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Abstract

We employ a large dataset of physical inventory data on 21 different

commodities for the period 1993-2011 to empirically analyze the

behaviour of commodity prices and their volatility as predicted by

the theory of storage. We examine two main issues. First, we

explore the relationship between inventory and the shape of the forward

curve. Low (high) inventory is associated with forward curves in

backwardation (contango), as the theory of storage predicts. Second,

we show that price volatility is a decreasing function of inventory for the

majority of commodities in our sample. This effect is more pronounced

in backwardated markets. Our findings are robust with respect to

alternative inventory measures and over the recent commodity price

boom period.
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1. Introduction

Over the past few years, the flow of funds to commodities has increased

substantially, primarily through investments in exchange-traded funds (ETFs)

and commodity indices.1 This widespread interest in commodity investments

is partly associated with the view of commodities as a good diversification

tool, since their correlations with stocks and bonds have been low or

negative (Gorton and Rouwenhorst, 2006; Buyuksahin et al., 2010). Recently,

Daskalaki and Skiadopoulos (2011) point out that these diversification benefits

are preserved only during the recent commodity price boom (2003-2008), but in

their study vanish in an out-of-sample context. It is also a common belief that

commodities provide a good hedge against inflation (Bodie, 1983; Edwards

and Park, 1996). Moreover, recent evidence suggests that momentum and

term-structure based strategies in commodities can generate significant profits

(Miffre and Rallis, 2007; Fuertes et al., 2010).2

The behaviour of commodity prices is strikingly different from that of stocks

and bonds. For instance, such factors as seasonal supply and demand, weather

conditions, and storage and transportation costs, are specific to commodities

and do not affect, or at least not directly, the prices of stocks and bonds. In

the light of these stylised facts, understanding the determinants of commodity

prices and their volatilities is an issue of great importance.

The mainstream theory in commodity pricing, namely the theory of storage,

explains the behaviour of commodity prices based on economic fundamentals.

Furthermore, it has major implications for the volatility of commodity prices.

Since its inception, this theory has been the central topic of many theoretical

and empirical papers in the economics literature. Nevertheless, most studies

employ proxies for inventory, such as the sign of the futures basis (e.g., Fama

and French, 1988), thus providing only indirect evidence on the effect of

inventory on commodity prices and their volatilities.

In this paper, we employ real inventory data to test two of the main

predictions of the theory of storage. Specifically, we show how inventory affects

1The Financial Times characteristically reports: “... inflows into the sector reached a
new high of $7.9bn in October 2010, taking total investor commodity holdings to a record
$340bn.”

2See also Fabozzi et al. (2008) for practical aspects of commodity investing.
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the slope of the forward curve (the basis) as well as the price volatility for

a wide spectrum of 21 different commodities. Analyzing the relationship

between inventory and the term structure of futures prices is important for

various reasons. First, if inventory indeed has a significant effect on the shape

of the forward curve (“contango” vs “backwardation”), then it should also

affect the profitability of various term-structure based investment strategies.

Additionally, the strength of this relationship will provide further evidence on

whether the basis should be employed as a proxy for inventory in empirical

studies. Furthermore, the results from our research are of substantial academic

and practical interest since volatility underlies a variety of key financial

decisions such as asset allocation, hedging and derivatives pricing.

Our study contributes to the empirical literature on the theory of storage in

several ways. Gorton et al. (2007) employ physical inventory data to document

a negative non-linear relationship between inventory and the futures basis for

a large cross-section of commodities. They do not examine the link between

inventory and volatility in detail as we do. Also, Geman and Ohana (2009)

examine the relationship between inventory and the adjusted futures spread

in the oil and natural gas markets, using end-of-month inventory data. The

present paper adds to the evidence of the aforementioned studies by thoroughly

analyzing the link between real inventories and the slope of the forward curve

at several different maturities whereas previous research has only examined

the short end of the curve. Furthermore, the sample used for our analysis

includes the recent commodity price boom, which offers a great opportunity

to test our hypothesis over varying market conditions (for an analysis of the

recent commodity price boom, see Baffes and Haniotis, 2010).

Second, and more importantly, using our extensive inventory dataset, we

document a negative relationship between inventory and commodity returns

volatility. We characterise the time series variability of futures returns and

spreads with respect to inventory levels for each individual commodity. From

this perspective, our analysis is related to Geman and Nguyen (2005), who

analyze the relationship between scarcity (inverse of inventory) and returns

volatility in the soybean market. However, given the heterogeneous nature of
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commodities as an asset class (Erb and Harvey, 2006; Brooks and Prokopczuk,

2011; Daskalaki et al., 2012), it is quite intuitive to examine the inventory-

volatility relationship for a broader set of commodities. For example, Fama

and French (1987) find that the implications of the theory of storage are not

empirically supported for certain commodities.

Our analysis provides a number of interesting results. First, we find a

strong positive relationship between logarithmic inventory and the slope of

the forward curve, the latter approximated by the interest-adjusted basis at

different maturities. In particular, lower (higher) inventory for a commodity is

associated with lower (higher) basis and forward curves in “backwardation”3

(“contango”) as the theory of storage predicts. Since the interest-adjusted

basis represents storage costs and convenience yields, our findings provide

insights regarding the relationship between convenience yield and inventory.

Our research also implicitly builds on the competing “hedging pressure”

literature, which is based on the existence of a risk premium earned by investors

in futures for bearing the risk of spot price changes. Recent empirical evidence

has shown that there exists a link between futures basis and risk premiums

(Gorton and Rouwenhorst, 2006).

Second, we find that price volatility is a decreasing function of inventory

for the majority of commodities in our sample. To do this, we estimate

for each commodity univariate regressions of monthly price volatility against

end-of-month inventory. Monthly price volatility is measured by the standard

deviation of daily nearby futures returns/adjusted basis for each month. The

magnitude of the reported relationship appears to be higher for commodities

that are more sensitive to fundamental supply and demand factors, which

determine storage. Moreover, heterogeneity is a possible explanation for

the difference in the sizes of the coefficients across individual commodities.

Some commodities are more difficult to store, and some of them are seasonal

3Backwardation is observed when the spot price is higher than the contemporaneous
futures price, or the price of the nearby futures contract is higher than the price of
longer maturity contracts. Contango describes the opposite case. According to the early
hedging pressure hypothesis (Keynes, 1930; Hicks, 1939), the net supply of futures contracts,
namely “hedging pressure”, gives rise to risk premia in futures prices (compensation for risk
transferring from producers to speculators).
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or perishable, while others are not. Our evidence generally supports the

implications of theoretical studies (Williams and Wright, 1991; Deaton and

Laroque, 1992).

Lastly, we investigate the hypothesis that the effect of inventory varies

across different states of the market. To this end, we estimate OLS regressions

of commodity returns/futures basis volatility on the interest-adjusted basis,

decomposing the basis into positive and negative values that indicate the

state of inventories (positive basis – high inventory and vice versa). In line

with the implications of the theory, our estimation results suggest that the

relationship between inventory and volatility is stronger in backwardation

(low inventory). Furthermore, the results for energy commodities (crude oil

and natural gas) lend support for the existence of the asymmetric V-shaped

relationship between inventory and volatility reported by previous studies

(Kogan et al., 2009). For crude oil (natural gas), positive deviations from

the long-run inventory level (positive basis) have larger (smaller) impacts than

negative deviations of the same magnitude.

As mentioned in Gorton et al. (2007), there exist some problems when

dealing with inventory data. These are basically associated with the definition

of the appropriate measure of inventory (e.g. world vs domestic supplies) and

also with the timing of information releases regarding inventory levels. Another

potential pitfall concerns the difference in the quality of the corresponding data

from commodity to commodity, which hampers the ability to draw universal

conclusions. This is an inherent problem in any study that uses physical

inventories in the analysis. Therefore, any results using inventories should

be interpreted cautiously.

The remainder of the paper is organized as follows. Section 2 briefly

discusses the theory of storage and the relevant literature. Section 3

presents the datasets used for the empirical analysis. Section 4 examines the

relationship between inventory and the slope of the forward curve. Section 5

analyzes the relationship between scarcity and price volatility. Section 6 tests

the stability of the results obtained through various robustness tests. The final

section presents concluding remarks.
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2. Theoretical background and relevant liter-

ature

The theory of storage, introduced in the seminal papers of Kaldor

(1939), Working (1948), Brennan (1958) and Telser (1958), links the

commodity spot price with the contemporaneous futures price through a

no-arbitrage relationship known as the “cost-of-carry model”. This theory

is based on the notion of “convenience yield”, which is associated with the

increased utility from holding inventories during periods of scarce supply. This

no-arbitrage relationship between spot and futures prices is given by:

Ft,T = St(1 +Rt,T ) + wt,T − yt,T (1)

where Ft,T is the price at time t of a futures contract maturing at T, St is the

time t spot price of the commodity, Rt,T is the interest rate for the period from

t to T, wt,T is the marginal cost of storage per unit of inventory from t to T,

and yt,T is the marginal convenience yield per unit of storage.

Within the context of the theory of storage, convenience yield can be

regarded as an option to sell inventory in the market when prices are high,

or to keep it in storage when prices are low. Milonas and Thomadakis (1997)

show that convenience yields exhibit the characteristics of a call option with

a stochastic strike price, which can be priced within the framework of Black’s

model (Black, 1976). Evidence has also shown that convenience yield is a

convex function of inventories (Brennan, 1958; French, 1986).

A high convenience yield during periods of low inventory drives spot prices

to be higher than contemporaneous futures prices and the adjusted basis

becomes negative. Specifically, as inventories decrease, convenience yield

increases at a higher rate due to the convex relationship between the two

quantities. In contrast, at high levels of inventory, convenience yield is small

and futures prices tend to be higher than contemporaneous spot prices to

compensate inventory holders for the costs associated with storage. The theory

of storage also predicts a negative relationship between price volatility and
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inventory. In particular, at low inventory states, the lower elasticity of supply

and the inability to adjust inventories in a timely manner without significant

costs (e.g., imports from other locations) make spot and futures prices more

volatile. As a result, basis also becomes more volatile. The opposite happens

at high inventory conditions.

Moreover, such factors as non-continuous production of some commodities

(e.g., agriculturals), storage costs, and weather conditions, exacerbate the

effect of demand shocks on current and future prices and thus have a significant

impact on price volatility.4 Fama and French (1987) use a dataset on 21

commodity futures and show that variation in the basis is driven by seasonals

in supply and demand, storage costs and interest rates. Also, Fama and French

(1988) employ the sign of the interest-adjusted basis as well as the phase of

the business cycle as proxies for inventory to analyze the relative variation of

spot and futures prices for metals. They find that when inventories are low,

the interest-adjusted basis is more volatile and also spot metal prices tend to

be more volatile than futures prices in line with the Samuelson hypothesis.

In a different version of the theory of storage, Williams and Wright

(1991) build a quarterly model with annual production and point out that

price volatility is highest shortly before the new harvest when inventories

are low. Deaton and Laroque (1992) suggest an equilibrium competitive

storage model, and show that conditional volatility is positively correlated

with the price level (the “inverse leverage effect”). Routledge et al. (2000)

develop an equilibrium model for commodity futures prices and show that

backwardation, driven by inventory and supply/demand shocks, is positively

related to volatility. A number of recent papers report an asymmetric V-shaped

relationship between inventory proxies and price volatility, meaning that both

high and low levels of inventory induce high price volatility (Lien and Yang,

2008; Kogan et al., 2009). Carbonez et al. (2010) provide contrasting evidence

on the existence of this V-shaped relationship in the case of agricultural

4For instance, in agricultural commodities the uncertainty about the future level of
stocks shortly before the end of the new harvest, when inventory is usually low, leads to
more volatile prices (see Williams and Wright, 1991). Moreover, weather conditions may
affect the total level of supply and induce periodicity in the prices of these commodities
(Chambers and Bailey, 1996).
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commodities.

The majority of the aforementioned studies employ indirect measures

for inventory, such as the (adjusted) futures basis to support their basic

arguments. Nevertheless, very few papers employ observed inventory data.

For instance, Geman and Nguyen (2005) construct a sample of US and global

inventories for soybeans at various frequencies and show that price volatility is

a monotonically increasing function of scarcity, the latter defined as the inverse

of inventory. Gorton et al. (2007) employ physical inventory data on a large

set of 31 commodities and conclude that the basis is a non-linear, increasing

function of inventory.

Apart from the theory of storage, the alternative view of commodity futures

prices, namely the hedging pressure hypothesis, is based on the idea of a risk

premium earned by long investors in commodity futures. According to the

very first version of the theory (Keynes, 1930; Hicks, 1939), speculators earn

a positive risk premium for bearing the risk short hedgers (producers) are

seeking to avoid. Later extensions show that producers can take both long

and short positions (Cootner, 1960), inducing risk premiums that vary with the

net positions of hedgers. This literature suggests that hedging pressure arises

from the existence of frictions (transaction costs, limited participation, etc),

which cause segmentation of commodity markets from other asset markets.

Another strand of the same literature relates risk premiums to systematic risk

factors based on the traditional CAPM (Dusak, 1973) or CCAPM framework

(Jagannathan, 1985; De Roon and Szymanowska, 2010). Finally, later studies

allow risk premiums to depend on both systematic risk and the positions of

hedgers (Hirshleifer, 1989; Bessembinder, 1992; De Roon et al., 2000) and

provide evidence that risk premiums vary with net hedging demand. In general,

the existence of risk premiums in futures prices and their determinants has been

a debatable issue among academics and practitioners.

It is therefore evident that gaining insights on the determinants of

commodity prices and their volatility is an issue of paramount importance,

not only for academics and practitioners, but also for policy makers (Bhar

and Hamori, 2008). In this spirit, Dahl and Iglesias (2009) analyze the
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dynamic relationship between commodity spot prices and their volatilities.

Furthermore, the issue of whether and under which conditions investors should

include commodities in their portfolios still remains an open question. Bodie

and Rosansky (1980) argue that including commodities in a portfolio of stocks

improves the risk-return profile of a typical investor. In contrast, Daskalaki and

Skiadopoulos (2011) cast doubt on the diversification benefits from investing in

commodities and find that these benefits exist only during periods of infrequent

bursts in commodity prices.

Moreover, some recent empirical work has focused on the so-called

“financialization” of commodities. This term indicates the increase in

co-movements of commodities with other assets (e.g. Silvennoinen and Thorp,

2010) or between seemingly unrelated commodities (Tang and Xiong, 2010).

This effect is widely considered a consequence of the increased participation

of new commodity investors and primarily hedge funds. Buyuksahin and Robe

(2010) argue that the positions of traders, especially hedge funds, led to the

recent increase in commodity volatility and comovement of commodities and

equities beyond what can be explained by macroeconomic fundamentals. This

is an issue of great importance for global policy makers since the increase in

volatility and comovement can exercise upward pressure on food and energy

prices, raising inflation concerns.

3. Data and preliminary analysis

3.1. Price data

The primary datasets employed in this study consist of daily futures prices

with several maturities for 21 commodities traded on the major US commodity

exchanges (NYMEX, CBOE, CBOT and ICE) and the London Metal

Exchange (LME). The full dataset covers the period from 31 December 1992

to 31 December 2011. The dataset for our analysis begins at the end of 1992

because this corresponds to a common starting point of most inventory series

in our sample. The particular commodities are selected to cover, as far as

possible, such major categories as grains, livestock, industrials, energy and
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metals. All price series except for metals are obtained from the Commodity

Research Bureau (CRB), which assembles data from all major commodity

exchanges worldwide. Metal price data are collected from Bloomberg. All

prices are expressed in US dollars. Since our study involves calculation of the

futures basis, we need the prices of futures contracts with different maturities.

The number of available maturities varies across different commodities from

four to twelve per year. Table 1 contains a description of the commodity price

dataset.

For the purpose of our analysis, prices of the first nearby futures contract

are treated as spot prices, similar to Geman and Nguyen (2005). Since futures

contracts have fixed maturity months, we need to construct a continuous series

of futures prices for each commodity. To avoid expiration effects (Fama and

French, 1987) and low liquidity effects due to thin trading, we roll over from the

nearest to maturity to the next nearest to maturity contract on the last trading

day of the month preceding delivery. Since we also need longer maturity

contracts to compute the futures basis, we apply the same procedure for the

futures prices of the second nearest to maturity contract and so forth. We then

calculate the return of commodity i on day t as the daily change in logarithmic

prices:

ri,t = log(
Fi,t,T

Fi,t−1,T

) (2)

where Fi,t,T is the closing price on day t of the futures contract on commodity i

maturing at T. In calculating the returns we exclude the prices of the first day

of each delivery month in order to ensure that the computed returns always

correspond to contracts with the same expiry date (see, Fuertes et al., 2010).

Table 2 provides summary statistics for the daily nearby futures returns

series. Means and standard deviations of each series are expressed annualized

and as percentages. As seen from the table, the mean annualized returns of

metals and crude oil are the highest overall. Also, most of the agricultural and

animal commodities had negative average daily returns during the time period

considered. However, the result of a t-test fails to reject the null hypothesis of a

non-significant mean in all cases. We also observe substantial returns volatility
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for all commodities. This is consistent with evidence in Erb and Harvey (2006).

Among the main drivers of this high price volatility are: the non-continuous

production of some commodities (e.g., agricultural), storage costs (Fama

and French, 1987), weather conditions (Geman, 2005), especially for the

agricultural and energy commodities, as well as the uncertainty regarding the

future macroeconomic conditions (e.g., changes in inflation, exchange rates

fluctuations, etc). Overall, gold exhibits the lowest amount of annual variation.

The annualized daily volatility of 47.39% for natural gas is the highest among

all commodities in our sample, followed by 39.24% for coffee. Crude oil and

heating oil nearby returns also exhibit significant amounts of daily variation

(33.7% and 32.1% respectively).

The sign of skewness is mixed, yet it is close to zero for most commodities.

However, the kurtosis coefficients are all significantly higher than three (except

for lumber), a standard evidence of non-normality. These non-Gaussian

features of commodity returns are also confirmed by the Jarque–Bera test

statistic, which clearly rejects the null hypothesis of normality in all cases.

3.2. Inventory data

Apart from the commodity price data, we also compile a large set of inventory

data, using various sources. Most datasets correspond to end of month stocks

covering the period from December 1992 to December 2011. In those cases

when the inventory level is reported on the first day of a calendar month, we

shift to the end of the previous month. For some commodities, inventory data

are not available from 1993 (soybean oil, cotton, coffee, aluminium and tin)

and thus we utilize the subsequent date when those became available as the

starting point of our series. Also, due to the non availability of reliable data

for oats after 2003, we stop our sample at the end of 2003 for this specific

commodity. The data for agricultural and animal products are obtained from

the US Department of Agriculture (USDA). For soybeans, corn, oats and

wheat, the original datasets are available at a weekly frequency and thus we

consider the inventory level of the last week of month as a proxy for end of

month inventory. For the three energy commodities, we gather data from the
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US Energy Information Administration (EIA). Finally, data for metal stocks

stored in the Commodity Exchange (COMEX) for gold, silver and copper, and

the London Metal Exchange (LME) for aluminium and tin, are collected from

Datastream.

As discussed in Gorton et al. (2007), there are some problems when dealing

with inventory data. The first of those concerns the appropriate definition

of inventory. For example, in a global market such as that for crude oil,

international inventories may provide a better proxy for available supplies

compared to inventories stored at the various delivery locations across the

US. However, in a recent study, Geman and Ohana (2009) provide empirical

evidence that using either domestic US or global petroleum inventories leads

to very similar conclusions. Geman and Nguyen (2005) also find that

the relationship between inventory and spot price volatility for soybeans is

significant regardless of whether US or world soybeans inventory is employed.

Moreover, one can argue that a proper definition of inventory should take

into account all quantities that can be effectively used in case of a shortage,

including government or off-exchange stocks. Another problem is that in some

cases inventory data are released with a lag and are sometimes revised later.

This may create a problem when synchronizing these data with asset prices.

To alleviate the first concern, in the case of oil we employ some additional

measures for inventory, such as the volumes of all petroleum products in the US

and OECD countries. We also consider global inventories for corn, soybeans

and wheat in addition to domestic US inventories. Unfortunately, we lack

availability of global inventory data for the remaining commodities in our

study.

Figure 1 plots the inventory series for a subset of commodities along with

the fit of a seasonal function where applicable. An inspection of the graphs and

of inventory datasets reveals that the inventories of agricultural and animal

commodities, as well as those of natural gas and heating oil, exhibit strong

periodicity. To formally test for seasonality in inventories, we regress the

inventory of each commodity on monthly dummy variables. We then use the

F-statistic to test whether the coefficients of all seasonal dummies are equal in
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each regression. As expected, corn, soybeans, and wheat exhibit very strong

seasonal variation, which is mainly driven by their non-continuous production

(crop cycles) and also by exogenous factors, such as weather conditions. Most

of the agricultural commodities in the domestic US market are harvested once

a year, and thus their inventory level reaches its peak immediately after the

harvest and is lowest shortly before the beginning of the new harvest.

Natural gas and heating oil stocks are also highly seasonal. This seasonal

variation is basically determined by higher demand during heating seasons

(cold winter months) combined with capacity constraints of the available

systems. Animal commodities (cattle, hogs and pork bellies) also produce

strong evidence of seasonality in their inventories. Seasonals in production,

perishability as well as seasonal variations in slaughter levels are among the

main drivers of this seasonal pattern. On the other hand, soybean oil inventory

does not exhibit seasonals, most likely because of its conversion process from

soybeans.

Also coffee, cotton, cocoa and lumber do not provide any evidence of

seasonal inventories. For the first two, this is most likely because of their

production process. For lumber, a possible explanation is that its demand is

determined by longer term factors, such as manufacturing activity and also its

production is more easily adjusted to demand (see, Fama and French, 1987).

Finally, metal stocks are not subject to short-term seasonal variations, since

there is no a priori reason for seasonality in supply or demand. Finally, crude

oil is continuously produced and consumed, and thus its stocks are not subject

to seasonal variations.

Our subsequent analysis is based on the logarithm of inventory to capture

the non-linear relationship between inventory and convenience yield/basis

documented by well-established studies (e.g., Telser, 1958; Deaton and

Laroque, 1992; Ng and Pirrong, 1994). We express our logarithmic inventory as

a deviation from the mean in order to remove the effect of measurement units

and also to allow for comparability of coefficients across different commodities.
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4. Adjusted basis and inventory

Using our inventory dataset, we analyse the relationship between scarcity

and the slope of the forward curve individually for each commodity. The

forward curve slope is approximated by the interest-adjusted basis (henceforth,

adjusted basis) at three different maturities. Specifically, we construct the

series of adjusted basis for 2-, 6- and 10- month maturities. The theory

of storage implies that basis becomes more negative (positive) as inventory

decreases (increases).

In order to calculate the adjusted basis, we collect daily data on the

Treasury-bill (T-bill) yields of the corresponding maturities from Thomson

Reuters Datastream. We subsequently define the adjusted basis (bi,t) of

commodity i on day t, as follows:

bi,t =
Fi,t,T2

− Fi,t,T1

Fi,t,T1

−Rf,t δ (3)

where Fi,t,T1
is the price on day t of the first nearby futures contract maturing

in T1 days, which is used as the spot price in our study. Also, Fi,t,T2
is the time

t price of a futures contract with T2 days to maturity (T2 > T1) and Rf,t is

the annualised T-bill rate of the corresponding maturity on day t. δ = T2−T1

365

is the difference between the time to maturity of the two futures contracts

expressed in years. This difference is always as close as possible to the horizon

over which the basis is computed (i.e., 2, 6 or 10 months). Finally, bi,t is the

daily adjusted basis, which represents the slope of the forward curve on day t.

Since monthly data are employed for inventory in our framework, we further

compute the monthly forward curve slope as the average of the daily 6-month
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adjusted basis for each month in the sample period.5

For three commodities (lumber, oats, and pork bellies), illiquidity of long

term future contracts did not allow calculation of the 10-month basis. In

general, an issue when calculating the basis concerns the fact that futures

contracts of different commodities do not expire every month. Thus, the

computed daily basis does not always correspond, for instance, to six months.

To address this, similar to Fuertes et al. (2010) and Daskalaki et al. (2012),

we take the price of the next futures contract whenever there is no traded

contract with six months to maturity. The same applies to the nearby futures

price treated as the spot price in our study. For instance, to calculate the

6-month basis of corn on 15 January, we need the price of the February

contract, maturing at the end of January, as the spot price, and the August

contract, maturing at the end of July, as the 6-month futures price. If there

is no February contract for this particular commodity, we consider the next to

maturity contract, i.e., the March contract, as the first nearby contract, and

therefore the September contract as the 6-month futures contract. Accordingly,

if there is no contract maturing in September for the specific commodity, we

consider the next to maturity contract (i.e., October), and so on.

4.1. Empirical Evidence

Our first objective is to empirically test the relationship between inventory

and the slope of the forward curve (adjusted basis). To this end, we estimate

5It is more standard to synchronize single futures prices with monthly inventories rather
than considering the average from daily values. However, the use of averages presents the
advantage that it accounts for the effects of revisions in the reported inventory data, which
are essentially an average; they are not necessarily recorded at the end of the month even
if they are published at that time. Moreover, Geman and Ohana (2009) apply the same
method and mention that even in the case when the term structure switches from contango
to backwardation taking averages is a good procedure. We repeated the estimations using
individual monthly observations to compute the 2-month basis and got very similar results.
Also, an inspection of the basis series from daily and monthly observations, respectively,
indicated that in almost all cases they provide the same signal regarding backwardation or
contango for a particular month. Given that this signal is employed as an inventory proxy
in empirical studies (e.g. Fama and French, 1988), our results are robust to the different
data frequencies.
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for each commodity i the following regression:

b̃i,τ = αi + βiĨi,τ + ui,τ (4)

where b̃i,τ is the deseasonalized forward curve slope of commodity i in month τ ,

computed as the monthly average of the daily adjusted basis of the respective

maturity (2-, 6, or 10-month) over each month τ , and Ĩi,τ is the deseasonalized

logarithmic inventory at the beginning of that month τ (or equivalently the

end of month τ − 1). The basis and inventories of some commodities exhibit

seasonality. To deseasonalize these variables, we estimate regressions against

monthly dummies and use the residuals as the deseasonalized adjusted basis

and inventory in our regressions.6 A time trend is included in the seasonal

regressions of monthly logarithmic inventory when it is statistically at the 5%

level.

Adjustment for seasonality in the adjusted basis and inventory series of

each commodity is based on the significance of the F -test statistic, which

evaluates the null hypothesis that the coefficients of all monthly dummies are

equal. As a result, dummy regressions are not considered for metals, crude

oil, soybean oil, cotton, coffee and lumber, since there is no indication of

periodicity in either their basis or inventory. For these commodities, inventories

are expressed in deviations from their means to facilitate comparison across

different commodities and to remove the effects of measurement units.

Table 3 presents the results from the univariate OLS regressions of equation

(4). Our results strongly support a positive and significant relationship

between inventory and the slope of the forward curve (adjusted basis) for all

maturities considered. More specifically, using a two-tailed test we conclude

that for the 21 commodities considered, 17 (18) coefficients are statistically

significant at the 5% (10%) level for the 2-month basis. The only exceptions

are lumber, cattle and gold. Moreover, the statistically significant coefficients

are positive in all cases. Adjusted basis for longer maturities (6, 10 months)

6We also applied two additional methods to remove seasonality from the series: a) a
moving average filter and b) a fit of sine/cosine functions. All methods gave very similar
results.
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allow for very similar conclusions. This demonstrates the robustness of our

results with respect to the considered maturities.

Regarding the magnitude of the coefficients, we observe that all three

energy commodities and lean hogs exhibit the strongest link with inventory.

Overall, the largest in size coefficient is reported for crude oil, followed by

natural gas across all maturities considered. In particular, the coefficient

of the 6-month basis for crude oil is equal to 0.668. This means that a

deviation of 1% from the average inventory level for crude oil results in a

0.67% increase in the crude oil adjusted basis. The large coefficients for

energy commodities can be explained by high storage and transportation costs

as well as capacity constraints of available systems that deter storage and

make prices more sensitive to inventory withdrawals. An interpretation for

the strong significance in animal commodities could be the high storage costs

and perishability that lead to low inventory levels relative to demand. In

general, our results support the evidence of Gorton et al. (2007).

Apart from the energy and animal commodities, a strong association is

also observed for most of the agricultural and soft commodities. Significant

coefficients for these commodities are mainly related to the fact that most

of these commodities are harvested once or twice a year in the domestic

US market and the available inventory must satisfy demand over the whole

year. Given that total imports for these commodities represent a very

small proportion of annual production in the US, the prices of agricultural

commodities are highly sensitive to the levels of available stocks in the domestic

US market. Metals, and gold in particular, exhibit the lowest correlation

with inventory. The coefficient for gold is insignificant, while for the rest the

coefficients are usually very small in size (of order 10−3forshort− termbasis).

Low storage costs relative to their value and sufficiently high inventory levels

relative to demand, especially for precious metals, are the main reasons for

these low correlations.

Also, in line with evidence in Geman and Ohana (2009), who used a slightly

shorter sample period (1993-2006), we find that the petroleum stock in OECD

countries is a stronger measure for oil inventories in terms of explanatory power
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(having a higher R2 coefficient). Moreover, the coefficient estimates for global

inventories in respect of corn, soybeans and wheat are all highly significant at

the 1% level and their corresponding t-statistics are higher than those of US

inventories.

Overall, our results lend support to one of the main implications of the

theory of storage that inventory is positively associated with the slope of

the forward curve (the basis). Lower (higher) available inventory leads to

wider and more negative interest-adjusted basis and thus more backwardated

(contagoed) markets. Differences in magnitude across commodities are related

to their varying dependence on the fundamentals of storage. Our evidence is

robust for the forward slope at different maturities.

5. Inventory and price volatility

Theoretical as well as empirical evidence on the theory of storage suggests

that price volatility is inversely related to inventory. For example, Deaton

and Laroque (1992) show in their theoretical model that next period spot

price volatility decreases with higher inventories. Also Ng and Pirrong (1996)

analyse the dynamic basis-volatility relationship in gasoline and heating oil

markets. Motivated by this strand of the literature, we use our physical

inventory data to directly test how inventory is related to subsequent

commodity price volatility. We distinguish between two alternative cases for

price volatility: i) adjusted basis volatility, and ii) the volatility of nearby

futures returns.

To obtain a measure for adjusted basis volatility, we first compute for each

commodity the annualised standard deviation from the daily adjusted basis

series for each month τ . Then we estimate the following regression:

σ̃i,τ = αi + γiĨi,τ + ϵi,τ (5)

where σ̃i,τ is the annualized standard deviation of the daily adjusted basis

series of commodity i in month τ , and Ĩi,τ is the inventory of commodity i at

the beginning of month τ (or equivalently, at the end of month τ − 1). We
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deseasonalise both the inventory and the adjusted basis volatility as discussed

above.

Estimation results are reported in Table 4. The coefficients of these

commodity-by-commodity regressions indicate a negative relationship between

inventory and adjusted basis volatility. Regarding the volatility of the 2-month

basis we see that for the 21 commodities considered, 14 (15) inventory

coefficients are statistically significant at the 5% (10%) level. From those 12

(13) are negative whereas two are positive. If we analyse the results across the

separate commodity groups, we see that the relationship is particularly strong

for most of the agricultural and energy commodities in terms of the sizes of

the regression coefficients. Specifically, all inventory coefficients are negative

and strongly significant at the 5% level in the agricultural commodity group,

except for oats.

Concerning the animal commodities, the coefficients for hogs and pork

bellies are statistically significant at the 1% level and quite high, although

of the opposite sign than anticipated (positive). This looks counter-intuitive

at first sight. However, a plausible explanation for this reversal in the

inventory-volatility relationship is that during periods of low demand when

inventories are usually high, the difficulty to increase storage due to capacity

constraints may lead to big price drops increasing price volatility. For the

animal commodities, this effect is further exacerbated by their perishable

nature. In an attempt to empirically test this line of reasoning we estimate the

same regression for hogs, decomposing deseasonalised logarithmic inventory

into negative versus positive values. The results indicate that the inventory

coefficient is positive for higher than average inventory, whereas it is negative

for lower than average inventory (a non-linear pattern).

From the three energy commodities, the coefficients of crude oil and heating

oil are both highly negative and significant at the 1% level. Surprisingly

given the sensitivity of its prices to storage levels, the coefficient of natural

gas is insignificant. However, the empirical evidence in Geman and Ohana

(2009) suggests that the negative inventory-volatility relationship for natural

gas is mainly observed during periods of low inventory (or equivalently, high
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scarcity), e.g. during winter. Indeed, if we estimate the same regression

separately for negative and positive values of deseasonalised inventory, we

observe a high negative correlation during periods of negative deseasonalised

inventory. Finally, the inventory coefficients of industrial metals are all

significant, whereas those of precious metals are always insignificant. The

absence of significance for precious metals does not come as a surprise since

variations in their prices are primarily determined by investment demand and

also inventories are sufficient in general to limit variations in convenience yields.

Also, the estimation results for the volatility of 6-month basis lead to very

similar conclusions.

Turning our focus to spot return volatility, we first compute for each

commodity the annualised standard deviations of daily nearby futures returns

over each month τ in the sample. The volatility series obtained are then

employed as dependent variables in the following regression:

σi,τ = ωi + ζiĨi,τ−1 + ui,τ (6)

where σi,τ is the annualised standard deviation of the daily nearby futures

returns of commodity i over each month τ in the sample and Ĩi,τ−1 is the

logarithm of inventory of commodity i at the end of month τ -1. Similar

to the regressions of the adjusted basis volatility given by equation (5), we

deseasonalize inventory and nearby futures volatility by estimating regressions

against monthly seasonal dummies, as discussed above.

Estimation results are reported in Table 5. The coefficient on the inventory

variable is statistically significant for 11 (14) out of the 21 commodities

at the 5% (10%) level. Moreover, all significant coefficients are negative

except for those of hogs and pork bellies. Regarding the magnitude of the

coefficients, we observe that the relationship appears to be particularly strong

for energy, agricultural and animal commodities. The strong relationship

for energy commodities is mainly associated with high storage costs and

also with capacity constraints in production and transmission systems, which

increase the sensitivity of prices to supply or demand shocks. For agricultural
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commodities, on the other hand, the non-continuous nature of production,

significant storage costs and the inability to import supplies from other

locations during the cycle at a low cost, reduce the elasticity of supply and

thus increase the responsiveness of prices to supply and demand shocks. The

coefficient for soybeans is in consistent with Geman and Nguyen (2005).

Coefficients of hogs and pork bellies are significant, but positive. A possible

explanation is provided above. Finally, we observe relatively lower coefficients

for metals in comparison with the other commodities. The only notable

exception is copper, with a much higher coefficient relative to the other metals.

From metals group, only copper and tin provide support for a significant

relationship with inventory. This result for copper is most likely related to

the difficulty of storing this commodity.

Evidence from this last section suggests that commodity price volatility

is negatively associated with inventory fluctuations. However, this evidence

is not universal for all commodities because of their heterogeneity as an asset

class. For instance, some commodities such as the agriculturals are periodically

produced and therefore variation in inventory levels throughout the year affects

the sensitivity of their spot and futures prices to demand shocks. Gorton et al.

(2007) mention that high storage costs provide incentives to economise on

inventories and also limit the variation in available supplies. This can partly

explain the observed positive inventory-volatility relationship. The difficulty

in injecting into storage when demand is high and inventories sufficiently large

leads to a price drop and also to higher volatility. Energy commodities are

continuously produced and their prices are more demand driven. For example,

natural gas volatility is basically determined by demand shocks during the

heating season given the inability to increase production due to capacity

constraints of available systems. Gold, in contrast, is more of a financial than

a commodity contract as argued by many authors and therefore its prices

and volatility are expected to be more related to economic conditions (e.g.

inflation) than to inventory considerations. It is thus evident that the different

characteristics of each commodity affect the responsiveness of its prices to

supply and demand conditions. These findings are in line in with those of Erb
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and Harvey (2006), who observe significant differences in excess returns and

also in the sensitivity of these returns to inflation across various commodities.

5.1. The effect of market states

Ng and Pirrong (1996) analyse the dynamics of gasoline and heating oil prices

and find that spot returns are more volatile in backwardation compared to

contangoed markets. Also, Fama and French (1988) show that the volatility of

metal prices is higher when interest-adjusted basis is negative. To test whether

this hypothesis is empirically supported by our data, we separate the adjusted

basis of each commodity into positive and negative values and then estimate for

each commodity two regressions using as dependent variable: i) the adjusted

basis volatility, and ii) the nearby futures volatility. The specification is:

σi,τ = ϕ0 + ϕ1I{bi,τ−1>0}bi,τ−1 + ϕ2(1− I{bi,τ−1>0})bi,τ−1 + ei,τ (7)

where: σi,τ is the nearby futures/the adjusted basis volatility, respectively, of

commodity i in month τ and I{bi,τ−1>0} the indicator function that takes the

value of 1 if the 2-month adjusted adjusted basis of the previous month (τ −1)

is positive and 0 otherwise, and bi,τ−1 is the adjusted basis of commodity i at

the end of month τ −1. Therefore, if negative basis has indeed a larger impact

on volatility, then we expect the coefficient of the negative basis (ϕ2) to be

significant and higher in absolute value than the corresponding coefficients of

the positive basis.

The results are presented in Table 6. Columns 2 and 3 report the number

of months in backwardation and contango for each commodity. We see that

the majority of commodities were mostly in contango. The only exceptions are

crude oil, pork bellies and tin. This observation for crude oil is in accordance

with Erb and Harvey (2006). Columns 4 and 5 contain coefficient estimates

when nearby futures volatility is employed as the dependent variable in the

regressions, whereas columns 6 and 7 report estimates for basis volatility as the

dependent variable. We exclude gold and silver from the analysis since their

prices were in contango almost every month, so it is not possible to distinguish
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between the impact of negative from positive basis. Again, the observation of

contango market for precious metals is consistent with Erb and Harvey (2006).

The results for nearby futures volatility support, in general, a stronger

link between inventory and volatility during backwardated markets. This

effect seems to be more pronounced for agricultural and soft commodities, for

which most positive basis coefficients are insignificant, whereas the negative

basis coefficients are negative and significant. Exceptions are soybean oil

and orange juice, where the coefficients are not significant in any case.

Significance is also absent for industrial metals. In addition, results for the

three energy commodities are of particular interest. Specifically, for crude

oil and natural gas, the results provide support for an asymmetric V-shaped

relationship between inventory and volatility, with both positive and negative

basis inducing higher volatility, consistent with previous studies (e.g. Kogan

et al., 2009). For crude oil (natural gas), positive basis has a larger (smaller)

impact than negative basis of the same size. Finally, among the three

animal commodities, only hogs provides significant estimates which supports

a V-shaped relationship. For heating oil, only the coefficient on negative basis

is significant at the 1% level.

For basis volatility, where the basis is defined as the difference between

the first and the second nearby futures contracts in excess of the interest rate,

we obtain slightly different results. Coefficients for many of the agricultural

commodities are now significant and negative in contango states, supporting

a universally negative correlation between inventory and volatility. However,

negative basis coefficients (backwardation) are always higher in absolute value

than those for positive basis (contango) of the same magnitude. From

the soft commodities, coffee and cotton provide significant coefficients only

in backwardation states, whereas cocoa and orange juice do not provide

significant coefficients in any state. The coefficients for energy commodities

lead to very similar conclusions to the case of nearby futures volatility. Finally,

copper and tin support a globally negative relationship with inventory in

contrast to the case of nearby futures volatility, where only the coefficients

on the backwardation states were significant.
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6. Robustness analysis

We perform a series of tests to check the robustness of the results obtained in

the previous sections. First, to check the stability of our results, we repeat

our estimations using sub-samples. Initially, we divide the entire sample

of each commodity into two equal sub-samples and re-perform the relevant

estimations. Apart from a few cases, our results are robust across the two

sub-periods considered.

The rapid growth in commodity prices between 2003 and 2008 provides a

motivation to analyze our main empirical relationships over this period and

to test whether any significant structural change occurred. We thus separate

our full sample in two sub-periods: 1993-2002 and 2003-2008, and re-perform

our estimations. The results over the commodity price boom period are very

similar to those obtained for the 1992-2002 period, as well as for the full sample

period and in some cases are even stronger. This provides some evidence that

variations in fundamental supply and demand factors continued to play an

important role during the period of sharp rises in commodity prices in addition

to the effect of increased participation from commodity index investors (Irwin

and Sanders, 2011).

Second, to provide additional evidence regardless of distributional assump-

tions, we perform all significance tests in our analysis additionally using a

non parametric test, Spearman’s rank order correlation. This technique is

distribution independent. Our results remain qualitatively similar.

Lastly, we test the relationship between inventory and the slope of the

forward curve using the 12-month adjusted basis as a proxy for the slope of the

forward curve. We compute the 12-month basis from equation (3) considering

the first nearby as well as the year ahead futures contract. The 12-month basis

has the advantage that it implicitly takes seasonality into consideration, since

taking the difference between the nearby and the year ahead futures prices

is similar to applying seasonal differences. Overall, our estimation results

strongly support those obtained for the other maturities.
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7. Conclusions

This paper analyses the fundamental role of inventory in explaining commodity

futures prices and their volatilities within the economic framework of the

theory of storage. Using an extensive dataset of monthly inventories for 21

different commodities for the period from 1993 to 2011, we empirically test two

of the main predictions of the theory of storage. First, we document a negative

relationship between inventory and the slope of the forward curve. The latter

is approximated by the interest adjusted basis at different maturities, namely

2, 6, 10 and 12 months, respectively. In particular, lower inventories are

associated with wider and more negative futures basis and therefore more

backwardated forward curves. This result also implies that the convenience

yield is an increasing function of inventory. Moreover, our evidence suggests

that (adjusted) basis can serve as a sufficiently good proxy for inventory in

empirical studies. These results also provide further support to those in Gorton

et al. (2007).

Second, in line with the implications of the theory of storage, we find

that inventory is negatively related to commodity price volatility. More

specifically, price volatility is a decreasing function of inventory. The

documented relationship appears to be stronger for energy, animal and

agricultural commodities and weaker for metals, and especially for precious

metals. Furthermore, conditioning our analysis on market states (contango

vs backwardation) we observe that a negative basis (low inventory) has a

more pronounced impact on volatility than a positive basis (high inventory).

Also, for energy commodities we document a V-shaped relationship between

volatility and the slope of the forward curve, consistent with previous empirical

studies (see, Kogan et al., 2009). These findings are preserved during the recent

commodity price boom (2003-2008).

Our purpose for this study is to test the theoretical considerations relating

to the theory of storage in a more direct way than in many existing studies

using real inventories. Nevertheless, the current study is not attempting to

suggest using physical inventories instead of proxies, such as the futures basis.

Inventory data still exhibit problems, such as measurement errors or sometimes
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unavailability at higher frequencies, such as daily. Instead, our main purpose

was concentrated in two main directions: first, to test the validity of these

inventory proxies and second, to provide useful evidence on the fundamental

relationships the theory predicts using any useful part of information contained

in inventory datasets.

Our main conclusions offer additional support for the evidence of Ng and

Pirrong (1994) that fundamentals drive commodity prices and their volatilities.

From a practical point of view, our results have important implications for

derivatives pricing, asset allocation and hedging. For instance, Geman and

Nguyen (2005) find that including scarcity (the inverse of inventory) as an

additional factor in a state-variables model significantly improves the pricing

performance for soybean futures. Our evidence suggests that this can possibly

be extended to other commodities. However, due to the heterogeneity of

individual commodities, universal conclusions cannot be extracted.

25



References

Baffes, J. and T. Haniotis (2010). Placing the 2006/08 commodity price boom

into perspective. Policy Research Working paper, World Bank .

Bessembinder, H. (1992). Systematic risk, hedging pressure, and risk premiums

in futures markets. Review of Financial Studies 5 (4), 637–667.

Bhar, R. and S. Hamori (2008). Information content of commodity futures

prices for monetary policy. Economic Modelling 25 (2), 274–283.

Black, F. (1976). The pricing of commodity contracts. Journal of Financial

Economics 3 (1-2), 167–179.

Bodie, Z. (1983). Commodity futures as a hedge against inflation. Journal of

Portfolio Management 9 (3), 12–17.

Bodie, Z. and V. Rosansky (1980). Risk and return in commodity futures.

Financial Analysts Journal 36 (3), 27–39.

Brennan, M. (1958). The supply of storage. American Economic Review 48 (1),

50–72.

Brooks, C. and M. Prokopczuk (2011). The dynamics of commodity prices.

Working paper. SSRN .

Buyuksahin, B., M. Haigh, and M. Robe (2010). Commodities and equities:

Ever a market of one? Journal of Alternative Investments 12 (3), 76–95.

Buyuksahin, B. and M. Robe (2010). Speculators, commodities and cross-

market linkages. Working paper, SSRN .

Carbonez, K., T. Nguyen, and P. Sercu (2010). The asymmetric effects of

scarcity and abundance on storable commodity price dynamics and hedge

ratios. Working paper. Katholieke Universiteit Leuven.

Chambers, M. and R. Bailey (1996). A theory of commodity price fluctuations.

Journal of Political Economy 104 (5), 924–957.

Cootner, P. (1960). Returns to speculators: Telser versus keynes. The Journal

of Political Economy 68 (4), 396–404.

26



Dahl, C. and E. Iglesias (2009). Volatility spill-overs in commodity spot prices:

New empirical results. Economic Modelling 26 (3), 601–607.

Daskalaki, C., A. Kostakis, and G. Skiadopoulos (2012). Are there common

factors in commodity futures returns? working paper, University of Piraeus .

Daskalaki, C. and G. Skiadopoulos (2011). Should investors include

commodities in their portfolios after all? New evidence. Journal of Banking

and Finance 35 (10), 2606–2626.

De Roon, F., T. Nijman, and C. Veld (2000). Hedging pressure effects in

futures markets. The Journal of Finance 55 (3), 1437–1456.

De Roon, F. and M. Szymanowska (2010). The cross-section of commodity

futures returns. Working paper. SSRN .

Deaton, A. and G. Laroque (1992). On the behaviour of commodity prices.

Review of Economic Studies 59 (1), 1–23.

Dusak, K. (1973). Futures trading and investor returns: An investigation

of commodity market risk premiums. The Journal of Political Economy ,

1387–1406.

Edwards, F. and J. Park (1996). Do managed futures make good investments?

Journal of Futures Markets 16 (5), 475–517.

Erb, C. and C. Harvey (2006). The strategic and tactical value of commodity

futures. Financial Analysts Journal , 69–97.

Fabozzi, F., R. Fuess, and D. Kaiser (2008). A primer on commodity investing.

The Handbook of Commodity Investing .

Fama, E. and K. French (1987). Commodity futures prices: Some evidence

on forecast power, premiums, and the theory of storage. Journal of

Business 60 (1), 55–73.

Fama, E. and K. French (1988). Business cycles and the behavior of metals

prices. Journal of Finance 43 (5), 1075–1093.

French, K. (1986). Detecting spot price forecasts in futures prices. Journal of

Business 59 (2), 39–54.

27



Fuertes, A., J. Miffre, and G. Rallis (2010). Tactical allocation in commodity

futures markets: Combining momentum and term structure signals. Journal

of Banking and Finance 34 (10), 2530–2548.

Geman, H. (2005). Commodities and commodity derivatives. Wiley. England.

Geman, H. and V. Nguyen (2005). Soybean inventory and forward curve

dynamics. Management Science 51 (7), 1076–1091.

Geman, H. and S. Ohana (2009). Forward curves, scarcity and price volatility

in oil and natural gas markets. Energy Economics 31 (4), 576–585.

Gorton, G., F. Hayashi, and K. Rouwenhorst (2007). The fundamentals of

commodity futures returns. forthcoming, Review of Finance.

Gorton, G. and K. Rouwenhorst (2006). Facts and fantasies about commodity

futures. Financial Analysts Journal 62 (2), 47–68.

Hicks, J. (1939). Value and capital, Volume 2. Oxford U.P., Cambridge.

Hirshleifer, D. (1989). Determinants of hedging and risk premia in commodity

futures markets. Journal of Financial and Quantitative Analysis 24 (03),

313–331.

Irwin, S. and D. Sanders (2011). Index funds, financialization, and commodity

futures markets. Applied Economic Perspectives and Policy 33 (1), 1–31.

Jagannathan, R. (1985). An investigation of commodity futures prices using

the consumption-based intertemporal capital asset pricing model. Journal

of Finance, 175–191.

Kaldor, N. (1939). Speculation and economic stability. Review of Economic

Studies 7 (1), 1–27.

Keynes, J. (1930). Treatise on money: Pure theory of money, Volume 1.

Macmillan, London.

Kogan, L., D. Livdan, and A. Yaron (2009). Oil futures prices in a production

economy with investment constraints. Journal of Finance 64 (3), 1345–1375.

28



Lien, D. and L. Yang (2008). Asymmetric effect of basis on dynamic futures

hedging: Empirical evidence from commodity markets. Journal of Banking

and Finance 32 (2), 187–198.

Miffre, J. and G. Rallis (2007). Momentum strategies in commodity futures

markets. Journal of Banking and Finance 31 (6), 1863–1886.

Milonas, N. and S. Thomadakis (1997). Convenience yields as call options: An

empirical analysis. Journal of Futures Markets 17 (1), 1–15.

Newey, W. and K. West (1987). A simple, positive semi-definite, heteroskedas-

ticity and autocorrelation consistent covariance matrix. Econometrica 55 (3),

703–708.

Ng, V. and S. Pirrong (1994). Fundamentals and volatility: Storage, spreads,

and the dynamics of metals prices. Journal of Business 67 (2), 203–230.

Ng, V. and S. Pirrong (1996). Price dynamics in refined petroleum spot and

futures markets. Journal of Empirical Finance 2 (4), 359–388.

Routledge, B., D. Seppi, and C. Spatt (2000). Equilibrium forward curves for

commodities. Journal of Finance 55 (3), 1297–1338.

Silvennoinen, A. and S. Thorp (2010). Financialization, crisis and commodity

correlation dynamics. Working paper. University of Technology Sydney .

Tang, K. and W. Xiong (2010). Index investment and financialization of

commodities. Technical report, National Bureau of Economic Research.

Telser, L. (1958). Futures trading and the storage of cotton and wheat. Journal

of Political Economy 66 (3), 233–255.

Williams, J. and B. Wright (1991). Storage and commodity markets.

Cambridge University Press. US.

Working, H. (1948). Theory of the inverse carrying charge in futures markets.

Journal of Farm Economics 30 (1), 1–28.

29



Table 1: Details of commodity contracts

Commodity Exchange Delivery months

A. Agricultural

Corn CBOT Mar, May, Jul, Sep, Dec

Oats CBOT Mar, May, Jul, Sep, Dec

Soybeans CBOT Jan, Mar, May, Jul, Aug, Sep, Nov

Soybean oil CBOT Jan, Mar, May, Jul, Aug, Sep, Oct, Dec

Wheat CBOT Mar, May, Jul, Sep, Dec

B. Softs

Cocoa ICE† Mar, May, Jul, Sep, Dec

Coffee ICE Mar, May, Jul, Sep, Dec

Cotton ICE Mar, May, Jul, Oct, Dec

Lumber CME Jan, Mar, May, Jul, Sep, Nov

Orange juice ICE Mar, May, Jul, Sep, Nov

C. Livestock and meats

Live Cattle CME Feb, Apr, Jun, Aug, Oct, Dec

Lean Hogs CME Feb, Apr, Jun, Jul, Aug, Oct, Dec

Pork bellies CME Feb, Mar, May, Jul, Aug

D. Energy

Heating oil NYMEX all months

Natural gas NYMEX all months

Crude oil (WTI) NYMEX all months

E. Metals

Aluminium LME all months

Copper COMEX Jan, Mar, May, Jul, Oct, Dec

Gold COMEX Feb, Mar, Apr, Jun, Aug, Oct, Dec

Silver COMEX Jan, Feb, Mar, Apr, May, Jul, Sep, Dec

Tin LME all months

∗CBT: Chicago Board of Trade, CME: Chicago Mercantile Exchange,

NYMEX: New York Mercantile Exchange, ICE: Intercontinental Exchange,

COMEX: Commodity Exchange and LME: London Metal Exchange

†Formerly New York Board of Trade (NYBOT)
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Table 2: Summary Statistics

This table presents summary statistics for commodity futures returns. The sample period is 1

January 1993 to 31 December 2011. In addition to the first four central moments, the table reports

the value of the Jarque–Bera (J–B) normality test statistic and the first order serial correlation

coefficient, denoted AR(1). The mean and standard deviation are both expressed annualised and

as percentages. * and ** indicate statistical significance at the 10% and 5% level respectively for

the AR(1) coefficient and rejection of normality at the same significance level for the J–B statistic.

A. Agricultural Mean St. Dev. Skew Kurt J-B AR(1) Obs

Corn -7.02 25.87 -0.03 5.66 1383.0 0.05** 4690

Oats -4.75 31.07 -0.08 5.70 1429.7 0.07** 4690

Soybeans 2.64 23.31 -0.26 5.51 1272.5 -0.01 4652

Soybean oil -1.27 23.26 0.06 5.02 790.5 0.01 4633

Wheat -10.18 29.21 0.01 5.29 1018.1 -0.01 4690

B. Softs

Cocoa -0.42 30.16 -0.04 5.43 1145.6 0.00 4654

Coffee -1.81 39.24 0.36 10.35 10570.8 0.00 4653

Cotton -3.18 27.49 0.00 4.86 670.2 0.04** 4660

Lumber -16.44 30.54 0.09 2.64 32.2 0.11** 4673

Orange juice -7.41 31.67 0.40 12.21 16512.4 0.01 4641

C. Livestock

Cattle -0.61 14.45 -0.14 4.60 513.8 0.05** 4672

Hogs -7.53 24.05 -0.13 4.28 329.0 0.04** 4643

Pork bellies 1.83 31.93 0.02 3.43 34.6 0.08** 4575

D. Energy

Heating oil 5.03 32.08 -0.13 5.02 781.2 -0.03 4534

Natural gas -19.56 47.39 0.05 5.21 918.7 -0.02 4533

Crude oil 6.10 33.69 -0.25 6.32 2124.1 -0.02 4533

E. Metals

Aluminium -1.81 21.73 -0.27 5.39 870.0 -0.05** 3474

Copper 5.93 28.37 -0.25 7.01 3174.4 -0.06** 4667

Gold 5.11 16.64 0.07 9.82 8998.7 0.02 4649

Silver 6.57 30.29 -0.84 11.04 13110.3 0.00 4667

Tin 8.37 1.72 -0.32 10.16 7476.58 0.05** 3474
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Table 3: Adjusted basis and inventory

This table displays results from estimating commodity-by-commodity OLS regressions of

monthly adjusted basis (forward curve slope) on the logarithm of end of month inventory.

Inventories of seasonal commodities are the residuals from regressions against monthly

dummies. For non-seasonal commodities, inventories are deviations from historical mean.

Futures basis is computed for three different maturities: 2, 6 and 10 months. *, **, and

*** denote statistical significance at the 10%, 5% and 1% levels, respectively. t-statistics

of coefficients are reported in parentheses. Newey and West (1987) HAC standard errors

and covariances were employed in the OLS estimations.

2-month 6-month 10-month

Commodity Obs αi βi αi βi αi βi

Corn 227 -0.001 0.038*** 0.000 0.079*** 0.000 0.115***

(-0.219) (-3.047) (-0.028) (-3.130) (-0.005) (-2.929)

Oats 134 -0.009 0.025* -0.017 0.055* - -

(-1.213) (-1.728) (-1.016) (-1.907) - -

Soybeans 227 0.000 0.011*** -0.001 0.030*** -0.002 0.033**

(-0.061) (-4.028) (-0.214) (-2.928) (-0.272) (-2.320)

Soyoil 156 0.001 0.015*** 0.010* 0.081*** 0.002 0.124***

(-0.673) (-3.008) (-1.669) (-3.145) (-0.283) (-3.307)

Wheat 227 0.000 0.036*** 0.000 0.106*** 0.000 0.153***

(-0.005) (-5.208) (-0.059) (-5.045) (-0.024) (-5.671)

Coffee 201 -0.004 0.018*** -0.010 0.045*** 0.029*** 0.057***

(-1.525) (-6.438) (-1.348) (-5.321) (-2.655) (-5.390)

Cocoa 227 -0.001 0.018*** -0.002 0.036*** -0.003 0.049***

(-0.675) (-3.603) (-0.654) (-3.389) (-0.593) (-3.320)

Cotton 185 0.016*** 0.055*** 0.037*** 0.178*** 0.047*** 0.025

(-6.479) (-6.310) (-5.601) (-5.947) (-2.670) (-6.778)

Lumber 227 0.000 0.057 0.000 0.135 - -

(-0.021) (-0.656) (-0.032) (-0.935) - -

Orange juice 227 0.011*** 0.089*** 0.033*** 0.225*** 0.044*** 0.103***

(-4.116) (-4.299) (-4.600) (-4.189) (-5.201) (-4.102)

Cattle 227 0.001 0.008 0.002 -0.056 0.002 0.110

(-0.216) (-0.469) (-0.304) (-1.602) (-0.300) (1.599)

Hogs 227 0.000 0.167*** -0.003 0.461*** -0.005 0.631***

(-0.066) (-3.852) (-0.217) (-3.819) (-0.311) (-4.033)

Pork bellies 224 -0.001 0.045*** -0.003 0.115*** - -

(-0.158) (-3.530) (-0.356) (-4.242) - -

Heating oil 227 0.000 0.170*** 0.000 0.417*** 0.001 0.582***

(-0.030) (-6.804) (-0.066) (-6.729) (-0.121) (-7.777)

Natural gas 227 0.002 0.172*** 0.003 0.486*** 0.003 0.638***

(-0.338) (-4.619) (-0.238) (-5.917) (-0.215) (-7.079)

Crude oil 227 0.000 0.279*** 0.001 0.668*** 0.000 0.950***

(-0.026) (-7.565) (-0.153) (-8.643) (-0.021) (-9.007)

Aluminium 171 0.004*** 0.007*** 0.003 0.017*** 0.005 0.031***

(-3.626) (-5.144) (-0.843) (-4.034) (-0.871) (-4.316)

Copper 227 -0.001 0.010*** -0.032*** 0.027*** -0.053*** 0.041***

(-0.488) (-6.960) (-6.784) (-6.356) (-7.561) (-6.412)

Gold 227 0.001 0.004 0.000 0.005 -0.000 0.006

(0.254) (1.123) (-0.117) (1.383) (-0.129) (1.572)

Silver 227 0.000 0.006*** -0.001 0.020*** -0.003** 0.038***

(-0.170) (-5.912) (-1.158) (-6.345) (-2.384) (-7.868)

Tin 171 -0.005*** 0.009*** -0.017*** 0.022*** -0.027*** 0.034***

(-6.950) (-6.583) (-8.434) (-7.049) (-9.560) (-6.614)
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Table 4: Inventory and adjusted basis volatility

This table presents estimation results from the following regression:

σ̃i,τ = αi + γiĨi,τ−1 + ϵi,τ

where σ̃i,τ is the adjusted basis volatility of commodity i in month τ and Ĩi,τ−1 is the (deseasonalized)

inventory level of commodity i at the end of month τ -1. Monthly basis volatility is computed as

the annualised standard deviation of the daily 2- and 6-month adjusted basis respectively, over each

month τ . For seasonal commodities, both inventory and adjusted basis volatility refer to the residuals

from regressions against monthly seasonal dummies. *, **, and *** denote statistical significance

at the 10%, 5% and 1% levels respectively, using a two-tailed test. Newey and West (1987) HAC

standard errors and covariances were used in the estimations.

2 month basis volatility 6 month basis volatility

Commodity Obs αi γi R-sq. αi γi R-sq.

Corn 227 0.001 -0.039** 5.59% 0.017 -0.034** 5.45%

(-0.033) (-2.193) (-1.139) (-1.986)

Oats 133 0.010 -0.006 0.02% -0.009 -0.005 0.01%

(-0.693) (-0.168) (-0.481) (-0.108)

Soybeans 227 -0.001 -0.031*** 4.59% -0.001 -0.036** 2.25%

(-0.139) (-3.290) (-0.096) (-2.278)

Soybean oil 156 0.027*** -0.047*** 24.58% 0.082*** -0.137*** 17.87%

(-10.012) (-2.795) (-8.515) (-2.691)

Wheat 227 0.000 -0.038*** 4.62% 0.003 -0.064** 3.10%

(-0.023) (-2.911) (-0.142) (-2.126)

Cocoa 227 0.000 -0.006 0.13% 0.000 -0.017 0.42%

(-0.008) (-0.442) (-0.014) (-0.809)

Coffee 202 -0.005 -0.020*** 12.53% -0.011 -0.025** 7.81%

(-0.722) (-3.373) (-0.793) (-2.400)

Cotton 184 0.002 -0.075** 4.70% 0.001 -0.088*** 4.31%

(-0.182) (-2.119) (-0.092) (-2.658)

Lumber 227 0.000 -0.071* 0.93% 0.001 -0.106* 1.01%

(-0.042) (-1.683) (-0.045) (-1.732)

Orange juice 227 0.000 -0.027 0.04% 0.001 -0.047 2.07%

(-0.005) (-0.352) (-0.097) (-1.452)

Cattle 227 0.094*** -0.001 0.00% 0.153*** 0.015 0.00%

(-19.808) (-0.044) (-21.108) (-0.394)

Hogs 227 0.200*** 0.437*** 6.95% -0.004 0.962*** 7.91%

(-20.063) (3.781) (-0.170) (3.059)

Pork bellies 224 0.148*** 0.145*** 2.24% 0.263 0.224 3.96%

(8.535) (2.029) (9.819) (-0.342)

Heating oil 227 0.000 -0.192*** 9.19% 0.000 -0.253** 5.60%

(-0.005) (-2.816) (-0.004) (-2.011)

Natural gas 227 -0.002 -0.136 0.92% 0.003 0.210 1.02%

(-0.087) (-1.058) (-0.086) (-1.070)

Crude oil 227 0.110*** -0.338*** 4.77% 0.208*** -0.697*** 7.04%

(-14.383) (-3.095) (-16.330) (-3.829)

Aluminium 171 0.033*** -0.022*** 2.27% 0.060*** -0.031*** 2.29%

(-6.545) (-3.196) (-15.103) (-6.659)

Copper 227 0.000 -0.017*** 1.46% 0.000 -0.029*** 2.07%

(-0.078) (-5.691) (-0.072) (-4.852)

Gold 227 0.000 -0.004*** 0.00% 0.000 -0.006*** 0.46%

(-0.067) (-2.833) (-0.058) (-2.799)

Silver 227 0.009*** -0.027 1.93% 0.021*** -0.052 0.42%

(-7.644) (-1.407) (-8.090) (-1.310)

Tin 171 0.028*** -0.022*** 0.76% 0.051*** -0.031*** 0.04%

(-10.667) (-4.551) (-10.015) (-4.237)
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Table 5: Inventory and nearby futures volatility

This table reports commodity-by-commodity results for the following regression:

σi,τ = ωi + ζiĨi,τ−1 + ui,τ

where σi,τ is the nearby futures returns volatility of commodity i in month τ and

Ĩi,τ−1 is the (deseasonalised) inventory of commodity i at the end of month τ -1. The

monthly nearby futures volatility is calculated as the annualised standard deviation

of the daily nearby futures returns over each month τ . For seasonal commodities,

both inventory and nearby futures volatility are the residuals from regressions against

monthly seasonal dummies. *, ** and *** denote statistical significance at the 10%,

5% and 1% levels. Newey and West (1987) HAC standard errors and covariances were

employed in the estimations.

commodity Obs. ωi ζi R− sq.

Corn 227 -0.118*** -0.048* 0.41%

(-8.240) (-1.791)

Oats 133 -0.078*** -0.057* 9.82%

(-3.896) (-1.798)

Soybeans 227 0.211*** -0.030*** 5.93%

(-38.118) (-3.856)

Soybean oil 156 0.231*** -0.095*** 6.89%

(-20.948) (-3.024)

Wheat 227 -0.123*** -0.055*** 3.29%

(-11.380) (-2.682)

Cocoa 227 0.287*** -0.097*** 9.20%

(-32.682) (-4.548)

Coffee 202 0.643*** -0.021* 5.91%

(-4.022) (-1.897)

Cotton 184 0.010 -0.008 0.14%

(-0.734) (-0.197)

Lumber 227 0.001 -0.228*** 10.90%

(-0.169) (-6.479)

Orange juice 227 0.000 -0.016 0.20%

(-0.026) (-0.512)

Cattle 227 0.138*** 0.018 0.25%

(-28.002) (-0.604)

Hogs 227 -0.001 0.333*** 21.97%

(-0.221) (-4.071)

Pork bellies 224 0.298*** 0.106*** 8.28%

(-23.017) (-3.010)

Heating oil 227 0.306*** -0.227** 4.90%

(-26.184) (-2.301)

Natural gas 227 -0.001 -0.101 0.83%

(-0.080) (-0.963)

Crude oil 227 0.314*** -0.620*** 6.26%

(-21.663) (-2.960)

Aluminium 171 0.003 -0.001 2.21%

(-1.364) (-0.529)

Copper 227 0.176*** -0.032*** 9.32%

(-10.487) (-3.056)

Gold 227 0.075*** 0.001 0.05%

(-3.415) (-0.128)

Silver 227 0.268*** 0.004 2.96%

(-17.121) (-0.130)

Tin 171 -0.002 -0.004** 3.71%

(-0.844) (-2.112)

34



Table 6: Inventory and volatility: the effect of market states

This table reports commodity-by-commodity regressions to control for different impact of

basis on price volatility during contango and backwardation states of the market:

σi,τ = φ0 + φ1I{bi,τ−1>0}bi,τ−1 + φ2(1− I{bi,τ−1>0})bi,τ−1 + ei,τ (8)

σi,τ is the nearby futures or adjusted basis volatility, respectively, of commodity i in month

τ and I an indicator function that takes the value of 1 if the 2-month adjusted basis of

month τ − 1 is positive and 0 otherwise. bi,τ−1 is the adjusted basis of commodity i at the

end of month τ − 1. Columns 2 and 3 report the number of contango and backwardation

months respectively. *, ** and *** denote statistical significance at the 10%, 5% and 1%

levels. t-statistics are reported in parentheses below each coefficient. Newey and West

(1987) HAC standard errors and covariances were employed in the estimations.

spot volatility basis volatility

Commodity contango backwardation ϕ1 ϕ2 ϕ1 ϕ2

Corn 202 23 -0.370 -0.478** -0.523*** -1.194***

(-0.668) (-2.505) (-3.052) (-6.220)

Oats 166 59 -0.771* -0.770*** -1.272*** -1.442***

(-1.806) (-3.521) (-4.287) (-5.380)

Soybeans 147 75 -1.522 -1.159*** -0.929* -2.130***

(-1.611) (-2.753) (-1.807) (-2.732)

Soybean oil 179 41 -0.534 -0.173 -0.512* -1.847***

(-0.442) (-0.224) (-1.918) (-3.358)

Wheat 192 31 -0.109 -0.851* -0.984*** -1.094***

(-0.175) (-1.911) (-3.618) (-3.763)

Cocoa 171 48 -0.596 -2.371*** 0.317 -0.845

(-1.056) (-3.057) (-1.002) (-1.404)

Coffee 168 55 0.426 -1.520** 0.312 -1.883***

(-0.604) (-2.099) (-0.628) (-4.086)

Cotton 166 57 0.460 -0.615* -0.220 -1.035**

(-1.034) (-1.693) (-0.444) (-2.494)

Lumber 157 67 -0.771*** -0.136 0.321* -1.521***

(-3.586) (-0.657) (-1.911) (-4.207)

Orange juice 160 59 1.224* 0.331 -0.265 -0.387

(-1.836) (-0.568) (-0.613) (-0.855)

Cattle 131 93 0.006 -0.200 0.159 -0.341*

(-0.047) (-0.957) (-0.923) (-1.955)

Hogs 122 102 0.459*** -0.561*** 0.573** -0.052**

(-2.611) (-3.519) (-2.017) (-2.109)

Pork bellies 81 135 0.092 0.393 -0.109 -0.721

(-0.868) (-0.804) (-1.264) (-1.055)

Heating oil 140 80 1.215 -1.276** 0.293 -3.234***

(-1.018) (-2.467) (-0.440) (-7.230)

Natural gas 148 73 0.881*** -2.486*** 3.378*** -5.196***

(-4.139) (-5.857) (-8.246) (-10.782)

Crude oil 101 121 8.059*** -2.098** 5.267*** -3.355***

(-4.815) (-2.413) (-4.359) (-6.027)

Aluminium 103 60 0.220 -0.004 3.728 -3.875***

(-1.157) (-0.033) (-1.303) (-3.059)

Copper 124 95 -3.623 0.137 -2.258*** -1.428***

(-1.364) (-0.193) (-3.743) (-3.984)

Gold 218 5 - - - -

- - - -

Silver 214 10 - - - -

- - - -

Tin 42 119 -0.908 0.003 -3.099** -2.072***

(-1.171) (-0.020) (-2.513) (-7.151)
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Figure 1: Inventory Series for selected commodities

This figure plots end-of-month inventory series for a selected group of commodities. The horizontal

axis represents time (in months) while the vertical inventory units. Superimposed on the graphs

are seasonal fits and linear trends (dotted lines). Seasonal fits are functions of monthly dummy

variables.
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