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Abstract

We study bootstrap methods for statistics that are a function of multivariate high frequency
returns such as realized regression coefficients and realized covariances and correlations. For these
measures of covariation, the Monte Carlo simulation results of Barndorff-Nielsen and Shephard
(2004) show that finite sample distortions associated with their feasible asymptotic theory approach
may arise if sampling is not too frequent. This motivates our use of the bootstrap as an alternative
tool of inference for covariation measures.

We consider an i.i.d. bootstrap applied to the vector of returns. We show that the finite sample
performance of the bootstrap is superior to the existing first-order asymptotic theory. Nevertheless,
and contrary to the existing results in the bootstrap literature for regression models subject to
heteroskedasticity in the error term, the Edgeworth expansion for the i.i.d. bootstrap that we
develop here shows that this method is not second order accurate. We argue that this is due to the
fact that the conditional mean parameters of realized regression models are heterogeneous under
stochastic volatility.
Keywords: Realized regression, realized beta, realized correlation, bootstrap, Edgeworth expan-
sions.

1 Introduction

Realized statistics based on high frequency returns have become very popular in financial economics.

Realized volatility is perhaps the most well known example, providing a consistent estimator of the

integrated volatility under certain conditions, including the absence of microstructure noise (see Jacod

(1994), Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002) and Andersen, Bollerslev,

Diebold and Labys (2003)). Its multivariate analogue is the realized covariance matrix, defined as

the sum of the outer product of the vector of high frequency returns. Two economically interesting
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Parts of this paper were written while Gonçalves was visiting the Banco de Portugal, Lisboa, and the Finance department
at Stern Business School.

†Economics Department, Concordia University, 1455 de Maisonneuve Blvd. West, H 1155, Montreal, Quebec, Canada
H3G 1M8. Tel: (514) 848-2424 ext. 3479. Email: p.dovonon@gmail.com.
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functions of the realized covariance matrix are the realized correlation and the realized regression

coefficients. In particular, realized regression coefficients are obtained by regressing high frequency

returns for one asset on high frequency returns for another asset. When one of the assets is the market

portfolio, the result is a realized beta coefficient. A beta coefficient measures the asset’s systematic

risk as assessed by its correlation with the market portfolio. Recent examples of papers that have

obtained empirical estimates of realized betas include Andersen, Bollerslev, Diebold and Wu (2005,

2006), Campbell, Sunderam and Viceira (2009), and Viceira (2007).

Recently, Barndorff-Nielsen and Shephard (2004) (henceforth BN-S(2004)) have proposed an asymp-

totic distribution theory for realized covariation measures based on multivariate high frequency returns.

Their simulation results show that asymptotic theory-based confidence intervals for regression and cor-

relation coefficients between two assets returns can be severely distorted if the sampling horizon is not

small enough. To improve the finite sample performance of their feasible asymptotic theory approach,

BN-S (2004) propose the Fisher-z transformation for realized correlation. This analytical transforma-

tion does not apply to realized regression coefficients, which in particular can be negative and larger

than one in absolute value.

In this paper we propose bootstrap methods for statistics based on multivariate high frequency

returns, including the realized covariance, the realized regression and the realized correlation coeffi-

cients. Our aim is to improve upon the first order asymptotic theory of BN-S (2004). We consider

an i.i.d. bootstrap applied to the vector of realized returns. Gonçalves and Meddahi (2009) have re-

cently applied this method to realized volatility in the univariate context. They also proposed a wild

bootstrap for realized volatility with the motivation that intraday returns are (conditionally on the

volatility path) independent but heteroskedastic when log prices are driven by a stochastic volatility

model. In this paper we focus only on the i.i.d. bootstrap for three reasons. First, the results in

Gonçalves and Meddahi (2009) show that the i.i.d. bootstrap dominates the wild bootstrap in Monte

Carlo simulations even when volatility is time varying. Second, the i.i.d. bootstrap is easier to apply

than the wild bootstrap: the wild bootstrap requires choosing an external random variable used to

construct the bootstrap data whereas the i.i.d. bootstrap does not involve the choice of any tuning pa-

rameter. Third, the i.i.d. bootstrap is a natural candidate in the context of realized regressions driven

by heteroskedastic errors. Indeed, the i.i.d. bootstrap applied to the vector of returns corresponds to a

pairs bootstrap, as proposed by Freedman (1981). His results show that the pairs bootstrap is robust

to heteroskedasticity in the error term of cross section regression models. Mammen (1993) shows

that the pairs bootstrap is not only first order asymptotically valid under heteroskedasticity in the

error term, but it is also second-order correct (i.e. the error incurred by the bootstrap approximation

converges more rapidly to zero than the error incurred by the standard normal approximation).

We can summarize our main contributions as follows. We show the first order asymptotic validity

of the i.i.d. bootstrap for estimating the distribution function of the realized covariance matrix and

smooth functions of it such as the realized covariance, the realized regression and the realized corre-
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lation coefficients. Our simulation results show that the bootstrap outperforms the feasible first order

asymptotic theory of BN-S (2004). For the realized regression estimator, we develop an Edgeworth

expansion of the i.i.d. (or pairs) bootstrap distribution that allows us to study the ability of this

method to provide an asymptotic refinement over the distribution theory of BN-S (2004). We focus on

the realized regression test statistic because existing results in the statistics literature (see Mammen

(1993)) suggest that the pairs bootstrap may be second order correct in this case even under stochastic

volatility. This is not the case for the two other statistics (covariance and correlation coefficients),

where the i.i.d. bootstrap cannot be expected to provide second order refinements due to the fact

that it does not replicate the conditional heteroskedasticity in the data. Thus, we do not analyze their

higher order properties in this paper. A wild bootstrap could be used in this case, as in Gonçalves

and Meddahi (2009).

Contrary to our expectations based on the existing theory for the pairs bootstrap in the statistics

literature, we show that the pairs bootstrap does not provide an asymptotic refinement over the stan-

dard first order asymptotic theory in the context of realized regressions. We contrast our application of

the pairs bootstrap to realized regressions with the application of the pairs bootstrap in standard cross

section regressions. We show that there is a main difference between these two applications, namely

the fact that the parameters describing the conditional mean high frequency returns model (i.e. the

conditional mean of the high frequency returns of one asset conditional on the high frequency returns

of another asset) are heterogeneous. This implies that the score of the underlying realized regression

model is heterogeneous and does not have mean zero (although the mean of the sum of the scores is

zero). This heterogeneity implies that the standard Eicker-White heteroskedasticity robust variance

estimator is not consistent in the realized regression context, which justifies the need for the more

involved variance estimator proposed by BN-S (2004). The pairs bootstrap variance coincides with

the Eicker-White robust variance estimator and therefore it does not provide a consistent estimator of

the variance of the scaled average of the scores. This is in contrast with the results of Freedman (1981)

and Mammen (1993), where the score has mean zero by assumption. Nevertheless, the pairs bootstrap

is first order asymptotically valid when applied to a bootstrap t-statistic which is studentized with a

variance estimator that is consistent for the population bootstrap variance of the scaled average of the

scores. Because the bootstrap scores have mean zero, the Eicker-White robust variance estimator can

be used for this effect. This implies that the bootstrap statistic is not of the same form as the statistic

based on the original data, which explains why we do not get second order refinements for the pairs

bootstrap in our context.

An important characteristic of high frequency financial data that our theory ignores is the presence

of microstructure effects: prices are observed with contamination errors (the so-called noise) due

to the presence of bid-ask bounds, rounding errors, etc, and prices are non-synchronous, i.e., the

prices of two assets are often not observed at the same time, leading to the well known Epps effect.

The first problem is well addressed by the literature in the univariate context, in particular, Zhang,
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Mykland, and Ait-Sahalia (2005), Zhang (2010), and Barndorff-Nielsen, Hansen, Lunde and Shephard

(2008a) provide consistent estimators of the integrated volatility. Likewise, Hayashi and Yoshida

(2005) provide a consistent estimator of the covariation of two assets when they are non-synchronous,

but their analysis rules out the presence of noise. Recently, Mykland (2010) provides a consistent

estimator of the variance of the Hayashi and Yoshida (2005) covariance estimator, thus allowing

for feasible asymptotic inference. Less is known when the two effects are present; see however the

analysis in Zhang (2010), Griffin and Oomen (2006), Voev and Lunde (2007), and more recently,

Barndorff-Nielsen, Hansen, Lunde and Shephard (2008b). Another feature that our theory ignores is

the possible presence of jumps and co-jumps. This is a difficult problem that the literature has only

started recently to address (see Jacod and Todorov (2008), Bollerslev and Todorov (2010) and Gobbi

and Mancini (2008)).

The bootstrap methods that we propose in this paper are not robust to the presence of microstruc-

ture noise (nor jumps) and apply only to synchronously observed multivariate returns. By abstracting

from these complications, we can focus on the realized multivariate volatility measures proposed by

BN-S (2004). These are very simple to compute and are often used as meaningful measures of covari-

ation in applied work using moderate sampling frequencies (such as 30 or 15-minute returns, where

the market microstructure noise and the Epps effect are less pronounced). Because this amounts to

using a small to moderate sample size, the quality of the asymptotic approximations is less reliable,

and we expect the bootstrap (in particular, the method we propose here) to be more useful in this

empirically relevant case.

The remainder of this paper is organized as follows. In Section 2, we introduce the setup, review the

existing first order asymptotic theory and state regularity conditions. In Section 3, we introduce the

bootstrap methods and establish their first-order asymptotic validity for the three statistics of interest

in this paper under the regularity conditions stated in Section 2. Section 4 contains a Monte Carlo

study that compares the finite sample properties of the bootstrap with the feasible asymptotic theory

of BN-S (2004). Section 5 provides a detailed study of the pairs bootstrap for realized regressions.

We first revisit the first order asymptotic theory of the realized regression estimator, comparing the

standard Eicker-White robust variance estimator with the more involved estimator of the variance

proposed by BN-S (2004). We then contrast the theoretical properties of the pairs bootstrap, in

particular its asymptotic variance, with the properties of the pairs bootstrap in a standard cross

section regression. We also discuss the second order accuracy of this bootstrap method based on the

Edgeworth expansions that we develop here. Section 5 contains one empirical application and Section

6 concludes. Appendix A contains the tables and figures. Appendix B contains the proofs.

A word on notation. In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and V ar∗)

denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

conditional on a realization of the original time series. In addition, letting h denote the sampling

horizon, for a sequence of bootstrap statistics Z∗
h, we write Z∗

h = oP ∗ (1) in probability, or Z∗
h →P ∗

0,
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as h → 0, in probability, if for any ε > 0, δ > 0, limh→0 P [P ∗ (|Z∗
h| > δ) > ε] = 0. Similarly, we

write Z∗
h = OP ∗ (1) as h → 0, in probability if for all ε > 0 there exists a Mε < ∞ such that

limh→0 P [P ∗ (|Z∗
h| > Mε) > ε] = 0. Finally, we write Z∗

h →d∗ Z as h → 0, in probability, if conditional

on the sample, Z∗
h weakly converges to Z under P ∗, for all samples contained in a set with probability

converging to one.

2 Setup and statistics of interest

2.1 The setup

Let p (t), for t ≥ 0, denote the log-price of a q dimensional vector of assets. We assume that p (t) is

defined on some filtered probability space
(

Ω,F , (Ft)t≥0 , P
)

such that

p (t) = p (0) +

∫ t

0
α (u) du+

∫ t

0
Θ(u) dWu, (1)

where W is a q dimensional vector of independent Brownian motions, α is a q dimensional process

whose elements are predictable and has locally bounded sample paths, and the spot covolatility process

q × q dimensional matrix Θ has elements which have càdlàg sample paths.

Given a sampling horizon h, we assume that we can compute 1/h equally spaced intraday returns

yi = p (ih) − p ((i− 1)h) =

∫ ih

(i−1)h
α (u) ds+

∫ ih

(i−1)h
Θ(u) dWu, i = 1, . . . , 1/h,

where we will let yki to denote the i-th intraday return on asset k, k = 1, . . . , q.

The parameters of interest in this paper are functions of the elements of the integrated covariance

matrix measured over a fixed time interval [0, 1] (which could represent a day, a month or a quarter,

for instance) and defined as Γ ≡
∫ 1
0 Σ (u) du, where we let Γkl denote the element (k, l) of Γ. When

k = l, we write Γk = Γkk.

A consistent estimator of Γ (as h → 0) is the realized covariance matrix defined as Γ̂ =
∑1/h

i=1 yiy
′
i.

The l-th diagonal element of Γ̂ is the realized volatility of asset l, whereas its (k, l)-th element is the

realized covariance between the returns on assets l and k.

Under (1) and given our assumptions on α and Θ (see e.g. Jacod and Protter (1998)), we have

that
√
h−1

(

vech
(

Γ̂
)

− vech (Γ)
)

→st MN (0, V ) ,

where →st MN denotes stable convergence to a mixed Gaussian distribution, vech
(

Γ̂
)

denotes the

vector that stacks the lower triangular elements of the columns of the matrix Γ̂ into a vector, and V is

the asymptotic conditional variance of vech
(

Γ̂
)

. Specifically, following BN-S (2004), Remark 5 (ii),

V = LΩL′,

where L is the elimination matrix such that vech (yiy
′
i) = Lvec (yiy

′
i) and Ω is a q2 × q2 array with
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elements

Ω =

∫ 1

0
{Σkk′ (u)Σll′ (u) + Σkl′ (u) Σlk′ (u) du}k,k′,l,l′=1,...,q .

BN-S (2004) propose the following consistent estimator of V :

V̂ = h−1

1/h
∑

i=1

xix
′
i −

1

2
h−1

1/h−1
∑

i=1

(
xix

′
i+1 + xi+1x

′
i

)
,

where xi = vech (yiy
′
i) (see Corollary 2 of BN-S (2004), whose extension to the more general model

assumed here can be obtained by applying Theorem 2.1 of Barndorff-Nielsen, Graversen, Jacod, Podol-

skij and Shephard (2006) (henceforth BNGJPS (2006)). Thus,

Th ≡ V̂ −1/2
√
h−1

(

vech
(

Γ̂
)

− vech (Γ)
)

→st N
(
0, Iq(q+1)/2

)
, (2)

where Iq(q+1)/2 is a q (q + 1) /2 dimensional identity matrix.

As BN-S (2004) remark, V̂ is a substantially different estimator than that used by Barndorff-

Nielsen and Shephard (2002) in the univariate context, in which case letting xi = y2i , it corresponds

to

V̂ = h−1

1/h
∑

i=1

y4i − h−1

1/h−1
∑

i=1

y2i y
2
i+1,

as opposed to 2
3

∑1/h
i=1 y

4
i , the estimator proposed by BN-S (2002). The main feature of notice is

the presence of lags of returns in the second piece. One of our contributions is to provide a new

interpretation for this estimator in the context of the realized regression estimator (see Section 5.1).

2.2 The statistics of interest

In this paper, we focus on three standard measures of dependence between two assets returns yk and

yl. One measure is the realized covariance between yl and yk given by Γ̂lk, the (l, k)-th element of Γ̂.

The other two measures are the realized regression coefficient from regressing yli on yki,

β̂lk =
Γ̂kl

Γ̂k

,

which consistently estimates βlk = Γkl
Γk

, and the realized correlation coefficient,

ρ̂lk =
Γ̂kl

√

Γ̂kΓ̂l

,

which estimates ρlk = Γkl√
ΓkΓl

.

A distribution theory for each of these measures is readily available, given that the convergence in

(2) is stable and we can apply the delta method for stable convergence (see e.g. Podolskij and Vetter
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(2010)). In particular, for the realized covariance measure, we have that

TΓ,h ≡

√
h−1

(

Γ̂lk − Γlk

)

√

V̂Γ

→d N (0, 1) ,

where

V̂Γ = h−1

1/h
∑

i=1

y2kiy
2
li − h−1

1/h−1
∑

i=1

ykiyliyk,i+1yl,i+1,

is a consistent estimator of VΓ.

Similarly, for the realized regression,

Tβ,h ≡
√
h−1(β̂lk − βlk)

√

V̂β

→d N (0, 1) ,

where

V̂β = Γ̂−2
k h−1ĝβ,

with ĝβ =
∑1/h

i=1 x
2
βi −

∑1/h−1
i=1 xβixβ,i+1, and xβi = yliyki − β̂lky

2
ki = yki

(

yli − β̂lkyki

)

.

For the realized correlation, the t-statistic is

Tρ,h ≡
√
h−1(ρ̂lk − ρlk)

√

V̂ρ

→d N (0, 1) ,

where

V̂ρ =
(

Γ̂lΓ̂k

)−1
h−1ĝρ,

with ĝρ =
∑1/h

i=1 x
2
ρi −

∑1/h−1
i=1 xρixρ,i+1, xρi = yki(yli − β̂lkyki)/2 + yli(yki − β̂klyli)/2, and β̂kl =

∑1/h
i=1 ykiyli/

∑1/h
i=1 y

2
li.

3 The bootstrap for realized covariation measures

Our bootstrap method consists of resampling the vector of returns yi in an i.i.d. fashion from the set

{yi : i = 1, . . . , 1/h}. Thus, if Ii is i.i.d. on {1, . . . , 1/h} , we let y∗i = yIi for i = 1, . . . , 1/h.

The bootstrap realized covariance matrix is Γ̂∗ =
∑1/h

i=1 y
∗
i y

∗′
i . Letting x∗i = vech (y∗i y

∗′
i ), we can

write
√
h−1vech

(

Γ̂∗
)

=
√
h−1

∑1/h
i=1 x

∗
i . It is easy to show that E∗

(

vech
(

Γ̂∗
))

= vech
(

Γ̂
)

. Similarly,

V ∗ = V ar∗
(√

h−1vech
(

Γ̂∗
))

= h−1

1/h
∑

i=1

xix
′
i −





1/h
∑

i=1

xi









1/h
∑

i=1

xi





′

.

We can show that

V ∗ →P V +

∫ 1

0
vech (Σ (u)) vech (Σ (u))′ du−

(∫ 1

0
vech (Σ (u)) du

)(∫ 1

0
vech (Σ (u)) du

)′
,

which is not equal to V (one exception is when Σ (u) = Σ for all u). Although V ∗ does not consistently

estimate V , the i.i.d. bootstrap is still asymptotically valid when applied to the following studentized
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statistic,

T ∗
h ≡ V̂ ∗−1/2

√
h−1

(

vech
(

Γ̂∗
)

− vech
(

Γ̂
))

,

where

V̂ ∗ = h−1

1/h
∑

i=1

x∗i x
∗′
i −





1/h
∑

i=1

x∗i









1/h
∑

i=1

x∗i





′

is a consistent estimator of V ∗. The following theorem states formally these results.

Theorem 3.1 Suppose (1) holds. Then, as h → 0, (a) V̂ ∗ − V ∗ P ∗

→ 0, in probability, and (b)

supx∈Rq(q+1)/2 |P ∗ (T ∗
h ≤ x)− P (Th ≤ x)| → 0 in probability.

The statistics of interest in this paper can be written as smooth functions of the realized covariance

matrix. The following theorem proves that the i.i.d. bootstrap is first order asymptotically valid when

applied to smooth functions of the (appropriately centered and studentized version of ) the vectorized

realized covariance matrix.

Let f : Rq(q+1)/2 → R denote a real valued function with continuous derivatives, and let the q × 1

vector-valued function ∇f denote its gradient. We suppose that ∇f (vech (Γ)) is nonzero for any

sample path of Γ. The statistic of interest is defined as

Tf,h =

√
h−1

(

f
(

vech
(

Γ̂
))

− f (vech (Γ))
)

√

V̂f

,

where V̂f,h =
(

∇′f
(

vech
(

Γ̂
))

V̂ ∇f
(

vech
(

Γ̂
)))

. The i.i.d. bootstrap version of Tf,h is T ∗
f,h, which

replaces Γ̂ with Γ̂∗, Γ with Γ̂, and V̂f with V̂ ∗
f =

(

∇′f
(

vech
(

Γ̂∗
))

V̂ ∗∇f
(

vech
(

Γ̂∗
)))

, which is a

consistent estimator of the bootstrap asymptotic variance V ∗
f ≡

(

∇′f
(

vech
(

Γ̂
))

V ∗∇f
(

vech
(

Γ̂
)))

.

Theorem 3.2 Under the same conditions of Theorem 3.1, as h → 0, supx∈R

∣
∣
∣P ∗

(

T ∗
f,h ≤ x

)

− P (Tf,h ≤ x)
∣
∣
∣→

0, in probability.

We can apply Theorem 3.2 to prove the first order asymptotic validity of the bootstrap for each of

the three measures of dependence of interest here. In particular, for the bootstrap realized covariance

measure Γ̂∗
lk =

∑1/h
i=1 y

∗
liy

∗
ki, the corresponding bootstrap t-statistic is

T ∗
Γ,h ≡

√
h−1

(

Γ̂∗
lk − Γ̂lk

)

√

V̂ ∗
Γ

,

where V̂ ∗
Γ = h−1

∑1/h
i=1 y

∗2
li y

∗2
ki −

(
∑1/h

i=1 y
∗
liy

∗
ki

)2
.

Similarly, the bootstrap t-statistic associated with the bootstrap realized regression β̂
∗
lk =

Γ̂∗
lk

Γ̂∗
k

is

T ∗
β,h ≡

√
h−1(β̂

∗
lk − β̂lk)

√

V̂ ∗
β

, (3)
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where

V̂ ∗
β = Γ̂∗−2

k h−1

1/h
∑

i=1

y∗2ki

(

y∗li − β̂
∗
lky

∗
ki

)2
≡
(

Γ̂∗
k

)−2
B̂∗

1 . (4)

Finally, the bootstrap realized correlation coefficient is ρ̂∗lk =
Γ̂∗
lk

√

Γ̂∗
k

√

Γ̂∗
l

and the corresponding t-

statistic is

T ∗
ρ,h ≡

√
h−1 (ρ̂∗lk − ρ̂lk)

√

V̂ ∗
ρ

,

where V̂ ∗
ρ =

(

Γ̂∗
l Γ̂

∗
k

)−1
B̂∗

ρ , B̂
∗
ρ = h−1

∑
x∗2ρi , and x∗ρi = y∗ki

(

y∗li − β̂
∗
lky

∗
ki

)

/2+y∗li

(

y∗ki − β̂
∗
kly

∗
li

)

/2. Here

β̂
∗
kl denotes the bootstrap OLS regression estimator of the realized regression of y∗k on y∗l .

4 Monte Carlo simulation results

We compare the finite sample performance of the bootstrap with the first-order asymptotic theory

for constructing confidence intervals for each of the three covariation measures. Our Monte Carlo

design follows that of BN-S (2004). In particular, we assume that dp (t) = Θ (t) dW (t), with Σ (t) =

Θ (t)Θ′ (t), where

Σ (t) =

(
Σ11 (t) Σ12 (t)
Σ21 (t) Σ22 (t)

)

=

(
σ2
1 (t) σ12 (t)

σ21 (t) σ2
2 (t)

)

,

and σ12 (t) = σ1 (t)σ2 (t) ρ (t) . As in BN-S (2004), we let σ2
1 (t) = σ

2(1)
1 (t) + σ

2(2)
1 (t), where for

s = 1, 2, dσ
2(s)
1 (t) = −λs(σ

2(s)
1 (t) − ξs)dt + ωsσ

(s)
1 (t)

√
λsdbs(t), where bi is the i-th component of a

vector of standard Brownian motions, independent from W . We let λ1 = 0.0429, ξ1 = 0.110, ω1 =

1.346, λ2 = 3.74, ξ2 = 0.398, and ω2 = 1.346. Our model for σ2
2(t) is the GARCH(1,1) diffusion

studied by Andersen and Bollerslev (1998): dσ2
2(t) = −0.035(σ2

2(t) − 0.636)dt + 0.236σ2
2(t)db3(t).

Finally, we follow BN-S (2004), and let ρ(t) = (e2x(t) − 1)/(e2x(t) + 1), where x follows the GARCH

diffusion: dx(t) = −0.03(x(t) − 0.64)dt + 0.118x(t)db4(t).

Table 1 contains the actual coverage probabilities of one-sided 95% confidence intervals for each

of the three covariation measures across 10,000 replications for five different sample sizes: 1/h =

1152, 288, 48, 24 and 12, corresponding to “1.25-minute”, “5-minute”, “half-hour”, “1-hour”, and “2-

hour” returns for a market that is open 24 hours. For markets that are open only 8 hours, these

correspond to “25-seconds”, “1 minute and 40 seconds”, “5-minute”, “20-minute” and “40-minute”,

respectively. Bootstrap intervals are based on 999 bootstrap replications each. Both lower one-sided

(where θ ≤ a for some random variable a and θ the parameter of interest) and upper one-sided (where

θ ≥ b for some random variable b) intervals are considered. Table 2 contains results for two-sided

intervals. For the bootstrap, both symmetric and equal tailed intervals are considered.

Table 1 shows that for the covariance and regression coefficients, lower one-sided intervals based

on the existing asymptotic theory are quite severely distorted at the smaller sample sizes whereas

the upper one-sided intervals are much less so. For instance, a lower 95% nominal level interval
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for the covariance measure between the two assets has coverage ratee equal to 80.76% when h =

1/12 (corresponding to a “2-hour” sampling frequency for a 24 hours open market or a “40-minute”

frequency for an 8 hours open market) whereas it is equal to 86.01% for the regression coefficient.

These numbers increase to 88.09% and 91.08% when h = 1/48 (“30-minute” and “10-minute” sampling

frequencies, for 24 and 8 hours open markets, respectively). In contrast, the corresponding upper 95%

nominal level intervals for the covariance and regression coefficients have probability rates equal to

98.4% and 92.64%, when h = 1/12, and 97.42% and 94.69%, when h = 1/48, respectively. The opposite

is true for the correlation coefficient, where the BN-S (2004) lower one-sided intervals tend to be better

behaved than upper one-sided intervals. The rates for h = 1/12 (cf. h = 1/48) are 92.02% (94.86%)

and 83.51% (89.86%) for lower and upper 95% intervals, respectively. In this case, we also report

the coverage probabilities of intervals based on the Fisher-z transform, as proposed by BN-S (2004).

The Fisher transform implies coverage rates of 90.47% (93.75%) and 88.57% (92.35%) when h = 1/12

(cf. h = 1/48) for lower and upper 95% intervals respectively, thus improving upon the raw statistic

only in the upper case. By comparison, Table 1 shows that the bootstrap intervals have coverage

probabilities much closer to the desired 95% level than the intervals based on the asymptotic theory.

This is especially true for the upper one-sided intervals, where the bootstrap essentially eliminates

the finite sample distortions associated to the BN-S intervals. The bootstrap performance is quite

remarkable for the correlation coefficient where it dominates both the raw and the Fisher transform

based intervals of BN-S (2004).

Table 2 shows that the superior performance of the bootstrap carries over to two-sided intervals.

Symmetric intervals are generally better than equal-tailed intervals (which is consistent with the theory

based on Edgeworth expansions) and both improve upon the first order asymptotic theory. The gains

associated with the i.i.d. bootstrap can be quite substantial, especially for the smaller sample sizes,

when distortions of the BN-S intervals are larger. For instance, for the regression coefficient, the

coverage rate for a symmetric bootstrap interval when 1/h = 12 (cf. h = 1/48) is equal to 93.51%

(94.05%), whereas it is equal to 85.20% (91.37%) for the feasible asymptotic theory of BN-S (2004)

(the corresponding equal-tailed interval yields a coverage rate of 90.72% (93.04%), better than BN-S

(2004) but worse than the symmetric bootstrap interval). The gains are especially important for the

two-sided intervals for the correlation coefficient, when the asymptotic theory of BN-S (2004) does

worst. For 1/h = 12, the bootstrap symmetric interval has a rate of 93.82% (the equal tailed interval

is in this case even better behaved, with a rate equal to 94.57%) whereas the BN-S interval based on

the raw statistic has a rate of 81.47% and the interval based on the Fisher-z transform has a rate of

85.90%. These numbers increase to 93.97%, 94.43%, 90.24%, and 91.62%, for the bootstrap symmetric

and equal-tailed intervals, the BN-S interval and the Fisher-z transform interval, respectively. For the

correlation coefficient, the bootstrap essentially removes all finite sample bias associated with the first

order asymptotic theory of BN-S (2004).
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5 A detailed study of realized regressions

The realized regression estimator is one of the most popular measures of covariation between two assets.

In this section we study in more detail the application of the i.i.d. bootstrap to realized regression.

We first provide a new interpretation for the feasible approach of BN-S (2004). In particular, we

establish a link between the standard Eicker-White heteroskedasticity robust variance estimator and

the variance estimator proposed by BN-S (2004). We then exploit the special structure of the regression

model to obtain the asymptotic distribution of the bootstrap realized regression estimator. We relate

the bootstrap variance with the Eicker-White robust variance estimator. We end this section with a

discussion of the second order accuracy of the i.i.d. bootstrap in this context.

5.1 The first order asymptotic theory revisited

Suppose dp (t) = Θ (t) dW (t) where Θ is independent of W .1 Then, conditionally on Σ, we can write

yli = βlkiyki + ui, (5)

where independently across i = 1, . . . , 1/h, ui|yki ∼ N (0, Vi) , with Vi ≡ Γli−Γ2
lki

Γki
, and βlki ≡ Γlki

Γki
. Here

Γlki =
∫ ih
(i−1)hΣlk (u) du. Thus, the regression coefficient in the true DGP describing the relationship

between yli and yki is heterogeneous (it depends on i) and the true error term in this model is

heteroskedastic.

When we regress yli on yki to obtain β̂lk, we get that β̂lk
P→ βlk ≡ Γlk

Γk
. Thus, β̂lk does not estimate

βlki but instead βlk, which can be thought of as a weighted average of βlki. We can write the underlying

regression model as follows:

yli = βlkyki + εi, (6)

where εi = (βlki − βlk) yki + ui. It follows that εi|yki ∼ N ((βlki − βlk) yki, Vi), independently across i.

Moreover, noting that E (yki) = 0,

Cov (yki, εi) = E (ykiεi) = (βlki − βlk) Γki = Γlki − βlkΓki,

which in general is not equal to zero (unless the volatility matrix is constant). However, E
(
∑1/h

i=1 ykiεi

)

=

0, and therefore β̂lk converges in probability to βlk. Because E (ykiεi) 6= 0, β̂lk does not consistently

estimate βlki but estimates βlk instead. This is the parameter of interest, and therefore the endogene-

ity problem is not a concern here. Nevertheless, the fact that E (ykiεi) 6= 0 and is heterogeneous has

important consequences for the asymptotic inference on βlk, as we now explain.

1We make the assumption of no leverage and no drift for notational simplicity and because this allows us to easily
compute the moments of the intraday returns conditionally on the volatility path. The same arguments would follow
under the presence of leverage and drift (for instance, by postulating a model for Θ (t) and α (t), as in Meddahi (2002))
but this would unnecessarily complicate the notation without any gain in the intuition.
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To find the asymptotic distribution of β̂lk, we can write

√
h−1

(

β̂lk − βlk

)

=

√
h−1

∑1/h
i=1 ykiεi

∑1/h
i=1 y

2
ki

= (Γk)
−1

√
h−1

1/h
∑

i=1

ykiεi + oP (1) .

The asymptotic variance of
√
h−1β̂lk is thus of the usual sandwich form Vβ ≡ V ar

(√
h−1β̂lk

)

=

(Γk)
−2 B, where B = limh→0Bh, and Bh = V ar

(√
h−1

∑1/h
i=1 ykiεi

)

. Because E (ykiεi) 6= 0, we have

that

Bh = h−1

1/h
∑

i=1

E
(
y2kiε

2
i

)
− h−1

1/h
∑

i=1

(E (ykiεi))
2 ≡ B1h −B2h.

We can easily show that

B = lim
h→0

Bh =

∫ 1

0

(
Σ2
lk (u) + Σl (u)Σk (u)− 4βlkΣlk (u) Σk (u) + 2β2

lkΣ
2
k (u)

)
du.

It follows that

Sβ,h ≡
√
h−1(β̂lk − βlk)

√
Vβ

→d N (0, 1) ,

where Vβ = (Γk)
−2 B. We can contrast this result with Proposition 1 of BN-S (2004). It is easy to

check that B = g(lk),i, where g(lk),i is defined as in Proposition 1 of BN-S (2004) (where we let i = 1

here given that we measure the integrated regression coefficient over the [0, 1] interval).

It is helpful to contrast the BN-S (2004) variance estimator of Vβ with the Eicker-White het-

eroskedasticity robust variance estimator that one would typically use in a cross section regression

context. Let ε̂i denote the OLS residual underlying the regression model (6). Then, the Eicker-White

robust variance estimator of B is given by B̂1h = h−1
∑1/h

i=1 y
2
kiε̂

2
i . In contrast, noting that xβi = ykiε̂i,

BN-S (2004)’s estimator of B corresponds to

h−1ĝβ = h−1

1/h
∑

i=1

y2kiε̂
2
i − h−1

1/h−1
∑

i=1

ykiε̂iyk,i+1ε̂i+1 ≡ B̂1h − B̂2h. (7)

We can see that h−1ĝβ = B̂1h−B̂2h, where B̂1h is the usual Eicker-White robust variance estimator, and

B̂2h = h−1
∑1/h−1

i=1 ykiε̂iyk,i+1ε̂i+1. This extra term is needed to correct for the fact that E (ykiεi) 6= 0

and is heterogeneous, as we noted above. In particular, B̂1h → B1h and B̂2h → B2h in probability.

5.2 First order asymptotic properties of the pairs bootstrap

The i.i.d. bootstrap applied to the vector of returns yi is equivalent to the so-called pairs bootstrap,

a popular bootstrap method in the context of cross section regression models. Freedman (1981)

proves the consistency of the pairs bootstrap for possibly heteroskedastic regression models when the

dimension p of the regressor vector is fixed. Mammen (1993) treats the case where p → ∞ as the

sample size grows to infinity. Mammen (1993) also discusses the second order accuracy of the pairs

bootstrap in this context. His results specialized to the case where p is fixed show that the pairs
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bootstrap is not only first order asymptotically valid under heteroskedasticity in the error term, but

it is also second-order correct.

For the bivariate case, the pairs bootstrap corresponds to resampling the pairs (yli, yki) in an i.i.d.

fashion. Although we focus on this case here, our results follow straightforwardly when dealing with

a multiple regression model where we regress the intraday returns on asset l on the returns of more

than one asset. In this case, the pairs bootstrap corresponds to an i.i.d. bootstrap on the tuples that

collect the dependent and all the explanatory variables.

Let β̂
∗
lk denote the OLS bootstrap estimator from the regression of y∗li on y∗ki. It is easy to check

that β̂
∗
lk converges in probability (under P ∗) to β̂lk =

∑1/h
i=1 E

∗(y∗liy
∗
ki)

∑1/h
i=1 E

∗(y∗2ki )
. The bootstrap analogue of the

regression error εi in model (6) is thus ε∗i = y∗li − β̂lky
∗
ki, whereas the bootstrap OLS residuals are

defined as ε̂∗i = y∗li − β̂
∗
lky

∗
ki.

Our next theorem provides the first order asymptotic properties of β̂
∗
lk.

Theorem 5.1 Suppose (1) holds. As h → 0,

a)
√
h−1

(

β̂
∗
lk − β̂lk

)

→d∗ N
(

0, V ∗
β

)

, in probability, where V ∗
β =

(

Γ̂k

)−2
B∗

h.

b) B∗
h = V ar∗

(√
h−1

∑1/h
i=1 y

∗
kiε

∗
i

)

= h−1
∑1/h

i=1 y
2
kiε̂

2
i ≡ B̂1h.

c) V ∗
β →P (Γk)

−2B∗ 6= Vβ (except when the volatility matrix is constant), where

B∗ = B +
∫ 1
0 (Σlk (u)− βlkΣk (u))

2 du.

Part (a) of Theorem 5.1 states that the bootstrap OLS estimator has a first order asymptotic

normal distribution with mean zero and covariance matrix V ∗
β . Its proof follows from Theorem 3.2.

Parts (b) and (c) show that the pairs bootstrap variance estimator is not consistent for Vβ in the

general context of stochastic volatility. One exception is when volatility is constant, in which case

B∗ = B and V ∗
β →P Vβ.

To understand the form of V ∗
β , note that we can write

√
h−1

(

β̂
∗
lk − β̂lk

)

=





1/h
∑

i=1

y∗2ki





−1
√
h−1

1/h
∑

i=1

y∗kiε
∗
i .

Since
∑1/h

i=1 y
∗2
ki →P ∗ ∑1/h

i=1 y
2
ki = Γ̂k, in probability, it follows that

√
h−1

(

β̂
∗
lk − β̂lk

)

=
(

Γ̂k

)−1√
h−1

1/h
∑

i=1

y∗kiε
∗
i + oP ∗ (1) ,

in probability. We can now apply a central limit theorem to
√
h−1

∑1/h
i=1 y

∗
kiε

∗
i to obtain the limiting

normal distribution for
√
h−1

(

β̂
∗
lk − β̂lk

)

. It follows that
√
h−1

(

β̂
∗
lk − β̂lk

)

→d∗ N
(
0, V ∗

β

)
,
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in probability, where V ∗
β =

(

Γ̂k

)−2
B∗

h, with B∗
h = V ar∗

(√
h−1

∑1/h
i=1 y

∗
kiε

∗
i

)

. Part (b) of Theorem

5.1 follows easily from the properties of the i.i.d. bootstrap. In particular, we can show that B∗
h =

h−1
∑1/h

i=1 y
2
kiε̂

2
i , since

∑1/h
i=1 ykiε̂i = 0 by construction of β̂lk. Thus, the i.i.d. bootstrap variance of

the scaled average of the bootstrap scores y∗kiε
∗
i is equal to B̂1h, the Eicker-White heteroskedasticity

robust variance estimator of the scaled average of the scores ykiεi.

Theorem 5.1 (part c) shows that the pairs bootstrap does not in general consistently estimate the

asymptotic variance of β̂lk. An exception is when volatility is constant. This is in contrast with the

existing results in the cross section regression context, where the pairs bootstrap variance estimator

of the least squares estimator is robust to heteroskedasticity in the error term. This failure of the

pairs bootstrap to provide a consistent estimator of the variance of β̂lk is related to the fact that, as

we explained in in the previous section, we cannot in general assume that E (ykiεi) = 0, unless for

instance when volatility is constant. When the scores have mean zero, i.e. E (ykiεi) = 0, the Eicker-

White robust variance estimator, and therefore the pairs bootstrap variance estimator, are consistent

estimators of the asymptotic variance of the scaled average of the scores. Both Freedman (1981)

and Mammen (1993) make this assumption. The fact that E (ykiεi) 6= 0 creates a bias term in B̂1h,

which is estimated with the variance estimator proposed by BN-S (2004). Because B∗
h = B̂1h, the

pairs bootstrap variance estimator is not a consistent estimator of Bh = V ar
(√

h−1
∑1/h

i=1 ykiεi

)

. The

heterogeneity (and non zero) mean property of the scores in our context is crucial to understanding

the differences between the realized regression and the usual cross section regression.

The i.i.d. bootstrap is nevertheless first order asymptotically valid when applied to the t-statistic

T ∗
β,h (defined in (3)), as our Theorem 3.2 proves. This first order asymptotic validity occurs despite

the fact that V ∗
β does not consistently estimate Vβ. The key aspect is that we studentize the bootstrap

OLS estimator with V̂ ∗
β (defined in (4)), a consistent estimator of V ∗

β , implying that the asymptotic

variance of the bootstrap t-statistic is one.

5.3 Second order asymptotic properties of the pairs bootstrap

In this section, we study the second order accuracy of the pairs bootstrap for realized regressions. In

particular, we compare the rates of convergence of the error of the bootstrap and the normal approx-

imation when estimating the distribution function of Tβ,h. This is accomplished via a comparison of

the Edgeworth expansion of the distribution of Tβ,h with the bootstrap Edgeworth expansion of T ∗
β,h,

which we derive here. See Gonçalves and Meddahi (2008) and Zhang et al. (2010) for two recent

papers that have used Edgeworth expansions for realized volatility as a means to improve upon the

first order asymptotic theory.

The results in this section are derived under the assumption of zero drift and no leverage (i.e.

W is assumed independent of Σ). As in Gonçalves and Meddahi (2009), a nonzero drift changes the

expressions of the cumulants derived here. The no leverage assumption is mathematically convenient

as it allows us to condition on the path of volatility when computing the cumulants of our statistics.
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Allowing for leverage is a difficult but promising extension of the results derived here.

Finally, we follow BNGJPS (2006) and assume that the spot covariance matrix Σ (t) = Θ (t)Θ′ (t)

satisfies the following assumption

Σ (t) = Σ (0) +

∫ t

0
a (u) du+

∫ t

0
σ (u) dWu +

∫ t

0
v (u) dZu, (8)

where a, σ, and v are all adapted càdlàg processes, with a also being predictable and locally bounded,

and Z is a vector Brownian motion independent of W.

The second order asymptotic properties of the pairs bootstrap that we study in this section involves

the asymptotic distribution of statistics such as the realized cross-bipower variation of the log-price

process, p(t), t ≥ 0, for powers larger than 2. The asymptotic distribution derived by BNGJPS (2006)

for such statistics is valid under Assumptions (1) and (8).

For i = 1, 3, we denote by κi (Tβ,h) the first and third order cumulants of Tβ,h, respectively.

Conditionally on Σ, the second order Edgeworth expansion of the distribution of Tβ,h is given by (see

e.g. Hall, 1992, p. 47),

P (Tβ,h ≤ x) = Φ (x) +
√
hq (x)φ (x) + o

(√
h
)

,

where for any x ∈ R, Φ (x) and φ (x) denote the cumulative distribution function and the density

function of a standard normal random variable. The correction term q (x) is defined as

q (x) = −
(

κ1 +
1

6
κ3

(
x2 − 1

)
)

,

where κ1 and κ3 are the coefficients of the leading terms of κ1 (Tβ,h) and κ3 (Tβ,h), respectively. In

particular, up to order O
(√

h
)

, as h → 0, κ1 (Tβ,h) =
√
hκ1 and κ3 (Tβ,h) =

√
hκ3.

Given this Edgeworth expansion, the error (conditional on Σ) incurred by the normal approxima-

tion in estimating the distribution of Tβ,h is given by

sup
x∈R

|P (Tβ,h ≤ x)− Φ (x)| =
√
h sup

x∈R
|q (x)φ (x)|+O (h) .

Thus, supx∈R |q (x)φ (x)| is the contribution of order O
(√

h
)

to the normal error.

Similarly, we can write a one-term Edgeworth expansion for the conditional distribution of T ∗
β,h as

follows

P ∗(T ∗
β,h ≤ x) = Φ(x) +

√
hq∗h(x)φ(x) +OP (h),

where q∗h is defined as

q∗h(x) = −(κ∗1,h + κ∗
3,h(x

2 − 1)/6),

and where κ∗
1,h and κ∗3,h are the leading terms of the first and the third order cumulants of T ∗

β,h. In

particular, κ∗1

(

T ∗
β,h

)

=
√
hκ∗

1,h and κ∗3

(

T ∗
β,h

)

=
√
hκ∗3,h, up to order OP

(√
h
)

.

The bootstrap error implicit in the bootstrap approximation of P (Tβ,h ≤ x) (conditional on Σ) is
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given by

P ∗ (T ∗
β,h ≤ x

)
− P (Tβ,h ≤ x) =

√
h (q∗h (x)− q (x))φ (x) +OP (h)

=
√
h (p lim q∗h (x)− q (x))φ (x) + oP

(√
h
)

= −
√
h

[

(κ∗1 − κ1) +
1

6
(κ∗3 − κ3)

(
x2 − 1

)
]

φ (x) + oP

(√
h
)

,

where κ∗
1 ≡ p limκ∗

1,h and κ∗3 ≡ p limκ∗
3,h. If κ

∗
1 = κ1 and κ∗3 = κ3, P

∗
(

T ∗
β,h ≤ x

)

− P (Tβ,h ≤ x) =

oP

(√
h
)

, and the bootstrap error is of a smaller order of magnitude than the normal error which is

equal to O
(√

h
)

. If this is the case, the bootstrap is said to be second-order correct and to provide

an asymptotic refinement over the standard normal approximation.

The following result gives the expressions of κi and κ∗
i for i = 1, 3. We need to introduce some

notation.

Let

A0 =

∫ 1

0

(
Σk (u) Σlk (u)− βlkΣ

2
k (u)

)
du,

A1 =

∫ 1

0

(
2Σ3

lk (u) + 6Σl (u) Σlk (u) Σk (u)− 18βlkΣ
2
lk (u)Σk (u)

−6βlkΣ
2
k (u) Σl (u) + 24β2

lkΣlk (u)Σ
2
k (u)− 8β3

lkΣ
3
k (u)

)

du,

B =

∫ 1

0

(
Σ2
lk (u) + Σl (u) Σk (u)− 4βlkΣlk (u)Σk (u) + 2β2

lkΣ
2
k (u)

)
du,

H1 =
4A0

Γk

√
B
, and H2 =

A1

B3/2
.

Similarly, let

B∗ = B +

∫ 1

0
(Σlk (u)− βlkΣk (u))

2 du,

A∗
1 = A1 + 2

∫ 1

0
(Σlk (u)− βlkΣk (u))

3 du,

H∗
1 =

4A0

Γk

√
B∗

, and H∗
2 =

A∗
1

B∗3/2 .

Theorem 5.2 Suppose (1) and (8) hold with α ≡ 0 and W independent of Σ. Then, conditionally on

Σ, (a) κ1 =
1
2 (H1 −H2) and κ3 = 3H1 − 2H2; and κ∗1 =

3
4 (H

∗
1 −H∗

2 ) and κ∗
3 =

3
2 (3H

∗
1 − 2H∗

2 ) .

Theorem 5.2 shows that the cumulants of T ∗
β,h and Tβ,h do not generally agree. Notice in particular

that B 6= B∗ contributes to this discrepancy. B here denotes the limiting variance of the scaled average

of the scores whereas B∗ denotes its bootstrap analogue. As we noted before, under general stochastic

volatility, the pairs bootstrap does not consistently estimate B and the bias term is exactly equal

to the difference between B and B∗, i.e. B∗ − B =
∫ 1
0 (Σlk (u)− βlkΣk (u))

2 du = plimh→0B2h,

where B2h = h−1
∑1/h

i=1 (E (ykiεi))
2 . An exception is when the volatility matrix is constant, where

B2h = 0 and therefore B∗ = B. In this case, we also have that A∗
1 = A1 = A0 = 0, implying that

both the bootstrap and the normal approximations have an error of the order o
(√

h
)

. We need an
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expansion to order O (h) to be able to discriminate the two approximations. In the general stochastic

volatility case, the pairs bootstrap error is of order O
(√

h
)

, similar to the error incurred by the normal

approximation.

The lack of second order refinements of the pairs bootstrap in the context of realized regressions

is in contrast with the results available in the bootstrap literature for standard regression models (see

Mammen (1993)). One explanation for this difference lies in the fact that E (ykiεi) 6= 0, as we noted

above. This implies that Tβ,h must rely on a variance estimator that contains a bias correction term,

as proposed by BN-S (2004). Instead, in the bootstrap regression, E∗ (y∗kiε
∗
i ) = h

∑1/h
i=1 ykiε̂i = 0, and

therefore there is no need for the bias correction proposed by BN-S (2004). This implies that the

bootstrap t-statistic T ∗
β,h is not of the same form as Tβ,h, relying on a bootstrap variance estimator

V̂ ∗
β that depends on an Eicker-White type variance estimator B̂∗

1h.

6 Empirical application

A well documented empirical fact in finance is the time variability of bonds risk, as recently documented

by Viceira (2007) and Campbell, Sunderam and Viceira (2009) for the US market. As suggested by

the CAPM, the bond risk is often measured by its beta over the return on the market portfolio. With

a positive beta, bonds are considered as risky as the market while a bond with a negative beta could

be used to hedge the market risk.

Viceira (2007) studies the bond risk for the US market by considering the 3-month (monthly)

rolling realized beta as measured by the ratio of the realized covariance of daily log-returns on bonds

and stocks and the realized volatility of the daily log-return on stocks over the same period. Following

the standard practice, the number of days in a month is normalized to 22 such that the 3-month

realized beta is computed considering sub-samples of 66 days. From July 1962 through December

2003, Viceira (2007) reports a strong variability of US bond CAPM betas, which may switch sign even

though the average over the full sample is positive. Nevertheless, in his analysis Viceira (2007) does

not discuss the precision of the realized betas as a measure of the actual covariation between bonds

and stock returns.

The aim of this section is to illustrate the usefulness of our approach as a method of inference

for realized covariation measures in the context of measuring the time variation of bonds risk. We

consider both the US bonds market, as in Viceira (2007), and the UK bonds market.

Our data set includes the daily 7-to-10-year maturity government bond index for the US and the

UK markets as released by JP Morgan from January 2, 1986 through August 24, 2007. As a proxy

for the US and the UK market portfolio returns, we consider the log-return on the S&P500 and the

FTSE 100 indices, respectively. The S&P500 index is designed to measure performance of the broad

domestic economy through changes in the aggregate market value of 500 stocks representing all major

industries. The FTSE 100 index is a capitalization-weighted index of the 100 most highly capitalized
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companies traded on the London Stock Exchange. The first two series have a shorter history and

therefore constrained the sample we consider in this study.

From the estimates presented in Table 3 (Appendix A), the full-sample beta for bonds in the US

is about 0.024, slightly smaller than the UK bond beta, which is about 0.030. Both the bootstrap and

the asymptotic theory based confidence intervals display support that the true values of the betas in

both countries are positive.

A closer analysis of Figures 1 and 2 shows that the average positivity of the betas hides considerable

time variation in both countries, a fact already documented by Viceira (2007) for the US market.

Furthermore, the betas for these two countries follow similar dynamics. We can distinguish two

patterns for the 3-month betas. For the period before April 1997, the betas are mostly significantly

positive or, in few cases, non-significantly different from 0. This period is also characterized by betas

of larger magnitude, with a maximum value of 0.500 at the end of July 1994 for the US and 0.438 in

August 1994 for the UK. The period after April 1997 is characterized by a drop of the magnitude of

the bonds betas in both countries. They are often not significantly different from 0. For this whole

sub-period, the betas for the US and UK bonds are significantly negative only between June 2002

and July 2003, but in these cases their magnitude is small. We conclude that bonds are riskier in the

period before April 1997, while in the recent periods they appear to be non risky or at most a hedging

instrument against shocks on market portfolio returns.

A comparison of the bootstrap intervals with the intervals based on the asymptotic theory of BN-S

(2004) suggests that the two types of intervals tend to be similar, but there are instances where the

bootstrap intervals are wider than the asymptotic theory-based intervals (see Tables 4 and 5 for a

detailed comparison of the two types of intervals for a selected set of dates). This is especially true for

the first part of the sample for the UK bond market, where the width of the bootstrap intervals can be

much larger than the width of the BN-S (2004) intervals. It turns out that these days correspond to

days on which there is evidence for jumps, as determined by applying the test for jumps of Barndorff-

Nielsen and Shephard (2006). Because none of the intervals discussed here (bootstrap or asymptotic

theory-based) are robust to the presence of jumps, a different analysis should be pursued for these

particular days.

7 Conclusion

This paper proposes bootstrap methods for inference on measures of multivariate volatility such as

integrated covariance, integrated correlation and integrated regression coefficients. We prove the first

order asymptotic validity of a particular bootstrap scheme, the i.i.d. bootstrap applied to the vector of

returns, for the three statistics of interest. Our simulation results show that the bootstrap outperforms

the feasible first order asymptotic approach of BN-S(2004).

For the special case of the realized regression estimator, our i.i.d. bootstrap corresponds to a pairs
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bootstrap as proposed by Freedman (1981) and further studied by Mammen (1993). We analyze the

second order accuracy of this bootstrap method and conclude that it is not second order accurate.

This contrasts with the existing literature on the pairs bootstrap for cross section models, which

shows that this method is not only robust to heteroskedasticity in the error term but it is also second

order accurate. We provide a detailed analysis of the pairs bootstrap in the context of realized

regressions which allows us to highlight some key differences with respect to the usual application of

the pairs bootstrap in standard cross section regression models. These differences explain why the

pairs bootstrap does not provide second order refinements in this context.

An important assumption we make throughout this paper is that prices on different assets are

observed synchronously and at regular time intervals. If prices are nonequidistant but synchronous,

results in Mykland and Zhang (2006) show that although the asymptotic conditional variance of the

realized covariation measures changes, the same variance estimators remain consistent. Consequently,

the same t statistics as those considered here can be used for inference purposes. In this case, we

can rely on the same i.i.d. bootstrap t statistics to approximate their distributions. The case of

non-synchronous data is much more challenging because in this case the realized covariation measures

are not consistent estimators of their integrated volatility measures. Different estimators (and corre-

sponding standard errors) are required. The extension of the bootstrap to these alternative estimators

and test statistics is left for future research.

Appendix A
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Table 1. Coverage rates of one-sided nominal 95% intervals for covariation measures
Covariance Regression Correlation

Lower Upper Lower Upper Lower Upper
1/h BN-S Boot BN-S Boot BN-S Boot BN-S Boot BN-S Fisher Boot BN-S Fisher Boot

12 80.76 87.30 98.40 97.34 86.01 90.05 92.64 95.46 92.02 90.47 94.91 83.51 88.57 94.67
24 84.74 89.55 98.04 96.08 89.34 91.90 94.63 95.27 93.55 92.15 94.51 87.46 91.13 94.24
48 88.09 92.28 97.42 95.15 91.08 93.05 94.69 94.27 94.86 93.75 95.15 89.86 92.35 94.21
288 92.22 94.61 96.61 94.62 93.57 94.80 95.34 94.55 95.42 94.75 94.94 93.58 94.45 94.81
1152 93.69 94.98 95.50 94.39 94.30 95.07 95.35 94.78 95.27 94.92 95.03 94.38 94.82 94.95

Note: 10,000 replications, with 999 bootstrap replications each.

Table 2. Coverage rates of two-sided nominal 95% intervals for covariation measures
Covariance Regression Correlation

1/h BN-S Boot Sym Boot Eq-T BN-S Boot Sym Boot Eq-T BN-S Fisher Boot Sym Boot Eq-T

12 83.98 90.58 89.22 85.20 93.51 90.72 81.47 85.90 93.82 94.57
24 87.59 91.37 90.65 89.57 93.84 91.91 86.90 89.15 93.59 93.96
48 90.39 93.01 92.36 91.37 94.05 93.04 90.24 91.62 93.97 94.43
288 93.89 94.76 94.44 94.00 94.73 94.52 93.87 94.12 94.71 94.69
1152 94.62 94.90 94.59 94.57 94.70 94.68 94.63 94.74 94.90 94.90

Note: 10,000 replications, with 999 bootstrap replications each.
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Figure 1: Symmetric bootstrap and BN-S (2004) asymptotic theory based 95% two-sided confidence intervals for the CAPM 3-month
(monthly) rolling realized beta of US bond. April 1986 through July 2007.
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Figure 2: Symmetric bootstrap and BN-S (2004) asymptotic theory based 95% two-sided confidence intervals for the CAPM 3-month
(monthly) rolling realized beta of UK bond. April 1986 through July 2007.
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Table 3. Full-sample estimates of bonds betas for the US and the UK

from January 2, 1986 through August 24, 2007
Beta BN-S 95% 2-sided CI Boot. symm. 95% CI

US
0.024 [0.010, 0.038] [0.009, 0.038]

UK
0.030 [0.016, 0.045] [0.015, 0.046]

Table 4. Divergence between BN-S and bootstrap confidence intervals for the US
Date Beta BN-S Bootstrap

31-Jul-86 0.167 [0.027, 0.306] [−0.022, 0.355]
29-Aug-86 0.152 [0.015, 0.289] [−0.053, 0.357]
30-Sep-86 0.106 [0.017, 0.194] [−0.041, 0.252]
31-Jul-89 0.204 [0.036, 0.371] [−0.025, 0.432]
29-May-92 0.111 [0.004, 0.217] [−0.010, 0.231]
29-May-98 0.093 [0.001, 0.184] [−0.012, 0.197]
31-Aug-00 0.062 [0.002, 0.121] [−0.002, 0.126]

30-Jan-98 -0.054 [−0.101,−0.008] [−0.111, 0.003]
27-Feb-98 -0.059 [−0.115,−0.002] [−0.128, 0.010]
29-Dec-00 -0.055 [−0.109,−0.000] [−0.117, 0.008]
31-May-01 -0.055 [−0.107,−0.004] [−0.113, 0.003]
31-Dec-03 -0.154 [−0.302,−0.005] [−0.319, 0.011]
29-Oct-04 -0.146 [−0.256,−0.036] [−0.293, 0.001]

Table 5. Divergence between BN-S and bootstrap confidence intervals for the UK
Date Beta BN-S Bootstrap

31-Mar-88 0.070 [0.003, 0.137] [−0.010, 0.150]
31-Oct-90 0.197 [0.016, 0.377] [−0.175, 0.568]
31-Dec-90 0.262 [0.031, 0.493] [−0.446, 0.970]
30-Apr-92 0.307 [0.162, 0.452] [−0.151, 0.764]
29-May-92 0.314 [0.173, 0.454] [−0.131, 0.758]
30-Jun-92 0.288 [0.125, 0.450] [−0.277, 0.852]
29-Jan-93 0.129 [0.003, 0.254] [−0.049, 0.306]
26-Feb-93 0.131 [0.018, 0.243] [−0.029, 0.290]
31-Mar-93 0.153 [0.046, 0.259] [−0.004, 0.309]
31-Aug-93 0.122 [0.001, 0.242] [−0.025, 0.268]
29-Aug-97 0.054 [0.002, 0.105] [−0.003, 0.111]
30-Sep-97 0.132 [0.031, 0.233] [−0.015, 0.279]
31-Oct-97 0.109 [0.015, 0.202] [−0.027, 0.244]

29-Jan-88 -0.092 [−0.177,−0.007] [−0.195, 0.012]
31-Jan-01 -0.052 [−0.102,−0.001] [−0.111, 0.008]
30-Sep-04 -0.085 [−0.156,−0.014] [−0.177, 0.008]
30-Nov-06 -0.064 [−0.122,−0.005] [−0.129, 0.002]
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Appendix B

This Appendix is divided in three parts. The first part (Appendix B.1) contains the proofs of Theorems

3.1, 3.2 and 5.1, as well as two auxiliary lemmas. The second part (Appendix B.2) contains the proof

of Theorem 5.2 (a) and a list of lemmas useful for this proof. The third part (Appendix B.3) contains

the proof of Theorem 5.2 (b) and a list of auxiliary lemmas.

Appendix B.1. Proofs of Theorems 3.1, 3.2 and 5.1.

Lemma B.1 Under (1), for any q1, q2 ≥ 0 such that q1 + q2 > 0, and for any k, l = 1, . . . , q,

h1−(q1+q2)/2
∑1/h

i=1 |yli|q1 |yki|q2 = OP (1).

Proof of Lemma B.1. Apply Theorem 2.1 of Barndorff-Nielsen, Graversen, Jacod, Podolskij and

Shephard (2006) (henceforth BNGJPS (2006)).

Lemma B.2 Under (1), for k, l, k′, l′ = 1, . . . , q, with probability approaching one, (i)
∑1/h

i=1 y
∗
kiy

∗
li

P ∗

→
∑1/h

i=1 ykiyli, and (ii) h−1
∑1/h

i=1 y
∗
kiy

∗
liy

∗
k′iy

∗
l′i

P ∗

→ h−1
∑1/h

i=1 ykiyliyk′iyl′i.

Proof of Lemma B.2. We show that the results hold in quadratic mean with respect to P ∗, with
probability approaching one. This ensures that the bootstrap convergence also holds in probability.

For (i), we have

E∗





1/h
∑

i=1

y∗kiy
∗
li



 = h−1E∗ (y∗k1y
∗
l1) = h−1h

1/h
∑

i=1

ykiyli =

1/h
∑

i=1

ykiyli.

Similarly,

V ar∗





1/h
∑

i=1

y∗kiy
∗
li



 = h−1V ar∗ (y∗k1y
∗
l1) = h−1

(
E∗(y∗k1y

∗
l1)

2 − (E∗y∗k1y
∗
l1)

2
)

= h−1



h

1/h
∑

i=1

(ykiyli)
2 −



h

1/h
∑

i=1

ykiyli





2

 =

1/h
∑

i=1

(ykiyli)
2 − h





1/h
∑

i=1

ykiyli





2

= oP (1) ,

since Lemma B.1 implies that
∑1/h

i=1(ykiyli)
2 = OP (h) = oP (1) and

∑1/h
i=1 ykiyli = OP (1). The proof of

(ii) follows similarly and therefore we omit the details.

Proof of Theorem 3.1. (a) follows from Lemma B.2 by noting that the elements of x∗ix
∗′
i are of all

of the form y∗kiy
∗
liy

∗
k′iy

∗
l′i, for k, l, k

′, l′ = 1, . . . , q. To prove (b), first note that both V̂ ∗ and V ∗ are non

singular in large samples with probability approaching one, as h → 0. Second, letting

S∗
h = V ∗−1/2

√
h−1(

1/h
∑

i=1

x∗i −
1/h
∑

i=1

xi),

we have that

T ∗
h = V̂ ∗−1/2

V ∗1/2S∗
h.

Because V̂ ∗−1V ∗ P ∗

→ Iq(q+1)/2, in probability, the proof of (b) follows from showing that for any λ ∈
R
q(q+1)/2 such that λ′λ = 1,

sup
x∈R

|P ∗(

1/h
∑

i=1

x̃∗i ≤ x)−Φ(x)| P→ 0,

24



where

x̃∗i =
(
λ′V ∗λ

)−1/2
√
h−1λ′(x∗i − E∗(x∗i )).

Clearly, E∗
(
∑1/h

i=1 x̃
∗
i

)

= 0 and V ar∗
(
∑1/h

i=1 x̃
∗
i

)

= 1. Thus, by Katz’s (1963) Berry-Essen Bound, for

some small ǫ > 0 and some constant K > 0,

sup
x∈R

∣
∣
∣
∣
∣
∣

P ∗





1/h
∑

i=1

x̃∗i ≤ x



− Φ(x)

∣
∣
∣
∣
∣
∣

≤ K

1/h
∑

i=1

E∗|x̃∗i |2+ǫ.

Next, we show that
∑1/h

i=1 E
∗|x̃∗i |2+ǫ = op(1). We have that

1/h
∑

i=1

E∗|x̃∗i |2+ǫ = h−1E∗|x̃∗1|2+ǫ = h−1E∗
∣
∣
∣

(
λ′V ∗λ

)−1/2
h−1/2λ′(x∗1 − E∗ (x∗1))

∣
∣
∣

2+ǫ

= h−1h−(2+ǫ)/2|λ′V ∗λ|−(2+ǫ)/2E∗|λ′ (x∗1 − E∗ (x∗1)) |2+ǫ

≤ 22+ǫh−(2+ǫ/2)|λ′V ∗λ|−(1+ǫ/2)E∗|λ′x∗1|2+ǫ ≤ 22+ǫh−(2+ǫ/2)|λ′V ∗λ|−(1+ǫ/2)E∗|x∗1|2+ǫ

= 22+ǫh−1−ǫ/2|λ′V ∗λ|−(1+ǫ/2)

1/h
∑

i=1

|xi|2+ǫ,

where the first inequality follows from the Cr and the Jensen inequalities, and the second inequality

follows from the Cauchy-Schwarz inequality and the fact that λ′λ = 1. We let |z| = (z′z)1/2 for any

vector z. It follows that

1/h
∑

i=1

|xi|2+ǫ =

1/h
∑

i=1

|xi|2(1+ǫ/2) ≤
1/h
∑

i=1





q
∑

j=1

y2ji





2(1+ǫ/2)

.

Lemma B.1 and the Minkowski inequality imply that
∑1/h

i=1 |xi|2+ǫ = OP (h
1+ǫ), so that

∑1/h
i=1E

∗|x̃∗i |2+ǫ =

OP (h
ǫ/2) = oP (1).

Proof of Theorem 3.2. Since Th converges stably in distribution toN
(
0, Iq(q+1)/2

)
, by an application

of the delta method (see Podolskij and Vetter (2010, Proposition 2.5 (iii))), Tf,h
d→ N(0, 1). Similarly,

by a mean value expansion, and conditionally on the original sample,
√
h−1

(

f(vech(Γ̂∗))− f(vech(Γ̂))
)

=
√
h−1∇′f

(

vech(Γ̂)
)(

vech(Γ̂∗)− vech(Γ̂)
)

+ oP ∗(1),

since Γ̂∗ →P ∗
Γ̂ in probability. Let

S∗
f,h ≡

√
h−1

(

f(vech(Γ̂∗))− f(vech(Γ̂))
)

√

V ∗
f

,

with V ∗
f ≡ ∇′f(vech(Γ̂))V ∗∇f(vech(Γ̂)). It follows that S∗

f,h →d∗ N (0, 1) in probability, given The-

orem 3.1 (b). Next note that T ∗
f,h =

√
V ∗
f

V̂ ∗
f

S∗
f,h, where V̂ ∗

f →P ∗
V ∗
f . The result follows from Polya’s

theorem (e.g. Serfling, 1980) given that the normal distribution is continuous.

Proof of Theorem 5.1. Take q = 2 and l = 1 and k = 2. Part (a) follows from Theorem 3.2 with

f(θ) = θ2/θ3. V ∗
β and part (b) are proven in the text. Part (c) follows from Theorem 1 of BNGJS

(2006) and the fact that β̂12 →P β12.
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Appendix B.2. Asymptotic expansions of the cumulants of Tβ,h

Notation

Throughout this Appendix, we use the convention that z1+1/h = 0 for any random variable z. Focusing

on the pair (l, k) = (1, 2) without loss of generality, we can write

Tβ,h ≡
√
h−1(β̂12 − β12)

√
(
∑1/h

i=1 y
2
2i

)−2
h−1ĝβ

=

√
h−1

∑1/h
i=1 y2iεi

√

h−1ĝβ
= Sh

(
h−1ĝβ
Bh

)−1/2

,

where ĝβ and Bh = V ar
(√

h−1
∑1/h

i=1 y2iεi

)

are defined in the text, and

Sh =

√
h−1

∑1/h
i=1 y2iεi√
Bh

.

Recall that Γlki ≡
∫ ih
(i−1)hΣlk (u) du (where Γki = Γkki when l = k). We let

ui = h−1
(
y22iε

2
i − E

(
y22iε

2
i

))
,

ui,i+1 = h−1 (y2iεiy2,i+1εi+1 − E (y2iεiy2,i+1εi+1)) ,

A1
1h = h−2

1/h
∑

i=1

(
2Γ3

12i − 18β12Γ2iΓ
2
12i + 24β2

12Γ
2
2iΓ12i + 6Γ1iΓ2iΓ12i − 8β3

12Γ
3
2i − 6β12Γ1iΓ

2
2i

)

A2
1h = h−2

1/h
∑

i=1

(−12Γ3
2iβ

3
12 + 2Γ2iΓ

2
2,i+1β

3
12 + 2Γ2

2iΓ2,i+1β
3
12 + 36Γ12iΓ

2
2iβ

2
12

−2Γ12,i+1Γ
2
2iβ

2
12 − 2Γ12iΓ

2
2,i+1β

2
12 − 4Γ12iΓ2iΓ2,i+1β

2
12 − 4Γ12,i+1Γ2iΓ2,i+1β

2
12

−8Γ1iΓ
2
2iβ12 − 28Γ2

12iΓ2iβ12 + Γ2
12,i+1Γ2iβ12 + 4Γ12iΓ12,i+1Γ2iβ12 + Γ2

12iΓ2,i+1β12

+4Γ12iΓ12,i+1Γ2,i+1β12 + Γ1iΓ2iΓ2,i+1β12 + Γ1,i+1Γ2iΓ2,i+1β12 + 4Γ3
12i − Γ12iΓ

2
12,i+1

−Γ2
12iΓ12,i+1 + 8Γ1iΓ12iΓ2i − Γ1iΓ12,i+1Γ2i − Γ1,i+1Γ12iΓ2,i+1).

Similarly, let

A1
0h = h−1

1/h
∑

i=1

E(y32iεi), A2
0h = h−1

1/h
∑

i=1

E(y22iy2,i+1εi+1), A3
0h = h−1

1/h
∑

i=1

E(y22,i+1y2iεi),

A0h =
1

4
(2A1

0h −A2
0h −A3

0h).

Auxiliary Lemmas

Lemma B.3 Let k, l, k′, l′, k′′, l′′,m, n,m′, n′,m′′, n′′ = 1, . . . , q and let n1, n2, n3, n4, n5 and n6, be

any non negative integers. Suppose (1) holds. It follows that

h1−(n1+n2+n3+n4+n5+n6)

1/h
∑

i=1

Γn1
kliΓ

n2
k′l′iΓ

n3
k′l′iΓ

n4
mn,i+1Γ

n5
m′n′,i+1Γ

n6
m′′n′′,i+1

→
∫ 1

0
Σn1
kl (u)Σ

n2
k′l′(u)Σ

n3
k′l′(u)Σ

n4
mn(u)Σ

n5
m′n′(u)Σ

n6
m′′n′′(u)du,

as h → 0.
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Lemma B.4 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then, as h → 0,

a1) Aj
1h → A1, for j = 1, 2;

a2) Bh = h−1
∑1/h

i=1

(
Γ12i − 4β12Γ2iΓ12i + 2β2

12Γ
2
2i + Γ1iΓ2i

)
→ B;

a3) A1
0h = 3h−1

∑1/h
i=1(Γ12iΓ2i − β12Γ

2
2i) → 3A0;

a4) A2
0h = h−1

∑1/h
i=1(Γ12,i+1Γ2i − β12Γ2iΓ2,i+1) → A0;

a5) A3
0h = h−1

∑1/h
i=1(Γ12iΓ2,i+1 − β12Γ2iΓ2,i+1) → A0.

Lemma B.5 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then, conditionally on Σ,

a1) E
(
∑1/h

i=1 y2iεi

)

= 0;

a2) E
(
∑1/h

i=1 y2iεi

)2
= hBh;

a3) E
(
∑1/h

i=1 y2iεi

)3
= h2A1

1h;

a4) E
(
∑1/h

i=1 y2iεi

)4
= 3h2B2

h +O(h), as h → 0;

a5) E
(
∑1/h

i=1 y2iεi
∑1/h

i=1(ui − ui,i+1)
)

= hA2
1h;

a6) E

((
∑1/h

i=1 y2iεi

)2∑1/h
i=1(ui − ui,i+1)

)

= O
(
h2
)
, as h → 0;

a7) E

((
∑1/h

i=1 y2iεi

)3∑1/h
i=1(ui − ui,i+1)

)

= 3h2BhA
2
1h +O(h3), as h → 0.

Lemma B.6 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then, conditionally on Σ,

a1) E (Sβ,h) = 0;

a2) E
(

S2
β,h

)

= 1;

a3) E
(

S3
β,h

)

=
√
h

A1
1h

B
3/2
h

;

a4) E
(

S4
β,h

)

= 3 +O(h), as h → 0;

a5) E
(

Sβ,h

√
h−1

∑1/h
i=1(ui − ui,i+1)

)

=
A2

1h√
Bh

;

a6) E
(

S2
β,h

√
h−1

∑1/h
i=1(ui − ui,i+1)

)

= O
(√

h
)

, as h → 0;

a7) E
(

S3
β,h

√
h−1

∑1/h
i=1(ui − ui,i+1)

)

= 3
A2

1h√
Bh

+O(h),as h → 0.
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Lemma B.7 Suppose (1) and (8) hold with α ≡ 0 and W independent of Σ. Then, conditionally on

Σ, as h → 0,

h−1ĝβ = Bh



1 +
1

Bh

1/h
∑

i=1

(ui − ui,i+1)−
4A0h

BhΓ2

1/h
∑

i=1

y2iεi



+ oP (
√
h).

Proof of Lemma B.3. This result follows from the boundedness of Σk(u) and the Reimann integra-

bility of Σn
kl(u) for any k, l = 1, . . . , q and for any non negative integer ni.

Proof of Lemma B.4. We derive the appropriate moments as a function of integrals of Γkli and then

apply Lemma B.3. To derive the expressions of the moments, we rely on the fact that conditionally

on Σ, independently across i = 1, . . . , 1/h, yi ∼ N(0,Γi) with Γi =
∫ ih
(i−1)h Σ(u)du. Let Ci be the

Cholesky decomposition of Γi. Note that yi
d
= Ciui: ui ∼ iidN(0, I2) where I2 is the 2 × 2 identity

matrix and ‘
d
=’ denotes equivalence in distribution. Then,

Ci =

(√
Γ1i 0

Γ12,i√
Γ1i

√

Γ2i − Γ2
12i
Γ1i

)

,

and y1i
d
= C1iu1i and y2i

d
= C21iu1i + C2iu2i. For instance, to obtain the expression for Bh, let

zi = y2iεi − E(y2iεi) and note that by definition, the z′is are independent with E (zi) = 0. It follows

that

Bh = V ar




√
h−1

1/h
∑

i=1

y2iεi



 = h−1E





1/h
∑

i=1

(y2iεi − E(y2iεi))





2

= h−1

1/h
∑

i=1

E
(
z2i
)
.

Now, E
(
z2i
)
= E

(
y22iε

2
i

)
− (E (y2iεi))

2. Since εi = y1i − β12y2i, we get that

E (y2iεi) = E (y1iy2i)− β12E
(
y22i
)
= Γ12i − β12Γ2i,

E
(
y22iε

2
i

)
= E

(

y22i (y1i − β12y2i)
2
)

= E
(
y22iy

2
1i

)
− 2β12E

(
y1iy

3
2i

)
+ β2

12E
(
y42i
)
.

We now use the Cholesky decomposition to get that

E
(
y22iy

2
1i

)
= E

(

(C1iu1i)
2 (C21iu1i + C2iu2i)

2
)

= E
(
C2
1iu

2
1i

) (
C2
21iu

2
1i + 2C21iC2iu1iu2i + C2

2iu
2
2i

)

= 3C2
1iC

2
21i + C2

1iC
2
2i = 2Γ2

12i + Γ1iΓ2i;

E
(
y1iy

3
2i

)
= E

(

(C1iu1i) (C21iu1i +C2iu2i)
3
)

= 3C1iC
3
21i + 3C1iC21iC

2
2i = 3Γ12iΓ2i; and

E
(
y42i
)

= E
(

(C21iu1i + C2iu2i)
4
)

= 3C4
21i + 6C2

21iC
2
2i + 3C4

2i = 3Γ2i.

Thus, E
(
y22iε

2
i

)
= 2Γ2

12i + Γ1iΓ2i − 6β12Γ12iΓ2i + 3β2
12Γ

2
2i and

E
(
z2i
)

= 2Γ2
12i + Γ1iΓ2i − 6β12Γ12iΓ2i + 3β2

12Γ
2
2i − (Γ12i − β12Γ2i)

2

= Γ2
12i + Γ1iΓ2i − 4β12Γ12iΓ2i + 2β2

12Γ
2
2i,

which implies Bh = h−1
∑1/h

i=1

(
Γ2
12i + Γ1iΓ2i − 4β12Γ12iΓ2i + 2β2

12Γ
2
2i

)
. To conclude the proof of the

second result, we then apply Lemma B.3. The proof of the remaining results follows similarly and

therefore we omit the details.

Proof of Lemma B.5. (a1) follows by definition of β12 whereas (a2) follows by the definition of

Bh. For the remaining results, write zi = y2iεi − E(y2iεi) and note that by definition, the z′is are

independent with E (zi) = 0. Note also that
∑1/h

i=1 zi =
∑1/h

i=1 y2iεi since
∑1/h

i=1 E (y2iεi) = 0. For (a3),
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note that

E





1/h
∑

i=1

y2iεi





3

= E





1/h
∑

i=1

zi





3

=

1/h
∑

i,j,k=1

E (zizjzk) =

1/h
∑

i=1

E
(
z3i
)
.

We now compute E
(
z3i
)
using the Cholesky decomposition as in the proof of Lemma B.4 to show that

∑1/h
i=1E

(
z3i
)
= h2A1

1h, with A1
1h as defined above. For (a4), note that E

(
∑1/h

i=1 y2iεi

)4
=
∑1/h

i=1E
(
z4i
)
+

3
∑

i 6=j E
(
z2i
)
E
(

z2j

)

= 3
(
∑1/h

i=1E
(
z2i
))2

+ O(h3) and use the definition of Bh to prove the result.

For (a5), note that

E









1/h
∑

i=1

y2iεi





1/h
∑

i=1

(ui − ui,i+1)



 =

1/h
∑

i=1

E(ziui)−
1/h
∑

i=1

E(ziui,i+1)−
1/h
∑

i=1

E(zi+1ui,i+1).

Useing the definitions of ui and ui,i+1, the result follows from simple but tedious algebra using the

Cholesky decomposition. The remaining results follow similarly and therefore we omit the details.

Proof of Lemma B.6. We apply Lemma B.5, given the definition of Sβ,h.

Proof of Lemma B.7. Using the definition of ĝβ in the text, we can write

h−1ĝβ = h−1

1/h
∑

i=1

(

y22iε
2
i + (β̂12 − β12)

2y42i − 2(β̂12 − β12)y
3
2iεi

)

−h−1

1/h
∑

i=1

(

y2iy2,i+1εiεi+1 + (β̂12 − β12)
2y22iy

2
2,i+1 − (β̂12 − β12)(y

2
2iy2,i+1εi+1 + y22,i+1y2iεi)

)

.

Adding and subtracting appropriately, it follows that

h−1ĝβ = h−1

1/h
∑

i=1

E(y2iεi)
2 − h−1

1/h
∑

i=1

E (y2iεiy2,i+1εi+1) +



h−1

1/h
∑

i=1

((y2iεi)
2 − E(y2iεi)

2)





−



h−1

1/h
∑

i=1

(y2iεiy2,i+1εi+1 − E (y2iεiy2,i+1εi+1))



− (β̂12 − β12)h
−1

1/h
∑

i=1

E(2y32iεi)

+(β̂12 − β12)h
−1

1/h
∑

i=1

E(y22iy2,i+1εi+1) + (β̂12 − β12)h
−1

1/h
∑

i=1

E(y22,i+1y2iεi) +OP (h),

= Bh + h−1

1/h
∑

i=1

(Ey2iεi)
2 − h−1

1/h
∑

i=1

E (y2iεiy2,i+1εi+1) +

1/h
∑

i=1

(ui − ui,i+1)− (β̂12 − β12)2A
1
0h

+(β̂12 − β12)A
2
0h + (β̂12 − β12)A

3
0h +OP (h)

= Bh +

1/h
∑

i=1

(ui − ui,i+1)−
2A1

0h

Γ2

1/h
∑

i=1

y2iεi +
A2

0h

Γ2

1/h
∑

i=1

y2iεi +
A3

0h

Γ2

1/h
∑

i=1

y2iεi + oP

(√
h
)

.
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To show that the remainder term is of order oP (
√
h) we have used the following facts:

β̂12 − β12 = OP (
√
h);

h−1

1/h
∑

i=1

y22iy
2
2,i+1 = OP (1);

h−1

1/h
∑

i=1

(
y32iεi − E

(
y32iεi

))
= OP (

√
h);

h−1

1/h
∑

i=1

(
y22,i+1y2iεi − E

(
y22,i+1y2iεi

))
= OP (

√
h);

h−1

1/h
∑

i=1

(Ey2iεi)
2 − p lim

h→0
h−1

1/h
∑

i=1

(Ey2iεi)
2 = oP

(√
h
)

, and

h−1

1/h
∑

i=1

E (y2iεiy2,i+1εi+1)− p lim
h→0

h−1

1/h
∑

i=1

E (y2iεiy2,i+1εi+1) = op

(√
h
)

,

whose proof relies on Theorem 2.3 of BNGJPS (2006). In addition, by Lemma B.3, h−1
∑1/h

i=1 (Ey2iεi)
2

and h−1
∑1/h

i=1E (y2iεiy2,i+1εi+1) have the same probability limit and therefore,

h−1

1/h
∑

i=1

(Ey2iεi)
2 − h−1

1/h
∑

i=1

E (y2iεiy2,i+1εi+1) = oP

(√
h
)

.

Proof of Theorem 5.2(a).

Given Lemma B.7, we can write

Tβ,h = Sβ,h



1 +
1

Bh

1/h
∑

i=1

(ui − ui,i+1)−
4A0h

BhΓ2

1/h
∑

i=1

y2iεi + oP (
√
h)





−1/2

.

The first and third cumulants of Tβ,h are given by (see e.g., Hall, 1992, p. 42) κ1(Tβ,h) = E(Tβ,h) and

κ3(Tβ,h) = E(T 3
β,h)− 3E(T 2

β,h)E(Tβ,h) + 2[E(Tβ,h)]
3.

Our goal is to identify the terms of order up to O(
√
h) of the asymptotic expansions of these two

cumulants. We will first provide asymptotic expansions through order O(
√
h) for the first three

moments of Tβ,h. Note that for a given fixed value of k, a first-order Taylor expansion of f(x) =

(1 + x)−k/2 around 0 yields f(x) = 1 − k
2x+ O(x2). Provided that

∑1/h
i=1(ui − ui,i+1) = OP (

√
h), we

have for any fixed integer k,

T k
β,h = Sk

β,h



1−
√
h
k

2

√
h−1

Bh

1/h
∑

i=1

(ui − ui,i+1) +
√
hk

2A0h

BhΓ2

√
h−1

1/h
∑

i=1

y2iεi



+ o(
√
h) = T̃ k

β,h + o(
√
h).
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For k = 1, 2, 3, the moments of T̃ k
β,h are given by

E(T̃β,h) = E (Sβ,h)−
√
h
1

2

1

Bh
E



Sβ,h

√
h−1

1/h
∑

i=1

(ui − ui,i+1)



+
√
h

2A0h√
BhΓ2

E(S2
β,h),

E(T̃ 2
β,h) = E

(
S2
β,h

)
−

√
h

1

Bh
E



S2
β,h

√
h−1

1/h
∑

i=1

(ui − ui,i+1)



+
√
h

4A0h√
BhΓ2

E(S3
β,h),

E(T̃ 3
β,h) = E(S3

β,h)−
3

2

√
h

1

Bh
E



S3
β,h

√
h−1

1/h
∑

i=1

(ui − ui,i+1)



+
√
h

6A0h√
BhΓ2

E(S4
β,h).

Given Lemma B.6,

E(T̃β,h) = −
√
h

1

2Bh

A2
1h√
Bh

+
√
h

2A0h√
BhΓ2

;

E(T̃ 2
h ) = 1 +O(h); and

E(T̃ 3
β,h) =

√
h
A1

1h

B
3/2
h

− 3

2Bh

√
h 3× A2

1h√
Bh

+
√
h
18A0h√
BhΓ2

+O(h).

Thus

κ1(Tβ,h) =
√
h

(

− 1

2Bh

A2
1h√
Bh

+
2A0h√
BhΓ2

)

+ o(
√
h) ≡

√
hκ1,h + o

(√
h
)

,

κ3 (Tβ,h) =
√
h

(

A1
1h

B
3/2
h

− 3

Bh

A2
1h√
Bh

+
12A0h√
BhΓ2

)

+ o(
√
h) ≡

√
hκ3,h + o

(√
h
)

.

By Lemma B.4, we can now show that

lim
h→0

κ1,h = −1

2

A1

B3/2
+

1

2

4A0√
BΓ2

≡ 1

2
(H1 −H2)

and

lim
h→0

κ3,h = −2
A1

B3/2
+ 3

4A0√
BΓ2

≡ 3H1 − 2H2,

where A0, A1, B, H1 and H2 are as defined in the text.

Appendix B.3. Asymptotic expansions of the bootstrap cumulants of T ∗
β,h

Notation

Let ε∗i = y∗1i − β̂12y
∗
2i = ε̂Ii , with Ii a uniform draw from {1, . . . , 1/h}, and let ε̂∗i = y∗1i − β̂

∗
12y

∗
2i be the

bootstrap OLS residual. We can write

T ∗
β,h ≡

√
h−1(β̂

∗
12 − β̂12)

√
(
∑1/h

i=1 y
∗2
2i

)−2
B̂∗

1h

=

√
h−1

∑1/h
i=1 y

∗
2iε

∗
i

√

B̂∗
1h

= S∗
h



1 +
√
h





√
h−1

(

B̂∗
1h − B̂1h

)

B̂1h









−1/2

, (9)

where

S∗
β,h =

√
h−1

∑1/h
i=1 y

∗
2iε

∗
i

√

B̂1h

, (10)

31



with B̂1h = h−1
∑1/h

i=1 y
2
2iε̂

2
i , and B̂∗

1h = h−1
∑1/h

i=1 y
∗2
2i ε̂

∗2
i .

Let

Â0h = h−1

1/h
∑

i=1

y32iε̂i, Â1h = h−2

1/h
∑

i=1

(y2iε̂i)
3, and B̃∗

1h = h−1

1/h
∑

i=1

(y∗2iε
∗
i )

2.

Note that

B̃∗
1h − B̂1h = h−1

1/h
∑

i=1

(
y∗22i ε

∗2
i − h2B2

1h

)
, (11)

where E∗ (y∗22i ε
∗2
i

)
= h2B̂1h, so that y∗22i ε

∗2
i −h2B2

1h is i.i.d. with mean zero, conditional on the original

sample.

Auxiliary lemmas

Lemma B.8 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then,

a1) E∗ (y∗2iε
∗
i ) = 0;

a2) E∗
(

(y∗2iε
∗
i )

2
)

= h2B̂1h;

a3) E∗
(

(y∗2iε
∗
i )

3
)

= h3Â1h;

a4) E∗ ((y∗2iε
∗
i )

q) = OP (hq) for any q ≥ 2;

a5) E∗
(
∑1/h

i=1 y
∗
2iε

∗
i

)

= 0;

a6) E∗
(
∑1/h

i=1 y
∗
2iε

∗
i

)2
= hB̂1h;

a7) E∗
(
∑1/h

i=1 y
∗
2iε

∗
i

)3
= h2Â1h;

a8) E∗
(
∑1/h

i=1 y
∗
2iε

∗
i

)4
= 3h2

(

B̂1h

)2
+OP (h

3), as h → 0;

a9) E∗
(
∑1/h

i=1 y
∗
2iε

∗
i

∑1/h
i=1

(
y∗22i ε

∗2
i − h2B2

1h

))

= h2Â1h;

a10) E∗
((
∑1/h

i=1 y
∗
2iε

∗
i

)2∑1/h
i=1

(
y∗22i ε

∗2
i − h2B2

1h

)
)

= OP

(
h3
)
, as h → 0;

a11) E∗
((
∑1/h

i=1 y
∗
2iε

∗
i

)3∑1/h
i=1

(
y∗22i ε

∗2
i − h2B2

1h

)
)

= 3h3B̂1hÂ1h +OP

(
h4
)
, as h → 0.

Lemma B.9 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then,

a1) E∗
(

S∗
β,h

)

= 0;

a2) E∗
(

S∗2
β,h

)

= 1;

a3) E∗
(

S∗3
β,h

)

=
√
h Â1h

B̂
3/2
1h

;
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a4) E∗
(

S∗4
β,h

)

= 3 +OP (h), as h → 0;

a5) E∗
(

S∗
β,h

√
h−1(B̃∗

1h − B̂1h)
)

= Â1h√
B̂1h

;

a6) E∗
(

S∗2
β,h

√
h−1

(

B̃∗
1h − B̂1h

))

= OP

(√
h
)

as h → 0;

a7) E∗
(

S∗3
β,h

√
h−1

(

B̃∗
1h − B̂1h

))

= 3 Â1h√
B̂1h

+OP (h), as h → 0.

Lemma B.10 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then,

√
h−1

(

B̂∗
1h − B̂1h

)

B̂1h

=

√
h−1

(

B̃∗
1h − B̂1h

)

B̂1h

− 2Â0h
√

B̂1hΓ̂2

S∗
β,h +OP ∗(

√
h),

in probability.

Lemma B.11 Suppose (1) holds with α ≡ 0 and W independent of Σ. Then,

κ∗1(T
∗
β,h) =

√
h

(

− Â1h

2B̂
3/2
1h

+ Â0h√
B̂1hΓ̂2

)

≡
√
hκ∗

1,h, and

κ∗3(T
∗
β,h) =

√
h

(

−2Â1h

B̂
3/2
1h

+ 6Â0h√
B̂1hΓ̂2

)

+OP (h) ≡
√
hκ∗3,h +OP (h), as h → 0.

Proof of Lemma B.8. For (a1), note that E∗ (y∗2iε
∗
i ) = h

∑1/h
i=1 y2iε̂i = 0 from the OLS first order

condition that defines β̂12. The remaining results follow from the properties of the i.i.d bootstrap (in

particular, the independence between y∗2iε
∗
i and y∗2jε

∗
j for i 6= j) and the definitions of Â1h and B̂1h.

For instance, for (a2),

E∗ (y∗22i ε
∗2
i

)
= h

1/h
∑

i=1

y22iε̂
2
i = h2B̂1h,

given the definition of B̂1h.

Proof of Lemma B.9. We apply Lemma B.8. For instance, for (a1)

E∗ (S∗
β,h

)
=

h−1/2

B̂
1/2
1

E∗





1/h
∑

i=1

y∗2iε
∗
i



 = 0,

given Lemma B.8 (a5). (a2) through (a4) follow similarly, using Lemma B.8, parts (a6) through (a8),

respectively. For (a5)-(a7), use (a9)-(a11) of Lemma B.8 and the fact that S∗
β,h and B̃∗

1h − B̂1h are

given by (10) and (11), respectively.

Proof of Lemma B.10. Noting that ε̂∗i = ε∗i −
(

β̂
∗
12 − β̂12

)

y∗2i, we can write

B̂∗
1h = h−1

1/h
∑

i=1

y∗
2

2i ε̂
∗2
i = h−1

1/h
∑

i=1

y∗
2

2i (ε
∗
i −

(

β̂
∗
12 − β̂12

)

y∗2i)
2

= h−1

1/h
∑

i=1

y∗
2

2i ε
∗2
i − 2

(

β̂
∗
12 − β̂12

)

h−1

1/h
∑

i=1

y∗
3

2i ε
∗
i +

(

β̂
∗
12 − β̂12

)2
h−1

1/h
∑

i=1

y∗
4

2i .
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Since β̂
∗
12 − β̂12 = OP ∗

(√
h
)

and h−1
∑1/h

i=1 y
∗4
2i = OP ∗ (1), in probability, the last term is OP ∗ (h), in

probability. Next, note that

h−1

1/h
∑

i=1

y∗
3

2i ε
∗
i = Â0h +OP ∗

(√
h
)

,

which together with β̂
∗
12 − β̂12 = OP ∗

(√
h
)

, implies that

B̂∗
1h = h−1

1/h
∑

i=1

y∗
2

2i ε
∗2
i − 2

(

β̂
∗
12 − β̂12

)

Â0h +OP ∗ (h) .

By definition, the first term is B̃∗
1h, and we can use β̂

∗
12 − β̂12 =

∑1/h
i=1 y

∗
2iε

∗
i

Γ̂∗
2

and the definition of S∗
β,h

to write

B̂∗
1h = B̃∗

1h − 2
√
h
Â0h

√

B̂1h

Γ̂2

(√
h−1

∑1/h
i=1 y

∗
2iε

∗
i

√

B̂1

)(

1 +
Γ̂∗
2 − Γ̂2

Γ̂2

)−1

+OP ∗ (h) ,

= B̃∗
1h − 2

√
h
Â0h

√

B̂1h

Γ̂2

S∗
β,h

(

1− Γ̂∗
2 − Γ̂2

Γ̂2

+OP ∗ (h)

)

+OP ∗ (h) ,

= B̃∗
1h − 2

√
h
Â0h

√

B̂1

Γ̂2

S∗
β,h + 2

√
h
Â0h

√

B̂1

Γ̂2

S∗
β,h

(

Γ̂∗
2 − Γ̂2

Γ̂2

)

︸ ︷︷ ︸

+

OP∗(h)

OP ∗ (h) ,

where we have used the fact that S∗
β,h = OP ∗ (1) and Γ̂∗

2 − Γ̂2 = OP ∗

(√
h
)

, in probability. Adding

and subtracting appropriately gives the result.

Proof of Lemma B.11. By (9) and Lemma B.10,

T ∗
β,h = S∗

β,h




1 +

√
h





√
h−1

(

B̃∗
1h − B̂1h

)

B̂1h

− 2Â0h
√

B̂1hΓ̂2

S∗
β,h +OP ∗(

√
h)





−1/2



 .

Following the proof of Proposition 5.2.(a), for any fixed integer k, we have that

T ∗k
β,h = S∗k

β,h



1−
√
h
k

2

√
h−1

B̂1h

(

B̃∗
1h − B̂1h

)

+
√
hk

Â0h
√

B̂1hΓ̂2

S∗
β,h



+OP (h) ≡ T̃ ∗k
β,h +OP (h).

For k = 1, 2, 3, the moments of T̃
∗k
h are given by

E∗(T̃ ∗
β,h) = E∗(S∗

β,h)−
√
h
1

2

1

B̂1h

E∗
(

S∗
β,h

√
h−1

(

B̃∗
1h − B̂1h

))

+
√
h

Â0h
√

B̂1hΓ̂2

E∗(S∗2
β,h),

E∗(T̃ ∗2
β,h) = E∗(S∗2

β,h)−
√
h

1

B̂1h

E∗
(

S∗2
β,h

√
h−1

(

B̃∗
1h − B̂1h

))

+
√
h

2Â0h
√

B̂1hΓ̂2

E∗(S∗3
β,h),

E∗(T̃ ∗3
β,h) = E∗(S∗3

β,h)−
√
h
3

2

1

B̂1h

E∗
(

S∗3
β,h

√
h−1

(

B̃∗
1h − B̂1h

))

+
√
h

3Â0h
√

B̂1hΓ̂2

E∗(S∗4
β,h).
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Lemma B.9 implies that

E∗(T̃ ∗
β,h) = −

√
h
1

2

1

B̂1h

Â1h
√

B̂1h

+
√
h

Â0h
√

B̂1hΓ̂2

=
√
h



−1

2

Â1h

B̂
3/2
1h

+
Â0h

√

B̂1hΓ̂2





E∗
(

T̃ ∗
β,h

)

= 1 +OP (h) ,

E∗(T̃ ∗3
β,h) =

√
h
Â1h

B̂
3/2
1h

−
√
h
9

2

1

B̂1h

Â1h
√

B̂1h

+
√
h

9Â0h
√

B̂1hΓ̂2

=
√
h



−7

2

Â1h

B̂
3/2
1h

+ 9
Â0h

√

B̂1hΓ̂2



 .

Thus

κ∗1(T
∗
β,h) = E∗(T̃ ∗

β,h) =
√
h



−1

2

Â1h

B̂
3/2
1h

+
Â0h

√

B̂1hΓ̂2



 ≡
√
hκ∗1,h,

and

κ∗3(T
∗
β,h) = E∗(T̃ ∗3

β,h)− 3E∗(T̃ ∗2
β,h)E

∗(T̃ ∗
β,h) + 2[E∗(T̃ ∗

β,h)]
3

=
√
h



−7

2

Â1h

B̂
3/2
1h

+ 9
Â0h

√

B̂1hΓ̂2



− 3
√
h



−1

2

Â1h

B̂
3/2
1h

+
Â0h

√

B̂1hΓ̂2



+OP (h)

=
√
h



−2
Â1h

B̂
3/2
1h

+ 6
Â0h

√

B̂1hΓ̂2



+OP (h) ≡
√
hκ∗3,h +OP (h) .

Proof of Theorem 5.2(b).

By Theorem 2.1 of BNGJPS (2006), and because β̂12
P→ β12, we have that B̂1h

P→ B∗, and

Â0h
P→ 3

∫ 1

0

(
Σ12(u)− β12Σ

2
2(u)

)
du = 3A0.

Similarly, we can show that

Â1h = h−2

1/h
∑

i=1

(εiy2i)
3 + oP (1) = h−2

1/h
∑

i=1

E
(

(εiy2i)
3
)

+Rh + oP (1) ,

where

Rh = h−2

1/h
∑

i=1

(εiy2i)
3 − E

(

(εiy2i)
3
)

.

E (Rh) = 0, and by straightforward calculations, V ar
(

h−2
∑1/h

i=1 (εiy2i)
3
)

= O (h) = o (1), which

implies that Rh = oP (1). By tedious but simple algebra we can verify that

h−2

1/h
∑

i=1

E
(

(εiy2i)
3
)

= h−2

1/h
∑

i=1

(
6Γ3

12i + 9Γ1iΓ12iΓ2i − 36β12Γ
2
12iΓ2i

−9β12Γ1iΓ
2
2i + 45β2

12Γ12iΓ
2
2i − 15β3

12Γ
3
2i

)

.

By Lemma B.3, this last expression converges to
∫ 1

0

(
6Σ3

12 (u) + 9Σ1 (u)Σ12 (u) Σ2 (u)− 36β12Σ
2
12 (u) Σ2 (u)

−9β12Σ1 (u)Σ
2
2 (u) + 45β2
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2
2 (u)− 15β3

12Σ
3
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)
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2
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1,
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proving that Â1h →P 3
2A

∗
1. Thus, using Lemma B.11, we get that

p limκ∗
1,h = p lim



−1

2

Â1h

B̂
3/2
1h

+
Â0h

√

B̂1hΓ̂2



 = −1

2

3
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∗
1
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=
3

4

(
4A0√
B∗Γ2
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1

B∗3/2

)

≡ 3

4
(H∗
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Similarly,

p limκ∗
3,h =

(

−2
3
2A

∗
1

B∗3/2 + 6
3A0√
B∗Γ2

)

=

(
3× 3

2
H∗

1 − 3H∗
2

)

=
3

2
(3H∗

1 − 2H∗
2 ) .
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