) among others.
Karnizova (2010) introduces this type of preference into a neoclassical growth model with capital adjustment costs and
shows that the model can generate expectations-driven business cycles. Gong and Zou (2002) and Nakamoto (2009)
examine the welfare implications of �scal policy when consumers value wealth directly. Finally, Luo and Young (2009)
explore the implications of wealth preference on wealth inequality. This study will be discussed in greater detail later.

5Boyd (1990) shows that Becker�s result is no longer valid when consumers have recursive preferences. Sarte (1997)
establishes the existence of a non-degenerate wealth distribution by introducing a progressive tax structure into Becker�s
model. Sorger (2002) shows that Becker�s result cannot be extended to the case where consumers are strategic players,
rather than price-takers, in the capital market. Espino (2005) establishes a non-degenerate wealth distribution by assuming
that consumers have private information over an idiosyncratic preference shock. Except for Sarte (1997), none of these
studies have explored the quantitative implications of their model. Sarte shows that a calibrated version of his model can
replicate the income distribution in the United States. However, unlike the current study, he does not attempt to explain
wealth and income inequality simultaneously.
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have direct preferences for wealth. The intuition behind this result can be explained as follows. In

the original Becker (1980) model where there is no direct wealth preference, a consumer will choose to

hold a constant positive level of �nancial wealth only when the equilibrium interest rate is identical to

his discount rate. Since there is only one interest rate in the neoclassical model, it is not possible for

consumers with di¤erent discount rates to maintain constant positive levels of wealth simultaneously.

In the long-run equilibrium, interest rate is equated to the lowest discount rate in the population.

Thus, only the most patient consumers would have positive asset holdings. All other consumers with

discount rate greater than the equilibrium interest rate will deplete their wealth until it reaches zero.

Thus, the long-run wealth distribution in the Becker (1980) model is extremely unequal. Introducing

direct preferences for wealth changes this result by creating some additional bene�ts of holding �nancial

assets. Because of these additional bene�ts, consumers are now willing to maintain constant positive

levels of wealth even if the interest rate is lower than their discount rates. These additional bene�ts also

induce di¤erent types of consumers to hold di¤erent levels of wealth. This gives rise to a non-degenerate

wealth distribution in the long-run equilibrium.

To illustrate the theoretical and quantitative implications of wealth preference, we begin with a

baseline model in which there is no human capital. In the baseline model, we adopt the same economic

environment as in Becker (1980), which features a neoclassical production technology, a complete set

of competitive markets, and consumers with di¤erent discount rates. The only modi�cation we make

to Becker�s model is the inclusion of �nancial wealth in consumers� preferences. A calibrated version

of the baseline model is able to replicate some key features of the wealth distribution in the United

States. In particular, it is able to generate a large group of wealth-poor consumers and a very small

group of extremely wealthy ones. The baseline model, however, cannot produce large variations in

earnings across consumers. This type of variation is important in explaining income inequality because

earnings account for a large fraction of individual income in the model economy. Consequently, a model

with only time preference heterogeneity and wealth preference cannot explain the observed patterns

of wealth and income inequality simultaneously. The same problem remains even if we allow for

endogenous labor supply. Introducing human capital formation helps improve this result in two ways.

First, consumers� earnings are now tied to their discount rates through the investment in human capital.

This provides a channel via which time preference heterogeneity can lead to signi�cant variations in

earnings across consumers. Second, introducing human capital helps create a strong positive correlation

4



between earnings and capital income. This happens because more patient consumers have higher

earnings and more �nancial wealth than less patient ones. A calibrated version of the model with all

three features is able to replicate the observed patterns of wealth and income inequality in the United

States.6

The current study di¤ers from Krusell and Smith (1998) in three important ways: First, the current

study aims to explain both wealth and income inequality using only one source of consumer heterogene-

ity, namely di¤erences in discount rates. Second, the current study takes into account the endogenous

components of labor income, namely endogenous labor hours and human capital formation. Third,

instead of assuming that individuals� discount rates are stochastic and idiosyncratic in nature, the

current study focuses on �xed, predetermined di¤erences in discount rates across individuals.7

This study is also close in spirit to Luo and Young (2009) in the sense that both studies analyze

wealth and income inequality in the presence of wealth preference. There are two major di¤erences

between the two studies. First, the source of consumer heterogeneity is di¤erent in the two models.

In Luo and Young (2009), consumers share the same discount rate but face idiosyncratic uncertainty

in labor productivity as in the Aiyagari (1994) model. Thus, this study does not consider the e¤ects

of time preference heterogeneity on wealth and income inequality. Second, the earnings distribution

in the two models are determined by di¤erent factors. In Luo and Young (2009), earnings are jointly

determined by labor productivity shock and consumers� labor-leisure choices. Their model does not

include human capital formation. Despite these di¤erences in model speci�cation, both studies �nd

that wealth preference is a force that tends to reduce wealth inequality. In our model, this tendency

is manifested in two ways. First, the equilibrium wealth distribution is no longer extremely unequal

once we introduce wealth preference into Becker�s model. Second, in the quantitative analysis, we �nd

that the degree of wealth inequality decreases as we increase the coe¢cient that controls the strength

of wealth preference. Similar results are also reported in Luo and Young (2009).

The rest of this paper is organized as follows. Section 2 describes the baseline model environment,

6We do not claim that other factors, such as life-cycle factors, income uncertainty, precautionary savings, redistributive
taxation and transfer programs, are not important in understanding economic inequality. The main purpose of the
calibration exercise is to illustrate the quantitative relevance of the mechanism captured by this model in explaining
economic inequality.

7Existing studies show that predetermined factors (or ex ante heterogeneity) are at least as important as idiosyncratic
shocks (or ex post heterogeneity) in explaining cross-sectional variation in lifetime utility. Keane and Wolpin (1997)
argue that as much as 90 percent of the dispersion in lifetime utility can be attributed to predetermined, �xed factors.
The remaining ten percent is attributed to exogenous idiosyncratic shocks. More recently, Huggett et al. (2011) �nd
that predetermined factors are more important in explaining the dispersion in lifetime earnings and lifetime wealth than
idiosyncratic shocks.
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presents the main theoretical results, and evaluates the quantitative relevance of this model. Section 3

extends the baseline model by including labor-leisure choices. Section 4 extends the baseline model by

introducing human capital formation. Section 5 discusses the main determinants of wealth and income

inequality in the model with human capital. This is followed by some concluding remarks in Section 6.

2 The Baseline Model

2.1 Preferences

Consider an economy populated by N > 1 groups of in�nitely-lived agents. Each group is indexed by

a subjective discount factor �i; for i 2 f1; 2; :::; Ng : The discount factors can be ranked according to

0 < �1 � �2 � : : : � �N < 1: Consumers within the same group are identical in all aspects. The share

of type-i consumers in the population is given by �i 2 (0; 1) : The size of total population is constant

and is normalized to one, hence
PN

i=1 �i = 1:

There is a single commodity in this economy which can be used for consumption and investment.

The consumers� preferences are represented by

1X

t=0

�tiu (ci;t; ki;t) ;

where ci;t is the consumption of a type-i consumer at time t; and ki;t is the stock of physical capital

owned by the consumer at the beginning of time t: The (period) utility function u : R2+ ! R is identical

for all consumers and have the following properties:

Assumption A1 The function u (c; k) is twice continuously di¤erentiable, strictly increasing and

strictly concave in (c; k) : It also satis�es the Inada condition for consumption, i.e., lim
c!0

uc (c; k) = 1;

where uc (c; k) is the partial derivative with respect to c:

Assumption A2 The function u (c; k) is homogeneous of degree 1� �; with � > 0:

Assumption A2 is imposed to ensure the existence of balanced growth equilibria. Under this as-

sumption, the partial derivatives uc (c; k) and uk (c; k) are both homogeneous of degree ��: We can
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then de�ne a function � : R+ ! R according to

� (z) �
uk (z; 1)

uc (z; 1)
: (1)

By Assumption A1, the function � (�) is continuously di¤erentiable and non-negative. We now impose

some additional assumptions on this function.

Assumption A3 The function � (z) de�ned by (1) is strictly increasing, with � (0) = 0; and satis�es

lim
z!1

� (z) =1:

Assumption A3 serves two important roles in the theoretical analysis. First, it plays a role in

ensuring the uniqueness of balanced-growth equilibrium. Second, it ensures that more patient con-

sumers would have more asset holdings than less patient ones in this type of equilibrium. The details

of these will become clear in Section 2.5. It is straightforward to check that � (�) is strictly increasing

if uck (c; k) � 0: The converse, however, is not necessarily true. In other words, Assumption A3 does

not preclude the possibility of having a negative cross-derivative for some values of c and k.8

All three assumptions stated above are satis�ed by the following functional forms which are com-

monly used in existing studies,

u (c; k) =
1

1� �

�
c1�� + �k1��

�
; (2)

with � > 0 and � > 0; and

u (c; k) =
1

1� e�
h
�c + (1� �) k 

i 1�e�
 
; (3)

with e� > 0; � 2 (0; 1) and  < 1:9

2.2 The Consumers� Problem

In each period, each consumer is endowed with one unit of time which is supplied inelastically to the

market. The consumers receive labor income from work and capital income from their previous savings.

8Majumdar and Mitra (1994) show that, in a model with homogeneous consumers, the sign of the cross derivative
uck (c; k) plays an important role in determining the dynamic properties of the model. In the current study, we only focus
on stationary equilibria.

9The additively separable speci�cation is used in Zou (1994), Gong and Zou (2001), and Luo and Young (2009) among
others. The non-separable speci�cation is used in Boileau and Braeu (2007) and Karnizova (2010). The last study assumes
that wealth e¤ect is derived from the stock of physical capital owned by the consumer at the end of the current period,
i.e., ki;t+1:
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All savings are held in the form of physical capital, which is the only asset in this economy. As in Becker

(1980), the consumers are not allowed to borrow in every period.

Let wt and rt be the market wage rate and rental rate of physical capital at time t: Given a sequence

of wage rates and rental rates, the consumers� problem is to choose a sequence of consumption and

asset holdings so as to maximize their lifetime utility, subject to the sequential budget constraints and

borrowing constraints. For each type-i consumer, this problem can be expressed as

max
fci;t;ki;t+1g

1
t=0

1X

t=0

�tiu (ci;t;ki;t)

subject to

ci;t + ki;t+1 � (1� �k) ki;t = wt + rtki;t; (4)

ki;t+1 � 0;

and the initial condition ki;0 > 0: The parameter �k 2 (0; 1) is the depreciation rate of physical capital.

The consumer�s optimal choices are completely characterized by the budget constraint in (4), and

the Euler equation for consumption,

uc (ci;t;ki;t) � �i [uk (ci;t+1;ki;t+1) + (1 + rt+1 � �k)uc (ci;t+1;ki;t+1)] ; (5)

which holds with equality if the borrowing constraint is not binding, i.e., ki;t+1 > 0: Introducing direct

preferences for wealth essentially creates some additional bene�ts for holding wealth. These additional

bene�ts are captured by the term uk (ci;t+1;ki;t+1) > 0 in the Euler equation. If consumers have no

direct preference for wealth, i.e., uk (c; k) � 0; then the Euler equation in (5) is identical to the one in

Becker (1980).

2.3 Production

Output is produced according to a standard neoclassical production function:

Yt = F (Kt; XtLt) ;
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where Yt denote aggregate output at time t, Kt is aggregate capital, Lt is aggregate labor and Xt is

the level of labor-augmenting technology. We will refer to bLt � XtLt as e¤ective unit of aggregate

labor. The technological factor is assumed to grow at a constant exogenous rate so that Xt � 
t for all

t; where 
 � 1 is the exogenous growth factor and X0 is normalized to one. The production function

F : R2+ ! R+ is assumed to have all the usual properties which are summarized below.

Assumption A4 The production function F
�
K; bL

�
is twice continuously di¤erentiable, strictly

increasing and strictly concave in each argument. It exhibits constant returns to scale and satis�es the

following conditions: F
�
0; bL

�
= 0 for all bL � 0; F (K; 0) = 0 for all K � 0; lim

K!0
FK

�
K; bL

�
= 1 and

lim
K!1

FK

�
K; bL

�
= 0:

Since the production function exhibits constant returns to scale, we can focus on a representative

�rm whose problem is given by

max
Kt;Lt

fF (Kt; XtLt)� wtLt � rtKtg ;

for any t � 0: The solution of this problem is completely characterized by the �rst-order conditions:

wt = XtFbL (Kt; XtLt) = XtFbL

�
bkt; 1

�
; (6)

rt = FK (Kt; XtLt) = FK

�
bkt; 1

�
; (7)

where bkt � Kt= (XtLt) is the level of physical capital per e¤ective unit of aggregate labor at time t:

2.4 Competitive Equilibrium

Let ct = (c1;t; c2;t; :::; cN;t) denote a distribution of consumption across groups at time t: Similarly,

de�ne kt as the distribution of physical capital at time t. Given an initial distribution k0; a competitive

equilibrium for this economy consists of a sequence of distributions, fct;ktg
1
t=0 ; a sequence of aggregate

inputs, fKt; Ltg
1
t=0 ; and a sequence of prices, fwt; rtg

1
t=0 ; so that

(i) Given the prices fwt; rtg
1
t=0 ; the allocation fci;t; ki;tg

1
t=0 solves a type-i consumer�s problem.

(ii) Given the prices fwt; rtg
1
t=0 ; the aggregate inputs fKt; Ltg

1
t=0 solve the representative �rm�s

problem in every period, i.e., (6) and (7) are satis�ed for all t � 0.
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(iii) All markets clear in every period so that, for each t � 0;

Kt =

NX

i=1

�iki;t; and

NX

i=1

�ici;t +Kt+1 � (1� �k)Kt = F (Kt; Xt) :

In both theoretical and quantitative analyses, we con�ne our attention to balanced-growth equilibria

which are independent of the initial conditions. Thus, the initial distribution of physical capital is

irrelevant to our analyses. A balanced-growth equilibrium is formally de�ned as a sequence S =

fct;kt;Kt; Lt; wt; rtg
1
t=0 such that

(i) S is a competitive equilibrium as de�ned above.

(ii) The rental rate of physical capital is stationary over time, i.e., rt = r� for all t � 0:

(iii) Individual consumption and asset holdings, aggregate capital and wage rate are all growing at

the same constant rate. The common growth factor is given by 
 � 1:

2.5 Theoretical Results

We now provide a set of conditions under which the baseline model possesses a unique balanced-growth

equilibrium. We also show that the wealth distribution in the unique equilibrium is non-degenerate.

These results are summarized in Theorem 1. The main ideas of the proof are as follows. A balanced-

growth equilibrium is mainly characterized by a constant rental rate r� which clears the market for

physical capital. Once this variable is determined, all other variables in a balanced-growth equilibrium

can be uniquely determined. Thus, it su¢ces to establish the existence and uniqueness of r�. To achieve

this, we �rst formulate the supply and demand for physical capital as functions of r:

Denote by bkd (r) the amount of physical capital per e¤ective unit of aggregate labor that the

representative �rm desires when the rental rate is r: The function bkd (r) is implicitly de�ned by

r = FK

�
bkd; 1

�
: (8)

Under Assumption A4, the function bkd : R++ ! R+ is continuously di¤erentiable and strictly decreas-

ing. Moreover, bkd (r) approaches in�nity as r tends to zero from the right and approaches zero as r

tends to in�nity. If r is an equilibrium rental rate, then the equilibrium wage rate at time t is uniquely

10



determined by wt = 
t bw (r) ; where

bw (r) = FbL

�
bkd (r) ; 1

�
: (9)

Next, we consider the supply side of the physical capital market. Along any balanced-growth

equilibrium path, individual consumption and asset can be expressed as ci;t = 
tbci and ki;t = 
tbki;

where bci and bki are stationary over time. The values of bci and bki are determined by the consumer�s

budget constraint and the Euler equation for consumption. Along a balanced growth path with rental

rate r, the budget constraint becomes

bci = bw (r) +
�
r � b�k

�
bki; (10)

where b�k � 
 � 1 + �k � �k; and the Euler equation can be expressed as


�

�i
� (1� �k)� r � �

�bci
bki

�
; (11)

which holds with equality if bki > 0: By Assumption A3, we have � (z) � 0 for all z � 0: In the above

condition, z is the consumption-wealth ratio for a type-i consumer, which must be non-negative. Thus,

the Euler equation is valid only for r � bri; where bri � 
�=�i� (1� �k) > 0: This essentially imposes an

upper bound on the equilibrium rental rate, which is min
i
fbrig = brN :10 For any r 2 (0; brN ) ; it is never

optimal for any type of consumer to choose bki = 0:11 It follows that the Euler equation will always hold

with equality in a balanced-growth equilibrium. Combining equations (10) and (11) gives


�

�i
� (1� �k)� r = �

� bw (r)
bki

+ r � b�k
�
: (12)

This implicitly de�nes a relationship between bki and r: Formally, this can be expressed as bki = gi (r) ;

where gi (�) is a continuously di¤erentiable function de�ned on (0; bri) :

Denote by bks (r) the aggregate supply of physical capital when the rental rate is r 2 (0; brN ) :
10 If r > brN ; then the Euler equation will not be satis�ed for some type of consumers and so r cannot be an equilibrium

rental rate.
11To see this, suppose the contrary that a type-i consumer chooses to have bki = 0 in a balanced-growth equilibrium with

rental rate r. Then the right-hand side of (7) would become in�nite as lim
z!1

� (z) =1 under Assumption A3. This clearly

exceeds the left-hand side of the inequality for any r 2 (0; brN ) and hence gives rise to a contradiction. This also means that

in order to have bki > 0 in equilibrium, one can replace the assumption of lim
z!1

� (z) =1 by lim
z!1

� (z) > 
�=�1� (1� �k)

in Assumption A3.
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Formally, this is de�ned as

bks (r) =
NX

i=1

�igi (r) : (13)

Since each gi (r) is continuously di¤erentiable on (0; brN ) ; the function bks (r) is also continuously di¤er-

entiable on this range. A balanced-growth equilibrium exists if there exists at least one value r�; within

the range (0; brN ) ; that solves the physical capital market equilibrium condition:

bkd (r) = bks (r) :

Once r� is determined, all other variables in the balanced-growth equilibrium can be uniquely de-

termined. If there exists a unique value of r�; then the balanced-growth equilibrium is also unique.

Theorem 1 provides the conditions under which a unique value of r� exists. The proof of this result

can be found in Appendix A.

Theorem 1 Suppose Assumptions A1-A4 are satis�ed. Suppose �i

1�� < 1 for all i 2 f1; :::; Ng, and

bkd
�
b�k
�
> bks

�
b�k
�
: (14)

Then there exists a unique balanced-growth equilibrium. In the unique equilibrium, all types of con-

sumers hold a strictly positive amount of capital. In addition, more patient consumers would have more

consumption and hold more capital than less patient ones, i.e., �i > �j implies bci > bcj and bki > bkj :

We now explain the intuitions behind Theorem 1. Set 
 = 1 for the moment. In the original Becker

(1980) model, where consumers have no direct preference for wealth, the Euler equation is given by

�i �
1

�i
� 1 � r� � �k; (15)

which holds with equality if bki > 0: The parameter �i is the discount rate or rate of time preference for

a type-i consumer. This equation suggests that a consumer with no direct preference for wealth will

invest according to the following rules: (i) accumulate assets inde�nitely if the e¤ective rate of return

(r� � �k) exceeds his rate of time preference, (ii) run down his assets to zero (the lower bound) if the

e¤ective rate of return is lower than his rate of time preference, and (iii) maintain a constant positive

amount of assets if the two are equal. Since all consumers face the same e¤ective rate of return from
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savings, it is not possible for consumers with di¤erent discount rates to maintain a constant positive

amount of assets simultaneously. In addition, no one can accumulate assets inde�nitely in a stationary

equilibrium. Thus, the e¤ective rate of return must be equated to the lowest rate of time preference

in the population. In other words, only the most patient group of consumers will have positive asset

holdings in any stationary equilibrium. All other groups of consumers will run down their wealth until

it reaches zero.

Introducing direct preferences for wealth breaks this spell by creating some additional bene�ts of

holding wealth. These additional bene�ts fundamentally change the consumers� saving behavior. In

particular, a consumer is now willing to maintain a constant positive level of assets even if the e¤ective

rate of return is lower than his rate of time preference. This can be seen from the Euler equation in

the current model, which can be expressed as

�i � (r
� � �k) =

uk

�
bci;bki

�

uc

�
bci;bki

� :

Since uk

�
bci;bki

�
> 0; we have �i > (r� � �k) for all i: It is now possible to obtain a non-degenerate

wealth distribution because consumers with di¤erent rates of time preference can choose a di¤erent

value of bki according to the above equation. For impatient consumers, they are willing to hold a

constant level of wealth only if they are compensated by large utility gains from wealth. Under the

stated assumptions, these gains are diminishing in bki: Thus, less patient consumers would choose a

smaller value of bki than more patient ones.

To establish the results in Theorem 1, we have imposed two mild regularity conditions. The �rst

condition requires �i

1�� < 1 for all i 2 f1; :::; Ng : This condition is both necessary and su¢cient to

ensure that the lifetime utility for all types of consumers is �nite along the balanced growth path.12

The second condition, stated in (14), ensures that the unique equilibrium rental rate r� is greater than

b�k: According to (10), r� > b�k is both necessary and su¢cient to guarantee that individual consumption

and asset holdings are positively correlated in the balanced-growth equilibrium. It is important to point

out that condition (14) can be checked individually before the equilibrium rental rate is solved. More

speci�cally, bkd
�
b�k
�
can be determined by substituting r = b�k into (8). For each i 2 f1; 2; :::; Ng ; de�ne

12This condition is commonly used in models that allow for perpetual growth in per-capita consumption. See, for
instance, King, Plosser and Rebelo (1988) p.203.
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xi by

1

xi
= ��1

�

�

�i
� 


�
:

Then, gi

�
b�k
�
= bw

�
b�k
�
xi and bks

�
b�k
�
is given by

bks
�
b�k
�
= bw

�
b�k
� NX

i=1

�ixi:

This shows that both bkd
�
b�k
�
and bks

�
b�k
�
can be explicitly related to the fundamentals of the economy.

As an example, suppose the production function takes the Cobb-Douglas form,

F (K;XL) = K� (XL)1�� ; � 2 (0; 1) ; (16)

and the utility function is given by (2). Then, condition (14) holds if and only if

�

b�k
> (1� �) �

1

�

"
NX

i=1

�i

�

�

�i
� 


�� 1

�

#
:

2.6 Numerical Results

We now examine the extent of economic inequality that can be generated by the baseline model. To

achieve this, we have to specify the form of utility function and production function, and assign speci�c

values to the model parameters. Some of these values are chosen based on empirical �ndings. Others

are chosen to match some real-world targets. The details of this procedure are explained below.

2.6.1 Functional Forms and Parameters

In the numerical exercise, the production function is assumed to take the Cobb-Douglas form as in

(16) and the utility function is additively separable as in (2). Under this speci�cation, the parameter

� captures the importance of wealth preference in the utility function. In particular, a higher value of

� means that the same increase in wealth would generate a larger gain in utility. The original Becker

model corresponds to the case in which � = 0:
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Table 1 Benchmark Parameters in Baseline Model.

� Inverse of intertemporal elasticity of substitution 1

� Share of capital income in total output 0.33


 Common growth factor 1.022

�min Minimum value of subjective discount factor 0.966

�max Maximum value of subjective discount factor 0.992

N Number of distinct groups of agents 1,000

On period in the model is a year. The share of capital income in total output (�) is 0.33. The

growth rate of per-capita variables (
 � 1) is 2.2 percent, which is the average annual growth rate of

real per-capita GDP in the United States over the period 1950-2000. In the benchmark scenario, the

parameter � in the utility function is set to one. The range of subjective discount factors is chosen based

on the estimates in Lawrance (1991). Using data from the Panel Study of Income Dynamics over the

period 1974-1982, Lawrance (1991) estimates that the average rate of time preference for households

in the bottom �ve percent of the income distribution is 3.5 percent, after controlling for di¤erences in

age, educational level and race. This implies an average discount factor of 1/(1+0.035)=0.966. The

estimated rate of time preference for the richest �ve percent is 0.8 percent, which corresponds to a

discount factor of 0.992.13

In the benchmark scenario, we consider a hypothetical population of one thousand groups of con-

sumers and assume that the subjective discount factors are uniformly distributed between �min = 0:966

and �max = 0:992: In other words, we set N = 1; 000 and �i = 1=N for all i: The mean discount factor

is 0.979. The choice of N is immaterial for our benchmark results. A uniform distribution is used

for the following reason. Take wealth inequality as an example. In the stationary equilibrium, wealth

inequality is driven by two types of variations: (i) variations in population shares across groups, cap-

tured by f�ig
N
i=1 ; and (ii) variations in the equilibrium level of asset holdings across groups, captured

by
n
bki
oN
i=1

: By adopting a uniform distribution, we can rule out the �rst type of variation. Thus,

wealth inequality in the benchmark results is entirely driven by the cross-sectional variations in asset

holdings. The same argument applies to inequality in income. Our benchmark results then provide a

13To obtain these results, Lawrance (1991) estimate the Euler equation for a model without direct preferences for wealth.
This range of values, however, encompasses the values of discount factors that are typically used in quantitative studies
(with or without wealth preference). In Section 2.6.4, we will examine the e¤ects of changing these endpoint values on
the baseline results.
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clear illustration of how much inequality can be generated by the key features of the model, namely

wealth preference and heterogeneous discount factors. After presenting the benchmark results, we will

examine the e¤ects of relaxing the uniform distribution assumption and changing the values of �min

and �max:

In the benchmark results, we focus on the relationship between � and the degree of wealth and

income inequality. To achieve this, we consider di¤erent values of � ranging from 0.005 to 0.5. For each

value of �; the depreciation rate �k is recalibrated so that the capital-output ratio is maintained at 3.0.

Table 1 summarizes the parameter values used in the benchmark economy.

2.6.2 Benchmark Results

Table 2 summarizes the main �ndings of this exercise. The reported results include the Gini coe¢cients

for wealth and income, the coe¢cients of variation for wealth and income, and the shares of wealth held

by the bottom and top percentiles of the wealth distribution. The data of these inequality measures

are taken from Díaz-Giménez et al. (2011).

The results in Table 2 show a strong negative relationship between wealth inequality and the value

of �: This can also be seen from Figure 1, which shows the Lorenz curves for wealth under di¤erent

values of �: As � approaches zero, both the Gini coe¢cient of wealth and the share of total wealth held

by the wealthiest consumers increase towards unity. This means the wealth distribution becomes more

and more concentrated when the importance of wealth preference diminishes. This result is consistent

with theoretical predictions as � = 0 corresponds to the original Becker (1980) model. For small values

of �, the baseline model is able to generate a highly concentrated distribution of wealth with a large

group of wealth-poor consumers and a small group of extremely wealthy ones. In particular, under

certain value of �; the model is able to replicate certain key measures of wealth inequality in the United

States. For example, when � = 0:01123 the Gini coe¢cient of wealth generated by the model is 0.816,

when � = 0:01796 the wealthiest one percent own 33.6 percent of total wealth in the model economy.

These �gures coincide with the actual data reported in Díaz-Giménez et al. (2011).

As the value of � increases, the wealth distribution becomes more and more equal. The intuition

behind this result is as follows. An increase in � means that the same increase in asset holdings would

now generate a larger gain in utility. This has two opposing e¤ects on wealth inequality. First, a

stronger preference for wealth encourages all types of consumers to accumulate more assets. This e¤ect
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is stronger for wealth-rich consumers than for wealth-poor ones. Thus, holding other things constant,

an increase in � would make the wealth distribution more unequal. Second, since aggregate savings

increase as � increases, the e¤ective rate of return from savings (r� � �k) needs to be adjusted downward

in order to discourage savings and maintain the same capital-output ratio. This tends to have a larger

e¤ect on more patient consumers than on the less patient ones. As a result, the share of total wealth

owned by the wealthiest consumers will be lowered and the wealth distribution will become more equal.

The overall e¤ect of � on wealth inequality then depends on the relative magnitude between these two

forces. Our results show that the second e¤ect dominates under the benchmark parameter values.

Table 2 also shows that the baseline model tends to generate a relatively low degree of income

inequality. This happens because (i) earnings are identical for all consumers in this economy, and (ii)

earnings represent a sizable portion of income for most of the consumers. Table 3 reports the share of

total income from earnings for di¤erent wealth groups. When � is less than 0.025, earnings accounts

for more than 80 percent of total income for the majority of the consumers.

In sum, our quantitative results show that the baseline model is able to replicate some key features

of the wealth distribution in the United States. However, it falls short of explaining income inequality.

This is partly because earnings are identical for all consumers. The two extensions considered in

Sections 3 and 4 are intended to change this feature of the baseline model.

2.6.3 Relaxing the Uniform Distribution Assumption

We now examine the e¤ects of changing the shape of the distribution of discount factors. To achieve

this, we assume that the size of each type is determined by

�i =

�
i

N

� 1

�

�

�
i� 1

N

� 1

�

; with � > 0;

for i 2 f1; 2; :::; Ng : The endpoints of the distribution are �xed at their benchmark values, i.e., �min =

0:966 and �max = 0:992: This speci�cation of �i is desirable for two reasons: (i) the skewness of the

distribution is conveniently controlled by a single parameter �; and (ii) it includes the benchmark

uniform distribution as special case (i.e., � = 1): When � > 1; the size of the most patient group is

less than 1=N and the distribution is more concentrated on low values of �: The opposite is true when

� 2 (0; 1) : Intuitively, a high value of � represents an economy in which most of the consumers have

similar values of discount factor clustered around �min, while a small groups of consumers are relatively
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more patient.

To better understand the e¤ects of � on wealth inequality, we consider two experiments. In the

�rst experiment, we focus on the extent of wealth inequality under di¤erent values of �: In each case,

the depreciation rate �k is recalibrated so that the capital-output ratio is maintained at 3.0. All other

parameters (including �) are �xed at their benchmark values. These results are shown in Panel A of

Table 4. In the second experiment, both the Gini coe¢cient for wealth and the capital-output ratio

are kept constant. This is achieved by adjusting both � and �k for each value of �: The results of the

second experiment are summarized in Panel B of Table 4.

We begin by summarizing the e¤ects of changing � on the distribution of discount factors. These

results are the same for both panels. Increasing � from 1.0 to 2.0 raises the size of the least patient

group (�1) from 0.0010 to 0.0316, and reduces the size of the most patient group (�N ) by half. Because

of the skewness of the distribution, the mean value of � is greater than the median value when � > 1.

Panel A of Table 4 shows that the Gini coe¢cients produced by the baseline model are rather robust

to changes in the size of the most patient group. For instance, reducing �N by half only raises the

Gini coe¢cients of wealth and income by 7.0 percent and 6.7 percent, respectively. The share of total

wealth owned by the wealthiest consumers are more sensitive to this change. Panel B shows that once

we maintain the Gini coe¢cient of wealth at the same level as in the benchmark scenario, changing �

has only a mild impact on the wealth distribution. These results show that the main mechanism of the

model is robust to changes in the shape of the distribution of discount factors.

2.6.4 Changing the Range of Discount Factors

We now examine the e¤ects of changing the range of discount factors. We maintain the uniform distri-

bution assumption as in the benchmark scenario, but consider �ve di¤erent combinations of endpoint

values. In the �rst variation, the benchmark values are reduced by 0.01 so that �min = 0:956 and

�max = 0:982: In the second variation, the benchmark values are reduced by 0.02. In these two ex-

periments, the range 4� � j�max � �minj is the same as in the benchmark scenario. In the third and

fourth experiments, this range is reduced by half. We consider the upper half in the third experiment,

i.e., �min = 0:979 and �max = 0:992; and the lower half in the fourth one. In the �nal experiment,

we extend the benchmark interval to the left by 50 percent, so that �min = 0:953 and �max = 0:992:

Similar to the previous subsection, we report two sets of results for each experiment. Panel A of Table
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5 reports the results obtained when the capital-output ratio is kept at 3.0 and � is �xed at 0.01123.

Panel B reports the results obtained when both the Gini coe¢cient of wealth and the capital-output

ratio are kept constant.

Two observations can be made from Panel A. First, shifting the distribution of discount factors while

leaving the range 4� unchanged has only a small impact on the Gini coe¢cients. The share of total

wealth owned by the wealthiest consumers is also quite robust to this change. Second, wealth inequality

is positively related to the size of 4�: This is evident from the results of the last three experiments.14

However, Panel B shows that once we maintain the Gini coe¢cient of wealth at the same level, changing

the range of discount factors has only a negligible impact on the wealth distribution. These results show

that the main mechanism of the baseline model is robust to di¤erent values of �min and �max: They

also show that the model does not rely on large values of discount factors (i.e., very patient consumers)

to generate a high concentration of wealth.

3 Labor-Leisure Choices

In this section, we extend the baseline model to include endogenous labor supply decisions. The

consumers� period utility function is now given by

u (c; k; l) =
c1��

1� �
+ �

k1��

1� �
� �

l1+1=�

1 + 1=�
; (17)

where l denote the amount of time spent on working, � > 0 is the intertemporal elasticity of substitution

of labor, and � is a positive-valued parameter. Consumers� earnings are now endogenously determined

by their choice of working hours. The rest of the model is the same as in Section 2.

A balanced-growth equilibrium for this economy can be de�ned similarly as in Section 2.4. This

type of equilibrium now includes, among other things, a stationary distribution of labor hours which

is represented by l = (l1; l2;:::; lN ) : Let bkd (r) and bw (r) be the functions de�ned in (8) and (9). The

equilibrium values of
n
bci;bki; li

oN
i=1

and the equilibrium rental rate r� are determined by

bci = bw (r) li +
�
r � b�k

�
bki; (18)

14Similar results can be obtained under di¤erent values of �: These results are not shown in the paper but are available
upon request.
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�

�i
� (1� �k)� r = �

�bci
bki

��
; (19)

bw (r)
bci

= � (li)
1

� ; (20)

NX

i=1

�ibki =
 

NX

i=1

�ili

!
bkd (r) ; (21)

where b�k � 
� 1+ �k: Equations (18) and (19) can be obtained from the consumers� budget constraint

and their Euler equation, respectively, after imposing the balanced-growth conditions. Equation (20)

is the �rst-order condition with respect to labor. Equation (21) is the market-clearing condition for

physical capital.

We now consider the same numerical exercise as in Section 2.6. The production function again takes

the Cobb-Douglas form and the parameter values in Table 1 are used. In particular, the distribution

of discount factors is assumed to be uniform, with �min = 0:966 and �max = 0:992: The intertemporal

elasticity of substitution of labor is set to 0.4.15 As in Section 2.6, we focus on the relationship between

� and the degree of economic inequality. We consider the same set of values for � as in Table 2. In

each case, the preference parameter � is chosen so that the average amount of time spent on working

is one-third and the depreciation rate �k is chosen so that the capital-output ratio is 3.0.

Table 6 shows the inequality measures obtained under � = 0:4: When comparing these to the

baseline results in Table 2, it is immediate to see that they are very similar. Introducing endogenous

labor supply decisions does not change the fundamental mechanism in the baseline model. In particular,

the model continues to generate a high degree of wealth inequality when � is small and a relatively

low degree of income inequality in general. A comparison to the results in Table 2 also shows that

allowing for endogenous labor supply actually lowers the Gini coe¢cient of income. This can be

explained by Figure 2, which shows the relationship between discount factor and labor supply. Most of

the consumers in this economy, except those who are very patient, choose to have the same amount of

labor. Consequently, the distribution of labor hours is close to uniform. This explains why the extended

model generates a similar degree of income inequality as the baseline model. Due to the wealth e¤ect,

wealth-rich consumers tend to work less than wealth-poor ones. This creates a negative correlation

15As a robustness check, we also consider two other values of this elasticity, namely 0.2 and 1.0. The results are almost
identical to those obtained under � = 0:4: In particular, increasing this elasticity from 0.2 to 1.0 only marginally a¤ects
the Gini coe¢cients of wealth and income. These results are not shown in the paper but are available from the author
upon request.
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between earnings and capital income. This negative correlation in e¤ect reduces income inequality in

the model with labor-lesiure choice.

4 Human Capital Formation

4.1 The Model

We now extend the baseline model to include human capital formation. Suppose in each period, each

consumer is endowed with one unit of time which can be divided between market work and on-the-job

training. Consider a type-i consumer with human capital hi;t at the beginning of time t: If he spends a

fraction li;t 2 [0; 1] of time on market work during the period, then his earnings are given by wtli;thi;t:

We refer to li;thi;t as e¤ective unit of labor hour. The variable wt is now the market wage rate for

an e¤ective unit of labor hours. The consumer also receives ' (1� li;t)
� h&i;t units of newly produced

human capital, where ' > 0; � 2 (0; 1) and & 2 (0; 1) : Human capital at time t+ 1 is then given by

hi;t+1 = ' (1� li;t)
� h&i;t + (1� �h)hi;t; (22)

where �h 2 (0; 1) is the depreciation rate of human capital.

The consumer�s is now given by

max
fci;t;li;t;ki;t+1;hi;t+1g

1
t=0

1X

t=0

�tiu (ci;t;ki;t)

subject to

ci;t + ki;t+1 � (1� �k) ki;t = wtli;thi;t + rtki;t;

ki;t+1 � 0; li;t 2 [0; 1] ;

the human capital accumulation equation in (22), and the initial conditions: ki;0 > 0 and hi;0 > 0:

The utility function is assumed to satisfy Assumptions A1-A3. The rest of the model economy remains

the same as in Section 2. In particular, long-term growth in per-capita variables is again fueled by an

exogenous improvement in labor-augmenting technology and the exogenous growth factor is 
 � 1:16

16Unlike the endogenous growth model considered in Lucas (1988), human capital accumulation does not serve as the
engine of growth in here. This is implied by the condition & 2 (0; 1), which implies diminishing returns of hi;t in the
production function of human capital. The main idea of introducing human capital in this model is to increase the
variation in earnings across consumers.
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Let ht = (h1;t; :::; hN;t) denote a distribution of human capital at time t: Similarly, de�ne lt as a

distribution of labor hours at time t: Given the initial distributions k0 and h0; a competitive equilibrium

consists of a sequence of distributions, fct;kt; lt;htg
1
t=0 ; a sequence of aggregate inputs, fKt; Ltg

1
t=0 ;

and a sequence of prices, fwt; rtg
1
t=0 ; so that

(i) Given the prices, the allocation fci;t; ki;t; li;t; hi;tg
1
t=0 solves each type-i consumer�s problem.

(ii) Given the prices, the aggregate inputs fKt; Ltg
1
t=0 solve the representative �rm�s problem in each

period.

(iii) All markets clear in every period, i.e.,

Kt =

NX

i=1

�iki;t and Lt =

NX

i=1

�ili;thi;t; for each t � 0:

A balanced-growth equilibrium can be de�ned similarly as in Section 2.4. Speci�cally, a balanced-

growth equilibrium is a sequence S = fct;kt; lt;ht;Kt; Lt; wt; rtg
1
t=0 such that

(i) S is a competitive equilibrium as de�ned above.

(ii) The rental rate of physical capital is stationary over time, i.e., rt = r� for all t � 0:

(iii) The distributions of labor hours and human capital are stationary over time.

(iv) Individual consumption and asset holdings, aggregate capital and wage rate are all growing at

the same constant rate. In particular, the common growth factor is 
 � 1:

De�ne the transformed variables bci � ci;t=

t and bki � ki;t=


t: Along any balanced growth path, the

equilibrium values of
n
bci;bki; li; hi

oN
i=1

and the equilibrium rental rate r� are determined by


�

�i
� (1� �k)� r = �

�bci
bki

�
; (23)

bci = bw (r) lihi +
�
r � b�k

�
bki; (24)

li
1� li

=
1

�

�
1

�h

�

��1

�i
� (1� �h)

�
� &

�
; (25)

hi =

�
'

�h
(1� li)

�

� 1

1�&

; (26)
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NX

i=1

�ibki =
 

NX

i=1

�ilihi

!
bkd (r) ; (27)

where b�k � 
 � 1 + �k: Similar to the baseline model, the functions bkd (r) and bw (r) are de�ned by (8)

and (9), respectively. Equations (23) and (24) can be obtained from the Euler equation for consumption

and the consumers� budget constraint, after imposing the balanced-growth conditions. Equations (25)

and (26) can be obtained from the �rst-order conditions with respect to li;t and hi;t+1; and the human

capital accumulation equation. Equation (27) is the physical capital market equilibrium condition. The

mathematical derivations of (23)-(27) are shown in Appendix B.

The main theoretical results in Section 2.5 can be extended to the current model. Speci�cally, under

some mild regularity conditions, there exists a unique balanced-growth equilibrium for this economy.

This unique equilibrium has two important properties. First, the borrowing constraint is not binding

for all types of consumers. Thus, the Euler equation in (23) holds with equality for all i. Second, the

wealth distribution in the unique equilibrium is non-degenerate. The formal proof of these results are

shown in Appendix B.

Before concluding this section, we want to highlight the key features of the distributions of labor

hours and human capital. In the unique balanced-growth equilibrium, the values of fli; hig
N
i=1 can be

obtained by solving (25) and (26). These equations show that the distributions of labor hours and

human capital are non-degenerate, and are independent of consumer�s direct preferences for wealth.

The values of fli; hig
N
i=1 are also independent of the equilibrium rental rate r

� and the consumers� asset

holdings
n
bki
oN
i=1

: Thus, in the stationary equilibrium, the distribution of earnings is not a¤ected by

the consumers� savings decisions.

4.2 Parameter Values

In the quantitative exercise, we use the same speci�cation for production technology and utility function,

and the same distribution of discount factors as in the benchmark scenario in Section 2.6. Speci�cally,

the production function for output takes the Cobb-Douglas form with � = 0:33: The utility function is

additively separable as in (2), with benchmark parameter value � = 1: In Section 5.4, we report the
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Table 7 Benchmark Parameters in Model with Human Capital.

� Share of capital income in total output 0.33


 Common growth factor 1.022

�k Depreciation rate of physical capital 0.08004�

� Inverse of intertemporal elasticity of substitution 1.0

� Strength of wealth preference 0.01202

�min Minimum value of subjective discount factor 0.966

�max Maximum value of subjective discount factor 0.992

N Number of groups of consumers 1,000

' Parameter in human capital production 1.0

� Parameter in human capital production 0.939

& Parameter in human capital production 0.871

�h Depreciation rate of human capital 0.037

* This �gure has been rounded o¤ to the fourth signi�cant �gure.

results obtained under di¤erent values of �: The population is divided into 1,000 groups and the discount

factors are uniformly distributed between 0.966 and 0.992.17

As for the parameter values in the human capital production function, we normalize ' to unity and

set the values of � and & according to the estimates reported in Heckman et al. (1998). Using data from

the National Longitudinal Survey of Youth for the period 1979-1993, these authors �nd that the values

of � and & for people who have completed at least one year of college education are 0.939 and 0.871,

respectively. For those who do not have any college education, the corresponding values are 0.945 and

0.832. We use the �rst set of parameter values in the numerical analysis because workers with college

education account for a larger share of the U.S. labor force than those without college education.18 As

for the depreciation rate of human capital, Heckman et al. (1998) assume that it is zero. Other studies

in the existing literature typically �nd that this rate is greater than zero.19 In the benchmark scenario,

we set �h = 0:037 which is consistent with the estimate reported in Heckman (1976).

17The choice of N = 1; 000 is again immaterial for our benchmark results. In particular, changing the number of groups
to either 500 or 5,000 has virtually no impact on our benchmark results.
18Over the past twenty years, workers with at least some college education have accounted for an increasingly larger

share of the U.S. labor force. In 1992, this type of worker represented 51.8 percent of civilian labor force (over 25 years
old). This increased to 62.1 percent by the year 2010. These �gures are based on the data reported in the U.S. Statistical
Abstract.
19See Browning et al. (1999) Table 2.3 for a summary of these studies.
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The two remaining parameters, � and �k; are calibrated so that the model can match two real-world

statistics. In the benchmark scenario, we choose the value of � so that the Gini coe¢cient of wealth

predicted by the model is 0.816, which coincides with the value reported in Díaz-Giménez et al. (2011).

The required value of � is 0.01202. Similar calibration strategy is also used in Krusell and Smith (1998),

Erosa and Koreshkova (2007), and Hendricks (2007) to determine the parameter values in the Markov

process of the random discount factor.20 The choice of �, however, has no impact on the distribution

of earnings. As explained earlier, the distributions of labor hours and human capital are independent

of consumers� wealth preference. Thus, the distribution of earnings in the model is not a¤ected by

the preference parameter �: The second parameter �k is calibrated so that the capital-output ratio

generated by the model is 3.0. The parameter values used in the quantitative exercise are summarized

in Table 7.

4.3 Benchmark Results

Table 8 summarizes the characteristics of the earnings, income and wealth distributions obtained under

the benchmark parameter values. The �rst three columns show the Gini coe¢cients, the coe¢cients of

variation and the mean-to-median ratios for the three variables. The mean-to-median ratio is intended

to measure the degree of skewness in these distributions. The rest of Table 8 shows the share of earnings,

income and wealth owned by consumers in di¤erent percentiles of the corresponding distribution.

Under the benchmark parameter values, the wealth distribution in the model economy is highly

concentrated with a large group of wealth-poor consumers and a small group of extremely wealthy

ones. For instance, the share of total wealth owned by consumers in the second quintile of the wealth

distribution is merely 1.3 percent, whereas the share owned by the wealthiest �ve percent is 58.5

percent. These �gures are very close to the actual values observed in the United States. As for the

income distribution, the model is able to generate a Gini coe¢cient and a mean-to-median ratio that

are similar to the observed values. It is also able to replicate reasonably well the share of aggregate

income owned by di¤erent quintiles of the income distribution.

As for earnings, the model predicts a more equal distribution than that observed in the data. In

the model economy, earnings-poor consumers own a larger share of total earnings than their real-world

20Conceptually, this strategy of choosing � is no di¤erent from choosing the preference parameter � in (17) to match
the average amount of time spent on work, a common practice in the real business cycle literature. In both cases, the
unobserved, undetermined parameter is chosen so that certain prediction of the model can match its empirical counterpart.
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counterparts. Consequently, the Gini coe¢cient predicted by the model is much lower than the actual

value.21 The big di¤erence between the model�s prediction and the actual value can be explained by

two factors. First, in the actual data, a large number of households have reported negative earnings.

According to Díaz-Giménez et al. (2011), the average earnings of households in the bottom quintile of

the U.S. earnings distribution are negative due to sizable business losses. In the model economy, earnings

must be above zero. This restriction reduces the range and dispersion of the earnings distribution,

which in turn lowers earnings inequality in the model. Second, and more importantly, almost all the

households in the bottom quintile of the U.S. earnings distribution are not workers. As shown in Díaz-

Giménez et al. (2011) Table 4, retirees and nonworkers represent 96.9 percent of these households, and

labor income only account for 0.2 percent of their total income. If we consider only households headed

by employed worker, then the Gini coe¢cient for earnings in the United States is 0.47. This value is

much closer to the one predicted by the model which assumes that all consumers are employed.22

5 Discussion

The benchmark results in Table 8 show that our model is able to generate realistic patterns of wealth

and income inequality. To achieve this, we have extended the standard neoclassical growth model

to allow for (i) direct preferences for wealth, (ii) human capital formation, and (iii) heterogeneity in

subjective discount factors. In the benchmark scenario, we also assume that the utility function is

logarithmic (i.e., � = 1) and additively separable, and the distribution of discount factors is uniform.

In this section, we examine the signi�cance of each of these features in explaining wealth and income

inequality. The main objective of this exercise is to better understand the determinants of wealth and

income inequality in our model.

5.1 Strength of Wealth Preference

The purpose of this subsection is to illustrate the e¤ects of wealth preference on wealth and income

inequality in the extended model. To achieve this, we compute a series of balanced-growth equilibria

21Our results on earnings inequality, however, are comparable to those obtained by Pijoan-Mas (2006) and Erosa and
Koreshkova (2007). In the benchmark model of Pijoan-Mas (2006), the Gini coe¢cient and the coe¢cient of variation for
the earnings distribution are 0.33 and 0.65, respectively. In the benchmark model of Erosa and Koreshkova (2007), the
Gini coe¢cient of earnings is 0.289.
22As shown in Díaz-Giménez et al. (2011), the Gini coe¢cients of income and wealth for households headed by employed

workers in the United States are 0.48 and 0.78, respectively. These values are still quite close to the ones generated by
the model.
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using di¤erent values of � ranging from 0.005 to 0.5. For each value of �; the depreciation rate �k is

recalibrated so that the capital-output ratio is maintained at 3.0. All other parameters values are the

same as in Table 7.

The results of this exercise are shown in Table 9.23 Similar to the results shown in Table 2, inequality

in wealth and income decrease as � increases. But the decline in income inequality is much smaller

than the decline in wealth inequality. This happens because (i) consumers� earnings are not a¤ected

by the parameter �; and (ii) for most of the consumers in this economy, earnings account for a large

fraction of their income.24 Thus, changing � has only a mild impact on the income distribution.

When comparing the results in Table 2 and Table 9, we can see that removing human capital

formation from the extended model only lowers the Gini coe¢cient of wealth by 1.5 percent when

� = 0:01202: In other words, wealth inequality in the extended model is mainly driven by wealth

preference and the heterogeneity in discount factors.

5.2 Relaxing the Uniform Distribution Assumption

We now perform the same sensitivity analysis as in Section 2.6.3. In particular, the share of each group

in the population is now determined by

�i =

�
i

N

� 1

�

�

�
i� 1

N

� 1

�

; with � > 0;

for i 2 f1; 2; :::; Ng : The endpoints of the distribution are �xed at their benchmark values, i.e., �min =

0:966 and �max = 0:992: The benchmark results in Table 8 then corresponds to the case when � = 1:We

consider two calibration exercises. In the �rst exercise, we examine the extent of economic inequality

under di¤erent values of �: The results are shown in Panel A of Table 10. For each value of �; the

depreciation rate of physical capital is adjusted so as to maintain the capital-output ratio at 3.0. All

other parameters (including �) are �xed at their benchmark values. In the second exercise, both � and

�k are recalibrated in each case so that the two calibration targets (Gini coe¢cient of wealth and the

capital-output ratio) are the same as in the benchmark scenario. The results of the second experiment

are summarized in Panel B of Table 10.

23As explained earlier, the earnings distribution is independent of �: Thus, for all the cases considered in Table 9, the
earnings distribution is the same as in the benchmark scenario.
24When � is 0.05 or less, earnings represent more than 70 percent of income for those in the bottom four quintiles (i.e.,

the bottom 80 percent) of the wealth distribution.
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Overall, the results of this exercise are similar to those obtained from the baseline model. Panel

A of Table 10 shows that the Gini coe¢cients produced by the model are rather robust to changes in

the size of the most patient group. More speci�cally, reducing �N by half raises the Gini coe¢cients of

earnings, income and wealth by 13.6 percent, 10.8 percent and 8.5 percent, respectively. The share of

total wealth and total income owned by the richest consumers are more sensitive to this change. The

intuitions behind these results are as follows. First, consider the increase in earnings inequality. In the

stationary equilibrium, this type of inequality is driven by (i) cross-sectional variations in the population

share, f�ig
N
=1 ; and (ii) cross-sectional variations in human capital and labor hours, fhi; lig

N
i=1 : As shown

in (25) and (26), the values of fhi; lig
N
i=1 are independent of the e¤ective rate of return (r

� � �k) and

the population shares. This means changing � has no impact on the values of fhi; lig
N
i=1 : Thus, the

increase in earnings inequality that we observed in Panel A of Table 10 is completely driven by the

changes in f�ig
N
=1 : In particular, an increase in � lowers the share of very patient consumers in the

population. Since these consumers tend to have more human capital and higher earnings than the less

patient ones, a large portion of total earnings is now concentrated in the hands of fewer consumers.

Thus, the earnings distribution becomes more unequal as � increases.

An increase in � has a similar e¤ect on wealth inequality. Speci�cally, such an increase means that

a large portion of total wealth is now concentrated in the hands of fewer consumers. This makes the

wealth distribution more unequal. However, an increase in � would also induce changes in the e¤ective

rate of return from savings. This creates a second e¤ect on wealth inequality. More speci�cally, an

increase in the share of less patient consumers leads to a decline in aggregate savings. In order to

maintain the same capital-output ratio, we need to adjust the e¤ective rate of return upward as �

increases. Since more patient consumers are more responsive to interest rate changes than less patient

ones, this widens the di¤erences in asset holdings across groups and further increases wealth inequality.

As for income, since it is just the sum of earnings and capital income, income inequality increases as

earnings and wealth inequality increase.

Next, we turn to the results in Panel B of Table 10. Since adjusting � has no e¤ect on the earnings

distribution, the Gini coe¢cients of earnings are the same as in Panel A. When the Gini coe¢cient of

wealth is held constant, increasing � from 1.0 to 2.0 raises the Gini coe¢cient of income by 6.5 percent,

which is smaller than the increase in Panel A. The most signi�cant di¤erence between the two panels

is that, when the Gini coe¢cient of wealth is held constant, an increase in � would lower the share of
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total wealth and total income held by the richest consumers. This happens because we need to adjust

� upward as � increases so as to maintain the Gini coe¢cient of wealth at the same level. As shown in

Table 9, this tends to lower the share of total wealth and total income held by the richest consumers.

The results in Panel B thus show that the qualitative e¤ects of � on wealth and income inequality are

robust to changes in �:

5.3 Changing the Range of Discount Factors

We now examine the e¤ects of changing the range of discount factors. Similar to Section 2.6.4, we

maintain the uniform distribution assumption and consider �ve di¤erent combinations of endpoint

values. We report two sets of results for each experiment. Panel A of Table 11 reports the results

obtained when the capital-output ratio is kept at 3.0 and � is �xed at 0.01202. Panel B reports the

results obtained when the two calibration targets are kept constant.

We begin by summarizing the results in Panel A. Similar to the model without human capital,

shifting the distribution of discount factors while leaving the range 4� unchanged only has a mild

impact on the Gini coe¢cients. For instance, reducing the benchmark endpoint values by 0.01 would

raise the Gini coe¢cients of earnings and income by 4.5 percent and 2.2 percent, respectively. The e¤ect

of this on the Gini coe¢cient of wealth is negligible. The share of total wealth and total income owned

by the richest consumers is also quite robust to this change. The results of the last three experiments

show that inequality in all three variables are positively related to the size of 4�: Overall, the results

in Panel A suggest that the extended model does not rely on large values of discount factor (i.e., very

patient consumers) to generate a high concentration of wealth and income. Instead, economic inequality

in our model is largely determined by the relative magnitude between �min and �max:

Next, consider the results in Panel B of Table 11. When the Gini coe¢cient of wealth is held

constant, income inequality is less sensitive to changes in 4�: The main di¤erences between the two

panels are the e¤ects of changing 4� on the share of total wealth and total income held by the richest

consumers. When the parameter � is kept constant, these shares are positively related to the size of

4�:When the Gini coe¢cient of wealth is kept constant, these shares become negatively related to the

size of 4�: This happens because, in order to maintain the same Gini coe¢cient of wealth, we need to

adjust � upward as the range of discount factors widens. This in turn lowers the share of total wealth

and total income held by the richest consumers.
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5.4 Changing the Intertemporal Elasticity of Substitution

Table 12 reports the results obtained under di¤erent values of �: Panel A shows that, when � is held

constant, an increase in � has only a mild impact on the Gini coe¢cients. In particular, increasing �

from 1.0 to 1.8 lowers the Gini coe¢cient of earnings and income by 10.6 percent and 3.9 percent, and

raises the Gini coe¢cient of wealth by 2.9 percent. The share of total wealth owned by the wealthiest

agents, however, is rather sensitive to this change. The intuitions of this result are as follows. Similar

to an increase in �; an increase in � would induce two opposing e¤ects on wealth inequality. First, an

increase in � lowers the intertemporal elasticity of substitution (IES) for consumption. Holding other

things constant, every consumer would now prefer to have a �atter consumption pro�le and less savings.

In particular, the reduction in savings tends to be larger for the wealthy consumers than for the poor

ones. Thus, holding other things constant, this e¤ect would make the wealth distribution more equal.

Second, since aggregate savings decline as � increases, we need to adjust the e¤ective rate of return

from savings upward in order to maintain the same capital-output ratio. This induces a much larger

increase in asset holdings for the wealthy consumers than for the poor ones, which in turn drives up the

di¤erences in wealth across groups. Hence, the second e¤ect would make the wealth distribution more

unequal and increase the share of wealth owned by the wealthiest consumers. The results in Panel A

of Table 12 suggest that the second e¤ect dominates under the benchmark parameter values.

When the Gini coe¢cient of wealth is kept constant, the same increase in � now induces a smaller

increase in the share of total wealth owned by the wealthiest consumers than in Panel A. This happens

because we need to adjust � upward as � increases so as to maintain the same Gini coe¢cient of wealth.

As shown in Table 9, this tends to reduce the share of wealth owned by the wealthiest consumers, and

thus partially o¤sets the e¤ects of � on the top end of the wealth distribution.

6 Concluding Remarks

This paper presents a highly tractable dynamic general equilibrium model that can generate patterns of

wealth and income inequality that are very similar to those observed in the United States. To achieve

this, we extend the standard deterministic neoclassical growth model to include three features: (i)

consumer heterogeneity in time preference, (ii) direct preferences for wealth, and (iii) human capital

formation. We show that a model with the �rst two features alone is able to replicate the patterns of
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wealth inequality observed in the United States. Such a model, however, cannot generate substantial

degree of income inequality. Thus, we also need to introduce human capital in order to account for

both wealth and income inequality.

Admittedly, the model considered in this study is rather stylized and has abstracted away a number

of factors that are also relevant in explaining economic inequality. One possible extension is to introduce

idiosyncratic uncertainty into the current framework. The extended model can then be used to evaluate

the relative importance of predetermined factors and idiosyncratic shocks in explaining wealth and

income inequality.
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Figure 1: Lorenz Curves for the Wealth Distribution.

Figure 2: Relationship between Labor Supply and Discount Factor.
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Table 2 Wealth and Income Inequality in Baseline Model.

Share of Wealth (�� Held by

Gini Coe¤. C.V. Bottom Top

� Wealth Income Wealth Income 4�� 1�� 5� 1�

0.005 0.918 0.303 22.04 7.27 2.1 90.6 87.7 80.9

0.010 0.836 0.276 13.19 4.35 4.1 81.1 75.4 61.9

0�0���� 0���� 0.269 11.25 3.71 4.6 78.8 72.4 57.3

0.01202 0.804 0.284 10.08 3.33 5.0 7.7 70.5 54.4

0�0�	
� 0.709 0.234 4.19 1.38 7.4 66.3 56.2 33.6

0.025 0.608 0.201 2.11 0.70 10.2 54.3 41.4 17.1

0.050 0.375 0.124 0.78 0.26 18.4 29.5 17.3 4.1

0.100 0.201 0.066 0.37 0.12 26.9 17.6 9.3 1.9

0.500 0.041 0.014 0.07 0.02 37.0 11.2 5.6 1.1

Data 0���� 0�5	7 ��0� 4.32 0.
 	��� �0�� 33.6

Data Source: Díaz-Giménez et al. (2011). Note: C.V. refers to the coe¢cient of variation.
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Table 3 Share of Total Income from Earnings �
� in Each Wealth Group.

Percentiles in Wealth Distribution

� Bottom �
 ���
 ����
 40-60
 9��9�
 9��99
 Top �


0.005 98.0 98.0 97.9 96.1 78.1 56.8 17.2

0.010 96.2 96.1 95.9 92.5 64.2 40.6 10.0

������� 95.7 95.6 95.4 91.6 61.6 38.0 9.2

0.01202 95.4 95.3 95.1 91.1 60.0 36.5 8.7

������� 93.3 93.2 92.9 87.3 50.6 29.0 7.6

0.025 91.0 90.8 90.4 83.3 44.6 26.6 11.1

0.050 84.6 84.3 83.7 74.6 45.6 38.1 33.1

0.100 78.0 77.7 77.1 69.4 54.9 52.5 51.1

0.500 69.6 69.5 69.3 67.1 64.6 64.4 64.2

Data 88�8 ���� ���� 8��� ��.� 5��8 31.3

Data Source: Díaz-Giménez et al. (2011) Table 6, excluding transfers from total income.
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Table 4 Changing the Distribution of Discount Factors.

Panel ��� H� !"#$ capital-output ratio and � = 0:01123 constant.

Discount Factors Share of Wealth (%) Held by

Share of Agents with Gini Coe¤. Bottom Top

� Mean Median � = 0:966 � = 0:992 Wealth Income &'% )'% *% )%

+,- -,./.- -,./.- -.--+- -,--+- -,2+3 -,2/- 4.6 /2,2 /6,: ;/,<

1.2 0.9778 0.9773 0.0032 0.0008 0.836 0.276 5.3 80.1 74.7 62.0

1.5 0.9764 0.9752 0.0100 0.0007 0.855 0.282 6.0 81.6 77.2 67.0

2.0 0.9747 0.9725 0.0316 0.0005 0.873 0.288 6.8 83.3 80.0 72.3

Panel �=� H� ding capital-output ratio and G"#" coe> cient of wealth constant.

Discount Factors Share of Wealth (%) Held by

Share of Agents with Gini Coe¤. Bottom Top

� Mean Median � = 0:966 � = 0:992 Wealth Income &'% )'% *% )%

+,- -,./.- -,./.- -.--+- -,--+- -,2+3 -,2/- 4.6 /2,2 /6,: ;/,<

1.2 0.9778 0.9773 0.0032 0.0008 0.816 0.269 5.9 77.7 71.6 57.4

1.5 0.9764 0.9752 0.0100 0.0007 0.816 0.269 7.6 76.6 71.0 58.0

2.0 0.9747 0.9725 0.0316 0.0005 0.816 0.269 9.8 75.7 70.9 59.7

Note: Figures in bold are the benchmark results for � = 0:01123 reported in Table 2.
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Table 5 Changing the Range of Discount Factors.

Panel ?@A BCDEFIJ capital-output ratio and � = 0:01123 constant.

Share of Wealth KLM

Gini Coe¤. Bottom Top

�min �max Wealth Income NOL POL QL PL

RSTUU RSTTV RSWXU 0.269 4.6 YW.W Y2.4 ZYS3

0.956 0.982 0.820 0.271 4.5 79.3 73.0 58.2

0.946 0.972 0.824 0.272 4.4 79.7 73.5 59.0

0.979 0.992 0.640 0.211 9.3 58.2 46.2 21.6

0.966 0.979 0.649 0.214 9.1 59.2 47.4 22.9

0.953 0.992 0.878 0.290 3.1 86.0 81.7 71.5

Panel ?[A Bolding capital-output ratio and \FIF co]^ cient of wealth constant.

Share of Wealth KLM

Gini Coe¤. Bottom Top

�min �max Wealth Income NOL POL QL PL

RSTUU RSTTV RSWXU 0.269 4.6 YW.W Y2.4 ZYS3

0.956 0.982 0.816 0.269 4.6 78.8 72.4 57.3

0.946 0.972 0.816 0.269 4.6 78.8 72.4 57.3

0.979 0.992 0.816 0.269 4.7 78.8 72.4 57.4

0.966 0.979 0.816 0.269 4.7 78.9 72.5 57.4

0.953 0.992 0.816 0.269 4.6 78.8 72.3 57.0

Note: Figures in bold are the benchmark results for � = 0:01123 reported in Table 2.
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Table 6 Wealth and Income Inequality when � = 0:4:

Share of Wealth _`a Held by

Gini Coe¤. C.V. Bottom Top

� Wealth Income Wealth Income bc` dc` f` d`

0.005 0.918 0.299 23.11 7.61 2.1 90.5 87.7 81.2

0.010 0.836 0.270 15.80 5.19 4.2 81.0 75.4 62.9

0.01123 0.816 0.262 14.10 4.63 4.7 78.7 72.4 58.5

0.01206 0.803 0.258 13.03 4.28 5.0 77.2 70.4 55.6

0.01796 0.706 0.224 5.54 1.80 7.5 65.9 55.9 34.8

0.025 0.600 0.188 2.04 0.64 10.4 53.4 40.4 16.4

0.050 0.369 0.118 0.77 0.24 18.6 29.1 17.0 4.0

0.100 0.203 0.068 0.37 0.12 26.8 17.7 9.3 2.0

0.500 0.052 0.025 0.09 0.04 36.2 11.5 5.8 1.2

Data ghij6 g.klk mhgn 4.32 gho l1.4 mgh3 33.6

Data Source: Díaz-Giménez et al. (2011). Note: C.V. refers to the coe¢cient of variation.
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Table 8 Benchmark Results of Model with Human Capital.

Share p q r Held by Consumers in Each Group

Mean-to- Bottom s t u v tiles Top

Gini C.V. Median w q w x y q y x w z q 1st 2nd 3rd 4th 5th 10q y q w q

Earnings

Model 0.397 0.73 1.34 0.2 0.9 1.2 5.4 8.9 15.1 25.8 44.5 25.2 13.4 2.8

Data 0.636 3.60 1.72 -0.1 0.0 0.0 -0.1 4.2 11.7 20.8 63.5 47.0 35.3 18.7

Income

Model 0.536 1.39 1.82 0.1 0.6 0.9 3.8 6.4 11.1 20.2 58.2 41.1 28.3 10.5

Data 0.575 4.32 1.77 -0.1 0.3 0.6 2.8 6.7 11.3 18.3 60.9 47.1 36.9 21.0

Wealth

Model 0.816 3.16 6.92 0.0 0.1 0.1 0.6 1.3 3.0 8.8 86.2 73.4 58.5 25.9

Data 0.816 6.02 4.61 -0.1 -0.1 -0.0 -0.2 1.1 4.5 11.2 83.4 71.4 60.3 33.6

Data source: Díaz-Giménez et al. (2011).
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Table 9 Changing the Strength of Wealth Preference.

Share of Income {|} Share of Wealth {|}

Gini Coe¤. Bottom Top Bottom Top

� Income Wealth ~�| ��| �| �| ~�| ��| �| �|

0.005 0.569 0.918 9.9 46.1 36.0 22.9 0.8 88.5 81.8 63.8

0.010 0.544 0.842 10.2 42.4 30.3 13.0 1.5 77.5 64.5 33.6

������� ����� ����� ���� 41.1 ���� ��.5 1.� ���� ���� ����

0.025 0.497 0.700 10.8 35.0 20.8 5.1 3.6 54.9 35.9 9.7

0.050 0.463 0.597 11.6 30.4 16.8 3.7 6.1 40.9 23.8 5.4

0.100 0.437 0.517 12.5 27.8 15.0 3.2 8.8 33.1 18.3 4.0

0.500 0.407 0.426 13.9 25.7 13.7 2.9 12.9 26.7 14.3 3.0

Data 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Note: Figures in bold are the benchmark results reported in Table 8. The source of data is Díaz-Giménez

et al. (2011).
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Table 10 Changing the Distribution of Discount Factors.

Panel � � � � � � � � � � capital-output ratio and � = 0:01202 constant.

Discount Factors Share of Income � � � Held by Share of Wealth � � � Held by

Share of Consumers with Gini Coe¤. Bottom Top Bottom Top

� Mean Median � = 0:966 � = 0:992 Earnings Income Wealth 40� � � � � � � � � � � 1 � � � � � �

� �     .¡ ¢ ¡     � ¡ ¢ ¡     �     �     �     �     � 3¡ ¢   .536   � £ � ¤ 1  � 3 41.1 ¥ £ .3 �   � ¦ � � ¡ ¢ § � 4 ¦ £ � ¦ ¥ ¦ � ¡

1.2 0.9778 0.9773 0.0032 0.0008 0.417 0.556 0.838 12.6 39.9 28.0 11.0 2.2 73.8 59.7 28.0

1.5 0.9764 0.9752 0.0100 0.0007 0.436 0.576 0.861 15.7 38.7 27.7 11.8 2.7 74.4 61.2 30.9

2.0 0.9747 0.9725 0.0316 0.0005 0.451 0.594 0.885 20.0 37.4 27.6 13.0 3.4 75.4 63.5 35.1

Data ¨ ¨ ¨ ¨ 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Panel � © � � � � ding capital-output ratio and ª � � � co« ¬ cient of wealth constant.

Discount Factors Share of Income � � � Held by Share of Wealth � � � Held by

Share of Consumers with Gini Coe¤. Bottom Top Bottom Top

� Mean Median � = 0:966 � = 0:992 Earnings Income Wealth 40� � � � � � � � � � � 1 � � � � � �

� �     .¡ ¢ ¡     � ¡ ¢ ¡     �     �     �     �     � 3¡ ¢   .536   � £ � ¤ 1  � 3 41.1 ¥ £ .3 �   � ¦ � � ¡ ¢ § � 4 ¦ £ � ¦ ¥ ¦ � ¡

1.2 0.9778 0.9773 0.0032 0.0008 0.417 0.549 0.816 12.7 38.7 26.2 9.0 2.6 69.9 54.2 22.1

1.5 0.9764 0.9752 0.0100 0.0007 0.436 0.561 0.816 16.0 35.8 23.7 7.6 3.8 65.5 49.2 18.2

2.0 0.9747 0.9725 0.0316 0.0005 0.451 0.571 0.816 20.8 32.4 20.9 6.2 5.8 60.1 43.4 14.5

Data ¨ ¨ ¨ ¨ 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Note: Figures in bold are the benchmark results reported in Table 8. The source of data is Díaz-Giménez et al. (2011).
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Table 11 Changing the Range of Discount Factors.

Panel ­®¯ °±²³´µ¶ capital-output ratio and � = 0:01202 constant.

Share of Income ·¸¹ Share of Wealth ·¸¹

Gini Coe¤. Bottom Top Bottom Top

�min �max Earnings Income Wealth º»¸ ¼»¸ ½¸ 1¸ º»¸ ¼»¸ ½¸ ¼¸

¾¿ÀÁÁ ¾¿ÀÀÂ ¾¿3ÀÃ ¾.536 ¾¿ÄÅÁ 1¾¿3 41.1 ÂÄ.3 Å¾¿5 Å¿À ÃÆ¿Ç ÈÄ.5 ÂÈ¿À

0.956 0.982 0.379 0.524 0.818 11.1 40.8 28.5 10.9 2.0 74.0 59.7 27.5

0.946 0.972 0.353 0.507 0.819 12.1 40.2 28.4 11.6 2.1 74.6 61.0 29.7

0.979 0.992 0.218 0.363 0.657 18.8 29.1 18.2 5.0 6.2 53.8 37.3 11.5

0.966 0.979 0.206 0.356 0.662 19.4 29.2 18.5 5.2 6.3 54.8 38.5 12.3

0.953 0.992 0.527 0.642 0.876 5.7 49.4 34.9 14.3 7.0 81.8 68.6 35.3

Data 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Panel ­É¯ °±²ding capital-output ratio and Ê´µ´ coeË cient of wealth constant.

Share of Income ·¸¹ Share of Wealth ·¸¹

Gini Coe¤. Bottom Top Bottom Top

�min �max Earnings Income Wealth º»¸ ¼»¸ ½¸ 1¸ º»¸ ¼»¸ ½¸ ¼¸

¾¿ÀÁÁ ¾¿ÀÀÂ ¾¿3ÀÃ ¾.536 ¾¿ÄÅÁ 1¾¿3 41.1 ÂÄ.3 Å¾¿5 Å¿À ÃÆ¿Ç ÈÄ.5 ÂÈ¿À

0.956 0.982 0.379 0.523 0.816 11.1 40.7 28.3 10.8 2.0 73.7 59.3 27.0

0.946 0.972 0.353 0.506 0.816 12.1 40.0 28.2 11.3 2.1 74.1 60.3 28.8

0.979 0.992 0.218 0.415 0.816 17.7 36.4 27.4 14.5 3.0 75.9 65.3 40.2

0.966 0.979 0.206 0.407 0.816 18.3 36.3 27.5 14.7 3.1 76.1 65.8 41.0

0.953 0.992 0.527 0.623 0.816 5.8 45.9 29.8 8.7 1.2 71.4 53.0 18.2

Data 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Note: Figures in bold are the benchmark results reported in Table 8. The source of data is Díaz-Giménez et al. (2011).
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Table 12 Changing the Intertemporal Elasticity of Substitution.

Panel ÌÍÎ ÏÐÑÒÓÔÕ capital-output ratio and � = 0:01202 constant.

Share of Income Ö×Ø Share of Wealth Ö×Ø

Gini Coe¤. Bottom Top Bottom Top

� Earnings Income Wealth 4Ù× ÚÙ× 5× Ú× 4Ù× ÚÙ× 5× Ú×

ÛÜÝ ÝÜÞßà ÝÜáÞâ ÝÜãÛâ ÛÝ.3 41.1 äã.3 1ÝÜ5 ÛÜß àÞÜå áã.5 25.ß

1.2 0.390 0.534 0.825 10.7 41.6 29.8 14.0 2.1 75.3 63.2 36.6

1.4 0.380 0.529 0.833 11.2 41.7 30.8 17.4 2.4 76.7 66.9 47.1

1.6 0.368 0.523 0.838 11.7 41.7 31.5 19.7 2.6 77.7 69.5 54.3

1.8 0.355 0.515 0.840 12.2 41.5 31.8 21.3 2.8 78.4 71.3 59.1

Data 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Panel ÌæÎ ÏÐÑding capital-output ratio and çÓÔÓ coeè cient of wealth constant.

Share of Income Ö×Ø Share of Wealth Ö×Ø

Gini Coe¤. Bottom Top Bottom Top

� Earnings Income Wealth 4Ù× ÚÙ× 5× Ú× 4Ù× ÚÙ× 5× Ú×

ÛÜÝ ÝÜÞßà ÝÜáÞâ ÝÜãÛâ ÛÝ.3 41.1 äã.3 1ÝÜ5 ÛÜß àÞÜå áã.5 25.ß

1.2 0.390 0.530 0.816 10.7 41.1 29.1 13.0 2.2 73.9 61.2 33.5

1.4 0.380 0.524 0.816 11.3 40.9 29.7 15.5 2.6 74.3 63.4 41.5

1.6 0.368 0.516 0.816 11.8 40.7 30.1 17.6 2.9 74.7 65.3 48.0

1.8 0.355 0.507 0.816 12.4 40.4 30.4 19.1 3.2 75.1 66.9 52.7

Data 0.636 0.575 0.816 9.5 47.1 36.9 21.0 0.9 71.4 60.3 33.6

Note: Figures in bold are the benchmark results reported in Table 8. The source of data is Díaz-Giménez

et al. (2011).
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Appendix A

Proof of Theorem 1

The proof of this theorem is divided into three main steps. First, it is shown that there exists a rental

rate erN > b�k such that bks (r) ! 1 as r approaches erN from the left. Since erN < 1; it follows from

Assumption A4 that bkd (erN ) <1: Hence, we have

lim
r!erN

bks (r) =1 > bkd (erN ) and bkd
�
b�k
�
> bks

�
b�k
�
:

Since both bks (r) and bkd (r) are continuous on
�
b�k; erN

�
; it follows from the intermediate value theorem

that there exists at least one r� 2
�
b�k; erN

�
such that bkd (r�) = bks (r�) : The second step is to show that

there exists at most one such solution in the interval (0; erN ) : Together, these two steps establish the

existence and uniqueness of r�: Finally, it is shown that �i > �j implies bci > bcj and bki > bkj :

Step 1 First, it is shown that for each i 2 f1; 2; :::; Ng ; there exists a unique value eri > b�k that solves

�i (r) �

�

�i
� (1� �k)� r = �

�
r � b�k

�
:

Note that the function �i (r) is a strictly decreasing function that satis�es

�i

�
b�k
�
�

�

�i
� (1� �k)� b�k =


�

�i
� 
 > 0:

The last inequality follows from the assumption that �i

1�� < 1: Thus, we have �i

�
b�k
�
> � (0) = 0:

By Assumption A3, �
�
r � b�k

�
is strictly increasing in r: Consequently, the two functions �i (r) and

�
�
r � b�k

�
will cross only once. This establishes the claim.

The fact that �i

�
b�k
�
> � (0) = 0 implies that �i (eri) = �

�
eri � b�k

�
> 0: Hence, it must be the

case that eri > b�k and eri < bri � 
�=�i � (1� �k) ; for all i: Given the ordering �1 � �2 � : : : � �N ; it

is straightforward to see that b�k < erN � erN�1 � : : : � er1:

By the de�nition of eri; we have gi (r) ! 1 as r approaches eri from the left. To see this, suppose

the contrary that gi (eri) is a �nite positive real number. Then a contradiction follows immediately from

(12) and the de�nition of eri: Thus, when r approaches erN from the left, we have gN (r) ! 1 and

gi (r) > 0 for all i 2 f1; 2; :::; N � 1g : Hence, bks (r) =
PN

i=1 �igi (r)!1 as r approaches erN :
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Step 2 To establish the uniqueness of r�; we need to consider the derivative of bks (r) : Using equation

(12), one can derive the derivative of gi (r), which is given by

g0i (r) =
1

bw (r)

(
[gi (r)]

2 + bw0 (r) gi (r) +
[gi (r)]

2

�0 (zi (r))

)
;

where zi (r) � bw (r) =gi (r) + r � b�k and bw0 (r) = �bkd (r) < 0: Hence the derivative of bks (r) is

d

dr

h
bks (r)

i
=

1

bw (r)

(
NX

i=1

�i [gi (r)]
2 � bkd (r)bks (r) +

NX

i=1

�i
[gi (r)]

2

�0 (zi (r))

)
:

Let r� be any value that satis�es bkd (r�) = bks (r�) : The derivative of bks (r) at r = r� is

1

bw (r�)

(
NX

i=1

�i [gi (r
�)]2 �

h
bks (r�)

i2
+

NX

i=1

�i
[gi (r

�)]2

�0 (zi (r�))

)
;

after we imposed the condition bkd (r�) = bks (r�) : The above expression is strictly positive as

NX

i=1

�i [gi (r
�)]2 �

"
NX

i=1

�igi (r
�)

#2
=
h
bks (r�)

i2
;

and �0 (z) > 0: Since bkd (r) is strictly decreasing, this result means that bks (r) must be cutting bkd (r)

from below at every intersection point. Since both bkd (r) and bks (r) are continuous, if there exists more

than one value that solves bkd (r�) = bks (r�) ; then at least of them must have bks (r) cutting bkd (r) from

above. This gives rise to a contradiction and hence establishes the uniqueness of r�:

Step 3 Totally di¤erentiate the equation


�

�
� (1� �k)� r = �

� bw (r)
bk

+ r � b�k
�

with respect to � and bk yields

dbk
d�

=

�

bw (r)

 
bk
�

!2 �
�0
� bw (r)

bk
+ r � b�k

���1
> 0:

Hence �i > �j implies
bki > bkj : Since the equilibrium rental rate r� is strictly greater than b�k; bci is

positively related to bki according to (10). This completes the proof of Theorem 1. �
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Appendix B

In this appendix, we �rst provide the mathematical derivations of equations (23)-(27) and then establish

the existence and uniqueness of equilibrium in the extended model. Let �i;t and �i;t be the Lagrange

multipliers for the budget constraint and the human capital accumulation equation, respectively. The

�rst-order conditions for the agent�s problem are given by

uc (ci;t; ki;t) = �i;t; (28)

�i;twthi;t = �i;t�' (1� li;t)
��1 h&i;t; (29)

�i;t = �i
�
uk (ci;t+1; ki;t+1) + �i;t+1 (1 + rt+1 � �k)

�
; (30)

�i;t = �i

n
�i;t+1wt+1li;t+1 + �i;t+1

h
&' (1� li;t+1)

� h&�1i;t+1 + (1� �h)
io

: (31)

Combining (28) and (30) gives

uc (ci;t; ki;t)

uc (ci;t+1; ki;t+1)
= �i

�
uk (ci;t+1; ki;t+1)

uc (ci;t+1; ki;t+1)
+ 1 + rt+1 � �k

�
:

Equation (23) can be obtained from this after imposing the balanced-growth conditions: ci;t = 
tbci and

ki;t = 
tbki: The derivation of (24) is straightforward and is omitted. Along a balanced-growth equi-

librium path, individual human capital is stationary. It follows from the human capital accumulation

equation that

�hhi = ' (1� li)
� h&i :

Equation (26) follows immediately from this expression. Finally, combining (29) and (31) gives

�i;t = �i�i;t+1

n
' (1� li;t+1)

��1 h&�1i;t+1 [& (1� li;t+1) + �li;t+1] + (1� �h)
o
: (32)

In a balanced-growth equilibrium, the multiplier �i;t is growing at a constant rate. To see this, combine

(28) and (29) to get

uc (ci;t; ki;t)wt = �i;t�' (1� li;t)
��1 h&i;t:
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After imposing the balanced-growth conditions, i.e., ci;t = 
tbci; ki;t = 
tbki; wt = 
t bw (r) ; li;t = li and

hi;t = hi for all t; we have

uc

�
bci;bki

�
bw (r) 
(1��)t = �i;t�' (1� li)

��1 h&i :

Hence, �i;t+1 = 
1���i;t: Substituting this into (32) gives

1 = �i

1��

n
' (1� li)

��1 h&�1i [& (1� li) + �li] + (1� �h)
o
:

Equation (25) can be obtained by substituting (26) into this.

We now turn to the existence and uniqueness of balanced-growth equilibrium. These results are

summarized in the following theorem.

Theorem A1 Suppose �i

1�� < 1 for all i 2 f1; :::; Ng, and

 
NX

i=1

�ilihi

!
bkd
�
b�k
�
> bks

�
b�k
�
: (33)

Then there exists a unique balanced-growth equilibrium. In the unique equilibrium, all consumers hold

a strictly positive amount of physical capital.

Proof of Theorem A1

The proof of this theorem uses the same steps as in the proof of Theorem 1. First, notice that for each

i 2 f1; 2; :::; Ng ; the variables li and hi are independent of r
�: This is true because these two variables

are determined by (25) and (26), which are independent of r�: Along a balanced-growth equilibrium

with rental price r, the optimal savings of a type-i agent is completely determined by


�

�i
� (1� �k)� r = �

� bw (r) lihi
bki

+ r � b�k
�
:

This equation is a direct analogue of (12) from the baseline model. In particular, this implicitly de�nes

a continuous di¤erentiable function gi : (0; bri)! R+, that describes the relationship between bki and r:

In the current setting, bri is de�ned as bri � 
�=�i � (1� �k) > 0: Using the same argument as in the

proof of Theorem 1, one can show that for each i 2 f1; 2; :::; Ng there exists a unique value eri 2
�
b�k; bri

�

46



that solves

�i (r) �

�

�i
� (1� �k)� r = �

�
r � b�k

�
:

This again implies gi (r) ! 1 as r approaches eri from the left. Hence, bks (r) =
PN

i=1 gi (r) ! 1 as r

approaches min
i
ferig = erN from the left. This, together with condition (33), implies that there exists

at least one r� 2
�
b�k; erN

�
that clears the capital market. To establish the uniqueness of r�; we again

consider the derivative of bks (r) ; which is now given by

d

dr

h
bks (r)

i
=

1

bw (r)

(
NX

i=1

�i
[gi (r)]

2

lihi
� bkd (r)bks (r) +

NX

i=1

�i
[gi (r)]

2

lihi�0 (zi (r))

)
;

where zi (r) �
bw(r)lihi
gi(r)

+ r � b�k: Let r� be any value that satis�es

bks (r) �
NX

i=1

�igi (r) =

 
NX

i=1

�ilihi

!
bkd (r)

The derivative of bks (r) at r = r� is

1

bw (r�)

8
><
>:

NX

i=1

�i
[gi (r

�)]2

lihi
�

hPN
i=1 �igi (r

�)
i2

PN
i=1 �ilihi

+
NX

i=1

�i
[gi (r

�)]2

lihi�0 (zi (r�))

9
>=
>;
:

This above expression is strictly positive because, by the Cauchy-Schwartz inequality, we have

 
NX

i=1

�i
[gi (r

�)]2

lihi

! 
NX

i=1

�ilihi

!
�

 
NX

i=1

r
�i
lihi

gi (r
�) �
p
�ilihi

!2
=

"
NX

i=1

�igi (r
�)

#2
;

which implies

NX

i=1

�i
[gi (r

�)]2

lihi
�

hPN
i=1 �igi (r

�)
i2

PN
i=1 �ilihi

� 0:

This completes the proof of the theorem. �
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