
Munich Personal RePEc Archive

Ontological foundation of Nash

Equilibrium

Pelosse, Yohan

February 2011

Online at https://mpra.ub.uni-muenchen.de/39934/

MPRA Paper No. 39934, posted 09 Jul 2012 03:11 UTC



Ontological Foundation of Nash Equilibrium∗

Yohan Pelosse

e-mail: yohanpelosse@googlemail.com

Gate Lyon-St-Etienne CNRS UMR 5824
93 Chemin des mouilles
69130 Ecully (France)

Tel.: +33 (0) 4 72 86 60 60 Fax.: +33 (0) 4 72 86 60 90

Abstract: In the classical definition of a game, the players’ hierarchies of beliefs are
not part of the description. So, how can a player determine a rational choice if be-
liefs are initially nonexistent in his mind? We address this question in a three-valued
Kripke semantics wherein statements about whether a strategy or a belief of a player
is rational are initially indeterminate i.e. neither true, nor false. This “rationalistic”
Kripke structure permits to study the “mental states” of players when they consider
the perspectives or decision problems of the others, in order to form their own beliefs.
In our main Theorem we provide necessary and sufficient conditions for Nash equi-
librium in an n-person game. This proves that the initial indeterminism of the game
model, together with the free will of rational players are at the origin of this concept.
This equivalence result has several implications. First, this demonstrates that a Nash
equilibrium is not an interactive solution concept but an intrinsic principle of decision
making used by each player to shape his/her own beliefs. Second, this shows that a
rational choice must be viewed in statu nascendi i.e. conceived as a genuine “act of cre-
ation” ex nihilo, rather than as a pre-determined decision, arising from an underlying
history of the game.

Keywords and phrases: Free will, Indeterminism, Lukasiewicz’s three-valued logic,
Player’s perspective, Rationalistic frames, Relational truth-values, Three-valued Kripke
semantics.

1. Introduction

The object of game theory, as originally formulated by von Neumann and Morgenstern (1944)
is to predict the behavior of rational players. The starting point for most game theory, which
is usually thought of as the embodiment of “rational behavior”, is the Nash equilibrium
solution concept (Nash, 1950). A Nash equilibrium is defined as a n-tuple of strategies or
strategy profile (one strategy for each player) if each player’s strategy is optimal against
the others’ strategies. A common view is that the interactive epistemology1 under which
rational individuals play such an “equilibrium point” is quite demanding. (see e.g., Aumann
and Brandenburger (1995), Bernheim (1984), Pearce (1984)).
The goal of this paper is to answer the central foundational problem posed to game theory :

∗This paper is the first part of the initial version of “The intrinsic quantum nature of Nash equilibrium
mixtures” presented at the “Quantum Physics meets TARK” workshop (Groningen, July 15, 2011) and
Maastricht seminar (Meteor-ETBC, November 2011). I am grateful to these seminar audiences for helpful
comments and stimulating discussions.

1For a thoroughful survey on the epistemic foundation of game theory, see e.g., Battigalli and Bonnanno
(1999).
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“Why equilibrium?”(see Sabourian and Juang 2008). We shall answer this question by taking
the formal definition of the classical game model as it stands; that is, we will examine the
game model when players have no pre-existing hierarchies of beliefs in their minds. Hence,
we comply with the original tenseless definition of a game by excluding the possibility that
players may have formed their beliefs about the others’ strategies in the past. Instead, we will
analyze how players endowed of a bona fide free will, without initial beliefs, can determine
their choice of a strategy. Our main result proves that the free will assumption of the game
model, together with the classical rationality postulate permits to constructively derive the
Nash equilibrium concept as a self-referential principle of determination of each player. This
is therefore in stark contrast with the conventional wisdom, which claims that processes by
which individuals reach decisions are a priori completely absent of classical game theory.
More precisely, the methodology pursued in the paper is as follows. We will exhibit a process
of reasoning leading each player to determine a Nash equilibrium by incorporating in the
analysis the initial indeterminism of the game model. To do so, we start by asking how a
rational player with free will, may form his beliefs in order to discover a rational strategy in
the classical game model i.e. how should a rational player define his prior beliefs ex nihilo?
The gist of our approach builds on the following two observations:
(i)The classical game model is complete in the sense that its complete description is given by
the strategy sets, the outcome map, and the payoff functions, and ;
(ii)If we do not append some extraneous hierarchies of beliefs i.e. players have free will, then
rationality is a relativistic or relational concept in the sense that it consists of making an
optimal choice that has to be justifiable by an initially nonexistent belief.
Taken together, (i) and (ii) imply that atomic statements like Ai :=“strategy a is optimal in
the game G for player i” are generally neither absolutely “true”, nor absolutely “ false” but
indeterminate.2 Hence, a non-classical logic—the three-valued logic of Lukasiewicz (1930)—
enters the picture of the game model in its own right because this model does not (generally)
contain the answers to questions like “what constitutes a rational behavior?”.
So far, the implications of the assumption of rationality has been explored in epistemic
models in which the statements are either true or false. So, let us stress that the use of a
non-classical logic to analyze the classical game model is not an extraneous postulate, but is
rather its inevitable formal consequence. This is so, since the notion of (hierarchies of) beliefs
are not part of the description of the game. So how could we assign some sharp truth-values
to some statements that pertain on undefined objects?
In fact we could make a strong case for the use of such a non-classical logic by noting that
the assertions made in game theory like “player i will choose action a in the experiment”
have to be considered as future contingents i.e. assertions about a future choice of a player
are of the same nature as the well-known Aristotle “tomorrow’s sea battle”. As argued by
Kripke (1975), the three-valued logic of Lukasiewicz models the lack of sharp truth-values on
statements. Hence, unlike the “fuzzy logics”, it is important to understand that the “third
truth-value” cannot be construed as reflecting the ignorance of a player about statements
that are unknown.3 In game theory, this non-classical logic captures the “ontological open-

2Indeed, recall that in a game a strategy is generally neither strongly dominant, nor a never best reply.
3This view is consistent with the idea that the truth of a proposition consists in representing an actual state

of affairs. This is usually referred to as the “correspondence theory of truth”. To put Aristotle’s argument
in modern terms, he claimed that some statements about the future have no truth value today because
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ness” of the players behavior in the game model i.e., the fact that the behavior is not settled
in the game model as long as it is not determined by the players themselves. This is so, since
all the assertions formulated in the game model are examples of the “future contingents”
of Aristotle.4 It is well-known that a standard way to capture in a rigorous semantic the
indeterminacy of assertions that pertain on future events is to use the three-valued logic
of Lukasiewicz.5 So, we can also understand the use of the three-valued logic to model the
absence of initial players’ strategies and beliefs in the classical game model as the result of
the Aristotle’s idea that contingent statements about the future have no determinate truth
value. The bottom line is that the lack of a sharp truth-value is part of the description of
the classical game model, on a par with the strategy sets, the outcome map, and the payoff
functions. Hence, the absence of any hierarchies of beliefs in the game model means that the
truth of what is rational for a player is not relative to a particular history of the game.
Note the immediate implication for the notion of “uncertainty” in games; if players are free
to choose their strategies and beliefs, then a pair of strategies-beliefs are under-determined
until a player determines such objects himself. Thus, the game model explains how a definite
rational strategy comes into being in the mind of the player. This means that a rational
strategy will be unpredictable before it is determined: the future choice of a strategy and a
belief of a player is uncertain because it does not yet exist in the mind of the player. Thus
this uncertainty has an ontological character.
This intial under-determination of the game model—an objective indeterminism—implies
that players can choose their beliefs freely. Note that this initial assumption of an open fu-
ture, i.e., the future can be changed by the choices the players make, is therefore very much
in line with the “tense logic” of Prior (1967), and the theory of logic and philosophy of action
of Belnap et al. (2001), or Horty (2001), who analyze the choices made by agents living in
a world with an “indeterministic causal structure ”.6 Finally, there is also a methodological
reason for the use of this non-classical logic in the game model. Assuming the existence of
extraneous pre-existing beliefs implies that there is no room for a real free will of players in
game theory. Arguably, this seems a quite suspect assumption, if the theory aims at predict-
ing the actual behavior of individuals. 7

of indeterminism. Or the opposite that indeterminism must be true because we cannot find a consistent
valuation of all possible statements about the future in a quantum-mechanical universe.

4Aristotle, in De interpretatione IX, for instance, held that only those propositions about the future
which are either necessarily true, or necessarily false, or “predetermined” in some way have a determinate
truth-value. The initial under-determination of the classical game model conflicts with this necessity of sharp
truth-values.

5In the three-valued logic of Lukasiewicz the law of the excluded middle does not hold. This has been
criticized by Prior (1953). However, as we shall discuss, in the present three-valued Kripke model, this
property is in fact the direct consequence of the fact that statements that pertain on the rational choice of a
player can only take on relativistic. truth-values. Again, this is due to the fact that our use of the Lukasiewicz
three-valued logic captures the ontological/real inexistence of any pre-existing beliefs in the minds of players,
not their epistemic plausibility.

6It is therefore worth noting that the present tenseless structure of the game model precludes any evalu-
ation of a game-theoretic statement by singling out a particular history, a path of a tree-like structure i.e. a
branching time structure a la Belnap.

7Note that the absence of free will is at odds with all the current experimental findings in physics. In
particular, quantum theory and (special) relativity make correct predictions in already well tested situations
by assuming that experimentalists can freely (independently) choose measurement settings.
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One could say that the presence of a non-classical logic marks the transition from an epis-
temic game theory (see, e.g., Harsanyi (1973), Aumann (1987) and Brandenburger and Dekel
(1989)) to an ontological analysis of game theory. At first sight, this “ontological approach”
of games might therefore seem in stark contrast with the usual epistemic approach to game
theory, where the introduction of pre-existing hierarchies of beliefs is a prerequisite. To our
way of thinking, this is rather its direct corollary, for as well put by Brandenburger, an im-
portant contribution of the epistemic program has precisely been to demonstrate “that there
isn’t one right set of assumptions to make about a game.” [Brandenburger, p.490, 2007].
So, the initial lack of pre-existing strategies and beliefs in the classical game model raises
the central question: How will a player ascribe a relative truth-value, true, to a particular
rational strategy?
The answer is simple; in the game model, each player possesses only pieces of a puzzle made
of contingent statements about the optimality of a strategy. Playing a Nash equilibrium is
the picture on the box—the principle so to speak—to guide their assembly.8 Alternatively
put, since atomic statements are generally neither true nor false, each player i who “speaks”
a “rationalistic language” about rational strategies or beliefs can find that the relative-truth
values of contingent statements like “strategy a is rational for player i is true if and only if
the components of the strategy profile b of the other players are mutually rational for each
other player j 6= i, when player i adopts the “meta-decision problem” of these players simul-
taneously” is true. 9 Of course, such a tautology corresponds precisely to a Nash equilibrium
of the game.
This is the central idea of the paper: The initial indeterminacy of what constitutes a ra-
tional strategy leads each player to break the Gordian Knot of endless chain of contingent
statements by “self-interacting” in a Nash equilibrium. To recap: On one hand, the under-
determination of the classical game model endows players of free will, in the sense that the
definition of a game does not impose players to hold some particular beliefs. On the other
hand, players are free to choose between possible strategies. Add rationality and a player
becomes forced to follow a Nash equilibrium in order to arrive at determining a (rational)
strategy. A Nash equilibrium appears then as a self-interactive principle accounting for the
mental process by which each player can reach a decision in a game, from an initially nonex-
istent strategy-belief pair in his mind.
Our main Theorem gives a formal statement of this idea by proving that the assumption of
free will of the classical game allows to obtain some necessary and sufficient conditions for a
Nash equilibrium. This shifts the usual interpretation of an equilibrium: Instead of describ-
ing the end-point of complex (social) strategic interactions, a Nash equilibrium accounts for
the internal process of choice wherein each individual self-interacts in a consistent way in
order to determine his own rational behavior. Arguably, this motivates a neuroeconomics
approach and process-based models of decision making in games (see, e.g., Giacomo et al.
(2008)): unlike conventional wisdom, our main result shows that cognition is in fact an in-
herent feature of the rational choice paradigm. Moreover, this responds to the longstanding

8More precisely, the picture says ‘ “If you pick this statement, then you must also pick this one and vice
versa”. Hence, the picture does not guide the player on a particular Nash equilibrium.

9Hereafter, we will use the terms “relative” or “contingent”, interchangeably.
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criticisms addressed to this solution concept (see e.g., Bernheim (1984) and Pearce (1984)).10

This new way of looking at Nash equilibrium is in stark contrast with the conventional wis-
dom. In the earlier view, a Nash equilibrium is interpreted as an “interactive” equilibrium
point which has an “as if ” interpretation (Nash [1950, p. 21-23]). Instead, we prove that the
Nash equilibrium concept is a “self-interactive principle of determination” followed by each
player in order to unravel the initial indeterminism of the game model, as a consequence of
his free will.11 A direct consequence of this result is that if one wants to continue to view
a Nash equilibrium as an “interactive or focal equilibrium point” (the term is taken from
Schelling [1960, p.57]), then, the earlier studies of correlation in games à la Aumann (1974)
become essential; if players play in such a focal equilibrium point, we must give a story for
why the players have determined the same intrinsic Nash equilibrium.12

No necessary conditions for Nash equilibrium have been given to date. In particular, Au-
mann and Brandenburger [1995, p.1163] provide some “tight” epistemic sufficient conditions
which are not necessary. As they point out “It is always possible for the players to blunder
into a Nash equilibrium “by accident”.” Here, the very notion of free will—the absence of
any pre-determined beliefs—leads each rational player to self-interact in a Nash equilibrium.
Hence, players must freely determine the same “intrinsic” equilibrium in order to effectively
“blunder” into such a focal equilibrium point.13

The paper is organized as follows. The next section is an informal discussion of the main
result to follow. The formal treatment is in Sections 3-8. Section 9 concludes. The proof of
the main result has been relegated to an Appendix.

2. Preview of the main result

To fix ideas, consider the game of Figure 1. In this game, Ann chooses the row, Bob chooses
the column, Charlie chooses the matrix. Each player must (simultaneously and indepen-
dently) and freely choose to go to the North Pole or the South Pole in the sense that players
do not have any pre-specified hierarchies of beliefs i.e. they have free will. For Ann and
Bob, this is simply the “Battle of the Sexes;” their payoffs are no affected by Charlie’s
choice. For the sake of discussion, let us focus on the following Nash equilibrium of this
game (2

3
N ⊕ 1

3
S, 1

3
n ⊕ 2

3
s, N). First, consider the implication of formally incorporating the

Free Will assumption on the behavior of each rational player. Let us focus our discussion
on Ann. The application of our first result (Theorem 1) states that if Ann is rational and
has no pre-specified beliefs, then she will play an equilibrium mixed strategy i.e., 2

3
N⊕ 1

3
S in

the game14: In the classical model, the absence of pre-existing rational strategies and beliefs

10In their work on rationalizability, Bernheim (1984) and Pearce (1984) have argued that Nash equilibrium
behavior cannot be deduced solely from assumptions regarding the rationality of players and their knowledge
of the rationality of their opponents.

11This might explain why the epistemic literature has regarded a Nash equilibrium as a particular case
lacking of a crisp foundation (see, Brandenburger (2007)).

12More precisely, an extrinsic or intrinsic (see, Brandenburger and Friedenberg (2008)) source of correlation
across players is needed in order to explain how a group of independent players with free will can determine
the same intrinsic equilibrium point.

13Of course, this claim is valid for games where different equilibria have different strategy combinations
for all players. As shown below, the extension of this result to all games is straightforward.

14The Theorem applies to any finite n-person normal-form game.
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Table 1

Figure 1.

n s

N 2,1,0 0,0,0
S 0,0,0 1,2,0

N

n s

N 2,1,0 0,0,0
S 0,0,0 1,2,0

S

implies that Ann must literally create what she deems as being rational. Doing so means that
she must simultaneously put herself in the shoes of Bob and Charlie while she is considering
her own decision problem. Since Ann is rational, she must be rational in her own perspective
AA as well as when she is considering Bob and Charlie’s decision problems at AB⊗C . The
gist is that Ann being a single person, she can only hold some self-referential strategy-belief.
Hence, the very existence of a rational strategy for Ann coincides with a logical equivalence
of a strategy-belief pair. To see this, note that when she has to choose a destination all
statements like “The North Pole is rational”,“The South Pole for Charlie and the North for
Bob are rational beliefs for Ann” or “The South Pole for Charlie and the North Pole for
Bob are rational” and so on, are all indeterminate statements. In general, the rationality of
Ann leads her to determine the truth-value of statements like “The (mixed) strategy σA is
rational” is true because the statement “The (mixed) strategy σC for Charlie and the (mixed)
strategy σB for Bob are rational strategies” is true. Hence, this in turn requires that Ann
determines whether statements like “The (mixed) strategy σC for Charlie and the (mixed)
strategy σB for Bob are rational strategies” are true or not.
This raises the question: What are the “mental states” that Ann has to take in order to
break this endless chain of reasoning?
In order to cut this Gordian Knot, Ann must simultaneously put herself, “in the shoes” of
Bob and Charlie (the meta-perspective AB⊗C) and in her own shoes (her own perspective
AA). Here is a visual way to grasp this situation more clearly.
Imagine that Ann is sitting simultaneously in two different transparent “cubicles” (the term
is taken from Kohlberg and Mertens [1989, p.1005]) AA and AB⊗C . Now, note that the trans-
parent walls of the cubicles allow Ann to determine that the statement “1

3
n⊕ 2

3
s is rational

for Bob and the South Pole is rational for Charlie” is true in her cubicle AB⊗C , because Ann
can check—by taking a look at cubicle AA—that the statement “2

3
N⊕ 1

3
S is rational for Ann”

is indeed true in the corresponding cubicle, AA, relative to the statement that “2
3
N ⊕ 1

3
S is

rational for Bob and the South Pole is rational for Charlie” is true in cubicle AB⊗C , whose
she knows to be true by looking from her cubicle AA, and so on. The bottom line of this
story is thus that the mere determination of a rational strategy induces Ann to find a Nash
equilibrium of the game.
Alternatively, we can also examine the situation of Ann if she adopts (simultaneously) the
perspectives of all player, AA⊗B⊗C . In this case, Ann is sitting in her “big cubicle” in which
she simultaneously assigns truth-values to statements for all players. By definition, in this
big glass cubicle she can only make absolute statements about all players. But Ann is unable
to check—by looking through the windows of her cubicle—that a given meta-statement, i.e.,
a profile of strategies, is indeed rational relative to itself. For this she needs the perspective
of another cubicle. Formally, Ann cannot check that a given profile is indeed a fixed point of
the combined best-response mapping.
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To recap: Cutting the Gordian Knot of an endless chain of indeterminate relativistic state-
ments makes Ann’s free will determine a rational strategy by interacting with herself (self-
interacting) in a Nash equilibrium. This is the gist of our first result.
Below, we exclude games where some players may use the same strategy in two different
Nash equilibria. As shown in the formal analysis, this additional restriction can be easily
dropped. We then have the following (Theorem 1):15 Suppose we have a finite n-person game
in strategic form where each player is rational without any pre-specified hierarchies of beliefs
and knows that the others are rational. Then σ is a Nash equilibrium profile in the game
being played if and only if each player determines the same intrinsic Nash equilibrium, σ, by
using at least two perspectives.
Theorem 1 gives some necessary and sufficient conditions for a Nash equilibrium when play-
ers can freely choose their strategies and beliefs: When players are not endowed with beliefs,
they must form them by mentally self-interacting in a Nash equilibrium. So, this result pro-
vides the minimal (normative) process describing how the expectations are computed by the
players and how the equilibrium state can be concretely achieved. Alternatively put, this
theorem proves that a Nash equilibrium is the inevitable decision-theoretic principle used
by each rational player endowed of free will i.e. without any pre-existing beliefs in his mind.
Let us stress that Theorem 1 gives necessary conditions for a Nash equilibrium viewed as an
interactive solution concept. This is so, since players cannot “blunder” into such a focal point
if one of the players does not “self-interact” mentally in the same equilibrium point in order
to form his initially nonexistent beliefs. However, the main message of Theorem 1 is that a
Nash equilibrium is not an interactive solution concept but a self-interactive principle, which
provides player with a guidance to shape his beliefs. To see this more clearly, note that one
could transport the Aumann-Brandenburger’s result (1995) in the mind of a single player,
and interpret the induced Nash equilibrium as belonging to the player. But, even in this case,
this would just indicate that the induced “intrinsic” Nash equilibrium follows from the com-
mon knowledge of the complete pre-determinated conjectures of the player with itself, while
our result proves that this is the very absence of such pre-existing conjectures that leads
to this result. Hence, what is new in Theorem 1 is that this “internal process of reasoning”
is directly implied by rationality, when we refrain from assuming some extraneous beliefs.
Equivalently put, without assuming a complete pre-determination of the players’ conjectures
i.e. when we incorporate the explicit under-determination of the game model, then the lack
of deliberation of a player in a Nash equilibrium leads to the absence of choice. In short,
an “(intrinsic) Nash equilibrium” accounts for the transition from the initially non-existent
states of mind of a player to an effective mental choice of a rational strategy. The upshot is
that Theorem 1 is therefore at odds with the seminal literature see e.g., Berhneim (1984) and
Pearce (1984), where rationality alone does not imply Nash equilibrium, when interpreted as
a “focal point”. Indeed, our equivalence result allows to answer one of the questions posed
by the foundations of game theory : “Why should we expect Nash equilibrium play (players
choosing best response strategies to the choices of others)?” Samuelson (2002). Our answer
is that if players have bona fide free will, then we do not need to assume some underlying
form of communication between players to justify the “assumptions that agents are rational

15All our results could be extended to Euclidean games and some other usual classes of games with infinite
strategy spaces. This restriction allows us to avoid all measure-theoretic issues.
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and they all have common knowledge of such rationality and beliefs”, since in this case the
existence of a rational choice of one single player implies his self-interaction into a Nash
equilibrium. Note in particular, that unlike the extent literature see e.g. Bernheim (1984),
Pearce (1984) and Aumann and Brandenburger (1995), Theorem 1 states that in games with
a unique Nash equilibrium, rational players endowed of free will have to mentally “blunder”
on this unique equilibrium.
What if we want to continue viewing the Nash equilibrium as an interactive solution con-
cept? Theorem 1 indicates that the usual interpretation of “equilibrium points” construed
as “focal points” arises when all players follow a same pattern of reasoning in their deliber-
ation (or determination) of their own behavior. So, Theorem 1 lends support to the various
interpretations of a Nash equilibrium as a norm of behavior, a convention or a focal point,
see e.g. Bicchieri (2006), Lewis (1967), Sugden (1986), Schelling (1960).16

Another important consequence of Theorem 1 is to give a conceptual principle for capturing
the role played by reasons in rational decision making. Theorem 1 says that a rational player
with free will does not seek to forecast the behavior of other players per se, but rather seeks
a ‘(rational) reason to act in a particular way. Hence, a Nash equilibrium encapsulates a
reason-based theory of rational choice, which establishes a connection between formal ratio-
nal choice theory and philosophical work on reasons (see Dietrich and List (2011)).
The incorporation of players’ free will entails that a Nash equilibrium occurs in the mind of
each individual. From this perspective Theorem 1 complements Perea (2007). Unlike Perea,
our analysis of an epistemic model from a single player’s perspective is not the starting point
of our analysis. Instead, it is the direct consequence of the very absence in the classical
game model of any pre-specified beliefs. Hence, our main result shows that the absence of
any pre-determined hierarchies of beliefs shifts the usual interpretation of an equilibrium
as a “social” or interactive equilibrium point to an “individual” equilibrium point. This is
so since without assuming some extraneous beliefs in the classical game model, Theorem 1
uncovers an equivalence between the choice of a rational player endowed of free will and his
self-interaction in a Nash equilibrium.
Historically, von Neumann did not receive Nash’s idea positively. (See Shubik [1992, p.155]).
Nash’s proposal seemed to be at odds with the “enormous variety of observed stable social
structures” [1955, p.25] that von Neumann perceived as a natural state of affairs. Unexpect-
edly, our main result indicates that a Nash equilibrium responds to von Neumann’s picture:
By setting as its task to resolve what a rational individual should play, Nash responds in one
shot to the problem of the multiplicity of the “standards of behavior” [1944, p.42] posed by
von Neumann: The introduction of a “determination principle”—the so-called Nash equilib-
rium concept—guides each player in his resolution of the initial indeterminacy of the game
model, thereby inducing each player to “self-interact” in one of those “standards of behavior”.

16For example, in Schelling (1960) agents focus on a particular equilibrium because it is more concspicuous
than the others.
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3. Rationalistic models of a game

3.1. Finite games

Let N = {1, ..., n} be a finite set of players with n ≥ 2. An n-person finite normal-form game
of complete information, interpreted as one-shot games is given by G = 〈S1, ..., Sn; π1, ..., πn〉
where each set Si consists of mi pure strategies, with typical element, si, available to player
i, and πi : Πn

i=1S
i → R is i’s utility function. We adopt the convention that S = Πn

i=1S
i,

S−i = Πj 6=iS
j and SJ = Πj∈JSj where J ⊂ N. The set of mixed strategies of player i is thus

the (mi−1)−dimensional unit simplex ∆i = {σi ∈ R
mi
+ :

∑
si∈Si σi(si) = 1} and ∆ = ×N

i=1∆
i

is the polyhedron of mixed-strategy combinations σ = (σ1, ..., σn) in the game. We identify
each pure strategy si ∈ Si with the corresponding unit vector asi ∈ ∆i. When J ⊂ N , we
set ∆J = ×j∈J∆j with σ−J := (σk)k/∈J ∈ ∆J and as usual ∆−i := ∆N\{i}. We extend πi to ∆
in the usual way: πi(σi, σ−i) =

∑
si∈Si

∑
s−i∈S−i σi(si)σ−i(s−i)πi(si, s−i) with σ−i ∈ ∆−i. The

mapping πJ : SJ → R
J gives the payoffs of pure strategy combinations of players j ∈ J , and

its extension πJ : ∆J → R
J is defined in the obvious manner. The support of some mixed

strategy σi ∈ ∆i is denoted by supp(σi) = {si ∈ Si : σi(si) > 0} .
We will also use the usual notions of domination. Consider a pure strategy si ∈ Si. We say
that si ∈ Si strictly dominates or is strongly dominant if

∀s−i ∈ S−i, πi(si, s−i) > πi(s
′i, s−i),∀s

′i ∈ Si \
{
si

}
.

We say that a strategy σi ∈ ∆i is never a best response for i if

∀σ−i ∈ ∆−i,∃σ
′i ∈ ∆i, πi(σ

′i, σ−i) > πi(σi, σ−i).

Last, for each strategy combination σ ∈ ∆,

BRi(σ) =
{
σi ∈ ∆i : πi(σi, σ−i) ≥ πi(σ

′i, σ−i) ∀σ
′i ∈ ∆i

}
,

denotes the mixed best replies of player i ∈ N. In the rest of the paper we always consider
the mixed-strategy extension of G.

3.2. Rationalistic frames of a player

The idea that players can shape their beliefs by putting themselves “into the shoes of others”
is not new. For example, Luce and Raiffa [1957, p.306] were among the earliest to suggest
such a process:
“The problem of individual decision making under uncertainty can be considered a one-person game against

a neutral nature. Some of these ideas can be applied indirectly to individual decision making ... where the

adversary is not neutral but a true adversary. ... One modus operandi for the decision maker is to generate

an a priori probability distribution over the ... pure strategies ... of his adversary by taking into account both

the strategic aspects of the game and ... psychological information ... about his adversary, and to choose an

act which is best against this ... distribution.”

The structure defined below aims at giving a formal content to this idea. According to Luce
and Raiffa, a player adopts two points of views by treating, simultaneously in a mutually
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consistent way, the decision problems of all the other players to form his beliefs on one hand
and his own decision problem on the other hand. However, although this canonical dual
structure may sound pretty natural at first sight, there is no reason, a priori, to exclude
some other structures of reasoning. Note that the idea that game-theoretic solution concepts
should be evaluated by defining a classes of models has been explored by Stalnaker (1994).
The Kripke model developped in this paper is thus very much in line with this methodology.
The following definitions set the stage of a general structure which allow to encompass the
set of all possible structures of reasoning. In our analysis, each player in a game can adopt an
arbitrary set of multiple viewpoints about the other players—some of them may even overlap.
We do so, via models that have now become standard for modal logics, viz. so-called Kripke
models (see, Kripke (1963)). Given a game G = 〈S1, ..., Sn; π1, ..., πn〉 , a rationalistic frame
for player i in G is the structure, F i

G = 〈W,W ,Ri〉, where W = {wi1 , wi2 , ..., win} represents
the (non-empty) set of the n atomic (informational) perspectives corresponding to the
n decision problems that can be considered by player i in the game G. Each wij represents
player i when he is mentally considering the decision problem—the perspective—of player j.
We want a structure encompassing all the Kripke models that a player could possibly adopt
in a game. So, we do not impose any requirement on W i.e., player i may consider some
“non-partitional” perspectives and W can be any class of m (nonempty) subsets of W
whose union is W.17 Thus, if player i has a frame F i

G with m different perspectives, then
M = {Sl ⊆ N : l = 1, ...,m,

⋃m
l=1 Sl = N} represents the induced class of subsets of N . It is

therefore natural to refer to each non-singleton cell wiJ := {wij : j ∈ J ⊆ M} ∈ W as the
meta-perspective J of player i in G. Each cell wiJ ∈ W must be thought of as the viewpoint
of player i when he is simultaneously treating,(all) the decision problem(s) of player(s) j ∈ J
independently so that they are mutually rational. Hereafter, the generic term “perspective”
will be employed for an atomic or meta-perspective.18 The above abstract structure captures
all the possible combinations of viewpoints that can be taken by a player in a game. Given
a particular class M , we refer to the resulting structure F i

G as a M -frame. As a particular
case, a M -frame where M = {i,−i} formalizes the above Luce and Raiffa’s suggestion.
The interpretation of a M -frame is clear. This formalizes the fact that a player can adopt
the decision problems of the other players in order to form some initially nonexistent beliefs
in a consistent way, with itself. So a M -frame has a purely self-referential interpretation,
which captures the aforementioned Luce and Raiffa’s idea of introspection of a player in a
game. So, from this perspective, a M -frame does not model a player who is trying to guess
or forecast the strategies of the other players. Rather, each player is seeking a (rational)
reason to act in a particular way. Finally, note the implications of the self-referential nature
of a M -frame. When a (rational) player i /∈ J adopts a M -frame with a perspective wiJ , he
continues to be a rational player. This means that player i has to be rational in the role of
other players J . This entails that the formation of the beliefs of player i at wiJ , coincides with
the determination of a rational strategy profile σJ , whose all components will be mutually
rational for players J or equivalently, for player i when he adopts the decision problems of
players J .

17That M -frames must necessarily verify that
⋃m

l=1 Sl = N for each player i is obvious for otherwise, some
players’ decision problem(s) are not even considered by i.

18Note however that in a pure rationalistic world it would be more natural to confine the analysis to
partitions of W so as to exclude frames wherein players hold some redundant (overlapping) perspectives.
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As usual, the “knowledge” of player i at perspective wiJ —we shall give a formal definition
of this term in due course—is represented by the binary accessibility relation, RiJ ∈ Ri over
the cells of W i.e., RiJ ⊆ W ×W . Each RiJ is assumed to be a reflexive and antisymmetric
accessibility relation.19 Note that the antisymmetric property is consistent with the notion
of perspective: If player i is in perspective wiJ , then he cannot RiJ -access wiJ from another
perspective wiK 6= wiJ . 20 Hereafter, each structure 〈wiJ , RiJ 〉, with wiJ ∈ W is referred to
as the J−frame of player i. Given the importance of the notion of a rationalistic frame in
this paper, we record this notion in the following definition.

Definition 1 We say that F i
G = 〈W ,Ri〉 is the M-rationalistic frame of player i in

game G if each J-frame of i for J ∈ M , 〈wiJ , RiJ 〉, with wiJ ∈ W is such that RiJ ∈ Ri is
a reflexive and antisymmetric binary accessibility relation over W .

We refer to the rationalistic M -frame F i
G = 〈W ,Ri〉 with W = {wii , wi−i} as the canonical

rationalistic frame of player i. Hereafter, this frame will be thought of as whole class of
M -frames with two perspectives i.e., the equivalence class of all frames with |M | = 2 such
that S1

⋃
S2 = N.

3.3. The logical mental language of players

Probability theory is an integral part of game theory because randomized strategies play a
significant role in the existence of “equilibrium points”. Thus, there is a natural correspon-
dence in game theory between propositions used to describe a player i’s behavior and his
mixed strategies of the unit simplex spanned by Si, and between logical operations on the
propositions and set-theoretical operations on the corresponding sets and between logical op-
erations on the propositions and set-theoretical operations on the corresponding sets. More
specifically, , in a game G, the decision problems solved by player i at perspective wiJ ∈ W
pertain to “rationalistic” statements on what constitutes a rational strategy for each player
j ∈ J in G. Hence, for each player j ∈ N , we define a set of statements, A

j. Each element
Aj ∈ A

j represents a statement like Aj := “strategy σj is optimal21 in G”, without any
reference to the strategies of players k 6= j. We shall refer to statements Aj as the atomic
statements of player j in G. In the sequel, we set A = A

1 ⋃
A

2, ...,
⋃

A
n. We shall use the

usual metalingustic abbreviation: A∧A
′

for ¬(¬A∨¬A
′

) with A, A
′

∈ A. We will introduce
some modalities in due course.
In a rationalistic frame, each player i abides by the non-cooperative axioms of game theory.
In the (important) particular case of the canonical model where player i has a −i-frame,
i can simultaneously and independently handle the decision problems of players j 6= i by
considering the viewpoints of those players with formulae A−i like “strategies σj, with j 6= i
are mutually rational between players j 6= i”, without any reference to strategy σi ∈ ∆i. Each
strategy can be thought of as an hypothetical statement and rational responses (the best
replies) are interpreted by the material implication → . Hence, A−i can be construed as a con-
junction of conditional statements . Of course, our use of the Lukasiewicz three-valued logic

19 A relation R ⊆ S × S on a set S is reflexive if ∀x ∈ S, xRx and antisymmetric in that xRy and yRx

imply x = y.
20This is only a consistency requirement. It does not play a role in any of our results.
21We use the term “optimal” and “rational” interchangeably.
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requires that we replace this classical connective by the extended implication of Lukasiewicz.
Thus, as it is customary in this literature, we shall use the following (metalinguistic) abbre-
viation: A →L B for ¬A ∨ B where →L stands for the Lukasiewicz implication. The truth
table of this connective is shown in Table 2. We extend the domain of relativistic valuations
by considering the set of formulae F(w) obtained from the set of atomic statements A(w)
by closing with respect to negation, disjunction, conjunction {¬,∨,∧} and some modalities
that we shall define in due course. With this rationalistic language and connectives in mind,
we can therefore write compound statements A−i as A−i :=

∧
j∈N\{i}(∧k∈N\{i,j}A

k →L Aj).
Let A

−i denote the set of rationalistic formulae like A−i. More generally, if player i has a
J-rationalistic frame, then he adopts simultaneously the viewpoints of the subgroup J ⊆ N
of players in a mutually consistent way. Thus, in such a perspective wiJ , player i writes for-
mulae AJ like AJ :=“strategies σj, with j ∈ J are mutually rational for players J”, without
any reference to strategy profile σ−J ∈ ∆−J . Given a subset J ⊆ N of players, A

J denotes
the set of formulae like AJ :=

∧
j∈J(∧k∈J\{j}A

k →L Aj). The important point, is to keep in
mind that when player i /∈ J considers formulae AJ at perspectives wiJ , he is not trying to
guess the others’ strategies, but rather he is forming his own (subjective) beliefs with itself
i.e. he is trying to find a rational reason to make a particular choice.

4. Relativistic valuations and (relative) truth

4.1. Free will, relativistic valuations and “context of reasoning”

The mental language of a rational player formalizes the correspondence between propositions
used to describe a player i’s behavior and his mixed strategies of the unit simplex spanned
by Si. So, for example, in the “number guessing game”, the property P that a player’s pure
strategy is below 11 corresponds to the subset of pure strategies S̃i ⊂ Si for which P is true,
Its negation P , ¬P , corresponds to the complement S̃i of the set S̃i, the points for which P
is false (i.e., the number lies outside the specified range).
The reason for mentioning such elementary matters is that the situation becomes radically
different if we incorporate the free will of players i.e. the absence of any pre-existing strategies
and beliefs in their minds; in this case, prior to a choice in an actual experiment, a statement
like P := “choosing a number below 11 is rational for i” is initially neither true, nor false,
since player i has not yet determined such a statement as being true or false in his mind i.e.
he has free will.
As illustrated in the above example, the discussion of how a player can assign a sharp truth-
value to such initially indeterminate statements leads to a Kripke model where the truth-
value at one perspective of a player will depend on the truth-value at another perspective
i.e. the truth-values have only a relational meaning. Alternatively put, we formalize the idea
that the truth-value of a statement made at one perspective depends upon the the other
truth-values assigned at the other perspectives. The upshot is thus that instead of having
the usual “absolute” valuation mapping, V : A → {0, 1}, that assigns a sharp truth-value to
any given statement, we have some contextual relativistic valuations. The term “relativistic”
captures the fact the sharp-truth values at one perspective will depend on the truth-value
assigned by the player at his other perspectives. Contextuability refers to the fact that the
valuation mappings depend on the particular M -frame used by the player i.e. on the number
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and the particular class of perspectives W adopted by a player.
As a result, given a M -rationalistic frame, it is then convenient to denote the set of
formulae A

L considered at perspective wiL ∈ W by A(wiL) and a statement AL by A(wiL).
For models where wiJ , wiL ∈ W we set A−J := (A(wiL))L6=J . Let F i

G = 〈W ,Ri〉 be a frame
for player i in a game G with a pair of (ordered) perspectives (wiJ , wiK ) ∈ W × W and
A(wiJ , wiK ) := (A(w))w∈W\{wiJ ,wiK} ∈ ×w∈W\{wiJ ,wiK}A(w).

Definition 2 Let F i
G = 〈W ,Ri〉 be a rationalistic frame for player i with (wiJ , wiK ) a pair

of (ordered) perspectives such that wiJ 6= wiK . A A(wiJ , wiK )−relativistic valuation is a
map,

VwiJ ,wiK (·, ·; A(wiJ , wiK )) : A(wiJ ) × A(wiK ) → {0, i, 1} ,

where i means “indeterminate” in the sense of the three-value logic of Lukasiewicz (1930)
(see the three-value truth tables for this logic in Table 2). Again, the absence of a truth-value
i formalizes the fact that the choice of a strategy or beliefs do not initially exist in the minds
of players, as stipulated by the classical game model. The relativistic valuation has also a
clear-cut interpretation. For example, in the case of a canonical frame, Vwii ,wi−i (A

σi

, Aσ−i

)

gives the truth-value of statement Aσi

when i considers his own decision problem at wii ,
given the truth-value of statement Aσ−i

that has been determined (or not) at wi−i , when he
puts himself into “the shoes of the others”. Of course, in the absence of any introspection,
the definition of the classical game model will imply that Vwii ,wi−i (A

σi

, Aσ−i

) = i (see Section
5).
Henceforth, Vr denotes the class of all such (extended) relativistic valuations. Given a ra-
tionalistic frame F i

G for player i in G, we call a Kripkean model for player i the struc-
ture, Mi

G = 〈F i
G, Vr〉. In the special case where F i

G is the canonical frame, we say that
Mi

G is the canonical Kripkean model of player i in G. In this case, the corresponding
A(wiJ , wi−J )−relativistic valuations for J = i,−i, is denoted by VwiJ ,wi−J (·, ·) and called the
canonical relativistic valuation of player iJ .

Definition 3 We say that AJ is absolutely true (resp. false) in Mi
G if

VwiJ ,wiK (AJ , AK ; A(wiJ , wiK )) = 1, (resp. 0),

∀AK ,∀A(wiJ , wiK ), and ∀RiJ ∈ Ri.

In short, statement AJ is an absolute truth when the component of the corresponding strategy
profile σJ are always mutually rational when player i adopts the role of players J in any
possible M -frame with wiJ ∈ W . The most trivial example is when statement Aj is absolutely
true which is tantamount to saying that σj is a strongly dominant action in the game for
player j. In other words, a statement is always true when it does not depend on the other
truth-values assigned to the statements at the other perspectives. In this case, a player at
perspective wiJ does not need to consider the other perspectives via the accessibility relation
RiJ .
Note that this notion of “absolute truth” can be construed as reflecting a lack of free will
from the part of the players. Indeed, in this case, players do not need to reason to determine
what is their best course of action; their rational choice is imposed from the outset by the
game structure. Of course, the existence of absolute (true or false) truths are highly non
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generic. Hence, we can say that players have generically a real free will in games, in the
sense that they can freely change their mind on different pairs of strategies-beliefs, and their
resulting choices made in an experiment are not a function of some history. As a result, the
under-determination of the game model calls for the more general notion of a“determined
relative (sharp) truth-values”. Such a notion will permit to formally capture the transition
from an initially nonexistent sharp truth-value to the assignment of a sharp truth-value to
statement about what can be regarded as a rational choice in the game being played. This
notion is formally defined, in an inductive manner, as follows.

Definition 4 (Determined relatively true statements) Let F i
G = 〈wiL , RiL〉L∈M be the M-

rationalistic frame of i in a Kripkean model Mi
G and set A−J := (A(wiL))wiL∈W\{wiJ}.

Suppose each component of profile (A(wiL))wiL∈W is neither absolutely true, nor absolutely
false. We say that A(wiJ ) is determined as being A−J-relatively true in Mi

G at wiJ if:
(1) wiJ RiJ wiL hold ∀L;
(2) VwiJ ,wiK (AJ , AK ; A(wiJ , wiK )) = 1 and;
(3) Properties (1)-(2) are satisfied for each statement A(wiL), wiL ∈ W of profile A−J :=
(A(wiL))wiL∈W\{wiJ}.

This definition is crucial for it models the fact that the initially nonexistent future rational
choice of belief in the mind of a player, as implied by the definition of a game “comes
into being” in the mind of the player. In words, this says that a statement AJ made by
player i when he considers the decision problems of players J ⊂ N i.e. i is at perspective
wiJ , is determined as being A−J -relatively true if i knows that the profile of statements
A−J formulated at the other perspective of i’s M -frame are also determined as being (AJ -
relatively) true. Intuitively, this definition allows to give a formal content to the idea that
truth-values that pertain on statements in the game model can only have a “becoming”
interpretation; the timeless structure of the game model precludes that the choice made by
a player is a function of the past—as in the case of the introduction of a hierarchy of beliefs
representing the players’ prior experiences. This notion of a “determined truth” of a rational
action is therefore consistent with the old philosophical idea that statements in games must
be treated as “future contingents”: truth-values only exist for describing the actual state of
mind of a player. The above inductive definition therefore leads to the following Lemma
which is a mere restatement of the above definition.

Lemma 1 Statement A(wiJ ) ∈ A(wiJ ) is determined as being A−J-relatively true in Mi
G at

wiJ with A−J := (A(wiL))wiL∈W\{wiJ} iff there exists a set of valuations, VwiK ,wiL ∈ Vr, such

that profile (AJ(wiJ ), A−J) verifies that ∀K, wiKRiKwiL hold ∀L, and

VwiK ,wiL (AK , AL; A(wiK , wiL)) = 1,

∀(wiK , wiL) ∈ W ×W with K 6= L.

Proof. Obvious and therefore omitted.
Accordingly, statement A(wiJ ) is determined as being relatively false if ¬AJ(wiJ ) has
been determined as being relatively true. As a result, we have that

VwiK ,wiL (AK , AL; A(wiK , wiL)) = i,
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∀(wiK , wiL) ∈ W × W with K 6= L if AK is neither absolutely true nor absolutely false
and if it has not been determined as being true or false. Notice that the indetermination
w(AN) = i is always true as we rule out “trivial” games where some players have a strongly
dominant action.
Thereafter, F denotes the set of formulae obtained from the set of all atomic statements by
closing with respect to usual connectives and modal operators that we shall define below.
Abusing of notations, let denote the set of absolute valuations by w : F → {0, i, 1} ,
whenever w ∈ W . In the sequel Va denote the set of all such mappings.
The following notion of the determination of a statement “as being true” (i.e. rational) in a
game formalizes the von Neumann and Morgerstern’ s aforementioned observation that:
“given the same physical background different established orders of society or accepted standards of behavior

can be built” [1944, p.42].

Definition 5 (Truth and indeterminate formulae) In Mi
G = 〈F i

G, Va, Vr〉, a formula F ∈ F

is true (resp. false) at w ∈ W, denoted w(F ) = 1, iff F is absolutely true or if F has been
determined as being (relatively) true. A formula F ∈ F is false in Mi

G iff ¬F is true. A
formula F is indeterminate in Mi

G, iff F is neither true nor false i.e., w(F ) = i.

According to the above definition, a formula is rational i.e. true in the mind of player i if this
formula is always rational, or if the introspection of player i implies that the formula is true,
given his context of reasoning i.e. which profile of other formulae has been determined as
being true at some other perspectives of i’s M -frame. Hereafter, the notation Mi

G � F, (resp.
Mi

G � ¬F,) means that formula F is true (resp. false) in Mi
G. The upshot is thus that a

strategy profile σJ = (σj)j∈J (or equivalently, a profile of beliefs of i) is considered to be true
by i because the underlying game G induces a deterministic behavior from players J (in the
sense that an outside observer could predict with certainty profile σJ), or because the game
in under-determined in the sense that the outcomes of the game in an experiment depends
on the context of reasoning of the players. For example, in the canonical model, if a pure
strategy, σi, is represented by a relatively true statement, this means that the observation
of this strategy in experiments is highly contextual, as it depends on which particular belief
(or equivalently, strategy profile) σ−i has been determined as being rational by i in his mind,
when he puts himself into the shoes of the others. Clearly, this contextuality of reasoning
will permit to understand why the von Neumann and Morgerstern’s assertion of a variety
of “standards of behavior” is inevitable when players have free will. The Lukasiewicz’s logic
abandons the law of the (future) excluded middle (p ∨ ¬p) (see Table 2). This particular
property, which violates the idea of Aristotle’s future contingents has often been criticized
(see e.g. Prior, 1953). However, in a game model, the failure of this law falls out naturally
from the initial relativistic nature of the rationality concept: if the truth-values of a ratio-
nalistic statement Ai (and ¬Ai) need to be determined i.e. created, by player i, then the
whole disjunction needs also to be determined by player i. Alternatively put, considering the
disjunction Ai or ¬Ai as a tautology, would entail that one of the two statements, “strat-
egy si of player i is rational” or “strategy si of player i is not rational”, has already been
pre-determined as being true in the mind of player i, thereby contradicting his/her free will.
Otherwise stated, the law of the excluded middle is meaningless in the game model, for
the truth-value of any proposition used in the present logic is not determined by the truth-
values of its parts. This is so, since the rationality concept implies that the truth-values have
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Table 2

[Lukasiewicz’ three-valued semantics]

∨ 1 i 0
1 1 1 1
i 1 i i

0 1 i 0

∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

→L 1 i 0
1 1 i 0
i 1 1 i

0 1 1 1

(generically) only a relational meaning.22

5. Relativistic valuations of the classical game model

We now complete the definition of a rationalistic Kripkean model of a game G. First, some
notations. For any pair of formulae (F

′

, F ) ∈ F×F, let L : F×F → {0, i, 1} denote the truth
function for the Lukasiewicz implication →L (see Table 2). For example, in the canonical
Kripkean model Mi

G of a game G, when A−i ∈ A
−i, L(A−i, Ai) is the truth value of the

formula, ∧j 6=iA
j →L Ai. Hence, the mapping L assigns a relative truth-value, 0, i or 1 to

every contingent statement “σi is rational for player i in G given that all strategies σj, with
j 6= i are mutually rational between players j 6= i”.
Now, the definitions of the relativistic and absolute valuations fall out automatically as a
consequence of the formal under-determination of the classical game model. The following
properties (i)-(iii) summarize the logical interpretations of the classical game model.

Definition 6 Let F i
G = 〈wiJ , RiJ 〉J∈M be a rationalistic frame of player i in G. We say that

Mi
G = 〈FG, Va, Vr〉 is a rationalistic Kripkean model for player i in G if

(i) in every perspective wiJ ∈ W , the absolute valuation function, wiJ (·), is such that

wiJ (AJ) =





1 if each Aj, j ∈ J corresponds to a strongly dominant strategy in G;
0 if each Aj, j ∈ J corresponds to a never best response in G;
i otherwise, if AJ has not been determined as being true or false.

(ii) for every pair (wiJ , wiK ) ∈ W × W with wiJ¬RiJ wiK and every (AJ , AK) ∈ A
J × A

K,
the A(wiJ , wiK )−relative valuation VwJ ,wK (AJ , AK ; A(wiJ , wiK )) = wiJ (AJ);
(iii) suppose that ∀J, wiJ RiJ wiL , hold, ∀wiL ∈ W , with each component A(wiL) of profile
A−J := (A(wiL))wiL∈W\{wiJ} determined as being A−L-relatively true. Then, the A(wiJ , wiK )−

relativistic valuation is such that,

VwiJ ,wiK (AJ , AK ; A(wiJ , wiK )) = 1

iff AJ ∈ arg maxA′J∈AJ L(∧L6=JA(wiL), A
′J).

Property (i) reflects the under-determination of the game model: in general we cannot answer
a question like “is strategy σi is rational?”, unless for the non-generic examples of strongly
dominant actions or never best responses. Hence, absolute valuations accurately describe
the truth-values—or its absence—of rationalistic statements, as initially given by the game

22Note that this explains why the objection of Prior (1953) does not apply in the present case.
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model, independently of any “context” of reasoning. Thus, the signification of absolute val-
uations is clear; when wiJ (Ai) = 0 (resp. i, 1), this indicates that the behavior represented
by statement Ai will not occur (resp. will be indeterminate, will occur) in all the possible
“play” of game G i.e., in all “measurements” that could be made by an outside observer.
Alternatively put, the sharp truth-values taken on by the absolute valuation can therefore
be understood as the deterministic predictions that could be made by an outside observer.
By contrast, the lack of such sharp-truth values, i, is a generic feature of the game model
capturing its initial under-determination i.e. the fact that the classical definition of a game
does not generally encapsulate enough information to predict whether a given strategy is
rational in a game. Property (ii) captures the fact that in the absence of reasoning, a player
has initially no pre-existing strategy and beliefs in his mind. By “default”, i.e., in the ab-
sence of introspection, each wiK ∈ W is not accessible from a perspective wiJ ∈ W whenever
J 6= K, which models the fact that player i does not consider the decision problem of players
K. Hence, property (ii) expresses the fact that if player i does not even consider the other
players’ decision problems, then his relativistic valuation is vacuously defined i.e. player i
does not incorporate the relativistic aspect of rationality in his reasoning, which accounts for
the property (ii) that the relativistic valuation must coincide with the absolute valuation.
Property (iii) is a mere restatement of Lemma 1. It says that player i can assign some sharp
truth-values to initially nonexistent rational strategies and beliefs whenever he makes the
effort to put himself “into the shoes of the others” in order to form his beliefs, in a mutually
consistent way.

6. Self-interactive epistemology

A feature of the present “ontological” approach is that a player is naturally led to introspec-
tively reason about himself in order to form his beliefs. This means that the usual machinery
for talking about the beliefs and knowledge of players does no longer induce an interactive
epistemology, but a “self-interactive epistemology” i.e. the absence of initial hierarchies of
beliefs and the impossibility of communication across players imply that we need to talk
formally about each players’ beliefs and knowkledge about himself, when he puts himself
into the “shoes of the others”, rather than about the others. 23

Given the accessibility relation RiJ , the possibility correspondence of player i in perspective
wiJ is defined as

P iJ (wiJ ) =
{
w

′

∈ W : wiJ RiJ w
′
}

.24

In order to establish the interpretations of events—that is subset of the perspectives W—as
propositions, we need to introduce the following standard definitions.
Given a frame F i

G, we add a function, f : A → 2W25 that associates with every atomic
statement A ∈ A, the set of perspectives where A is true. For every formula F ∈ F, the

truth set of F in Mi
G, denoted by ‖F‖M

i
G is defined recursively as follows:

23In epistemic game theory, it is standard to postulate a possibility correspondence P, rather than a
binary accessibility relation R. In this paper, it is more convenient to work with R. That the two notions
are equivalent is well-known.

24Conversely, given a possibility correspondence PiJ , the associated accessibility relation RiJ is obtained
as follows: ∀w

′

∈ W, wiJ RiJ w
′

iff w
′

∈ PiJ (wiJ ).
25As there is a finite number of players, the power set of W, 2W , is well-defined.
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(1) If F = (A) where A is an atomic statement, then ‖A‖M
i
G = f(A);

(2) If ¬‖A‖M
i
G = ‖¬A‖M

i
G ;

(3) If
∥∥∥A ∨ A

′
∥∥∥
Mi

G = ‖A‖M
i
G

⋃ ∥∥∥A′
∥∥∥
Mi

G ;

(4) ‖�iJ A‖
Mi

G =
{
w ∈ W : P iJ (w) ⊆ ‖A‖M

i
G

}
.

The intended interpretation of �
iJ A is “player i knows A at perspective wiJ .” If w ∈ ‖F‖M

i
G

we say that F is true in Mi
G at perspective w. Thus, according to (4), player i in perspective

wiJ knows F if and only if F is true at every other perspective(s) that i considers at wiJ . When

A is an indeterminate statement, we have that ‖�iJ A‖
Mi

G = ∅ and we set wiJ (�iJ A) = i in
this case. 26 With these definitions in mind, we can formally discuss the knowledge of player
i as follows.
If E is the truth set of some formula F ( that is E = ‖F‖M

i
G), and K : 2W → 2W is

the knowledge operator, then KiJ E is the truth set of the formula �
iJ E, that is KiJ E :=

‖�iJ E‖
Mi

G . Henceforth, we say that player i in perspective wiJ knows event E ⊆ W
(or more precisely, the statement represented by event E) if wiJ ∈ KiJ E. Notice that our
definitions imply that the truth axiom27 (also called axiom of knowledge) holds: If player i
has determined a formula F as being true, then by definition F is true at every perspective of
i. This justifies our use of the term knowledge rather than belief. Note also that if a formula
F is absolutely true, then player i does not need to determine this formula and we have that

‖�iJ F‖
Mi

G = {wiJ} whenever wiJ¬RiJ w
′

for all w
′

6= wiJ .28 Let M := {J : wiJ ∈ W} . For
every event E, K⊗J∈M iJ E :=

⋂
J∈M KiJ E, is the event that every player iJ knows E. When

w ∈ K⊗J∈M iJ E we say that E is mutual knowledge, at perspective w. Thus an event E
is known by player i = ⊗J∈M iJ if player i knows E in each of his perspectives, wiJ ∈ W.
The common knowledge operator Ki

∗ is then defined as follows. For any operator K⊗J∈M iJ

define Kk
⊗J∈M iJ

, the kth iteration of K⊗J∈M iJ , as follows: For all E, k ≥ 1, K0
⊗J∈M iJ

E = E

and Kk
⊗J∈M iJ

= K⊗J∈M iJ Kk−1
⊗J∈M iJ

E. The event that E is commonly known by i is defined
by

Ki
∗E =

⋂

k≥1

Kk
⊗J∈M iJ

E.

Thus, an event E is commonly known by player i in a rationalistic frame F i
G = {W ,Ri} if

player i knows it in each of his perspective wiJ , player i knows that he knows it in every of
his perspectives, and so on, ad infinitum.29

26Whether we set wiJ (�iJ A) = i or 0 does not play a role in this paper.
27Indeed, our framework provides a justification for this axiom. When player i knows that a rationalistic

statement Ai is relatively true at wii this is precisely because player i has been able to resolve the initial
indeterminacy of the game model. From this perspective, this paper contributes to the literature on the
foundations of the introspective abilities of an agent (see, Gossner and Tsakas (2010)).

28Indeed, recall that a J-frame is defined with RiJ reflexive.
29Note that because the number of players and hence perspectives is finite, the common knowledge oper-

ator is well-defined.
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7. Main result: ontological conditions for Nash equilibrium

Next, we rule out pathological games where Nash equilibria exist in strongly dominant strate-
gies for some players.30 For ease of exposition we state Theorem 1 for games wherein players
do not have the same mixed strategy in two different Nash equilibria.31 For notational sim-
plicity, we also consider a M -frame F i

G where each player i’s set of perspectives has been
ordered .32 Finally, event E(σj)j∈N denotes the set of perspectives of player i where statement
A(σj)j∈N is true.

Theorem 1 A profile (σj)j∈N = (σiL)L∈M is a Nash equilibrium in a game being played G
if and only if in the model Mi

G of each player i ∈ N with frame F i
G = 〈wiL , RiL〉L∈M the

statement AJ :=“ strategies σiJ = (σj)j∈J , are mutually rational in G for any i, j ∈ J ⊂ M”
has been determined as being relatively true at wiJ in a Kripkean model of player i with
at least two perspectives such that the event E(σj)j∈N is common knowledge in Mi

G i.e.,

Ki
∗E

(σj)j∈N
= {wiL : L ∈ M} and |M | ≥ 2.

Proof. See the Appendix
We have already discussed the various implications of this result in our preview. However,
several other important remarks are worth making. Theorem 1 indicates that if we leave
players the freedom of their choice and beliefs, then we can give a full characterization of
the Nash equilibrium—some sufficient and necessary conditions. Hence, while the common
view is to interpret this concept as an interactive solution concept, Theorem 1 indicates
that the notion of Nash equilibrium is a genuine decision-theoretic principle. By contrast,
Aumann and Brandenburger (1995)’s result give the tight sufficient conditions if we think
of a Nash equilibrium as describing the complex social interactions arising in a many-person
world. But, implicit in this result, is some sort of communication between players. Indeed,
as well put by Aumann and Brandenburger, “knowledge of what others will do is undoubtly a

strong assumption”.[1995, p.1176]. So, the necessary and sufficient conditions of Theorem 1
permit to bypass this additional assumption, which is not part of the description of a game.
The bottom line is thus that the Nash equilibrium concept and the correlated equilibrium
concept (Aumann, 1974, 1987) complement each others nicely; if one wants to capture the
social interactions, the notion of correlated equilibrium trumps the notion of Nash equilib-
rium by incorporating some explicit form communication across players i.e. the existence of
pre-defined beliefs are the shorthand for some “history”, while the notion of Nash equilib-
rium is the appropriate concept in the absence of past communication beyond the game as
given.
It is worth noting that the determination of a rational strategy calls for common knowledge of

30More precisely, the indetermination of player i arises when exactly n − 2 ≥ m ≥ 1 out of n ≥ 3 players
j 6= i have a strongly dominant action. A straightforward modification of the definitions of the notion of
relative truth would allow to encompass these situations.

31The statement and the proof of Theorem 1 are indeed easily amended for games G wherein there exists
different NE, σ, σ

′

∈ NE(G), with σi = σ
′i for some player i ∈ N. To see this, it suffices to consider the set{

A(σ
′j)j∈N : (σ

′j)j∈N ∈ NE(G)
}

modulo ∼i in Mi
G, for ∼i defined as (σj)j∈N ∼i (σ

′j)j∈N iff σi = σ
′i.

32That is, W =
{
wiL : L ∈ M

}
with M = {{1, 2, ..., j} , {j − k, j − (k − 1), ..., j + 1, j + 2, ..., j + k} , ...}

for some suitably chosen j − 1 ≥ k ≥ 0.
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the strategy choices at all the (mental) perspectives of the Kripkean model of each player.33

So, the notion of common knowledge in Theorem 1 now appears as a mere consistency condi-
tion: it simply requires that a player know that he himself knows ...which strategy or beliefs
he holds across his different perspectives. In short, Theorem 1 proves that instead of being
an “as if” solution concept, the Nash equilibrium is the inevitable principle whenever one
obeys the definition of the game model i.e. once one incorporate the free will of players.
Again, as already outlined in our preview, Theorem 1 cannot be construed as a mere re-
statement of Aumann and Brandenburger’s result transported in the mind of a single player.
This is so, since our decision-theoretic interpretation of the Nash equilibrium is necessary i.e.
it arises as the inevitable consequence of the absence of pre-determined beliefs in the game
model. Without such a self-interaction, a rational player could just not make any choice.
One of the main consequences of our main result is therefore to shift the interpretation of
the usual interactive epistemology as belonging entirely to the mind of a single player i.e.
the epistemology becomes self-referential, rather than interactive. Thus, one of the main
interests of our characterization is to show that we cannot think of a Nash equilibrium as an
“as if” solution concept, but as a real principle of decision making, when agents have bona
fide free will i.e. when they are not imposed some extraneous beliefs from the outset.
The essence of the epistemic approach of game theory is to append some hierarchies of
beliefs to players in the game model. The introduction of these extra variables has been ex-
tremely fruitful to provide some clear-cut epistemic characterizations of many other solution
concepts, the Nash equilibrium has remained hermetic to this analysis (see Brandenburger
(2007)). Our main result suggests that the reason for this failure lies in the nature of the
Nash equilibrium. Instead of describing the complex epistemic relations across players in
a game, as the shorthand of their past interactions, a Nash equilibrium is a tenseless and
ontological principle of determination. In this, it is therefore very different from the other
concepts as it appears to be a principle congenital to the game model.

8. Self-referential rationalistic Kripkean models

A particular case of a M -frame is when M = {N}. In this case, a player would consider all
the decision problems at once, simultaneously and in a mutually consistent way. However,
as proven by Theorem 1, such a “meta-perspective” encompassing the whole set of decision
problems cannot yield the determination of a rational strategy. To see this, let

BR : ∆ ։ ∆

be the combined mixed-strategy best-reply correspondence of the game defined as the Carte-
sian product of all players’ mixed-strategy best-reply correspondences, BR(σ) = ×i∈NBRi(σ).
Then, note that a M -frame with M = {N} would reflect a situation where a player has
to compute the combined best response of a game (the output), without even having pre-
specified in his mind, which profile of strategies will be a fixed point of this mapping (the
input). Rephrasing this situation in terms of the above example, this would amount to Ann
determining the rational destination of the combined best reply mapping of the game while

33 Here, common knowledge appears as a necessary condition because player i has to solve for a system
of relativistic valuations which characterizes a Nash equilibrium.
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she has not even defined in her mind a particular (mixed) destination that could be a fixed
point of this mapping. It is quite straightforward to formalize this self-referential mental pro-
cess of computation of the combined best mapping, through the concept of self-referential
relativistic valuations in self-referential Kripkean models. Here are the definition of this
class of models.
A self-referential Kripkean models is a structure where player i’s rationalistic frame is a
structure, F i

G =
〈{

wiN , w†iN
}

,
{
RiN , R†iN

}〉
. Here A

†N denotes the set of statements A
N

when formulated at the “dual” perspective w†iN . Accordingly, we have a (reflexive) dual

binary relation R†iN ⊆
{
wiN , w†iN

}
×

{
wiN , w†iN

}
.

Definition 7 Let F i
G =

〈{
wiN , w†iN

}
,
{
RiN , R†iN

}〉
be a self-referential frame for player

i in a game G. The right (resp. left) AN -self-referential valuation function of player
i in perspective N is the mapping,

VwiN ,w
i†N (·, AN) : A

N → {0, i, 1} , (resp. Vw
i†N ,wiN

(AN , ·) : A
†N → {0, i, 1}).

Note that the class of “self-referential valuations” is just a variant of the class of relativistic
valuations, Vr defined in the original structure. Clearly, such referential models capture the
idea that player i solves a game by computing “directly” the fixed point of the combined best
response correspondence. Thus, intuitively, the notion of a self-referential valuation allows
to capture the idea that a rationalistic player i needs to hold a belief about which profile
(σi)i∈N could form a Nash equilibrium before he actually concludes that such a profile is
indeed the fixed point of the combined best response correspondence BR.

9. Concluding remarks

The textbook assumption underlying the analysis of the classical game model is that each
player’s belief is derived from his past experience, and that this experience is sufficiently
extensive that he knows how his opponents will behave. While there is a priori no other al-
ternatives, this assumption is at odds with the formal definition of a one-shot game wherein
there is no history on which players can base their inferences of future play.
A careful analysis of the original game model that complies with this timeless structure brings
about a situation which sharply departs from the current approach: The very existence of
a choice—an observable choice in an experiment—together with the belief of a player has
now to be “created” ex nihilo, in an “intrinsic” Nash equilibrium. This situation offers a
quite different picture of what it takes to have an equilibrium in a game. The main upshot is
that we should rather understand a decision in a game as a“gradual creative act” ex nihilo,
rather than some deterministic choices accounted for by the players’ prior experiences i.e.
their pre-determined beliefs.
When it is interpreted as an interactive solution concept, the Aumann and Brandenburger
(1995)’s result shows that a Nash equilibrium is the shorthand of a sort of communication
between players as it requires some form of common knowledge of the players’ conjectures—
or the additional epistemic conditions found by Polack (1998). An important consequence
of viewing a Nash equilibrium as an intrinsic principle is that the whole set of conditions
on the interactive epistemology take now a purely self-referential meaning, which allows to
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understand the epistemic conditions for Nash equilibrium as the mere result of some mini-
mal consistency conditions. The upshot is thus that a Nash equilibrium does not call for a
notion of “social epistemology” [the term is taken from Gintis, 2009], but of self-interactive
epistemology.
Our equivalence result provides a clear-cut connection between game theory and logic, tying
the Nash equilibrium with the basic notions of truth. This is therefore very much in line
with the research program outlined by van Benthem (2007), “Game theory is mainly about global

notions like strategic equilibrium in a game (...) this global representation needs fine-structure, of the sort

than can be provided by ideas from both computational and philosophical logic”.
Finally, the present ontological foundation provides a clear-cut criterion to decide whether
some human action is a manifestation of human free will: If we believe in the rationality
of humans, then any self-referential process of reasoning should indeed be interpreted as a
manifestation of a human free will facing an open future.

10. Appendix

Proof of Theorem 1
Let (AJ)J∈M represent the Nash equilibrium profile σ = (σiL)L∈M . The proof for self-
referential model is a mere restatement of the proof for the general case and is therefore
omitted.
Sufficiency. Consider a model with a M -rationalistic frame F i

G = 〈wiJ , RiJ 〉J∈M with |M | ≥
2. Suppose that Eσ is common knowledge. Thus, we have the set of binary relations, RiJ ∈ Ri

such that wiJ RiJ wiK , for all J 6= K. We must also have a profile of statements, (AL)L∈M ,
which has been determined as being relatively true. That is, using Lemma 1, we have a
system of relativistic valuation ,

AJ ∈ arg max
A′J∈AJ

VwiJ ,wiK (A
′J , AK ; A−J,−K),∀(wiJ , wiK ) ∈ W ×W, J 6= K,

whose solution, (AL)L∈M , corresponds to the Nash equilibrium profile of G, σ = (σiL)L∈M .
The solution of the above system of equations is guaranteed by the standard existence
theorem of a Nash equilibrium in finite games (Nash, 1950). Hence, if Eσ is common knowl-
edge in the canonical model, then we necessarily have a Nash equilibrium with Mi

G,wiK �

AσJ

,∀wiK ∈ W . When this is true for each i ∈ N, this implies that σ is a NE of the game
being played.
Necessity. We first show that AJ is true in a M -rationalistic model of i only if i determines a
Nash equilibrium. By definition, the rationalistic Kripkean model with the single perspective
wiN cannot yield the determination of a truth AN ∈ A

N when there is no strongly dominant
actions. 34 Thus, we must pick a M -Kripkean model with at least two perspectives. Sup-
pose that there exists an arbitrary L ∈ M with RiL ∈ Ri such that wiL¬RiLwiK , for some
L 6= K. Then, by definition, ∅ ∈ arg maxA

′L∈AL VwiL ,wiK (A
′L, AK ; A−L,−K), for L 6= K, since

VwiL ,wiK (A
′L, AK ; A−L,−K) = i whenever Mi

G, wiL � ¬�
iLAσK

. Hence, we have that a state-
ment is determined only if wiJ RiJ wiK ,∀J 6= K. The proof that a determined truth implies

34Indeed, recall that in this case wiN (AN ) = i, ∀AN ∈ A
N and there is no relativistic valuations.
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common knowledge is then straightforward. Eσ is a self-evident event to every perspective

wiJ of player i i.e., Eσ = KiJ Eσ. This follows since, wiJ ∈
∥∥∥�iJ Aσ−J

→L Aσ−J
∥∥∥
Mi

G . 35 Hence

wiJ ∈
∥∥∥�iJ A(σi)i∈N

∥∥∥
Mi

G , for all wiJ ∈ W whenever the profile of propositions, (AJ)m
J=1 is the

solution of the above set of equations. Thus, it suffices to apply Aumann’s Theorem (see
Aumann (1976)) to conclude that E(σi)i∈N is indeed necessarily common knowledge. If σ is a
NE of the game being played, this properties must therefore be true in Mi

G of every i ∈ N .
End of proof.
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[14] Gintis, H., The Bounds of Reason: Game Theory and the Unification of the Behavioral

Sciences. Princeton University Press (2009).
[15] Gossner, 0., Tsakas, E., Reasoning-based introspection, Theory and Decision (forthcom-

ing).
[16] Horty, J. F. (2001). Agency and deontic logic. Oxford University Press, Oxford.
[17] Kolhberg, E., Mertens J.-F.(1986): “On the Strategic Stability of Equilibria,” Econo-

metrica,54, 1003-1037.

35Recall that the binary relation RiJ is reflexive at every perspective J . Thus, we have that ∀E ⊆ W,
K⊗iJ∈M

E ⊆ E. which means that the truth axiom is satisfied for each player i in F i
G.



/ 24

[18] Kripke, S. Semantic analysis of modal logic, Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik 9, (1963) 67-96.

[19] Kripke, S.“Outline of a theory of truth”, Journal of Philosophy, 72 (1975) 690-716.
[20] Lewis. D. K. Convention: a philosophical study. Harvard University Press, 1969.
[21] Luce, R. D., and H. Raiffa (1957), Games and Decisions, New York: John Wiley.
[22] Lukasiewicz J. Philosophical remarks on many-valued systems of propositional logic

(1930), Reprinted in Selected Works (Borkowski, ed.), Studies in Logic and the Foun-
dations of Mathematics, North-Holland, Amsterdam, 1970, 153-179.

[23] Nash, J., Equilibrium points in n-person games, Proc. Natl. Acad. Sci. 36 48-49 (1950).
[24] Pearce. D. Rationalizable strategic behaviour and the problem of perfection. Economet-

rica, 52:1029-1050, (1984).
[25] Pelosse, Y., The intrinsic quantum nature of Nash equilibrium mixtures. Unpublished

Manusript Mimeo (2011).
[26] Prior, A.N., Three-valued logic and future contingents, Philosophical Quaterly 3, 317-

326, (1953).
[27] Prior, A. N., (1967) Past, Present and Future, Oxford: Clarendon Press.
[28] Perea, A., A one-person doxastic characterization of Nash strategies (2007), Synthese,

Vol. 158, 251-271. (Knowledge, Rationality and Action 341-361).
[29] Polack, B., Epistemic conditions for Nash equilibrium, and common knowledge of ra-

tionality.Econometrica, 67, 673-676 (1998).
[30] Sabourian, H., Juang W-T., Evolutionary game theory: Why equilibrium & which equi-

librium (2008) in Foundation of the Formal Sciences V: Infinite Games [Studies in Logic
Series 11], Edited by Stefan Bold, Benedict Lowe, Thoralf Rash, Johan van Benthem,
College Publications, 187-222.

[31] Samuleson, L., Evolution and game theory, Journal of Economic Perspectives 16 (2002)
47-66.

[32] Schelling, T C. The Strategy of Conflict. Harvard University Press. (1960) Cambridge,
MA.

[33] Sugden, R., A theory of focal points, The Economic Journal 105, 533-550 (1995).
[34] Stalnaker, R., On the Evaluation of Solution Concepts, Theory and Decision, 37(1994),

49-73. Revised version in Epistemic Logic and the Theory of Games and Decisions, ed.
by M. O. L. Bacharach, L.-A. Grard-Varet, P. Mongin and H. S. Shin. Kluwer Academic
Publisher, 1997, 345-64.

[35] van Benthem, J., Interview. In V. Hendricks and P. Hansen, eds., Game Theory: 5
Questions. Automatic Press, Copenhagen, 2007, 9-19.

[36] Von Neumann, J., O. Morgenstern, Theory of games and economic behaviour, Princeton
University Press, 1944.


	Introduction
	Preview of the main result
	Rationalistic models of a game
	Finite games
	Rationalistic frames of a player
	The logical mental language of players

	Relativistic valuations and (relative) truth
	Free will, relativistic valuations and ``context of reasoning''

	Relativistic valuations of the classical game model
	Self-interactive epistemology
	Main result: ontological conditions for Nash equilibrium
	Self-referential rationalistic Kripkean models
	Concluding remarks
	Appendix
	References

