
Munich Personal RePEc Archive

Performance of lag length selection

criteria in three different situations

Asghar, Zahid and Abid, Irum

Quaid-i-Azam University, Islamabad

April 2007

Online at https://mpra.ub.uni-muenchen.de/40042/

MPRA Paper No. 40042, posted 13 Jul 2012 14:40 UTC



PERFORMANCE OF LAG LENGTH SELECTION CRITERIA IN THREE 

DIFFERENT SITUATIONS 

Zahid Asghar
1
, Irum Abid

2 

 

Abstract: 

Determination of the lag length of an autoregressive process is one of the most difficult 

parts of ARIMA modeling. Various lag length selection criteria (Akaike Information 

Criterion, Schwarz Information Criterion, Hannan-Quinn Criterion, Final Prediction 

Error, Corrected version of AIC) have been proposed in the literature to overcome this 

difficulty. We have compared these criteria for lag length selection for three different 

cases that is under normal errors, under non-normal errors and under structural break by 

using Monte Carlo simulation. It has been found that SIC is the best for large samples 

and no criteria is not useful for selecting true lag length in presence of regime shifts or 

shocks to the system.  
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1.Introduction 

 The topic of order determination has attracted considerable attention in the 

literature of time series and in those areas of research which are closely related to time 

series analysis such as econometrics and statistics. It is rarely the case that the ‘true’ order 

of a process is known. One of the most difficult and delicate part of the time series 

analysis is the selection of the order of the process, based on a finite set of observations, 

since further analysis of that series is based on it. To overcome this difficulty several 

order selection criteria had been proposed in the literature but we don’t have any criterion 

which could be considered as the best criterion in all situations. The current study is an 

effort to make comparison of some of the criteria most widely used in the research for 

order determination. In the present study, behavior of AIC, SIC, FPE, AICC and HQC 

have been studied under normal and non normal errors. Sometimes some external factors 

affect the structure or the generating process of the series and suddenly behavior of the 

series changes. Effect of such structural break on the behavior of lag length selection 

criteria have also been studied with three levels of structural breaks.  Economists usually 

take the view that innovations with certain characteristics push the variables along the 

path which is led out for them. Occasionally, exogenous events which are not member of 

the usual class of innovations hit the economy and change some basic features like the 

mean or variance of the process (Muller). Structural break has important consequences. It 

can effect calibrations used in projections models, it can bias model estimation if not 

properly adjusted for, and it can effect the interpretation of the data (Alexandre, 2001)  



Two of the important issues in constructing a model are: determining the model’s 

lag length and checking the model’s parameter stability. When there is no structural break 

the lag length of an AR process is estimated using any of the criteria discussed above. On 

the other hand when the lag length is known the parameter stability may be tested by 

employing various testing procedures (Yang, 2001). 

In this research, through a simulation study, the performance of lag length 

selection criteria in the presence of a possible break in the mean is studied. This research 

focuses on the mean break mainly. This is because the break in the mean had severe 

impact on the forecast performance on the one hand and its simplicity helps to highlight 

it’s interaction with the lag length selection on the other hand (Yang, 2001). It is 

observed that such structural break has very adverse effect on these selection criteria. We 

have excluded AIC, AICC for lag length selection under structural break because in both 

of these two cases true model should be known.  

Although there are several studies on this issue but it is the first ever study in 

which lag length under structural break is considered. Liew and Khim (2004) have 

carried out this study for both normal and non-normal errors .They found that HQC is the 

best whereas our results show that SIC is the best for large samples. Moreover we have 

also included AICC which was not considered by Liew and Kim(2004). Difference may 

be due to the fact that we have restricted our AR coefficient between -0.5 and 0.5 in order 

to ensure that our process is stationary. Liew and Khim (2004) have selected coefficients 

between -0.8 and 0.8. Liew and Kim’s model was AR(4) where as we have carried it for 

AR(5).  

It is the first ever study in which performance of lag length selection criteria under 

structural break has been studied. In section 2 methodology and simulation procedure are 

discussed. In section 3 results and conclusions are made. 



 

 

2.1 Methodology 

Mathematically an AR(p) process of a series Yt  can be written as 

1 1 2 2 3 3 ..........
t t t t p t p t

y y y y yα α α α ε− − − −= + + + + +                  (1) 

where 1 2 3, , ,.......,
p

α α α α  are autoregressive parameters and 
t
ε  are normally distributed 

random error terms with a zero mean and a finite variance 2σ . To achieve our objective 

we have generated AR processes with p arbitrarily fixed at some value such that in last 

few values an intervention or structural break occurs. Then, by assuming that the true lag 

length is unknown, for each series lag length have been determined using different lag 

length selection criteria.  

There are so many criteria used in the literature to determine the lag length of an AR 

process. Criteria that have been evaluated in this study are as follows: 

1. Akaike’s information criterion: 2ˆln( ) 2
p

AIC n pσ= +  

2. Schwarz information criterion: 2 1ˆln( ) ln( )
p

SIC n n p nσ −= +  

3. Hannan-Quinn criterion: 2 1ˆln( ) 2 ln(ln( ))
p

HQC n n p nσ −= +  

4. Final prediction error: 2 1ˆln( )( )( )
p

FPE n p n pσ −= + −  

5. Corrected version of AIC: 2 1 /
ˆln( )

1 ( 2) /
p

p n
AIC n n

p n
σ +

= +
− +

   

Where n is the sample size and 2 1 2

1

ˆ ( 1)
n

t

t

n pσ ε−

=

= − − ∑ , where 
t
ε  are the model’s 

residuals. Autoregressive parameters 
1 2 3, , ,.......,

p
α α α α with p = 5 have been generated 

independently from uniform distribution with values ranging from - 0.5 to 0.5 inclusively 

and values of parameters are taken in such a way that the sum of these simulated 

autoregressive parameters is less than unity in magnitude to avoid non-stationary AR 

process.  



To achieve our objectives we compute the probability of correct estimation for each of 

these criteria. This probability could be any number between zero and 1. Possible results 

are as follows: 

1. If this probability is 1 then it means that the criterion picks up the true lag length in all 

the cases and therefore is an excellent criterion.  

2. If the probability is close to 1 or greater than 0.5 then it implies that the criterion 

manages to pick up the true lag length in most of the cases and hence is a good 

criterion.  

3. If the probability is close to zero or less than 0.5 then it mean that the criterion fails to 

select the true lag length in most of the cases therefore is not a good criterion.  

4. If this probability is zero it implies that criterion fails to pick up the true lag length in 

all the cases and hence is poor criteria.  

A criterion under estimate the true lag length if it picks up a lag length which is lower 

than the true lag length and if it selects a lag length which is greater than the true lag 

length then it over estimates the lag length. Since we want to study the behavior of all 

these criteria, therefore, along with the cases of correct estimation we also observe the 

selected lag length of all these criteria in all the cases to compute the probability of under 

estimation and over estimation.  

2.2 Simulation Procedure 

 Our simulation procedure consists of three major phases. At the first phase we 

generate a series from an AR process. At the second phase the autoregressive lag lengths 

of the simulated series have been selected. Third phase assesses the performance of the 



lag length selection criteria. Steps involved in the simulation procedure for each 

combination of sample size and AR lag length p are as follows: 

1. Independently generate random numbers 1 2, ,...,
p

α α α  from uniform distribution in 

the interval (-0.5,0.5) such that 

1 2 3 ....... 1
p

α α α α+ + + + =  

      Where p = 5 

2. Generate a series of random numbers of size 3n  

• From standard normal distribution to achieve our first objective 

• From standard normal distribution with a structural break in last (n/2) 

observations for our second objective. 

• From standard normal distribution with error term autoregressive in nature to 

achieve third objective 

And now denote it by 
t
ε . 

3. Generate a series 
t

y of size 3n through the following AR process 

   1 1 2 2 3 3 ..........
t t t t p t p t

y y y y yα α α α ε− − − −= + + + + +  

     with 1 2 3, , ,.......,
p

α α α α  obtained in step1. Initialize the starting value, yo = 0.  

4. Discard the first 2n observations to minimize the effect of the initial value                 

5. Now use each of the selection criteria to determine the autoregressive lag length for 

the last n observations generated in step3.  

6. Repeat step 1 to step 6 B times where B is 100000 in this study. 

7. Now compute the probabilities of  

• Correct estimate = ( no. of times p̂  = p ) / B 



• Under estimate = ( no. of times p̂  < p ) / B 

• Over estimate = ( no. of times p̂  > p ) / B 

Repeat step1 to step 7 with p = 5 

The error term is generated from normal distribution N(0,1) and for non normal 

errors we have adopted the following procedure Error term has been generated through 

  
t t t

zε σ=  

where 
t

z  is standard normal variable and  

2

0

1

q

t i t i

i

σ α α ε −
=

= +∑  

Error term has been generated for 2,3q = . '
i

sα  are random numbers generated through 

uniform distribution in the region (0,1) . The effect of ARCH errors is studied for 

different lag lengths and sample sizes.  

Structural break in the second half of the values i.e. last (n / 2) values of error term are 

generated through N(µ , 1) with µ = 1, 2, 3. We have simulated data sets for various 

sample sizes, n: 30, 60, 120, 240, 480 and 960. To study the behavior of all these criteria 

probability of correct estimation, under estimation and over estimation has been 

computed for each case. . All these simulation experiments are carried out by using “R” 

and the program can be provided on request. 

3. Results 

 

According to our results all the criteria estimate the true lag length more than half of the 

times for all sample sizes and at all lag lengths. So long as the sample size is concerned, 

performance of all these criteria improves with an increase in the sample size. For n = 30, 

although AIC and FPE have the highest probability of correct estimation but all other 

criteria also perform very well. For sample size equal to 60, probability of correct 

estimation for HQC is highest but AICc and SIC also has probability of correct 



estimation close to that of HQC. For large sample size (120 or greater) performance of 

SIC is the best. This shows that AIC and FPE are efficient but not asymptotically 

consistent which matches with that of the results of Shibata (1976) where as SIC, AICc 

and HQC are asymptotically consistent criteria. Probability of under estimation is highest 

for SIC which is less than 0.35 for all sample sizes and AICc and FPE has least 

probability of under estimation which is less than 0.20 for all sample sizes. All the 

criteria has highest probability of under estimation for small sample i.e. 30 and as the 

sample size increases probability of  under estimation decreases rapidly and becomes 

zero for samples equal to or greater than 240. As far as probability of over estimation is 

concerned it is low for all criteria and for all sample sizes which is less than 0.20. AIC 

and FPE has highest probability of over estimation which is between 0.175 to 0.195 and 

SIC has the least probability of over estimation. AICc and HQC lie between these two 

extremities in respect of probability of under estimation and over estimation.  

These results are almost similar to a study carried out by Liew (2004) in which he 

compared five lag length selection criteria AIC, SIC, FPE, HQC and BIC with true lag 

length fixed at 4. According to his results for small sample size (60 or less) AIC and FPE 

has highest probability of correct estimation and for large sample (greater than 60) HQC 

has the best performance. In our case results for SIC are slightly better than HQC.  

It is observed that such structural break has very adverse effect on these selection criteria. 

From our results it is clear that if there is very small change in the generating process 

then the results of small samples (less than or equal to 60) are effected more as compared 

to the results of large samples (greater than 60). HQC has the best performance for 

sample size equal to 120 and for sample size equal to or greater than 240 SIC has better 

performance than all other criteria. Now if we increase the change in the generating 

process then performance of FPE becomes poor no matter how big the sample size is, 



HQC also perform poorly for all sample sizes except for sample size equal to 960. Here 

also SIC performs better but for the sample size greater than 240. Now if we further 

increase the change in the generating process, the performance of all the criteria becomes 

very poor even for the sample size as big as 960. Even SIC performs poorly with highest 

probability of correct estimation of around 0.10 which is very low. 

  

 

Table 1.1: Probabilities of Correct Estimation for AR(5) 

Sample 

size 

Simulation 

size 
AIC SIC FPE AICC HQC 

1000 0.533 0.471 0.539 0.515 0.524 

5000 0.5312 0.456 0.5334 0.5067 0.5158 30 

10000 0.5310 0.4554 0.5323 0.5021 0.5146 

1000 0.769 0.740 0.771 0.779 0.779 

5000 0.7626 0.745 0.7638 0.7778 0.7782 

 

60 

 10000 0.7640 0.7405 0.7656 0.7760 0.7766 

1000 0.896 0.954 0.896 0.935 0.946 

5000 0.8712 0.9466 0.8718 0.917 0.929 120 

10000 0.8900 0.9449 0.8910 0.9019 0.9120 

1000 0.866 0.983 0.866 0.945 0.952 

5000 0.8510 0.9770 0.8510 0.9410 0.9510 240 

10000 0.8591 0.9715 0.8591 0.9394 0.9499 

1000 0.886 0.993 0.886 0.950 0.959 

5000 0.8845 0.9923 0.8845 0.9467 0.9582 480 

10000 0.8857 0.9922 0.8857 0.9426 0.9540 

1000 0.916 0.995 0.916 0.959 0.969 

5000 0.900 0.9932 0.900 0.9555 0.9676 960 

10000 0.9070 0.9929 0.9070 0.9503 0.9659 

 

Table 1.2: Probabilities of Under Estimation for AR(5) 

Sample 

size 

Simulation 

size 
AIC SIC FPE AICC HQC 

1000 0.329 0.476 0.331 0.400 0.373 

5000 0.3308 0.488 0.3346 0.4146 0.381 30 

10000 0.3283 0.4902 0.3329 0.4202 0.3813 

1000 0.100 0.222 0.100 0.185 0.147 

5000 0.097 0.221 0.0976 0.1690 0.1408 

 

60 

 10000 0.0990 0.2246 0.0999 0.1743 0.1446 

120 1000 0.004 0.031 0.004 0.025 0.010 



5000 0.007 0.0334 0.007 0.0269 0.0142 

10000 0.003 0.0339 0.003 0.0298 0.0130 

1000 0 0 0 0 0 

5000 0 0 0 0 0 240 

10000 0 0 0 0 0 

1000 0 0 0 0 0 

5000 0 0 0 0 0 480 

10000 0 0 0 0 0 

1000 0 0 0 0 0 

5000 0 0 0 0 0 960 

10000 0 0 0 0 0 

 

Table 1.3: Probabilities of Over Estimation for AR(5) 

Sample 

size 

Simulation 

size 
AIC SIC FPE AICC HQC 

1000 0.138 0.053 0.130 0.085 0.103 

5000 0.138 0.056 0.132 0.0787 0.1032 30 

10000 0.1407 0.0544 0.1348 0.0777 0.1041 

1000 0.131 0.038 0.129 0.036 0.075 

5000 0.1404 0.0332 0.1386 0.0532 0.081 

 

60 

 10000 0.1370 0.0349 0.1345 0.0497 0.0788 

1000 0.100 0.015 0.100 0.04 0.044 

5000 0.1212 0.02 0.1206 0.0561 0.0568 120 

10000 0.107 0.0212 0.106 0.0683 0.075 

1000 0.134 0.017 0.134 0.055 0.048 

5000 0.149 0.023 0.149 0.059 0.049 240 

10000 0.1409 0.0285 0.1409 0.0606 0.0501 

1000 0.114 0.007 0.114 0.05 0.041 

5000 0.1155 0.0077 0.1155 0.0533 0.0418 480 

10000 0.1143 0.0078 0.1143 0.0574 0.046 

1000 0.084 0.005 0.084 0.041 0.031 

5000 0.1 0.0068 0.1 0.0445 0.0324 960 

10000 0.093 0.0071 0.093 0.0497 0.0341 



Fig. 5.10: Graph of correct estimation for  AR(5)
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AR(5) Under Structural Breaks 

Table 1.4: Probabilities of Correct Estimation AR(5) 

Sample 

Size 
 SIC FPE HQC 

µ = 0 0.471 0.539 0.524 

µ = 1 0.206 0.293 0.275 

µ = 2 0.014 0.031 0.022 
30 

µ = 3 0.012 0.019 0.015 

µ = 0 0.740 0.771 0.779 

µ = 1 0.445 0.477 0.493 

µ = 2 0.017 0.024 0.023 

 

60 

 
µ = 3 0.011 0.006 0.008 

µ = 0 0.954 0.896 0.946 

µ = 1 0.798 0.663 0.767 

µ = 2 0.104 0.035 0.068 
120 

µ = 3 0 0 0 

µ = 0 0.983 0.866 0.952 

µ = 1 0.950 0.763 0.884 

µ = 2 0.414 0.075 0.193 
240 

µ = 3 0 0 0 



µ = 0 0.993 0.886 0.959 

µ = 1 0.980 0.808 0.932 

µ = 2 0.523 0.132 0.301 
480 

µ = 3 0 0 0 

µ = 0 0.995 0.916 0.969 

µ = 1 0.984 0.854 0.952 

µ = 2 0.651 0.245 0.416 
960 

µ = 3 0 0 0 

 

 

AR(5) with ARCH Errors 

Table 5.31: Results of AR(5) with ARCH(2) Errors 

Sample 

Size 
Probabilities AIC SIC FPE 

 

AICC 

 

HQC 

Correct 0.530 0.467 0.532 0.521 0.522 

Under 0.327 0.473 0.331 0.421 0.372 30 

Over 0.143 0.060 0.137 0.058 0.106 

Correct 0.728 0.710 0.730 0.747 0.744 

Under 0.116 0.243 0.116 0.140 0.159 

 

60 

 Over 0.156 0.047 0.154 0.113 0.097 

Correct 0.818 0.917 0.818 0.838 0.889 

Under 0.014 0.045 0.014 0.016 0.022 120 

Over 0.168 0.038 0.168 0.146 0.089 

Correct 0.828 0.968 0.829 0.837 0.926 

Under 0.001 0.004 0.001 0.001 0.001 240 

Over 0.171 0.028 0.170 0.162 0.073 

Correct 0.826 0.979 0.826 0.832 0.914 

Under 0 0 0 0 0 480 

Over 0.174 0.021 0.174 0.168 0.086 

Correct 0.800 0.959 0.800 0.811 0.909 

Under 0 0 0 0 0 960 

Over 0.200 0.041 0.200 0.189 0.091 

 

Table 5.32: Results of AR(5) with ARCH(3) Errors 

Sample 

Size 
Probabilities AIC SIC FPE 

 

AICC 

 

HQC 

Correct 0.502 0.436 0.511 0.466 0.498 30 

Under 0.332 0.492 0.337 0.461 0.382 



Over 0.166 0.072 0.152 0.073 0.120 

Correct 0.696 0.688 0.696 0.718 0.706 

Under 0.130 0.253 0.132 0.158 0.181 

 

60 

 Over 0.174 0.059 0.172 0.124 0.113 

Correct 0.752 0.856 0.752 0.773 0.815 

Under 0.028 0.065 0.028 0.030 0.050 120 

Over 0.220 0.079 0.220 0.197 0.135 

Correct 0.694 0.892 0.694 0.708 0.823 

Under 0.002 0.014 0.002 0.002 0.004 240 

Over 0.304 0.094 0.304 0.290 0.173 

Correct 0.655 0.901 0.655 0.663 0.792 

Under 0 0 0 0 0 480 

Over 0.345 0.099 0.345 0.337 0.208 

Correct 0.613 0.868 0.613 0.635 0.759 

Under 0 0 0 0 0 960 

Over 0.387 0.132 0.387 0.365 0.241 
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