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Abstract 

In the paper, we re-investigate the long run behavior of an adaptive learning process driven 

by the stochastic replicator dynamics developed by Fudenberg and Harris (1992). It is demonstra- 

ted that the Nash equilibrium will be the robust limit of the adaptive learning process as long as it 

is reachable for the learning dynamics in almost surely finite time. Doob’s martingale theory and 

Girsanov Theorem play very important roles in confirming the required assertion. 
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1. INTRODUCTION 

The major goal of the present exploration is to study the limiting characteristic of 

an adaptive learning process driven by the stochastic replicator dynamics pioneered 

by Fudenberg and Harris (1992), extended by Cabrales (2000), Imhof (2005), 

Hofbauer and Imhof (2009), and among others. First, it is argued that the adaptive 

learning process indeed provides us with a local-martingale process due to the 

Girsanov Theorem under certain conditions. That is, the adaptive learning process 

exhibits local-martingale property through transforming the original probability 

measure into a new equivalent probability measure under relatively weak assumptions, 

i.e., the well-known Novikov condition is fulfilled. And this naturally leads us to the 

employment and application of Doob’s martingale theory. Second, it is proved that 

any given Nash equilibrium will be learned in the long run by the players equipped 

with adaptive learning mechanism as long as it is reachable for such kind of replicator 

dynamics in almost surely finite time. And it is believed that this assertion rather 

throws new insights into existing convergence studies on stochastic learning dynamics. 

Last but not least, the global convergence is ensured in the sense of uniform topology 

and the corresponding robustness is also demonstrated under reasonable assumptions. 

 

1.1. Related Literatures 

Many existing literatures are encouraged to study the limiting characteristic of 

the learning process depending on different requirements. For example, some literatu- 

res (see, Canning, 1992; Young, 1993; Kandori et al., 1993) proved the similar 

convergence essentially requiring that the errors or perturbations approach zeros. 

Specifically, Canning (1992) shows that, under certain regularity conditions, the 

stationary distribution of the perturbed process converges to a stationary distribution 

of the unperturbed one. Kandori et al. (1993) show that the stochastic evolutionary 

learning process will converge to a Nash equilibrium when the mistake probability is 

small. In his seminal paper, Young (1993) shows that the adaptive dynamics defined 

by random sampling will converge almost surely to a pure strategy Nash equilibrium 
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when the likelihood of mistakes goes to zero. On the contrary, the present model 

emphasizes the importance of evolutionary drift (see, Binmore and Samuelson, 1999) 

and the stochastic perturbations can be arbitrarily different from zeros except that they 

are controlled in certain regions due to the Girsanov Theorem. And also, the 

corresponding limit can be either a pure strategy Nash equilibrium or a mixed strategy 

Nash equilibrium. 

Moreover, it is broadly known that mixed equilibria might interpreted as the 

limits of some learning processes arising from fictitious play with randomly perturbed 

payoffs in the manner of Harsanyi’s (1973) purification theorem (e.g., Fudenberg and 

Kreps, 1993; Kaniovski and Young, 1995; Benaïm and Hirsch, 1999; Ellison and 

Fudenberg, 2000; Hofbauer and Hopkins, 2005, and among others). Nonetheless, 

there exist some crucial problems that prevent the corresponding convergence (see, 

Jordan, 1993). Benaïm and Hirsch’s (1999) study reveals that there are robust 

parameter values giving probability zero of convergence for Jordan’s 3×2 matching 

game. Both Shapley (1964) and Gaunersdorfer and Hofbauer (1995) provide 

examples in which the stochastic fictitious play as well as the standard fictitious play 

fail to converge. However, it is worth emphasizing that the present assertion can be 

easily extended to include asymmetric games between heterogeneous groups of 

populations and the corresponding global convergence indeed does not depend on the 

choice of payoff structures of the games. 

Rather, the basic idea behind the present framework is in line with the argument 

of Gale et al. (1995), Binmore et al. (1995), Börgers and Sarin (1997), Cabrales (2000) 

and Beggs (2002) that the adaptive or trial-and-error learning process can be 

reasonably approximated by replicator dynamics. And in existing studies, Imhof 

(2005) proves that if the population is in a state sufficiently near to a strict Nash 

equilibrium, then, with probability close to 1, that equilibrium will be actually 

selected by the adaptive learning process driven by the stochastic replicator dynamics 

in the long run. Theorem 4.1 of Imhof (2008) shows that the expected time average 

distance between the stochastic replicator dynamics and a Nash equilibrium may be 

small provided that the payoff matrix is strictly negative definite. And Imhof (2008) 
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provides us with a sufficient condition, which strictly depends on the specification of 

the payoff matrix, under which the stochastic replicator dynamics converge to a strict 

Nash equilibrium almost surely. Moreover, Hofbauer and Imhof (2009) provides us 

with an averaging principle, i.e., the time average of the learning dynamics will 

converge to the unique interior Nash equilibrium of the randomly perturbed game 

almost surely and under certain assumptions. To summarize, one major innovation, 

when compared with the above explorations, is that a unified framework is supplied 

such that either pure strategy Nash equilibrium or mixed strategy Nash equilibrium 

can be selected in the long run under much weaker assumptions than that of existing 

literatures. 

 

1.2. Outlines 

The rest of the paper is organized as follows. Section 2 presents the adaptive 

learning dynamics driven by the stochastic replicator dynamics and also some 

necessary assumptions are supplied. Section 3 demonstrates the global convergence of 

the learning dynamics and the corresponding robustness is confirmed under relatively 

weak assumptions. There is a brief concluding section. All proofs, unless otherwise 

noted in the text, appear in the Appendix. 

 

2. THE MODEL 

Here, and throughout the current investigation, we will focus on an asymmetric 

two-player game, which is canonical in evolutionary game theory, with n  pure 

strategies, and we denote the corresponding payoff matrix by ( )
ij n n

A a  . Naturally, 

for any two sampled players, they enjoy the same strategy space and for each of the 

two players, 
ij

a  represents her payoff from using strategy i  if her opponent 

employs strategy j . As usual, we will study the evolutionary game by employing the 

replicator dynamics, which approximately describes the law of motion of the 

proportions of strategies over any given population. And the population is assumed to 
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be sufficiently large with every member programmed to play one of her pure 

strategies in each period. Now, let ( )
i

Z t  denote the number of i  strategy players at 

time t , and let 
1

( ) ( ) ( )
n

i i jj
X t Z t Z t


   denote the corresponding proportion. Thus, 

 ( )
i

AX t  will be the expected payoff to those individuals playing strategy i  under 

the random matching mechanism and with 1( ) ( ( ),..., ( ))T

nX t X t X t . In what follows, 

following Fudenberg and Harris (1992), Imhof (2005), and Hofbauer and Imhof 

(2009), we will incorporate random perturbations, which is modeled by independent 

Gaussian white noises with intensities 2

1 , … , 2

n , into the game payoffs. Thus, we 

put, 

 ( ) ( ) ( ) ( )
i i i ii

dZ t Z t AX t dt dW t    , 1,2,...,i n .                    (1) 

where, 

1 1

1

1
( ) ( ( ),..., ( )) ( ( ),..., ( ))

( )

T T

n nn

ii

X t X t X t Z t Z t
Z t



 


. 

and also 1( ( ),..., ( )) ( )T

nW t W t W t  denotes an n  dimensional Brownian motion 

defined on the underlying stochastic basis ( , , )
T

   for 0T  . Hence, by 

applying the Itô’s rule to (1), the evolution of the population state ( )X t  is driven by 

the following stochastic replicator dynamics, 

( ) ( ( )) ( ( )) ( )dX t b X t dt C X t dW t  , 0(0)X x .                        (2) 

where, 

2 2

1 1( ) ( ,..., ) ( ,..., )T

n n
b x diag x x xx A diag x          . 

and, 

1 1( ) ( ,..., ) ( ,..., )T

n n
C x diag x x xx diag      . 

for   1
0,1 ; 1

nn

jj
x y y


    , and 0 10 0( ,..., ) int( )T

nx x x   . 

ASSUMPTION 1: The existence and uniqueness of the (strong) solution to the 

SDE given by (2) are ensured. 
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We rewrite (2) as follows, 

 ( ) ( ( )) ( ( )) ( ( )) ( )dX t diag X t F X t dt X t dW t   .                       (3) 

Then, we give, 

ASSUMPTION 2: To ensure that   is invariant, it is supposed that for each x  

 , the drift vector ( ) ( )diag x F x  and the columns 
1( ),..., ( )n

S x S x  of the diffusion 

coefficient matrix ( ) ( ) ( )S x diag x x  are elements of the tangent space T u    

  1
0,1 ; 0

nn

jj
u


  of  . 

Moreover, inspired by the well-known Girsanov Theorem, we directly give, 

ASSUMPTION 3: Here, and throughout the paper, suppose that there is an equiv- 

alent probability measure   on 
T
  such that ( )X t  defines a local-martingale w. 

r. t.  . 

 

3. GLOBAL CONVERGENCE 

In the present section, we are encouraged to study the convergence property of 

the adaptive learning process driven by the stochastic replicator dynamics. Rather, we 

establish the following theorem, 

THEOREM 1 (Global Convergence): Based upon the above constructions and 

assumptions, it is demonstrated that for any given Nash equilibrium, denoted x
   

1( ,..., )T

nx x
  , the adaptive learning process will strongly converge to x

  a.s. in the 

sense of uniform topology, that is, 

2
0

lim sup ( ) 0
T t T

X t x


  
   a.s. 

if we are provided that  ( ) inf 0; ( )t X t x       a.s.. 

PROOF: It follows from Assumption 3 that ( )i iX t x
  defines a local-martingale 

w. r. t.  . And by Assumption 2, 

 ( ) inf 0; ( )N it X t N       a.s. as N  .                    (4) 
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So, ( )i N iX t x    defines a martingale w. r. t.  . Applying Doob’s Martingale 

Inequality implies that, 

0

sup ( ) ( )
i N i i N i

t T

n
X t x X T x

n

 


 

 

            
  , 0  , 0T  .   (5) 

Based upon the assumption  ( ) inf 0; ( )t X t x       a.s., put, 

   ( ) ( ) 0; ( ) ( )B             . 

for 0  . Without loss of any generality, set up, 

     2
( ) ( ) ( ) 0; ( ) ( ) 2k

k
B B          

       . 

Thus, according to Doob’s Optional Sampling Theorem, Assumption 2, the continuity 

of martingale w. r. t. time t  for any given  , and based on the Lebesgue 

Dominated Convergence Theorem, we obtain for  
2

( ) ( )k

k
B   

  , 

0 ( )

limsup sup ( )
k

i N i
k t

X t x
n 

 

  

 
   

 
  

limsup ( ( ) )k

i N i
k

n
X x  






      

( ( ) )i N i

n
X x  


      , 0  . 

by (5). It follows from Fatou’s Lemma that, 

0 ( )

sup ( ) ( ( ) )
i N i i N i

t

n
X t x X x

n 

   


  

 

            
  , 0  . 

i.e., 

0 ( )

limsup sup ( )
i N i

N t

X t x
n 






  

 
   

 
  

limsup ( ( ) ) 0i N i
N

n
X x  


 



      , 0  . 

by (4) and Lebesgue Dominated Convergence Theorem again. Moreover, applying 

Fatou’s Lemma again shows, 

0 ( )

sup ( ) 0
i i

t

X t x
n 






 

 
   

 
 , 0  . 

by (4). This gives rise to, 



 

 8

0 ( )

sup ( ) 1
i i

t

X t x
n 






 

 
   

 
 , 0  . 

which yields, 

0 ( )

sup ( )i i
t

X t x
n 






 
   a.s. 0  .                                 (6) 

Now, we define the supremum norm, 

 1,...,
( ) max ( )i i

i n
X t x X t x

 

 
  . 

 Thus, one may easily obtain, 

2
0 ( )

sup ( )
t

X t x
 



 
  

0 ( )

sup ( )
t

n X t x
 



 
   

 1,...,
0 ( )

sup max ( )
i i

i n
t

n X t x
 



 
   

ˆ ˆ
0 ( )

sup ( )
i i

t

n X t x
 



 
   

n
n

   ,  a.s. 

by (6) and for 0  . Notice the arbitrariness of  , we get,  

2( ) 0 ( )

lim sup ( ) 0
t

X t x
   
 



  
  ,  a.s. 

as required. And hence the proof is complete. ■ 

REMARK 3.1: (i) It is easily seen that the proof of Theorem 1 essentially depends 

on the assumption that  ( ) inf 0; ( )t X t x       a.s. by noting that the local- 

martingale condition is a natural property of the adaptive learning process thanks to 

Girsanov Theorem. Therefore, the economic intuition of Theorem 1 can be concluded 

as follows: one Nash equilibrium can be learned by the players in the long run as long 

as the equilibrium is reachable for the given learning dynamics in almost surely finite 

time. 

(ii) Moreover, it is especially worth emphasizing that if x
  stands for a pure 

strategy Nash equilibrium, then we do have  ( ) inf 0; ( )t X t x       a.s., 

which is demonstrated by Theorem 4.3 of Imhof (2005). That is to say, in this case, 
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Theorem 1 is a natural conclusion internally implied by the current learning 

dynamics. 

 

3.1. Robustness 

Note that (3) can be rewritten as follows, 

( ) ( ) ( ( )) ( ) ( ( )) ( )dX t X t F X t dt X t X t dW t    .                       (7) 

where   denotes the Hadamard product. Now, we introduce, 

( ) ( ) ( ( )) ( ) ( ( )) ( )dX t X t F X t dt X t X t dW t         .                       (8) 

where we have used, 

ASSUMPTION 4: For any 0  , we suppose that, 

22
, ,

sup ( ) ( ) sup ( ) ( )
x x x x

F x F x x x 
   

    
  

   . 

i.e., (8) defines a  perturbation of (7), and   1
0,1 ; 1

nn

jj
y y


      . 

Moreover, we put, 

ASSUMPTION 5: The existence and uniqueness of the (strong) solution to the 

SDE given by (8) are ensured throughout. 

ASSUMPTION 6: To ensure that   is invariant, it is supposed that for each x  

 , the drift vector ( ) ( )diag x F x   and the columns 
1( ),..., ( )n

S x S x    of the diffusion 

coefficient matrix ( ) ( ) ( )S x diag x x     are elements of the tangent space T u     

  1
0,1 ; 0

nn

jj
u


   of  . 

ASSUMPTION 7: Suppose that there exists a constant K   , sufficiently large, 

such that, 

2 2

2 2
sup ( ) sup ( )
x x

F x x K
 

   . 

Accordingly, the following proposition is established, 

PROPOSITION 1: Provided the above constructions and assumptions, and if 

0(0) (0)X X x   , then we have, 
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2

2
0

lim sup ( ) ( ) 0
T t T

X t X t
  

    
  as 0  . 

PROOF: In the Appendix. ■ 

Now, naturally, the following corollary is derived, 

COROLLARY 1 (Robust Convergence): It is clearly asserted that ( )X t  converg- 

es to the Nash equilibrium x
  a.s. and in the sense of uniform topology. 

PROOF: Combining Theorem 1 with Proposition 1 easily confirms Corollary 1. 

And hence the proof is omitted. ■ 

 

4. CONCLUSION 

In the current investigation, our major goal is to analyze the limiting behavior of 

the adaptive learning process driven by the stochastic replicator dynamics pioneered 

by Fudenberg and Harris (1992). First, a local-martingale process is implicitly and 

naturally implied by such kind of learning process under certain weak conditions 

thanks to the Girsanov Theorem. So, the corresponding martingale theory developed 

by Doob can be employed to prove the convergence assertion. Second, the main result 

of the paper asserts that one Nash equilibrium can be learned by the players equipped 

with local-martingale learning mechanism in the long run as long as the Nash equilib- 

rium is reachable for the learning process in almost surely finite time. Finally, it is 

proved that the global convergence conclusion exhibits robustness under relatively 

weak assumptions. 

 

 

APPENDIX: Proof of Proposition 1 

It follows from Assumption 2 and 6 that for  2 p   , 0T  , we have, 

2 2
0 0

sup ( ) sup ( ) 1
pp

t T t T

X t X t
   

           
  ,                           (A.1) 

where by Assumption 1 and 5, 
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   0

0 0

( ) ( ) ( ) ( ) ( ) ( )

t t

X t x X s F X s ds X s X s dW s      . 

   0

0 0

( ) ( ) ( ) ( ) ( ) ( )

t t

X t x X s F X s ds X s X s dW s           . 

Moreover, suppose that 
2 2

( ) ( )X t X t E   for 0t   and E   . Indeed, one 

just need let E 1 . In what follows, we first define the following stopping times, 

 2
inf 0; ( )E t X t E   ,  

2
inf 0; ( )E t X t E    , 0

E E E    . 

By the Young Inequality (see, Higham et al., 2003) and for any 0S  , 

2

2
0

sup ( ) ( )
t T

X t X t
 

   
  

   
2 2

, ,2 2
0 0

sup ( ) ( ) 1 sup ( ) ( ) 1
E E E ET T T or T

t T t T

X t X t X t X t      
   

              
    

     0

2
0 0

220 0

2
sup 1 sup ( ) ( )

E

p

E E T
t T t T

S
X t X t X t X t

p
 

   

               
    

 2
2

21
,

p

p

E E
T or T

S
 




   ,                                   (A.2) 

It follows from (A.1) that, 

   
 

2

2
0

1 1
1 sup ( )

E

p

pE

E T p p p
t T

X
T X t

E E E



 

 

 
         

 
    . 

Similarly,   1 p

E T E   . So, 

      2
,E E E E p

T or T T T
E

             . 

Moreover, we obtain by (A.1), 

 1

22 2
0 0

sup ( ) ( ) 2 sup ( ) ( ) 2
p ppp p

t T t T

X t X t X t X t


   

             
   . 

Hence, (A.2) becomes, 

2

2
0

sup ( ) ( )
t T

X t X t
 

   
  
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    2
2

1
2

0 0

20

2 2( 2)
sup

p

p

E E
pt T

S p
X t X t

p pS E
 





 

        
 .               (A.3) 

By the Cauchy-Schwarz Inequality, we get, 

    2
0 0

2
E E

X t X t     

   
0

0

( ) ( ) ( ) ( )
Et

X s F X s X s F X s ds



          

   
0 2

0
2

( ) ( ) ( ) ( ) ( )
Et

X s X s X s X s dW s



         

   
0

2

2
0

2 ( ) ( ) ( ) ( )
Et

T X s F X s X s F X s ds

  

      

   
0 2

0
2

( ) ( ) ( ) ( ) ( )
Et

X s X s X s X s dW s

 
     


    . 

Taking expectations on both sides, and using Itô’s Isometry, we have for any T  , 

    2
0 0

20

sup
E E

t

X t X t


 
 

     
  

   
0

2

2
0

4 ( ) ( ) ( ) ( )
Et

T X s F X s X s F X s ds

     
   


   

   
0

2

2
0

( ) ( ) ( ) ( )
Et

T X s F X s X s F X s ds

 
  

  


      

   
0

2

2
0

( ) ( ) ( ) ( )
Et

X s X s X s X s ds

 
   

  


  + 

   
0

2

2
0

( ) ( ) ( ) ( )
Et

X s X s X s X s ds

     
  


     

0 0

2 2
2

2 2
0 0

4 ( ) ( ) ( )
E Et t

TK X s X s ds T X s ds

 


           

       
  

    

0 0

2 2
2

2 2
0 0

( ) ( ) ( )
E Et t

K X s X s ds X s ds

 


         

      
  

    
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0

2
2

2
0

4 ( 1) ( ) ( ) ( 1)
Et

T K X s X s ds T T




         

    


  

   
0

2
0 0 2

0 0
20

0

4( 1) sup 4 ( 1)E E
t s

T K X t X t ds T T



  
 

          
 . 

where we have used Assumption 2, 4, 6 and 7. Hence, applying Gronwall’s Inequality 

(see, Higham et al., 2003) implies that, 

     
2

0 0 2

20

sup 4 ( 1)exp 4( 1)
E E

t

X t X t T T T K


  
 

        
 . 

Inserting this into (A.3) leads us to, 

  2
2

1
2

2

2
0

2 2( 2)
sup ( ) ( ) 4 ( 1)exp 4( 1)

p

p

pt T

S p
X t X t T T T K

p pS E






 

        
 . 

Hence, for 0  , we can shoose S  and E  such that, 

12

3

p
S

p



  and 
2

2

2( 2)

3p p

p

pS E





 . 

And for any given 0T  , we put   such that, 

  24 ( 1)exp 4( 1)
3

T T T K
   . 

Thus, for 0  , we obtain, 

2

2
0

sup ( ) ( )
3 3 3t T

X t X t
   

 

       
 . 

Notice the arbitrariness of  , and employ the well-known Levi Lemma gives the 

desired result. And this completes the whole proof. ■ 
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