MPRA

Munich Personal RePEc Archive

Characterization of monotonic rules in
minimum cost spanning tree problems

Bergantinos, Gustavo and Vidal-Puga, Juan

Universidade de Vigo, Universidade de Vigo

July 2012

Online at https://mpra.ub.uni-muenchen.de/39994/
MPRA Paper No. 39994, posted 10 Jul 2012 15:53 UTC



Characterization of monotonic rules in minimum cost
spanning tree problems*

Gustavo Bergantinos Juan Vidal-Puga
Universidade de Vigo (Spain) Universidade de Vigo (Spain)

July 2, 2012

Abstract
We characterize, in minimum cost spanning tree problems, the family of rules satis-
fying monotonicity over cost and population. We also prove that the set of allocations
induced by the family coincides with the irreducible core.
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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp, for short). A group
of agents (denoted by N), located at different geographical places, want a particular ser-
vice which can only be provided by a common supplier, called the source (denoted by 0).
Agents will be served through connections which involve some cost. However, they do not
care whether they are connected directly or indirectly to the source. This situation is de-
scribed by a symmetric matrix C, where ¢;; denotes the connection costs between ¢ and j
(1,7 € NU{0}).

We assume that agents construct a minimum cost spanning tree (mecst). The question
is how to divide the cost associated with the mcst between the agents. One of the most
important topics is the axiomatic characterization of rules. The idea is to propose desirable
properties and to find out which of them characterize each rule. Properties often help
agents/planner to compare different rules and to decide which rule is preferred in a particular
situation.

In this paper we focus on two monotonicity properties. Population monotonicity claims
that if new agents join a "society" no agent from the "initial society" can be worse off; and
cost monotonicity claims that if connection costs weakly increase, no agent can be better off.
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support from the Spanish government through grants EC02008-03484-C02-01/ECON and EC02011-23460
and the Xunta de Galicia through grant 10PXIB362299PR is gratefully acknowledged.



In the literature there exist two families of rules satisfying both properties. The op-
timistic weighted Shapley rules studied in Bergantinos and Lorenzo-Freire (2008a, 2008b)
and obligation rules studied in Tijs et al. (2006), Lorenzo and Lorenzo-Freire (2009) and
Bergantifios and Kar (2010).

The main objective of this paper is to study the set of rules satisfying population
monotonicity and cost monotonicity. We focus on two aspects: to characterize the set of
rules satisfying both properties and to characterize the set of allocations induced by these
rules.

Given a mcestp C, Bird (1976) considers the irreducible matrix C*, which is obtained
from C' by reducing the cost of the arcs as much as possible, but without reducing the cost
of the mest. Bird (1976) associates with each mcstp C' a cooperative game with transferable
utility (N, ve). We prove that the set of allocations induced by rules satisfying population
monotonicity and cost monotonicity is the core of the game (N, v+ ), the so called irreducible
core.

A weaker version of population monotonicity is separability, which claims that if two
groups of agents can connect to the source independently of each other, then we can compute
their payments separately. A weaker version of cost monotonicity is reductionism, which
claims that the rule must depend only on the irreducible matrix. We identify a necessary
and sufficient condition for a family of rules to cover all the ones satisfying separability
and reductionism. In order to describe this condition, we need to define the so-called,
neighborhoods and extra-costs correspondences. A neighborhood is a group of agents that
are “closer” to each other than to any of the other agents or to the source. An extra-costs
correspondence is a way of dividing the savings obtained by the agents of a neighborhood
when they connect each other through an optimal network. The intuition behind such rules is
the following. Initially each agent is connected to the source in the irreducible matrix. Now,
agents inside neighborhoods are connected among them. For each neighborhood, the savings
are divided among the agents in the neighborhood following the extra-costs correspondence.

We characterize the set of rules satisfying population monotonicity and cost monotonicity,
which is a subset of the previous set. We need to select the extra-costs correspondences
satisfying the so called non-decreasing costs property, which says that the aggregate sum given
by the extra-costs correspondence should not decrease when the connection cost between two
consecutive neighborhoods is increased. We show how some well-known rules of the literature
satisfying both properties can be defined using the extra-costs correspondences.

Our result could be applied for identifying new class of rules satisfying both monotonicity
properties. We do it by introducing a class of rules that generalize the obligation rules.

The paper is organized as follows. In Section 2 we introduce the model and the notation.
In Section 3 we characterize the set of allocations induced by the rules satisfying population
and cost monotonicity. In Section 4 we characterize the set of rules satisfying separability and
reductionism. In Section 5 we characterize the set of rules satisfying population monotonicity
and cost monotonicity. In Section 6 we apply these results to some known rules in the
literature. The proofs are presented in the Appendix.



2 Minimum cost spanning tree problems

We first introduce minimum cost spanning tree problems and some notation used through
the paper.

Let U = {1,2,3,...} be the (infinite) set of possible agents, and let 0 be a special node
called the source.

A minimum cost spanning tree problem (mestp) is a pair (No, Cp) where Ny = N U {0},
N C U is finite and Co = (), ¢

A minimum cost connection problem (mcep) is a pair (N, C) where N C U is finite and
C= (Cij)meN is a matrix with ¢; = 0 and ¢;; = ¢j; for all ¢, j € N.

For simplicity, when N is clear, we write Cy instead of (Ny, Cp) and C' instead of (N, C).

Let Cp be the set of all mestp and let C be the set of all mcep.

Let IIy denote the set of all orders in N. Given 7 € Ily, let Pre (i, 7) denote the set of
agents in NV which come before 7 in the order given by 7, i.e., Pre (i,7) = {j € N | 7 (j) < 7 (i)} .

As usually, R, denotes the set of non-negative real numbers. Given a nonempty set A,

let A(A) = {(xi)ieA ERY: Y a4 = 1} be the simplex in R4,

N, 18 a matrix with ¢; = 0 and ¢;; = ¢j; for all 7, j € Np.

A graph in Ny is a subsetle(j)qf {{i,j} :4,j € No,i # j}. The cost of a graph g in (Ny, Cp)

is defined as ¢(g,Cy) = > ¢;j. Analogous definitions can be given for a graph in (N, C).
{i.jteg

Given i,j € Ny, a path between i and j is a graph of different arcs {{ik—1,ik}}kK:1 such
that ig =7 and i = j. A spanning tree in Ny is a graph in Ny in which there exists exactly
one path between any pair of nodes. Let G (Ny) (or simply Gg) denote the set of all graphs
in Ny and let T (Ny) (or simply Tg) denote the set of all spanning trees in Ny. Analogously,
we define G (N) (or simply G) and T (N) (or simply T) for V.

A minimum cost spanning tree (mcst) in (Ny, Cy) (respectively, (N, C)) is a spanning
tree t in Ny (respectively, N) with minimum cost, namely m (¢) = tI/IéITIé m (') (respectively,
m (t) = minm (t')).

t'eT

A mest is not necessarily unique. However, all mest in Cy (or in C') have the same cost,
that we denote as m (Np, Cy) (or m (N, C)).

Given S C N, we denote as (5,Cg) the restriction of (N, (') to S, and we denote as
(So, (Cs),) the restriction of (Ny, Cp) to S.

We denote max C' := max ¢;; and max Cp := max c;;.
i,jEN ,7€No

Given ¢, € N, a € R, we denote as al;; the matrix C' given by ¢ = 0 for all
{k,1} #{i,5} and ¢;; = .

Given Cy € Cy, the irreducible matriz of Cy, denoted by Cf, is defined for each i, 7 € Ny
as

*
Cc; = max cp 1
" {kl}eri; ( )

where 7;; is the (unique) path that connects i and j in some mecst. This matrix is well-defined,
i.e. it does not depend on the chosen mcst.
Denote C; = {C; : Cy € Cp}. Analogously, C* = {C*: C € C}.
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A rule is a function f that assigns to each Cy € Cy a vector f(Cp) € RY such that
> fi (Co) = m(Cp). As usual, f; (Cp) represents the payoff assigned to agent i € N.
iEN

We now introduce some properties of rules, which we will use in this paper.
Population Monotonicity (PM). For all mestp (Ng, Cy), S C N, and i € S, we have

fi (No, Co) < fi (S0, (Cs),) -

This property says that if new agents join a network, no agent from the initial network
can be worse off.
Cost Monotonicity (CM). For all mestp (Ny, Cp) and (Ny, Cf) such that Cy < Cf, we
have
f (No, Co) < f (No, Cy) -

This property says that if a number of connection costs increase and the rest of connection
costs (if any) remain the same, no agent can be better off. This property is also called
solidarity or strong cost monotonicity in some papers such as Bergantinos and Vidal-Puga
(2007) and Bergantinos and Kar (2010).

Separability (SEP). For all mestp (No, Cp) and S C N satisfying m (No, Co) = m (So, (Cs),)+
m ((N\S),, (CN\S)O), we have

fi (S0, (Cs)y) ifies

fi (No,C) = { £, ((N\S)m (CN\S)O) if i € N\S.

Two subsets of agents, S and N\S, can be connected to the source either separately or
jointly. If there are no savings when they are jointly connected to the source, this property
says that the agents will pay the same in both circumstances. This property is also called
decomposition in some papers such as Megiddo (1978) and Granot and Huberman (1981).

Reductionism (RED). For all (Ny, Cy),

f (No, Co) = f (No, Cp) -

If a rule satisfies this property, then it only depends on irreducible matrices. RED
appears in Bogomolnaia and Moulin (2010) and it is introduced in Bergantinos and Vidal-
Puga (2007) where it is called independence of irrelevant trees.

PM implies SEP but the reciprocal is false. C'M implies RED but the reciprocal is
false. See Bergantinos and Vidal-Puga (2007) for details.

3 The irreducible core

Bird (1976) introduces the irreducible core of a mestp (No,Cp). We define the set of
monotonic allocations as the set of allocations induced by rules satisfying C'M and PM.
In this section we prove that this set coincides with the irreducible core, defined as follows.



A game with transferable utility, briefly a TU game, is a pair (N,v) where v : 2V — R
satisfies v (@) = 0.
The core of a TU game (N, v) is defined as

core (N,v) = {(:ci)ieN : le =v(N) and le <wv(S)VS C N}.

iEN €S

Bird (1976) associates with each mestp (Ny, Cp) the game (N, ve,). For each coalition
S C N, ve, (S) :==m (S0, (Cs),) -

The irreducible core of a mestp (Ny, Cp), denoted as IC' (Ny, Cp), is the core of the TU
game (N , UCS) where Cf is the irreducible matrix associated with C.

Given a mestp (Ng, Cp), let AM (Ny, Cy) denote the set of allocations induced by the
rules satisfying C'M and PM. Namely, © € AM (Ny, Cy) if and only if there exists a rule f
satisfying C M and PM such that x = f (Np, Cp).

In the next theorem we prove that AM (Ny, Cy) and IC (Ny, Cp) coincide.

Theorem 1. For each mcstp (Ny, Cy), AM (Ny, Co) = IC (Ng, Cp) .
Proof. See the Appendix.

As a consequence of Theorem 1, any rule f satisfying CM and PM gives, for any mcstp
(No, Cyp), an element f (Ng, Cp) in the irreducible core of (Ny, Cp) . Nevertheless, the recipro-
cal is not true. Given a rule f such that, for each mestp (Ny, Co), f (No, Co) € IC (Ny, Cy),
it could be the case that f does not satisfy both monotonicity properties.

4 The set of rules satisfying separability and reduc-
tionism

In this section we characterize the set of rules satisfying SEP and RED. For doing it we
need some new definitions. A neighborhood is a group of agents that are “closer” to each
other than to any of the other agents or to the source. An extra-costs correspondence is a way
of dividing the savings obtained by the agents of a neighborhood when they connect among
themselves. The rules satisfying both properties could be described as follows. Initially each
agent is connected to the source in the irreducible matrix. Now, agents inside neighborhoods
are connected among them. For each neighborhood, the savings are divided among the
agents in the neighborhood following the extra-costs correspondence.

We first introduce the concepts which will be crucial in our results.

Given (N, Cy) € Cp and S C N, |S| > 1, we define

ds =

Cii

— max ¢
J L ij
{i.j}er(S)

min
1€S5,7€ No\S



where 7 (S) € T (S) is a mest in S connecting all the agents in S. Even though 7 (5) is

not necessarily unique, it is not difficult to check that . n}1a>%s) c¢;j does not depend on the
i,J}ET

particular 7 (S) and hence ¢ is well defined. For S = {i}, we also define dy;; = IJIVll\I%{ }cl-j.
JENO\{t
Roughly speaking, dg may be interpreted, when positive, as some kind of "distance"

between S and Nj\S.

Definition 1. Let (Ny, Cy) be an mestp. We say that S C N, |S| > 1, is a neighborhood
in Cy if §g > 0. We denote the set of all neighborhoods in Cy as Ne (Cp).

Example 1. Let N = {1,2,3,4,5,6} and Cy be such that cq; = 50, ¢15 = 20, ¢13 = 40,
c3a = 10, c15 = 60, c36 = 70, and ¢;; > 70 otherwise. There are exactly two neighborhoods
containing node 1: {1, 2} because d1,2y = 13 — c12 = 20, and {1,2, 3,4} because 01234} =
co1 — c13 = 50 — 40 = 10. Notice that {1,2,3} is not a neighborhood because d; 235 =
C34 — C13 — —30.

Some comments about neighborhoods. It is not difficult to check that the neighborhoods
of Cy and C§ coincide. Nevertheless, in general, (C*)g # (Cs)". Take for example N =
{1,2,3}, cia = c13 = 1, co3 = 2 and S = {2,3}. Then, c3; = 1 and hence C’ = (C*) satisfies
chs = 1 whereas C” = (Cs)” satisfies ¢j; = 2. Later on (Proposition 1.1) we prove that the
equality holds when S is a neighborhood.

The next proposition gives some results about neighborhoods.

Proposition 1.

1. S C N is a neighborhood in Cj if and only if S is a neighborhood in Cj. Besides,
(Cs)" = (C*)g and

*

dg = min ¢ b

1€S5,7€ No\S

— maxc

*
eS8

2. If S is a neighborhood in Cjy and 7 € S, then

S=<j€EN:c. < min c,.
J U7 pesieng\s M

3. If S, 8" are two neighborhoods in C§ € C} and SNS’ # (), then either S C S" or " C S.

4. For each i € N, there exists a unique family of subsets of N, 51, Ss, ..., S, with ¢ > 0!
such that {51, ..., S,} is the set of neighborhoods that contain ¢, and S; C Sy C ... C S,

5. There exist no neighborhood in Cj if and only if {{0,7}},_y is a mest in Cy.

!Case ¢ = 0 covers the situation in which agent i has no neighborhoods.



Proof of Proposition 1. See the Appendix.

Under Proposition 1.1, for each neighborhood S C N, we have (C*) 4 = (Cs)". We denote
this matrix as C%.

We now introduce the family of extra cost correspondences, which will be used in the
definition of the rules we characterize.

Definition 2. An extra-costs correspondence is a function e : C* x Ry — RY satisfying:
(E1) e; (C*,z) =0 for all (N,C*) e C*, z € R, and i ¢ N.

(E2) > e;(C*,z) =x for all C* € C*, v € Ry.
i€U

Definition 3. For each extra-costs correspondence e¢ we define the rule f¢ as follows.
Given (Ny, Cy) € Cp and i € N,

fE(No, Co) i=co— Y (05— € (C5,05)) -
S neighbgrhood
1€

The intuition behind such rules is the following. Initially each agent ¢ pays cf;. Now,
agents inside neighborhoods are connected among them. For each neighborhood S, the
savings are divided among the agents in S following e. The larger is e; (C§, ds) , the smaller
is the saving (6 — e; (C%,0g)) corresponding to agent i in neighborhood S.

We compute f¢ in two examples.

Example 2. Let N = {1,2}, coy = 10, cos = 15, and ¢15 = 2. Then, ¢}, = ¢, = 10 and
¢y = 2. Let e be such that for each C* and each z, e, (C*, ) = 3% and e, (C*, ) = £. There
is a unique neighborhood S = N with dy = 10 — 2 = 8. Now,

FE(Co) = iy — (B — €1 (C*,8)) = 10 — (8 _ %8) _ 8 and

fi(Co) = c32—<6N—e2<0*,8>>=10—(s_}ls):zl.

Example 1 (continuation). Let e be defined as e; (C™*,z) = v for all (N, C™")eC
and j € N (e; (C™,x) = 0 otherwise). We compute ff (Cp). There are two neighborhoods
containing agent 1: S; = {1,2} and Sy = {1,2,3,4}. Besides ¢; = 50, dg, = 20 and
5s, = 10,

Then,

f{(Co) = 50— (b3, — €2 (C%,,10)) — (0s, — €1 (C8,,20))
= 50— (10 — 2.5) — (20 — 10) = 32.5.
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It is not difficult to check that f¢ can also be defined as

fE(Co)=coi— Y D € (C5.05)

S neighborhood \ jeS\{i}
€S

In Proposition 2 we prove that each f€ is a rule, namely, >  f£ (Noy, Co) = m (Ny, Co) .
iEN

Proposition 2. For each extra-costs correspondence e, f€ is a rule.
Proof of Proposition 2. See the Appendix.

In Theorem 2 we characterize this family of rules.

Theorem 2. A rule f satisfies Separability and Reductionism if and only if f = f¢ for
some extra-costs correspondence e.
Proof of Theorem 2. See the Appendix.

5 The set of rules satisfying population monotonicity
and cost monotonicity

In this section we characterize the set of rules satisfying both monotonicity properties. Since
PM implies SEP and C'M implies RE D, this set of rules will be a subset of the set char-
acterized in the previous section. We will prove that such set of rules coincides with the set
of rules induced by extra-costs correspondences satisfying a non-decreasing property.

We first introduce the concepts we will use.

Given (NY,CY) [ (N?,C?) € C, N'NN? =0, and a € R, we define

(N'UN?,C' &, C?)

as the meep C given by ¢;; = ¢} if i,j € N® for some o € {1,2}, and ¢;; = a + max C* for
all i € N1, j € N2

For convenience, we write C! &, C? &, C? instead of (C* @, C?) @, C3, and so on.

Given a = (ay, ...,ar) € RL, (C’l, ...,CF) € C', and v < T we denote

C" (a) = C' @,, C* @y, ... B, C7.
Notice that, given v > 1,
C7(a) = " (a) B, , O, (2)

Definition 4. We say that an extra-costs correspondence e satisfies the Non-Decreasing
Costs (N DC') property if for all disjoint sequences {(N?, CV)}SZ1 cCx,T'>1,i€e N with



O(a) 10 10 @

“35+y

C’}/(a ’) 10 10

354y

Figure 1: Minimum cost connection problems C7 (a),C7(a') for v = 1,2,3. The NDC
property requires the aggregate assignment of extra costs for players 1, 2, 4 and 5 to be not
higher with a than with a’.

v; # 2, a € R with a, > maxC?"™ —maxC? forall y =1,..,' =1, and y € [0,as] (y >0
when I" = 1), we have

Z e (C7(d),d.) > Z e; (C7 (a),ay)

where a' = (a; + y,a2 — y,as, ...,ar) (@’ = (a1 +y) when I" = 1).
In the next example we give an intuition of this technical property.

Example 3. Let I' = 3, N* = {1,2},¢], = 10, N? = {3} ,N® = {4,5} and ¢}; = 0.
Then, a = (25,5,20) and o' = (25 +y,5 —y,20) with y € [0,5] satisfy the conditions
imposed on the definition of NDC: a; =25 > 0— 10 = max(C? —maxC!, ao =5>0—-0=
max C? — max C%. C7 (a) and C” (a) are described in Figure 1.

Given i € N1, the NDC property says that

e (CH(d),25+y) + ¢ (C*(d'),5 —y) +e (C°(d),20)
> e (Cl (a),25) + ¢ (6’2 (a),5) +e; (03 (a),20).
Given i € N2, the NDC property says nothing (since we assume v, # 2).
Given i € N3, the NDC property says that

e; (C*(a'),20) > ¢; (C*(a),20).
We now present the characterization.

Theorem 3. A rule f satisfies PM and C'M if and only if f = f¢ for some extra-costs
correspondence e satisfying the N DC' property.
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Proof of Theorem 3. See the Appendix.

In the literature some authors studied families of rules satisfying both monotonicity
properties. The Equal Remaining Obligations (ERO) was originally introduced by Feltkamp
et al. (1994) and later studied in Bréanzei et al. (2004) and Bergantinos and Vidal-Puga
(2007), among others®. The optimistic weighted Shapley rules are a family of rules defined
by Bergantinos and Lorenzo-Freire (2008a, 2008b). Obligation rules were introduced by
Tijs et al. (2006) and studied later in Lorenzo and Lorenzo-Freire (2009) and Bergantinos
and Kar (2010). The ERO rule is a optimistic weighted Shapley rule. Besides, optimistic
weighted Shapley rules are a subset of obligation rules.

We now show how these rules can be included in our family.

Proposition 3.
1. Obligation rules are the rules f¢ where for each (C*,z) and each i € N,
e (C*,z) =0;(N)x

where o is a function o that assigns to each N a vector o € A (N) such that o; (S) >
0;(N) forallie S CN.

2. Optimistic weighted Shapley rules are the rules f¢ such that for each (C*, z) and each
1€ N, o
e; (C*, 1) = =
D ien Wi

where w € RY.

3. The ERO rule is the rule f¢ where for each (C*,z) and each i € N

Proof of Proposition 3. See the Appendix.

It is clear, from Proposition 3, that the ERO rule is a particular case of an optimistic
weighted Shapley rule, and those are also obligation rules. Hence, our paper provides a
unified framework for all these rules.

Theorem 3 can also be used for identifying classes of rules satisfying PM and C'M different
from the class of rules studied in Proposition 3. We do it in the following. Let {0}, g,
be a parametric family of obligation functions, i.e. for each x € R, o (N) € A(N) and
of (S) > of (N) for alli € S & N. We assume of (N) is an integrable function of x for all
it € N and

/ "t (8)dr > / o (V) de 3)

2It is also known as the folk rule.
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foralli e S ¢ N and a,b,c € R;.

Proposition 4. Let {0”} be defined as before. The rule f¢ with e defined as

zeRy
e (C* x) = / of (N)dt
0

for all (C*,z) and i € N, satisfies CM and PM.
Proof of Proposition 4. See the Appendix.

Clearly, this family contains the obligation rules (simply take 0® = o for all x). Moreover,
not all the obligation rules can be defined in this way. Take for example 6 = {6}, defined
as follows:

ﬁ if [N| # 2
oy (N):=4 === if IN| =2 and i = minjey j

2—1,<1
3

if |[N| =2 and i = maxjepy J

for all i € N, where 1,<; = 1if x <1 and 1,<; = 0 otherwise. The resulting rule f? satisfies
all the previous properties. It is similar to the ERO rule, but it charges a higher obligation to
nodes with low index when the costs are higher (and vice-versa). It is not a obligation rule.

For example, take N = {1,2} and, for z € {1,2}, let (N, C’éz)) be defined as ) = i) = »

and {3 = 0. Then,
1
. 2 2
o C(l)) = 1— 1_/ Zd i
1<0 . 3773
1
3

2 ()

1 2
(e — o (o (24 [1i)_
f(e®) = 2 (2 /Ogdx /13dx)—1
1 2
6 (2 _ o _ _ l _ 2
/5 (CO ) = 2 (2 /0 3dm /1 3dm)

Since f° (6’82)) £ 2f° (C’él)), we deduce that f° does not satisfy additivity (Branzei
et al., 2004, Bergantifios and Vidal-Puga, 2006). Since all the obligation rules are additive
(Lorenzo and Lorenzo-Freire, 2009), we conclude that f° is not an obligation rule.

I
—
|
N
—
|
c\
2
[SUR
IS
)
~~_
Il

whereas

I
=

6 Concluding remarks

In this section we summarize the main findings of the paper. Our main objective is to study
in mestp the rules satisfying PM and C' M.
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Given a mecstp, its irreducible problem is obtained by reducing the cost of the arcs as
much as possible, but without changing the total cost associated with any mt. The irreducible
core is the core of the irreducible problem and it is an non-empty subset of the core. Our first
result says that the set of allocations induced by the rules satisfying PM and C'M coincides
with the irreducible core.

We introduce the concept of neighborhood. We say that a group of agents S are in a
neighborhood if any connection cost between any agent of the neighborhood and any agent
outside the neighborhood is larger than any connection cost between any pair of agents in
the neighborhood. We define dg as the difference between the previous amounts. This dg
can be interpreted as the extra cost of connecting the agents in .S with the agents outside S.
An extra cost correspondence specifies how to divide the extra cost dg among the agents in
S.

Our second result says that the set of rules satisfying SEP and RED coincides with the
set of rules induced by extra cost correspondences.

Our third result says the set of rules satisfying PM and C'M coincides with the set of
rules induced by extra cost correspondences satistying the N DC' property.

We also explain how some rules of the literature satisfying PM and C'M can be expressed
in terms of extra cost correspondences. Besides, with the help of our result, we identify a
new class of rules satisfying PM and CM.
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7 Appendix

We prove the results of the paper.

7.1 Proof of Theorem 1

Let (Ng, Cp) be a mestp. We first prove that IC (Ny, Cy) C AM (Ny, Cp). It is well known
that voy is a concave game. Thus, the core of vy is the convex hull of the family of vector
of marginal contributions.

Hence, given z = (1;),c5 € 1C (No, (), there exists w = (wy) € A (Ily) such that

for each i € N,

welly

T = Z wr [veg (Pre (i, m) U{i}) — ves (Pre(i,m))] -

welly

Let m € IIy. We define the rule f™ such that for each S C N and each i € S,
I7 (S0, (Cs)y) = ves (Pre(i,ms) U {i}) — vex (Pre (i, mg))

where g denotes the order induced by m among the agents in S.
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This rule f™ is well defined because

> T (No, Co) = ey (N) = m (No, C5) = m (No, Co) -

iEN
For each w = (wr), ¢y, € A(lly), we define the rule f* = > w,f". Thus, for each

melly
i€N
T; = Z wﬂ‘fzﬂ- (N07CO) = fzw <N07CU) :
melly
It only remains to prove that f* satisfies PM and C'M. Using Proposition 3.3 in Bergan-
tifios and Vidal-Puga (2007) it is not difficult to prove that for each S C N, i ¢ S
ves (SU{i}) —wes () = i ns%?o} {ci)-
We prove that for each m € I, f7 satisfies PM. Let S C T'C N, and i € S. Under (1),
it is straightforward to check that ((Cr)*)g < (Cs)”. Since Pre (i,ms) C Pre (i,n7),

™ (To, (C So, (Cs),) -

(o) = min b S owin e} = 7 (50,(Co)y)

We prove that for each 7 € Iy, f™ satisfies CM. Let (Ny, Cp) and (Ny, Cj)) be such that
Cy < . Bergantinos and Vidal-Puga (2007, Lemma 4.2) prove that C§ < C{*. Now,

?T = i 1< = {7 Y
fT(No, Go) =, ity oy Uik} < p 10 ) L} = 7 (Do, o)

Since for each m € I, f™ satisfies PM and C'M, it is not difficult to check that for each

w = (wy) e A(Mly), f*= > w,f™ satisfies PM and C'M.

welln

Finally, we prove that AM (No, Co) C IC (Ny,Cp). Let & € AM (Ny, C'). There exists
a rule f satisfying C'M and PM such that © = f (N, Cp) . It is not difficult to check that
if f satisfies PM then f (Ny, Cy) € core (N,vg,). Besides, CM implies RED. Therefore,
f (No, Co) = f (No, C§) € core (N,vugg) = 1C (N, Cp) . B

welly

7.2 Proof of Proposition 1

(1) Assume that S is a neighborhood in Cj. Because of the definition of the irreducible

matrix, we have that min ¢; = min ¢ Let 75 € T(S) be an mest in (S,Cs).
1€S5,7€ No\S 1€5,7€ No\S

Since S is a neighborhood in Cy, 75 is also an optimal tree in (5, (Cs)*). Let C! = (Cj)
and let C? = (C*)q4. Given i,j € S, let 7;; C 75 be the (unique) path from ¢ to j. Then,

*

1 2
;.= max cy = C; = ¢}
Y (kiyeri; ki

and hence(Cs)" = (C*)s.
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Because of the definition of C* we have that max c¢; = max ¢j; = max ¢j;. Now,

( 7])67-5 (Zvj)eTS J (27])65
dg = min ¢ — max cj;
1€S5,7€No\S {i,j}eTs
= min = ¢; — max c¢; =9g

i€S,jENo\S J {i,j}ers

which means that S is a neighborhood in Cj.
The reciprocal is similar and we omit it.
(2) "D” Let j € N be such that ¢j; < min ¢. If j ¢ S, then ¢j; > min ¢,

k€S, IENo\S keS,leNo\S
which is a contradiction. Hence, j € S.
7C”: Let j € N be such that ¢j; > min ¢ If j € S, then
keS,leNo\S
0= min ¢y —maxcy <c;—c; =0
57 kesieNg\s M kies M i

which cannot be true because S is a neighborhood. Hence, j ¢ S.

(3) Let i € SNS. If min ¢;; < min ¢} then it follows from Proposition 1.2
keSIENG\S keS' IEND\S’

that SC S’ If min ¢;; < min ¢}, then it follows from Proposition 1.2 that S’ C S.
keS’ leN\S” keS,1ENO\S

(4) It follows from Proposition 1.3.
(5) Assume {(0,%)},.y is not an mest. Let {k,[} C N be such that ¢ = -mi% ¢;;. Thus,
1,)€

cu < mgl coi- Then, S = {k} U {Z € N: max cj; < ckl} is a neighborhood in Cj.
1€

{Jv] }eTzk

Assume {(0,4)},.y is an mcst. Then, given any S C N, we have min ¢;; = mincy;
1€S5,7€ No\S €S

and max ¢; > mln co;- Hence
{i,5}yer(S) €s

ds = min ¢;— max ¢; <0
i€S,jENO\S {i.jrer(9)

and S is not a neighborhood. W

7.3 Proof of Proposition 2
Let (NQ, Co) € C(). Then,

(N Co) = D chi—>. > (05— ei(C5,05)

1€EN 1eEN 1€N S neighborhood
€5
* *
= 2 - 2 (Z (65 e, <CSv5s>>>
1eEN S neighborhood \ €S
_ *
= E:Coi_ E (IS] = 1)ds
1EN S neighborhood

Thus, it is enough to prove that for each mestp (Ny, Cp),

mCo)+ Y., (SI-1Dds=> a.

S neighborhood iEN
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Assume first there exists no neighborhood. Under Proposition 1.5, {{0,4}}, 5 is an mcst
in (No, Cp). Hence, {{0,i}},.y is also an mcst in (No, C5) and the result is easily checked.

Assume now that there are exactly k& > 0 neighborhoods and the result is true when
there exists less than k£ neighborhoods. Let S’ be a minimal neighborhood (there is no
neighborhood S such that S ¢ S"). Let 7¢ denote a mest in S”. Since S’ is minimal, there
exists a > 0 such that ¢;; = a for all (4, j) € 7g.

Let t be a mest in (No,Cp). We define Cj as ¢; = o+ 0g if {i,j} C S" and ¢}; = ¢
otherwise. It is not difficult to check that:

t is also an mest in (Ny, C});

ey = ¢, for all i € N;

m(Ch) = m (Co) + (5] = 1) 5 and

{S : S is a neighborhood in C}} = {5 : S is a neighborhood in Cy}\ {5} .
Now, applying the induction hypothesis, we have

m (Co) + > (S| - 1) s

S neighborhood in Cy

= m(Cy) = (I8 =1) 0 + > (I15] = 1) ds

S neighborhood in Cp

= m@)+ Y (8-

S neighborhood in Cj

_ % %

iEN 1EN
7.4 Proof of Theorem 2

Let e be any extra-costs correspondence and f¢ be the associated rule. It is obvious that f¢
satisfies RED.

Given (Ny, Cy) € Cy, let Ne (Ny, Cy) denote the set of neighborhoods in (Ny, Cp).

In order to prove that f¢ also satisfy SEP, let S C N such that m (No, Co) = m (So, (Cs),)+
m ((N\S)O, (C’N\S)O). Given i € S, it is straightforward to check that Ne(Np, Cp) =
Ne(So, (Cs)y) UNe ((N\S),, (C’N\S)O). Hence, ff (No,Co) = ff (S0, (Cs),) and this proves
that f is separable.

We now prove that if f satisfies SEP and RED, then f = f¢ for some extra-costs
correspondence e. Let f be such a rule.

Given (N,C*) € C* and a € R, we define (NO,CS(Q)> € Cy as the mestp given by
cf}a) = ¢j; for all i,j € N and ™ = g for all i € N. It is straightforward to check that
C(;(“) € C; when a > max C™.
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For all C* € C*, x € R, , and i € N we define
e; (C*,z) = f; (CS(WC*”)> — fi (CS(MC*’> .

Given i ¢ N we define e; (C*, x) = 0.
We first prove that e is an extra-costs correspondence. By definition, e; (C*,z) = 0 for
all (N,C*) € C*, z € Ry, i ¢ N. Besides,

Zei (C*x) = Zei (C*, x)
icU ieN
- m (Cg(max(]*-i-x)) —m (Cg(max(]*))
= m(C*)+maxC* +z — m (C*) — max C*

= xT.

Hence, e is an extra-costs correspondence.

We need to prove that f = f¢. We proceed by induction on the number of neighborhoods
Ne (Cp). Assume |Ne (Cy)| = 0.

Under Proposition 1.5, {(0,7)},.y is a mest in Cy. Since f satisfies SEP, f; (Cy) =
fi ({i}y (C{i})o) = cg;. Besides, since {(0,7)},.y is an mest in Cp, we have co; = ¢f; for all
i € N and hence f¢(Cp) = f (Cp).

Assume now the result is true for mestp with less than |Ne (Cp)| neighborhoods.

Assume first that maxC* > max cy;- 1t is not difficult to check that N is separable,
namely, there exists S C N, S # @, and S # N such that m (N, Cy) = m (So, (Cs),) +
m ((N\S)y, (Cans),)- Under SEP, f; (No,Co) = fi (So, (Cs),) for alli € S and f; (No, Co) =
fi (N\S),, (Cms),) for all i € N\S. Repeating this argument we can find a partition
{S1,..., Sp} of N satisfying that for each k = 1,..p maxCg < Iirelgz{cai and f; (Ng,Cp) =

fi ((Sk)g+(Cs,),) for each i € Sy.
Hence, we can assume max C* < maxcj,. Since C* is irreducible, maxcy = cf; for
i€N ieN

all i € N. Hence, N € Ne(Cy) and 6y = r%z}@(cfo — max C*. Since f satisfies RED,
f(Co) = f(C§). Now, given i € N,

fi (CO) — fz (Cg) — fz (Cg(maxC*JréN))
e (C*,0n) + fi (7))

Let Cf = Cg(maxc*). It is straightforward to check that C{ is irreducible. Besides,
Ne(C;) = Ne(Cy) U{N}. For each S € Ne(C}), dg = 0%, and cy = ¢}y — dn. Hence,
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applying the induction hypothesis, for each i € N,

fi(Co) = e (C*on)+ fi (Cp)
= a(Chon) e+ Y. (e(C505) — )

SeNe(Cy)
= ¢ (C*0N)+c; —On+ Z (e; (C%,d5) — ds)
SeNe(Cy)
= i+ Y. (ei(C565) — )
SeNe(Cy)
= fi(Co). A

7.5 Proof of Theorem 3

We start the proof with the following Lemma.

Lemma 1. (i) Given (N',C"),(N",C") € C* and ¢ € R, with NN N” = () and
a > max C"” — maxC’, then C' @, C" € C*.

(17) Given a disjoint sequence {(N7, CV)}SZ1 cC*T'>1,a€eR, with a, > max 7 —
maxC7 for all v = 1,...,T — 1, and y € [0,as], then C7 (a) € C* and C7 (a') € C* for all
v=1,..,[', where d’ = (a1 + y,as — ¥y, as, ..., ar).

Proof of Lemma 1. (i) Let C' = C"®,C". It is easily checked that a+max C' = max C'.
Hence, we can find a mcst t in C' and C* such that ¢ = t* U ¢* U {(k', k?)} where t! is a
mest in C', % is a mest in C”, k' € N' and k* € N?. Since ¢jp2 = maxC > ¢;; for all
(i,7) € t1 Ut? we can deduce, using the definition of irreducible matrix, that C' = C*.

(71) We assume 7 > 1, since the case v = 1 is trivial. We proceed by induction on I'. For
[' = 2, the result follows from (i) because a} = a; +y > a; > max(C? — maxC'. Assume
the result is true for sequences with less than I' mestp’s, I' > 3. Under the induction
hypothesis, we have C7(b), C7 (V) € C* where v = 1,...,.T'— 1, b = (ay,...,ar_1) and
V = (a1 +y,a2 —y,as,...,ar—1). Now, it is clear that C7 (a) = C7 (b) and C7 (a’) = C7 (V')
for all v = 1,...," — 1. Hence, the result holds for any v < I'. Assume now v =I". We have

()
O (@) 2 €™ (0) Bup_, CT (a) € C*
and
CT (a) 2 CT (d!) @y, C (d).
In order to apply (i) to this last expression (so that CT (a’) € C*) we have to prove that

ap_; > maxC' (a') — maxC' ! (d). (4)

It is straightforward to check that maxC7 (a’) = maxC7? (a) for all v # 2, whereas
max C? (a’) = max C? (a) + y. Hence, for T > 3,

max C" (a’) — max C" ! (a') = max C" (a) — maxC" ! (a) < ar_; = ap_,
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and for I' = 3,
max C° (a') — max C? (a') = max C® (a) —maxC?(a) —y < ag —y = a). W

We now prove that if f = f¢ with e satisfying NDC| then f satisfies CM and PM.

Following Norde et al (2004), we define the set Xy, of linear orders on the arcs of Cj
as the set of all bijections o : {1, ..., (":1)} — {{i,j} :i,5 € No}. For each mestp (N, Cp),
there exists at least one linear order o € Xy, such that c,q) < ¢y < ... < cg((nﬂ)). For

n

any o € Xy,, we define the set
K7 = {Co € Cév D Co(k) < Co(kgr) for all k= 1,2, } ,

which we call the Kruskal cone with respect to o. One can easily see that UUEZNO K°=¢}.

We say that a nonempty set S C N is a quasi-neighborhood in Cy if dg > 0. Let
qNe(Cy) = {S T N,S#0:05 >0} denote the set of quasi-neighborhoods in Cy. Clearly,
Ne (Cy) C Ne (Cy).

We now prove that f satisfies CM. It is enough to prove that f (Ny, Co) < f(No, CY)
when there exists {k,[} C Ng such that c¢j; > ¢y and ¢j; = ¢;; otherwise. Let (k,[), Cp and
C} be defined in this way.

For any ¢ € [0,1], the mestp (No, Cf) defined as cf; = (1 —t) ¢;; + tcj; satisfies ¢j; > cj; >
cw and ¢f; = ¢;; otherwise. Since Yy, is a finite set, there exist a sequence {t', %, ..t"} C [0,1]
with #* = 0 and # = 1 such that, for all 7, we have t" < "1 and C*" and C*""" belong to
the same Kruskal cone.

Hence, it is enough to prove that f (Ny, Cy) < f (No, Cj) when both Cp and Cf belong
to the same Kruskal cone. An immediate consequence is that there exists a common mcst t
in both Cj and Cj.

Since f satisfies RED, f (No,Co) = f (No, Cg). If {k, 1} ¢ t, then C} = Cf*. Thus

f(No,Co) =f (Nﬂacg) =f (Noac(l)*) = f<N07C(/))‘

Hence, we assume {k,(} € t. This implies ¢y = ¢}, and ¢}; = ;. Let a = ¢} — ¢}, > 0.
Another consequence of Cy, C{) being in the same Kruskal cone is that, for any S C N,
|S| > 1, there exist i',4%,j? € S, j1 € No\S with {i?, j2} € 7(9) such that

0g = min = ¢y —

max Ciyrit = Cij151 — C;242 and
FESFENNS T {ijyer(s) Y ! ’

!/ . /
0g = min ¢y —

/ / /
i max Cirir = Ciljl — Ci2j2'
i'€8,5'€No\S {i".3'yer(S)

J

Thus dg and d'q cannot have opposite sign. Namely, 65 > 0 implies d' > 0. From this, it
is straightforward to check that Ne (Cy) C ¢Ne (Cf) and, analogously, Ne (Cj) C gNe (Cy).
Given any X C 2V with Ne (Cp) € X C gNe(Cp) and i € N we have

fi (No, Co) = iy — Y (05 — ¢ (C5,95)). (5)

1eSeX
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The reason is that for any S € ¢Ne (Cp) \Ne (Cp), 6g = 0 and hence dg — ¢; (C§, 0s) =

0— e (C%,0) = 0.
We define X = Ne (Cy) U Ne (Cf). Clearly, Ne (Cy) C X C gNe(Cy) and Ne (Cp) C

X C gNe(Cp).
Fix i € N. We need to prove that f; (No, Co) < f; (No, C§). Under (5), we have

fi(No,Co) = = Y (05 — e (C%,05))

i€eSeX
[i(No,Cg) = = > (0 — e (C§,55)) .
i€eSeX

We have seen above that
4 / /
55‘ = Ci1j1 — Cj242 and 65« = Ciljl - Ci2j2

for some i',i2, j2 € S, j1 € No\S with {i?, j?} € tg.
By hypothesis, c;; = ¢}, for all {j,j'} # {k,l}. Hence, o5 = 0% unless {i', j'} = {k,l}

or {i%, 5%} = {k,l}.
Given S € X and d5 # 0’y we study both cases:

1. If {i*, j'} = {k, 1}, then 85 = 05 + . Besides, there can be at most two such S. One
of them contains node k (if any) and the other contains node [ (if any). Assume, on
the contrary, that there exist two S" € X, S # 5" with k € SN .S’ (the case for [ € S is
analogous). Hence,

Cy=Cy=_mn ¢iy= min d
i'€S,j'€No\S i'eS’,3'eNo\S’

Since k € SN S’, under Proposition 1.4, § ¢ S’ or S’ ¢ S. Assume w.lo.g. S & 5.

Then,
e : /% : /%
Cp = min -y < min - G
i/€S,j'€No\S i'eS,j'eSN\S
/ : / /
< max ¢y < omin = oy

iljes ' T ireS! j/eNo\ S

which implies that no inequality is strict. In particular, max cgfj, = ¢%. Since {k, [} Q
il j'es!

S’, max ¢, = max ¢}, and hence
il 5'es’ il j'es J
: * * % Ik
dgr = min ¢y — max i =y — ¢y = —a <0,

PeS JIEN\S T iljles!
which is a contradiction.

2. If {i?, j2} = {k,l}, then §g = 05 — a. Besides, there can be at most one such S.
Assume, on the contrary, that there exists S’ € X, S # S5, k,l € SNS’, and

* * *
Crl = Ckl - ‘max C,[:lj/ - ‘maX Ci’j"
i’ j'es il ,j'es’
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Since k € SN S’, under Proposition 1.4, S & S or 8" & 5. Assume w.lo.g. S & 5"

Then,
Czl = Imax C;‘k/j/ S IIllIl C;j/ S IIllIl C;‘k/j/ S max C;‘k/j/ = CZ}Z
i j'es i€8,j'€No\S '€S,j'€S'\S il j'es’
which implies that no inequality is strict. Thus, = min ¢, = ¢, and hence
i'€8,5'€No\S
d¢= min ¢, — maxch,=c¢;,;,—c,;, =0
€S jEN\S I it jies I ki Tk ’
which implies 0’y = g — a = —a < 0, which is a contradiction.

Let S* = {je No:¢f; <} and let S' = {j € No: ¢ < ¢y} Both S* and S' are
nonempty (because k € S* and [ € S') and disjoint (it follows from {k,(} € t). Since they
are disjoint, we can assume w.l.o.g. 0 ¢ S*. Let S; = S*. If |S;| > 1, then

[ ¢ S,
/% : 3
Ckl — min C,[:lj/’
i’€851,j'€No\S1
! /% /%
= ¢ — max ¢, >0
S1 kl pjes 1

and hence either S; € Ne (Cf) or S = {k}.

Assume that S; € Ne(C)). Since Cp and C} are in the same Kruskal cone, ds, =
Ciji—Cpaje and g, = c;’{jl —c;;‘jz. Since 8, > 0 we deduce that dg, > 0. Hence S; € gNe (Cy).
Now, it is not difficult to check that S satisfies condition 1. Hence &g = dg, + o when
|S1] > 1.

Let Sy = {j € No: ¢i; < ¢y} Clearly, {k,l} C S,. Notice that if 0 € Sy then S5 ¢ X.
It is straightforward to check that if 0 ¢ Sy then Sy € X. Besides S; & S and there is no
S e X, S# 5, such that 51 & S & 5.

In case 0 ¢ Sy, it is not difficult to check that S, satisfies condition 2. Hence &y, = dg, —a.

Let F'={S € Ne(Cp):S, CS,0s=10¢}and let F' = {S € Ne(C}): S5, CS,d0s5 =04}
It is not difficult to check that FF = F' (F = F’' = () is also possible) and 51,5y ¢ F. By
Proposition 1.3 we can assume F' = {S3, Sy, ..., Sr} for some I' > 2 (I' = 2 when F = () and
Sy G Syyp forally=3,...,'=1.

Let G = {S € X :5 CS}. Clearly, either G = {S,...,Sr} (when S; € Ne(C})) or
G ={S,,...,5r} (when S; = {k}). Besides, S, & Sy4; forally =1,2,...,I' — 1.

If i ¢ Sr, it is straightforward to check that f; (No, Co) = f; (No, Cp). We assume ¢ € S,
for some v € {1,...,T'}. Let , be the minimum of these ’s. We have two cases:

Case 1: I' = 1. This means Sy ¢ X. Since dg, > 0, we have 0 € S,, which implies
cor < ¢y and also ¢, < ).

Subcase 1.1: S; = {k} = {i}. This implies X = () and hence

fi (No, C) — fi (No, Cy) = ¢y — cg; > 0.
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Subcase 1.2: S; € X. This implies ¢, > ¢}, and hence ¢, = ¢, Thus ¢ — ¢y = «
* Wk
and C§, = Cy . Hence,

fi (No, C) = fi (No, Co)
= b~ (0, —€i (C5,,05,)) — ¢ + (05, — € (C5,, 65,))
= ¢ —chi— (65, +a—e; (C% 05, +a)) + (0s, — € (C5,.0s,))
= ¢ (C8,,0s + ) —e; (C%,05,) >0

where the last inequality comes from applying N DC' to {(Sl, C’;l)} with I' =1, a1 = dg,
and y = a.

Case 2: I' > 1. This means that S, € X and hence 0 ¢ S'. Thus we can take S; = S*
or S; = S'. It is not difficult to check that Sy = S*¥ U St If i € Sy we choose S; such that
i € S1. Thus, 7, # 2 which implies ¢j; = ;.

In this case,

fi (No, Cg) — fi (No, Co)
= == Y (05— 65— (C§,0%5) + ¢ (C3,05)) -

1€5eX

For any S € X\G with i € S, we have C¥ = C¥, which also implies g = d'g. Hence,
fi (NOa C’(/)) - fz (N0> CO)

_ zF: (_51% + 537 +e; (C’g;,(sng> — € (CEV,(SSv))

Y=Y
_ i er (C 0%, ) - i ei (3,005, ) - i (o, - 4.,).
= V=i =i

The last term is zero, because o5, = ds, + @, 0, = ds, — v, and dg = g, otherwise
(remember that v, # 2). Hence,

fi (No, Cp) — fi (No, ) = zF: (Gi (Cfg:, ,Sw>> — zF: (ei (CEV’5SW>> .
=i =i

We now define { (N7, CV)}S:l, a € RL and y € [0, ag] so that e; (ng, 5@) = (C7(d'),al)

1 Ay
and e; (ng’ 557> = ¢;(C7(a),a,) for all 4. Under NDC, this will prove that the above
expression is nonnegative.

Let N' = Sy, C* = Ck., and a1 = dg,. In general, for any v = 2,....,T', N* = S\S,_4,
C7 = (C*) yv, and ay = dg . We also define y = a. Since ¢ = ¢; + a, it is straightforward
to check that o < ap and hence y € [0, as].

Clearly, C§ = C'. Now, we prove that C¢, = C! @q, 40 C* = C? (d/). Let C* = C§, and
CP =Cl @y, 10 C% Clearly, C* = (Cs, + aly)".
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It is straightforward to check that ¢f; = cfj foralli,j € N'and all4,j € N2 Let k' € N!
and k?> € N2. Then,

cilkg = maxC!'+a; +a=maxC' + dg, +a = mir% Cij +
iEN
JEN\N?!

= i+ o= che.

Analogously, Cg, = (Cs; + aly)” = (C" @ay1a C%) Bay—a C° = C? (') . In general, Cg =
(Cs, + aliy)" = C* @ayra C? Bay—a C° Byy ... Da,, C7=C7(d) for all y =3, ..., T.

Similarly, we can prove that 'y = C7 (a) for all v =1,...,T.

Hence, by applying NDC', we have

fi (No, Cg) = fi (No, Co) > 0.

We now prove that f satisfies PM. Under Theorem 2, we know that f satisfies SEP. We
must prove that for each mestp (Ny, Cy) and j € N, f; (No, Co) < fi (N\{j})y.,Co) for all
i € N\{j}. Let (No,Cp) be defined as ¢, = c;y for all i, € N\ {j} and ¢}; = max C;\ (5

for all i € Np\ {j}. Clearly, m (No, C}) = m ((N\ {iHo > (C],V\{j})o) +m ({j}0= (C%j})o)'
Under SEP, f; (No,Cy) = f; ((N\ (e ( ;V\{j})o) for all i € N\ {j}. Given i € N\ {j},
under C'M,

fi (No, Co) < fi (No, Cg) = fi (N\{j})g - Co) = fi (N\ {j})g: Ch) -

We now prove that if f satisfies CM and PM, then f = f¢ for some e satisfying NDC'.
We define e as in the proof of Theorem 2. Namely, for all C* € C*, x € R,, and i € N,

(0 w) = £ (C3le+9) ()

and e; (C*,z) = 0 for all i ¢ N. We already proved (proof of Theorem 2) that e is an
extra-costs correspondence and f = f°.

Hence, we only need to check that e satisfies NDC'. Let {(N7, C’”)}S:1 C C* be a disjoint
sequence with I' > 1, ¢ € N7 with v, # 2, a € RL with a, > maxC"™' — max(C"” for all
v=1,...,'=1and y € [0,az] (or simply y > 0, when I" = 1).

Assume first that [' = 1. We need to prove

e (CY a1 +y) — e (Car) > 0.
Let C' = C*. By definition,

e; (C,a1 +vy) — e (C,a1)
= f (Cg(maxc*—i—m-l-y)) — fi (Cg(maxc*)> —f (Cg(maxc*+a1)> ¥ (C’S(maxc*)>
= fz (Cg(maxC*+a1+y)) _ fz (Cg(max0*+a1)) >0
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where the last inequality comes from the fact that C*(maxc taty) C*(maxc o) and f

satisfy C'M.
Assume now that I' > 1. We need to prove

Z  (C7 (), ;)—Zei(CV(a),a7)20

where a’ = (a1 + y, a2 — y, a3, ...,ar) and C7 (b) = C @y, C* @y, ...y, C forally =1,...,T
and all b € RL.
By definition,

¢; (C, ) = fi (C* @, ({0},0)) — fi (C* @0 ({0},0)).
Under SEP, it is straightforward to check that

f: (€7 (b) @0 ({0},0)) = f: (7 (b) @s,, ({0},0))
forall y =v,+1,..,T" and all b € RL. Now,

> (C7(@)a) = 3IA(CT(@) @y (01,0) = £(C7 (@) &0 ({0},0))]

= fi (CF . ({0},0)) — fi (C7 (a') @0 ({0} ,0))
and
Y e (a),a,) = D [fi(C7(a) @a, ({0},0)) = fi (C7 (a) Bo ({0},0))]
= fi (C" (a) @ar ({0},0)) = fi (C (a) @ ({0} ,0)).
Hence
Y e (C7(a),al) =D e (C7(a),ay) = fi(CV(a) Do ({0},0)) = fi (C (a) @o ({0} ,0))

+/i (CT (d) ®ar. ({0},0)) = fi (CT (a) Bar. ({0},0)) .

Under CM: fz (CF (a/) @af ({0} ’0)) > fz (CF (a/) @a} ({0} ’ 0))

We now prove that f; (C7i (a) &g ({0},0)) = f; (C7i (¢') & ({0},0)). Forvy, =1,C' (a) =
C' (a') = C' and the result holds trivially. Assume 7; > 2. Then, N'U...U N?~! and N
are two separable components in both C7 (a) ®o ({0},0) and C7 (a’) @ ({0} ,0). Besides,
the restriction of C* to N7 coincides in both mecstp. Under SE P, we obtain the result.

Hence,
e (C7(d),al) =Y e (C7(a),a,) > 0. M

24



7.6 Proof of Proposition 3

(1) Using an obligation function o we can arrive at a cost allocation as follows. We compute
a mcst following Kruskal’s algorithm (Kruskal, 1956), which consists in to construct a tree
by sequentially adding arcs with the lowest cost and without introducing cycles. The cost
of each arc selected by Kruskal’s algorithm is divided among the agents who benefit from
adding this arc. Each of these agents pays the difference between her obligation to two
groups, one in which she belonged before the arc was added and the one after. We now
define an obligation rule, f°, formally.

Given a network g we define P (g) = {1} (g)}Zfl) as the partition of Ny in connected
components induced by g. Namely, P (g) is the only partition of Ny satisfying the following
two properties: Firstly, if 7,j € Ty (g), ¢ and j are connected in g. Secondly, if i € T}, j € 17,
and k # [, then ¢ and j are not connected in g. Given a network g, let S (P (g),7) denote
the element of P (g) to which 7 belongs to.

Given an mestp (No, Cp) , let g™l be a tree obtained applying Kruskal’s algorithm to
(No, Cy), and for each p = 1,...,|N|, (i*,j7) is the arc selected by Kruskal’s algorithm at
Stage p and ¢P the set of arcs selected by Kruskal’s algorithm at stages 1,...,p. For each
1 € N, we define the obligation rule associated with the obligation function o as

¢ (No, Co) = Z ciwjo (01 (S (P (¢771) ,3)) — 0i (S (P (g7) ,9)))

where by convention, o; (T) =0if 0 € T.

Tijs et al (2006) prove that f° is well defined, namely, it is independent of the mcst
obtained following Kruskal’s algorithm.

We prove that if f° is an obligation rule, then f° = f¢ where e (C*, z) = zo; (N) for each
(N,C*) and z.

We proceed by induction on the number of agents. If |[N| = 1 the result holds trivially.
Assume that f° = f¢ when |N| < ¢ and we prove it when |N| = q.

Let (Np,Cy) be an mestp. Since f° and f¢ satisfy CM, it is enough to prove that
12 (No, C) = 1 (No, C5).

Let t = {(ms-1, 7r3)}| | be an mest in (No, C) as in Proposition 3.1 of Bergantifios and
Vidal-Puga (2007). Wlthout loss of generality we assume that 74 = s for each s = 1,...,|N|.
We consider two cases.

1. There exists s > 1 such that ¢;_; , > c; | forallr =1,...,|N|. Let S = {1,...,s — 1}.
Under Propositions 3.1 and 3.3 in Bergantinos and Vidal-Puga (2007) we deduce that
m (No, C5) = m (So, Ci) + m ((N\S),,Cq) -
Let 7 € S. Since f° and f¢ satisfy SE P, we deduce that

7 (No, Cg) = 7 (S0, Cg) and fi (No, Cg) = f (S0, Cp) -

By induction hypothesis f? (So, C§) = ff (So, C§) . Hence, f? (No, C§) = ff (No, CF) -
Similarly we can prove that f? (N, C3) = f£ (No, Cg) when i € N\S.
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2. ¢y > ¢ for all 1 = 2,...,|N|. Let @ = ¢f; — max {CLLT}. Let C§* be the

r—1,r
irreducible matrix associated with the tree ¢ and the cost function ¢’ where ¢, = ¢§; —a
for all r =2,...,|N]J.

:C*

and ¢/ M

r—1,r
Since C{" is under the conditions of the previous case, we have that f°(Ny, C) =
f¢(No, CfF) . Thus, it is enough to prove that for all i € N,

fzo (N(),Cg) - flo <N07C(/)*) = fie <N07C(>)k) - fze (Novo(/)*)

Fix i € N. We first compute f? (N, C3) — f2(No, Cff). We can apply Kruskal’s
algorithm to both C§ and C{* in such a way that:

e The arc selected at each stage belongs to ¢t. Namely, for each p = 1,...,|N]|,
(i (C5) , J7 (Cg)) € t and (7 (CF7) , 57 (CF7)) € ¢
e The arc selected at each stage is the same in both problems. Namely, for each
p=1... [N, ((CF), 47 (C5)) = (& (CF7) , 3 (CF))-
e The last arc selected is (0, 1) . Namely, (V1 (Cp) . jIN (Cy)) = (iN(CF) L /N (CF)) =
(0,1).
Thus,

[ (No,C3) = f7 (No, Cf") = 510 (N) = cgy0i (N)
= ao; (N).

We now compute ff (No, C§) — ff (No, Cf) . It is straightforward to check that if S is
a neighborhood of node 7 in C{*, then S is also a neighborhood of 7 in Cj. Besides, N
is the unique neighborhood of ¢ in Cjj which is not a neighborhood of ¢ in C{*. Thus,

fi (No, CF) = [ (No, Cg") = ¢ — (6n — € (O, 0n)) — ¢
It is straightforward to check that o y = . Hence,

i (No, CG) = [ (No, C") = € (Cy, @) = a0; (N).

Using arguments similar to those used above we can prove that if f¢ is associated with
some e as in the statement, then f¢ = f° where o (N) = e (C*, 1) . Notice that, by hypothesis,
o (N) does not depend on C*.

(2) Iis a trivial consequence of part (1) and the definition of optimistic weighted Shapley
rules.

(3) T'is a trivial consequence of part (1) and the definition of the ERO rule. B
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7.7 Proof of Proposition 4

We prove that the extra-cost correspondence e satisfies the N DC' property, which implies,
under Theorem 3, that f€ satisfies CM and PM.

Consider a disjoint sequence {(N7, C”)}gz1 C C*, i € N7 C N with v, # 2, a € R with
a, > maxC' —maxC7 forally =1,...,'—1,and y € [0,as] (y > 0 when I' = 1). We will
prove that

Z e (C7(d),d.) > Z e; (C7 (a),ay).

If I' = 1 the result is straightforward. Assume now that I' > 1. Since a/, = a, when
v 23,

e (C7(d'),d) = /Owof(Nlu...UNV)dx

= /wof (N'U..UN")dz =¢; (C" (a) ,a,)
0

for all v > 3.
In particular, if v; > 3 the inequality holds. Hence, we assume i € N'. We know that
e; (C7(d'),al) =€;(C7(a),a,) for all v > 3. Thus, it is enough to prove that

1 Oy
2 2
Z e (C7(d'),d,) > Z e; (C
=1 =1
We make some computations:
a1ty
e; (CH(d),d)) = / of (N1) dx—/ of (N') da
0 0
€; (02 (a/) aal2) =
e; (C’l (a),a1) =
€ (02 (a),as) =

az2—y

0 NIUN2)d:U—/ of (N'UN?) dx
0

oy N1 dx, and

of (N'UN?)dz.

No\ﬂx

Thus, the inequality holds if and only if

a1+y a2—vy a a
/1 o‘f(Nl)dx—l—/z of(N1UN2)d:c2/10f(N1)d:c+/2of(N1UN2)dx.
0 0 0 0
Equivalently,

a1ty az
/ Of(Nl)de/ of (N'UN?) dx

al a2—yY

which is a particular case of the condition given in (3). W
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