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1. Introduction

The major goal of the present paper is to construct a new approach to equilibrium
selection for very general normal form game situations, especially, those games
consist of two groups of populations. The existence and uniqueness of the new game
equilibrium induced by stochastic group evolution and rational individual choice have
been proved, and also the stability of the game equilibrium is confirmed from both
time (i.e., in the sense of stochastic stopping time) and space (i.e., from the viewpoint
of invariant probability measure) dimensions, which is different from the classical
approach of Kohlberg and Mertens (1986). Furthermore, Theorem 1 in section 2 not
only provides us with the explicit form of the new game equilibrium but also provides
us with the explicit time length needed so that the game equilibrium can be achieved
by decentralized players. And this would be regarded as an important characteristic of
the new game equilibrium relative to traditional approach (see, Samuelson and Zhang,
1992; Kandori et al., 1993; Young, 1993; Matsui and Matsuyama, 1995; Foster and
Young, 2003; Binmore et al., 2003).

Noting that both evolutionary game theory and rational choice theory have very
important economic implications, the current paper introduces a new game
equilibrium by combining both of the above, i.e., evolutionary game theory (see,
Friedman, 1991; Ritzberger and Weibull, 1995; Hofbauer and Sigmund, 2003;
Benaim and Weibull, 2003, and among others) corresponds to group-level
deterministic or stochastic evolution via both the well-known random-matching rule
(e.g., Ellison, 1994; Zhou, 1999; Bogomolnaia and Moulin, 2004; Duffie and Sun,
2007; Aliprantis et al., 2007, and among others) and deterministic or stochastic
replicator dynamics (e.g., Foster and Young, 1990; Fudenberg and Harris, 1992;
Binmore et al., 1995; Cabrales, 2000; Corradi and Sarin, 2000; Imhof, 2005; Benaim
et al., 2008, and among others) while rational choice theory (see, Harsanyi, 1966;
Bernheim, 1984; Aumann, 1987, and among others) corresponds to individual-level
and decentralized rational decision. Most importantly, the present paper successfully

shows that optimal stopping theory that has been widely applied in mathematical



finance (see, Myneni, 1992; Shepp and Shiryaev, 1993; Hobson, 1998; Guo and
Shepp, 2001; Avram et al., 2004; Choi et al., 2004; Alili and Kyprianou, 2005) plays a
crucial role in characterizing and finally demonstrating the existence and uniqueness
of the new game equilibrium.

The rest of the paper is organized as follows: section 2 introduces the model
where the formal definition of the new game equilibrium is given and the existence
and uniqueness of the game equilibrium are proved; section 3 demonstrates the
stability of the game equilibrium from both time and space dimensions; section 4

concludes and the Appendix provides the main mathematical derivations.

2. The Model

Let A

1, D€ the payoff matrix for row-players and B, , be the payoff matrix

for column-players with 4, , , B, , € R and I,, I,>1. Here, and throughout

IxI,

the current paper, we study the replicator dynamics of I, x/, normal form games
between two groups of populations. Put Zi[‘:lM "“(tY=M , where M"(t) denotes
the number of strategy-i, players at period z. Similarly, let Zf:] N:(t)= N, where

N"(t) denotes the number of strategy-i, players at period 7. And, we introduce the

following technical assumption,

ASSUMPTION 1: Throughout the current paper, both M and N, sufficiently
large, are assumed to be finite constants.

REMARK 2.1: Some of existing literatures (see, Fudenberg et al., 2004; Nowak et
al., 2004; Imhof and Nowak, 2006, and among others) have confirmed that
Assumption 1 has very important implications. That is to say, on the one hand,
Assumption 1 is used to make things much easier from the viewpoint of pure
mathematics; and also, Assumption 1 is indeed without loss of any generality in the

sense of economic and biological intuitions on the other hand.

We let X'()2M'(t)/M , Y:(t)2N:(r)/N denote the frequencies of



strategies i, and i,, respectively, with i =1,2,...,1, and i, =1,2,...,1,. Therefore,
the average payoffs of strategy i and strategy i, are given by u(il,Y (t)) =
e AY(r) and u(i,,X(r))=2¢é B"X (1), respectively, with the superscript «7T ”
. A 1 i I r A (1 i
denoting transpose, and X(t)z(X ),....,X"(), ... X l(t)) , Y(1)= (Y (1),...,Y" (1),

=(0,...,1,...,0)", where the i -th entry

DN

b

I r _ T
LY2(@) , and also g =(0,...1,...,0)",
and i, -entry are ones, respectively, for i =1,2,...,1, and i,=1,2,...,1,.

We now denote by (Q(Wiﬁ),}" W {]—:(Wiﬁ)} ,]P’(Wiﬁ)) the filtered

0<r<r” (w)

, the P™") — augmented filtration

probability space with F™" 2 { ]_-(st)} |
0<r<r” (w)

generated by d, —dimensional standard Brownian motion (Wi” (1),0<r<7"” (a)))

with F"2 FVD 5 e Q™" and ¥ (w) a stopping time, to be endogenously

o (w) ?
-1 i A 1 i 7l i T
determined. Moreover, we define N’ (dt, dzﬂ) = (Nlﬁ (dt,dzlﬂ) yeers Nni (dt,dzn’; ))

A (Nliﬂ (dt,dzliﬂ )_Vliﬂ (dzfﬂ )dt,...,N,l;i (dt,dzfl/; )—VZ (dszg )d[)T , in which {N,i;3 }:j_l

are independent Poisson random measures with Lévy measures V,'/f coming from
i 4 iy i i
n, independent (1-dimensional) Lévy processes 7" (t) 2 IO J.R ' N/ (ds,dzlf’), ey
0
n” (1) £ J‘TI 2’ N” (ds dz” ) with R) £ R — {0}, and then the corresponding
g 0Jr, M8 Mp >, 0 ’
stochastic basis is given by (Q(Nlﬁ),}" @ {f @)

(N'F) . (N7) A
, P ) with T 2
{]—“(W)}

t

}0<t<1iﬂ (@)

V'8 . W4 VB VB
the P™") —augmented filtration and FV' 2 F ([f,v( :, we QW)
T [0}

0<r<r” (w)

and 7”(w) a stopping time, to be endogenously determined. Thus, we are provided

with a new stochastic basis (Qi”,]-" i/’, {f G

t

. . ig
,]P’lﬁ), where Q" =2 Q™) x

}OSfSTi/}(w)
(N7) is A W) (N7) is A W) N7 pis A W) (N7)
Qv Fr=F ® F" 7, Fr=F @ F" T, PP=P ® P and
F” 2 {}" iﬁ} y denotes the corresponding filtration satisfying the well-known
0<r<r” (w)

“usual conditions”. Here, and throughout the current paper, E” is used to denote the
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expectation operator with respect to (w. r. t.) the probability law P” for

Vi,=12,..,1, and for #=1,2. Naturally, we have stochastic basis (Qﬁ,}"”,
{]—j”}oggrﬁ(w) ) with Q"2 0Q'x..xQ", FFEF®. . @F", FFEF®
LOF  PPEP®.QPY, w2y ..v (@ E T (@) V..V
TV (w) if =1, and (@) 2 (@) v ..v " (®) 2 T (@) v ..vi(w) if f=2

with w e Q/, F’/ = {}:ﬂ } denoting the corresponding filtration satisfying

0<t<r” (w)
the usual conditions, and E” is used to denote the expectation operator with respect

to (w. 1. t.) the probability law P for f=1,2.
We now define the canonical Lebesgue measure g on measure space (R“

B(R,)) with R, 2[0,), R,, £(0,0) and B(R,) the Borel sigma-algebra,

and also the corresponding regular properties about Lebesgue measure are supposed

to be fulfilled. Thus, we can define the following product measure spaces

(Qiﬂ xR, ,IE‘i”®iB(R+)) and (Qﬂx]R+ ,Fﬂ®%(R+)) with corresponding product
measures 4 ® P” and U ® P’ | respectively, for V iﬂ=1,2,...,1 2 and for
p=12.

Now, based upon the probability space (Qi”,]-" i”, ' ,]Piﬁ ) for #=1,2, and

following Fudenberg and Harris (1992), Cabrales (2000), Imhof (2005), Benaim et al
(2008), Hotbauer and Imhof (2009), the stochastic replicator dynamics of the two

groups of populations can be respectively given as follows,

4 il ~ . .
dM' ()= M" (1) {E[ITAY(t)dt +>°5, (dWi )+ jR 7 (.20 )N} (dt.dz] )} ,
k=1 L=1""°

d, . ) . ~. .
dN" () = N* (1) {ég B'X(t)dt+ Y6, (AW (D) + jR 7, (222 )N (dt dz )}
ky=1 L=1"""°
where M'(r) is F"®DB(R,)-adapted, N:(r) is F*®B(R,)—adapted, Y(r) is

F’®B(R,)-adapted, X(r) is F'®B(R,)-adapted, &, (1) and 7, (1.7 ) are
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F'®B (R, )- progressively measurable, and &,, (r) and 7, (t,zl’f) are F* ® B
(R, ) —progressively measurable, for Vi =1,2,...,I,, Vi,=12,..,1I,, ¥k =12,
wdy, YV ok,=12,..,d,, V [[=12,.,n and V [,=12,.,n, . Notice from

Assumption 1 that the sizes of the two populations are finite constants, based on Itd’s

rule one can easily find,
X' (t)= X" (1) [af AY (t)dt + 25 (AW, (1) + Z Ji, 7 (021 ) N (el )}
2 x (z)[z{AY(t)dt +& (H)dW' (1) + IRSI 7' (12" )N (dr,def )}
£ (X1 0)d+g" (XNO)dW )+ [ B (X' @), )N (dr.dz").
dy"(n=Y" (z){ég B'X (t)dt+ Z G, (AW, (1) + Z Ji, 7u (0252 ) N (. )}

S0 [éifBTX (t)dt + & (1)dW™ (1) + jR 7 (£.2" ) N* (dt,dz" )}

2 i (Yi2 (l‘))dl‘-i— g (Yiz (l‘))dWiz (t)+_[R:12 R (Yiz (t), 2" )]\71'2 (dt, dz" ), (1)

subject to W'(0)=(0,...,0)" P"-as., W2(0)=(0,..,0)" P>-as, X(0) =

(X" (0), ., X(0),.., X (0))T 2 (et )T 2 x>0 P'-as, Y(0) = (V'
i 1 T A 1 i I T A 2 i .

0), ...,Y?(0),....,Y z(O)) = (y ..... V2,..,y 2) =y>0 P —as.,, X"(r) is assumed

to be Fi®B(R,)-adapted, and Y*(r) is assumed to be F:®B(R,)-adapted,
for V i =121, and Vi,=1,2....1,. Moreover, with a little abuse of notations,
we put & (0) = (5,(0) sy (0 5,4, (0) 2 (5,10 Gy 5,) 25
7(0.2) = (7 (02) o7 (0.2 ) 7 (0.23)) 2 (7a(al) vy (20 ) oo
7 (1)) 27 (). 67(0) = (6,(0), a8y, (0o 6,0, () 2 (6, G
J 260 and 7 (0.2) = (70 (027) v 7o (020) v 7 (0.25)) 2
(7t (25) o 7 (20 oo 7 (22)) 275 (22) For ¥ i =120, and Vi, =1,2,

....I,. Moreover, we have,



X (t)=f' (X (0))dt+g' (X () aW' )+ , W (X (0),2" )N (at,dz"),

dY (1) = f2(Y(t))dt+ g* (Y () dW> (1) + j ,,,,, (Y1), 2’ )N (dr,dz?), )
with X (1) 2 (X' (0),.... X' (1),... X" (t)) and Y(1) £ (Y'(0),...Y"(1),...Y" (z))T.

Next, we introduce some necessary assumptions,

ASSUMPTION 2: The initial conditions X"(0) = x* >0, Y*(0) = y* >0,
X(0)=x>0 and Y(0)=y >0 are all supposed to be deterministic and bounded
for Vi =12, ..,1 and Vi,=12,..1,. Furthermore, G0 P'—as., 62 #0
P: —a.s., Y (t,zfl‘) > —1+£,’;‘ i ® P —ae., and Vs, (t,zl’f) > —1+<9,’A22 u® P —
a.e., for ¥V 8,? >0, 8;22 >0 and for Vi =12,..,1; i,=12,..,1,; [[=12,..,n
and 1,=12, ..., n,

ASSUMPTION 3: The following linear growth and local Lipschitz continuity

conditions are fulfilled, respectively,

P ol (o, S ()

200 N
1 I I
hz(yz’zlz)
Roi 3 /12
=

(&) <C (1+\ i )

1 ’1
.X

2

e (o)) +

v (dzf )< C (1+‘in ‘2)

) jvg (dz) <" (1+]2).

1
1% (x, z

Hfl (x)Hz +H81 (X)Hz +J.1R02

w(na)

vi(a)=c(1+]yE),

|7 Gl G+, 2

for some constants C", C*>, C', C?><o.And,
() ()

(2.2 )— A" (& z,)

2 (v*)-2" (5*)

2

\4

2

‘fil (xil)_fil ()Acil)

(dzl )<L ‘x —fci‘r,

\fl‘z(y"z)—f"z(ﬁ"z)zv v

2



2
’

i i i S
v, (dzlzz)S L;iz yr=y?

2
2

[ 2t (57t ) = he (5722

2
2°

2
[ 3w ()= (2 vt (a2} ) < L e
R 2 4 1 R

ve? () -7 (5)

\4
2

2
27

A

y—y

[ S 0 5.2 o 1

<R",

for any given constants R", R", R', R*>0 with ‘xil‘v‘)?il‘SRi‘, ‘yiz V‘)A’iz

L L., L22<oo that

5 .
<R", and constants L 2. L

A 1
[, VI, < & vl v

y 2
depend only on R", R>, R' and R?, respectively, for all X', % yiz, )3"2 eR,,;
x, xeR" and y, e R: with hl(")(x, zl), hl(ll)(fc,zl) representing the
l, -th columns of matrixes hl(x,zl) , hl(fc, zl) , respectively, and hz(l”( y,zz) ,
hz(IZ)(jz,zz) denoting the [, -th columns of matrixes hz(y,zz) , hz(j),zz) ,
respectively, for ¥V I, =12, ..,n, l,=12,..,n,, and also Vi =1,2,..,1, i,=1,
2, ..,1,.

REMARK 2.2: (i) Provided Assumption 3, the existence and uniqueness of strong
solutions of the Lévy SDEs given in (1) and (2) are ensured, respectively.

(i1)) Assumption 3 is indeed weak in the following sense, local Lipschitz
continuity conditions can be naturally satisfied for any C' functions or
correspondences thanks to the Mean Value Theorem.

(ii1) Here, and throughout the current paper, |-| is used to denote absolute value,
||l 1s used to represent both Euclidean vector norm and the Frobenius (or trace)

matrix norm, and <-> 1is used to denote the scalar product.

Now, as in the model of Fudenberg et al (2004), Nowak et al (2004), and Imhof



and Nowak (2006), we define the following expected discounted fitness functions,
F(Y0) 2B, exp(-8") 1=+ (77 AY )} |,
(LX) 2E, X)[exp( 0°1)[1- i + (~TBTX(t))H
with 0", " e[0,1] (Vi=12,..,I; i,=12,..1,) denoting the discounted
factors, w', Ww" 6[0,1] (Vi=12.,1I; i=1,.2, ..,1,) the parameters that

measure the contributions of the matrix payoffs of the game to the fitness of the

corresponding strategies, and E(S e E}S ., Tepresenting the expectation operators w.
r. t. the complete probability law P*, P' with depending on initial conditions (s, y)
eR, x [0,1]1Z and (s,x) e R, x [0,1]1‘ , respectively. Thus, the problem facing us is,
PROBLEM 1: We need to demonstrate that there exist two vectors of F'—
. . — A (—Ix —i# —I* r . 1 2
stopping times 7 (a)):(r (w),..., 7" (®),...,T " (a))) with ® € Q' and F~ -
stopping times f*(a))é(fl*(a)),...,fiz*(a)),...,flz*(a)))T with @ € Q* such that,

7 (7 @)y (7 (@)

= sup E [Eu>>[exp(—gi‘?i‘(a))){l_ _ll( TAY(T”(CO)))}H

71 (w)<o

£ [B7 [T 7 @)1+ (7 ar(7 @) |

And simultaneously,

7 (7 @, (7 @)

= sup E’ [E;S o [exp(—éizfiz (a))){l—w'2 + 0P ( iZBTX (fiz (a))))}ﬂ,

72 ()<
2R [Eim [exp(—é’?f’f*(w)){l—w’z v (&) BT X (7 (w)))}ﬂ
with 77(0)=7"" (@) (V i, #k.,i,k =1,2,..,1)) P'—as. and 7" (@)=7""(w)
(Vi,#k,,i),k,=1,2,..,1,) P’—as..

REMARK 2.3: Indeed, w", w” €[0,1] (Vi =12,..1; i,=12,..1I,) can be



regarded as objective parameters that measure the intensity of evolutionary selection
(see, Ohtsuki et al., 2007), and also, this specification reflects the idea that, in reality,
individuals or players inclined to use different strategies may feel different importance
of the game payoff to their fitness, thereby determining different degrees of
participation which in turn will greatly affect the strategy choice of the players.
DEFINITION 1 (Game Equilibrium): The solution, if it exists, to Problem 1
defines a game equilibrium induced by stochastic group evolution and rational
individual choice corresponding to the very general normal form game situations.
REMARK 2.4: Here, and throughout the current paper, we study the game
equilibrium by employing evolutionary game theory under uncertainty, which implies
that the game equilibrium is characterized from the viewpoint of group level, thereby
leading to a case where classical optimal control theory is not suitable for rational
individual choice while stochastic optimal stopping theory is powerful and hence
plays a crucial role in proving and characterizing the existence and uniqueness of the
game equilibrium. Nevertheless, on the other hand, it is specifically worth
emphasizing that the game equilibrium is achieved through decentralized rational
individual choice of many players in the corresponding game although the game
equilibrium is characterized in the sense of group level based upon the classical

evolutionary game theory.

We now define Z(1)=(s+,X(t)) for VteR, with Z(0)= (s,x) € R, x
[0,1]", and Z(r)2(s+1,Y(r)) for ¥V re R, with Z(0) 2 (s,y) € R, x[0,1]".

7 Al of of L Al 1= 1
And also we let Vf(s,x) = (E(s,x),...,ax—,.l(s,x),...,ax—,l(s,x)) » 7, (X) —(x 7, (le ),
. ; _ T _ — _ 7 T _
X7, (lel)""’xh?’zlz, (Zz? )) , Vf(s,y) = (%(s,y),...,;%(s,y),...,ayf{z(s, y)) and 7,
. . T

(y) 2 ();177”2 (z}z),...,y’zfizlz (z,’;),...,y’zf,zlz (z,’;)) . Then the characteristic operators

of Z(t) and Z(r) can be respectively given by,

A (5.0 =L (5,04 30 (& A4v) L (5.9

=
1



SEE ) o e

n

+ZI Z{ (s,x+}7,l()c))—f(s,x)—<Vf(s,x)’77ll(x)>}vlll<1 (dz,'f‘),

Ry
v feC(R").

And,

AT, y)—i<s D43y (B x)%(s,y)

i,=1

1 B\ =i\ =i o’ f
20 (@) & e

ih=1

+ZI Z{ (534 7,0)) =T, 0)=(VF (s, 7, v (),

=1 012
V feC(R").

Furthermore, we let Z{l_lx"‘ =05,, then x" =1-5, with 0<5, <1 by noting

i=1

that Z:lzlxil =1.Let Zfl 12 " =6,,then we get x""' =6,—5, with 0<5, <6 <1

Inductively, let 2{1:1(11_2) i

n=

-5 3 L-(L,-3) _ = .
=0, ,, then we have x" =x""""=96, ;-0, , with

< < < 1~ 1_1 1) N : N
8, ,<6, ;<. <5 <1;let z;::l 'y =6, ,,ie, x =6, ,,then we get x’ =
X" = 5 =5, with 0<6, <65, ,<65, ;<..<6 <1. And without loss of

u(iz’x) = élZBTx = (bi21 _bizz)xl +bi22é_‘11—2 +Zbi2il (é_‘ll-i1 _Sll—il+1)'

I-1

Similarly, notice that z;zzl y2 =1 and let Z . Y2 = 5 , then we have y”" =

1-6, with 0 <6, <1. Let Z{z_zy" =35, , then we see that y"' =5, -5, with 0<

ir=1

5, <6, <1. Inductively, let Z“{z_(lz_z)yi2 = 51272 , then we have y’ =y~ = 51273

=1

5, with 0<6, , <5, ;<..<§<I; let 3" BUyE=6, L e, ¥ =6,

=1

11



then it follows that y* =y =45 -5 | with 0<5, <6, ,<6, ,<..<

51 <1.And we, without loss of any generality, put &, =1. Then we get,

1
: =T A 1 g g g
”(’1) y) =€ Ay = (aill _aqz)y +411'1251272 +Zaili2 (51242 _51242“) .

i=3

Therefore, the fitness functions become,

7 (5.9) =exp( -9

12
—i | =i 1 N N N
X{I_WI +w! {(aill _ailz)y +ai12512—2 +Zaili2 (512—1'2 _512—i2+1):|}’

i=3

Vi=12 .1,

X{l —W2 " |:(b,~21 _b,-zz )xl +bi226_‘11—2 + lzlbizil (é_‘ll_il _6_‘11‘i1+1 )}} >
i=3

vVi,=12,..1,.(3)
with 0< 5, <5, ,<6, ;<.. <§<65,=1 and 0<,
é_'o =1. And inspection of the fitness functions given in (3) reveals that one can just
define Z(1)2(s+1,X'(t)) for Ve R, with Z(0) 2 (s,x') e R, x[0,1], and

Z(1) é(sjtt,Yl(t)) for VteR, with Z(0) = (s,yl) eR, x [0,1]. And hence the

corresponding characteristic operators of Z(r) and Z(r) are respectively given by,




Uo)

+.[R Z{]?(Sa Y+ )’1771/2 (lez ))_f(sa yl)_yl771/2 (lez )%(S, yl); Vzlz (dzllz)

0=l
Vv feC(R).

Therefore, based upon the above assumptions and specifications, the following
theorem is derived,

THEOREM 1: There exists a unique solution to Problem 1 under very weak
conditions, and accordingly the existence and uniqueness of the game equilibrium are
confirmed.

PROOF: See Appendix A.I

REMARK 2.5: It is especially worth noting that Theorem 1 not only shows the
existence and uniqueness of the game equilibrium given by Definition 1 but also
provides us with the explicit time length needed so that the game equilibrium can be
achieved by decentralized players. And hence this would be regarded as one major
characteristic of the corresponding game equilibrium relative to the traditional

approach and hence Nash equilibrium concept (see, Nash, 1950, 1951).

3. Stability of the Game Equilibrium

By solving Problem 1 defined in the previous section, we get the optimal

stopping times as follows,

T () 2 inf{l‘ >0;Y'(1) = )’;ll*} , Vi=12,..,1. 4)
with yl.ll* determined by (A.5). And,
@220 X () =x"}, Vi, =121, )

where x,.lz* is given by (A.13). Moreover, it follows from Theorem 1 that the new

game equilibrium is characterized via letting y" =y, =..=y =..=y, 1 =x’

=..=x =..=x ,and meanwhile 6=3"T in(A.15) and & =5'T in (A.16).That

is to say, we get from Theorem 1 that y** = 5,272 -y, Y= 5,273 =0 s Y=



13 1%

_ 2% L Ix 3 S _ L* _ 1 _ . I _ _
1-6, and x" =6, ,—-x", x" =6, ;-6,,, ... , ¥ =1=6, with y =y =y,
_ _ I _ 1% I« 1% 1% _ _ . L
=.=y =.=y and x =x =x, =..=x =..=x_ . In what follows, we are

encouraged to show the stability of the game equilibrium. And we do so by first
giving some necessary definitions and assumptions,

DEFINITION 2 (Simplex of Evolutionary Dynamics): Here, and throughout the

present paper, we put A= {y e(0,D);y' +y +.. 4y ..+ y" = 1} and A% {x €
O, ;x' + x>+ .+ x +.+x" = 1} as the simplexes of evolutionary dynamics. If we
setup y = (yl*,..., yiz*,...,ylz*)T and x" = (xl*,...,xi‘*,...,x"*)T, then we always get
vy eclA and x* eclA with cIA and cIA denoting the closures of A and A,

respectively.

ASSUMPTION 4: We, without loss of any generality, assume that y*' €A, x" e

A, there exists a unique invariant probability measure 7 on A, and there exists a

unique invariant probability measure 7 on A.

REMARK 3.1: It 1s especially worth noting that we employ Assumption 4 is just
for the sake of simplicity. Indeed, the existence and uniqueness of the probability
measure can be ensured under certain weak conditions (see, Garay and Hofbauer,
2003), and one can also refer to Theorem 2.1 of Imhof (2005) and Theorem 3.1 of
Benaim et al (2008) for much more details.

ASSUMPTION 35: There exist constants L<o and L <o such that,

(=7 @) v]e' @], ZI

. 2 ~
w0 (2 ) <
2

hl(l) x Z )H V,l1 (dz,ll)v

2

hz(li’) (y’Zz) j < Z”y”z

UM XN o GRIEES KA
L=1"""

where hl(l‘)(x,zl)é {max hl(")(x,zl) and hz(lz)(y,zz)é max hz(IZ)(y,zz)
ll

e{l,2,..., 11”1} 126{1,2,...,12112}
for ¥ xeA, Y yeA,and x* and y" are given by Definition 2.

Now, the following lemma can be derived,
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LEMMA 1: Based upon the above definitions and assumptions, then there exist
two constants g:(p,f*(a)),x, x*) <o and E(p,?*(a)), v, y*) <o with T (0)=7"
(@)=...=7"(®)=..=7""(®) and T (@0)=T"(®)=..=T"(®)=...=7""(w) such

that,

E{ sup HX(Z)—X*HZ}Sf(p,f*(a)),x,x*).

0<t<#* (@)

And,

E{ sup |Y(1)-y" jﬁf(pi*(w),y,y*)-

0<t<7" ()
for ¥V peN and p=2.

PROOF: See Appendix B. I

Then, the stability theorem of the game equilibrium can be established and

expressed as follows,

THEOREM 2 (Stability of the Game Equilibrium): Based upon Lemma 1 and the

above assumptions, then there exist constants y <o and W <o such that,

T dist x,x)
@l) B [ E&(X*)(a))JS =
(a.2) ﬁ[Ed(x*)}m_&l;y—é,
And,
b.1) B[7 . (@ }_di;’fi{ )
(b.2) ﬁ[za(y*)}m—&l_pa—g
where,
B, (x*)é{X(z)edA; X(0)-x, <d,zzo},

7 (@2 inf{t > 0; X (1,0) € B, (x') £ ciB, (»* )} ,

E,(y*)é{Y(z)eczZ; Y-y, <&,zzo},

a




Fﬁi(y*)(a)) 2 inf {t >0;Y(t,w) e =a (y*) = clB, (y* )}

and also dist(x, x*) 2 22;1 x"" log (Z_ll) dist(y, v ) = zlz 1yi2* log ("—22) denote the

h=

Kullback-Leibler distances between x=X(0) and x*, and y=Y(0) and y",
respectively, with w<a’, y<a’ and for Y a>0, a>0, V peN and
p=2.

PROOF: See Appendix C. I
REMARK 3.2: Theorem 2 brings the idea from Theorem 2.1 of Imhof (2005). It

follows from Theorem 1 and Definition 2 that x* and y* equivalently characterize

the game equilibrium given by Definition 1, hence Theorem 2 confirms the stability
of the game equilibrium from both time dimension (i.e., stochastic stopping time) and

space dimension (i.e., invariant probability measure).

4. Concluding Remarks

In this paper, we have studied a new approach to equilibrium selection for very
general normal form games. The basic economic intuition behind the approach is very
simple, i.e., classical evolutionary game theory emphasizes the deterministic or
stochastic evolution of the populations as a group or many groups while rational
individual choice theory also has very important economic implications, that is, the
present paper chooses the way that reasonably combines both group-level stochastic
evolution and individual-level rational choice. By noting that optimal control theory
(i.e., dynamic optimization theory) is not suitable for the present case, we do so by
introducing optimal stopping theory into classical evolutionary game theory. And
hence the existence and uniqueness of the new game equilibrium have been
demonstrated. Moreover, the stability of the new game equilibrium is confirmed from
both time and space dimensions.

Noting that our approach provides us with a general framework, the

corresponding applications will be very rich, e.g., inducing cooperative equilibrium in



PD games and Pareto optimal equilibrium in coordination games. Finally, our
approach can be easily extended to include multiple priors (see, Riedel, 2009, for
instance) and also study evolutionary dynamics and corresponding equilibria in
complex networks (see, Pacheco et al., 2006, for example) and on graphs (see,
Ohtsuki and Nowak, 2006; Ohtsuki et al., 2007; Ohtsuki and Nowak, 2008, and

among others).

APPENDIX
A. Proof of Theorem 1.

STEP 1: For strategy i, Vi =1,2,...,1, . Notice that,

Afl.l (s, yl) =-0" exp(—gi‘s)

I
—i =i 1 N N g
x{l—wl +w' {(aill —ailz)y +ai125,r2 +zaili2 (5,242 —5,25“)}}

=3
o (EB)exp () (4, ) 20

@(élTBTx—éi‘ )vT/i‘ (al.l —al.lz)y1

1

> 4" (1— w' )+ 0w {%25122 + iailiz (Slz—i2 _5‘1242+1 )}

i=3

o' (1-w")+0"w' {ail Ot i D, (5’2"'2 ~On )} <

Case 1.1: =3
sgn(elTBTx 9"‘):sgn(a,2 a,l)
Then,
Afll (s, yl) >0
o 0" (1-7)+ 07 0,8, o+ X0 (8, =5, )] |

2
ST pT . 7i \ =i _
(e1 B'x-0 )w (ai11 al.lz)

Hence, we have,



D" (yill*)={(s, yl);OS y' < yl.ll*}.

where,

(A.2)

Notice that the generator of Z(r) is given by,

o))
©
RSN

i
1

o(y'y’

_ 0. og
AB (50)= By @) D S0V (@) &

4o)

+.[RO Z{all (Sa yl + )’1771/2 (lez ))—5,1 (S, yl)_ y1771/2 (Z,l2 )%(S, yl)} Vll2 (dzllz)

L=1

for V¢, (s, yl) eC’ (Rz) .If we try a function ¢, of the following form,

‘Zi](S’y1)=eXp(—§i‘S)(yl)ll for some constant A" e R.

We then get,

i
-1

AG (523 ) =exp(-0%s) -0 (o) (@B x)y 7 (o)

where,

B (7)) 20 +(@57a) 226 7 (70-1)

+ jRO ;{[H 7, (2, )T ~1-7, (z1,) A" }v;z (dz),).

Note that,



AT o

h (1)=& B'x—0" and lim h (1")=co.

Therefore, if we assume that,
é&'B"x< 0", (A.3)
Then we find that there exists A" >1 such that,
h, (/Ti‘):O. (A.4)
with this value of 1" we put,
exp(<0"s)C (') 0y <

exp(_gils){l — W+ W |:(ai|1 —a;, ) y' +ai12512—2 + Izzai]iz (5124z _512i2+1):|}’ yill* <y' <l

=3

4,(s.5')=

for some constant C" >0, to be determined. We, without loss of any generality,
guess that the value function is C' at y'= yill* and this leads us to the following

“high contact” conditions,

(o)

ih=3

)
_ —i =i 1% 3 3 N
=1-w"+w" |:(ai11 _ailz)yil +ai12512—2 + zailiz (51242 _512—i2+1 ):|

(continuity at y' = y,")

—i 7 1% 21 — . . o 1 1%
C'Ah (y. ) =" (%1 —a,.lz) (differentiability at y = Vi )

b

Combining the above equations shows that,

. )Til . . ~ I ~ ~
1% i { 1% 2
ch (y,.l ) B I-w" +w" |:(ai|1 _ailz)yil +ai12512—2 +Zi2:3ailiz (51242 _5127i2+1 ):|

=i i ()t w' (a< —-a, )
C /1 yil i1 2

i —i | —i 3 I s S
A {I_M}1 +w! |:ai12§12‘2 +Ziz:3 ailiz (512‘i2 _§Iz—iz+1 ):|}

! (1—2"1)?& (aill—ailz)

(A.5)

0
Il

And this gives,

—i, _
w (aill aiIZ)
—. 2]
i L
A (yil )

Hence, by (A.4), (A.5) and (A.6), we can define,

C' = (A.6)
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7o) enp(-75)E ()
And then we are in the position to prove that,
Z (s, yl)é exp(—gi‘s)éi‘ (yl)/?1 = ]711* (S, yl).

in which ]7,.1* (s, yl) is a supermeanvalued majorant of fll (s, yl) . Firstly, noting that,
Afil (s, yl) S exp(—gi's)
X{l — W'+ {(aill - ailz ) yl + ailzglz—z + lzzaili2 (5‘12—1'2 - 512—i2+1 )}}

+y' (élTBTx)exp(—H"s)vT/i' (%1 -a, 2) <0, vy'2y".

which holds by (A.2). Secondly, to prove,
71 ~ ) ~ ~
Ch (yl )l >1—wt 4+t |:(ai11 —a;, ) yl + ai1251272 + zat]iz (51271.2 —51242“ ):| ,
=3

for VO<y'< yill*.

Define

2 . . ~ 12 ~ ~
gil (yl)é C' (yl)i —1+w" —w' |:(aill —ailz)yl +ai12512—2 +zai1i2 (512—1'2 _512—i2+l )}

ir=3

Then with our chosen values of C* and A", we see that &' ( yl.ll*) =i ( yill*) =0.
Furthermore, noting that & (y‘) =C" 2" (/Ti‘ —1)(y1)”172 , and hence &%" (yl) >0
holds for V0<y' Syill* given A" >1 in (A.4), that is, Eil(y1)>0 follows for

V 0 < y'<y". And this completes the short proof.
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Q' =i\, i I - ~ -
Case 1.2: a (l—w )+H W @20, +izz_;4ailiz (51271‘2 _512%1)} >0
sgn(élTBTx—gil ) = sgn(a,,11 —a,.lz)

It is easy to see that the proof is quite similar to that of case 1.1, so we take it omitted.

STEP 2: For strategy i,, V i,=1,2,...,1,. Notice that,

Af, (s, X' ) =-0" exp(—éizs)

X{l_wiz +W" |:(bi21 _bizz)xl +bi226_‘11—2 + Izlbizil (é_}l—il _é_‘llil+l):|}
i\=3
+x' (EITAy)exp(—éizs) W (bizl —bizz) >0

& (e Ay-6" )" (b, —b,,) ¥

> éiz (1 - \Z/iz )-I— éiz \Z/iz |:bi226_}12 + ibizil (é_}l*il _é_’]‘ﬂﬁl ):|
i=3

o , o B I _ ~
Case 2.1: ’ (1 - )+ o [b&ﬁllz " ;bizil (51141 _5117,#1 )} <0

sgn (EITAy -0" ) =sgn (bi22 ~b,, )

(A.7)

So it is natural to guess that the continuation region D" has the following form,
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(A.8)

Notice that the generator of Z(r) is given by,

oo, od. 24
4400) G G (T ) 2 5

n

T A 7 () )7 () B )

I=1

a2

for V¢, (s,x')e C*(R*). If we choose éz(s,xl):exp(—éizs)(xl) for some

constant A € R. Then we get,

Noting that,
fh' ) =EITAy—t9~i2 and lim le (j:iz):oo_
: A2 e 2

Consequently, if we suppose that,

e Ay <", (A.9)

Thus, it is easily seen that there exists A2 >1 such that,

22



b (2%)=0. (A.10)

with this value of 1* we put,

exp(—é?i?s)(:”‘2 (xl )/il2 0<x' <

exp(—@"zs){l—w’2 W {(b -b, )xl+biz2§ +Zblzl( i — O, w)}},xl}:ﬁxl <1

i=3

¢"z (S,X])Z

in which C* >0 is some constant that remains to be determined. If we require that

¢, iscontinuous at x' =x’ we get the following equation,

C* (xlz)‘ 1 |:(bi21 —b,zz)x}2*+bi225 z 2( i — O ZIH)}, (A.11)

i=3
If we require that ¢3l.2 is differentiable at x' = x,.lz* we get the additional equation,

¢ 7% (x *)ﬁ U= (b, -b,,). (A.12)

So, combining equation (A.11) and equation (A.12) yields,

. P o - I -
1% ~ ~ 1* 1
c" (xi ) 1-w? +w" |:(bi21 _bi22)xi2 +bi2251|—2 + z ‘,i1:3bi2i| (51]41 _51]4#1)}

& a (o );, g W (b, —b,,)
§ i {1—@5 | b [ 5, +Z:‘_3 i (04—, W)J}
Sx = - . (A.13)
2 ( A" ) ’ (b’zl _bizz)
And this produces,
o W (bubia) (A.14)

1\ A2

2 ()
Then, by applying equation (A.10), equation (A.13) and equation (A.14), we are in
the position to prove that f,: (s,xl):exp(—é"zs)CN”'2 (x1 )/1'2 is a supermeanvalued

majorant of fiz (s, x' ) Firstly, noting that,

4 (5.0 o)
X{l — W2+ W" |:(b21 —b,-zz)xl +bi226_‘1 2t Zblztl ( Ly _11"1“’1)}}
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+x' (EITAy)exp(—éizs) W (bizl —bl.zz) <0, Vx'>x’

S =

which holds by (A.8). Secondly, to show that,

7iy

éiz (xl )A >1-W" + 0" |:(bi21 _bizz)xl +bi225_11—2 +lzlbi2il (é_‘ll—i1 _é_‘11—i1+1):| >

for VO<x' <x.

Define
‘giz (xl)é éiz (xl )iiz _1+wi2 _"T’iz |:(bi21 _bizz)xl +bi226_}1—2 +Izlbi2il (5_‘1141 _é_}lil+l):|'
i=3
Then with our chosen values of C* and 1%, we see that &£* (x:“) = fiz'(xilz*) =0.
Furthermore, noting that £>" (x1)= C: " (ﬂ:iz —1)(xl )1"2_2 , and hence fiz" (x1)> 0
holds for VO<x'<ux’ given A2 >1 in (A.10), that is, &" (xl) >0 follows for

VO<x' <x. And hence the desired result is established.

0" (l_wiz )_i_éizwiz bizzé_‘ll—z +ibizil (6_'1]7, J, ) >0
=3

i Y-+

Case 2.2:
sgn (EITAy -0" ) =sgn (bi21 -b,, )

Similar to case 1.2 and we take the proof of case 2.2, which is quite similar to that of
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case 2.1, omitted.

STEP 3: The existence and uniqueness of the game equilibrium.

It follows from the requirements of Problem 1 that y“ =y} =..= yl.ll* =..= y}l*
with y* defined in (A.5). Let y =y, (Vi #k i,k =12,.,1), then one can

easily see that,

Zilkl ,23512—2 + Zilkl ,34512—3 ot zilk1 ,12—1,1251 rilkl .
where,

i B Tk _
< A ﬂ/ (ailjz aihfz“) ﬂ (aklfz akl’h*l)

Accordingly, we have,

Z12,23 212,34 212,12—1,12 1,2 Flz
Z23,23 Z23,34 t 23,1,-1,1, 1,3 . 1—‘23
5 5 . 3 s r
_21171,11,23 z1171,11,34 z1171,11,1271,12 diox,-2) L 51 -2 I,-11, (1, -1)x1
which implies that,
5=3T. (A.15)
where “+ 7 denotes Moore-Penrose generalized inverse.
Similarly, we obtain x"=x)=..=x" =.. =x," with x defined in (A.13)
2 2 2

according to Problem 1. Now, let xl.lz* = x}(z (Vi, #k,,i,,k, =1,2,...,1,), then we get,

2i2k2,23511 ot Zizkz ,34511—3 Tt zizkz,ll—l,ll o, = rizkz .

where,
z A Ziz (bizjl _bl'z’jwl) _ jkz (bkzjl _bkz’j‘Jrl)
I (1= 20 (b b)) (12 (b =)
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A (1=t )i, | AR (1-90 )+ b, |

e T2 (b, b ) (12 )(by b )

Vi, #ky, iyky=1,2,00,; j, =231 1.

Consequently, we obtain,

z12,23 2]2,34 Z12,11—1,1l 511—2 F12
z323,23 Z23,34 z"23,1171,11 1,-3 . Fzs
_212—1»12,23 212—1,12,34 Z’z—l,lz»ll_]’ll_(szl)x(IhZ) L 51 (-2« Ll (7,1

which leads us to the following equation,
(A.16)

5=3T.

where “+ 7 stands for the Moore-Penrose generalized inverse.

To summarize, we get the following theorem,

THEOREM 1’: If we are provided that &' B'x < 0" in (A.3) and e Ay< 0" in

(A.9), then Problem 1 is solved as long as 6=2'T in (A.15) and 8§ =2'T in

(A.16). That is, the existence and uniqueness of the game equilibrium are confirmed

Therefore, Theorem 1 is established thanks to Theorem 1°.

B. Proof of Lemma 1.

By It0’s rule, we obtain from (2) that,
0<X(s) —x', (X (9))) ds

-+ -
2[ (X(5)-x".g' (X(s))dWl(s)> + ¢! (X (). ds

Iy

S roe)

JZII I <hl”1 X(s),2 ) R (X(S) z ) ~111 (ds,dz,ll )>

L=l

i (de} )

Lim

+2ZH (X ()= W (X (5.2 ) N (ds.dz}))
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Then for V4 €[ 0.7 (@) | with #(@)=#"(0)=..=7"(0)=...= "' (), and { =

é: (p) (Vp=2), which may be different from line to line throughout the current

proof, we get,

sup [x (-’ = 5{”;«0) el 3| [ Xl dt]z

+ sup I;<X(s)—x*,g](X(s))a’Wl(s)>

0<r<t

+ sup [lznl:J.;.[R <hl(ll)(X(s),Zl)’hl(ll)(X(S)’Zl)ﬁll‘ (ds’dz;l )>
— 0

0<t<t =1

+sup gﬁjﬂ% <X(s)—x*,h1”1) (X(s), z1)1\7,1l (a’s,a’z,ll )>

0<r<t

r
2

A
2
>

in which we have used Assumption 5. It follows from Cauchy-Schwartz Inequality

that,

sup

0<r<t

+ sup

0<r<t

+ sup

0<r<t

+ sup

0<t<t =

X(@0)-x| < 5{”)((0)—;5‘”5 [ x| dr

r
2

[(X(9)-x".8"(X(5))aW' (5))

Iin

S0, 1 10,20 (09,25 ()

1=
p}
2

> Jo, (X@ = W (X (51,2 ) N (ds. e} )

<Clxo-x |+ [ Ix ol a

+ sup

0<r<t

+ sup

0<r<t

r
2

[(X(9)-x".8"(X(5))aW' (5))

I,n, sup J.(:.[R <hl(")(X(s),zl),hl(")(X(s),zl)N,lI (a’s,dz,ll )>

1< <ILimy
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In, sup J.;.[R <X(s)—x*,h1”1)(X(s),zl)l\7,11 (a’s,a’z}1 )>

1L <Iimy

+ sup

0<r<yy

pa
2

< E{HX(O) —x*Hj +j0 X @) dr

+ sup J.(:<X(s)—x*,gl(X(S))‘WVI(S)>7

0<r<yy

2

+ sup _f(: J-RO <h1”1*) (X(s), z ),h‘”‘*) (X(s), ZI)NIII* (a’s,dzll; )>

0<r<yy
E }
2
b

for some [ e {1,2,...,11,...,11111} . Now, taking expectations on both sides and applying

+sup|[! N <X(s) " WO (X (s),2') N, (ds, dzy )>

0<r<yy

the well-known Burkholder-Davis-Gundy Inequality (see, Karatzas and Shreve, 1991,

pp-166) produces,

E {sup X~ } <¢ {E‘ [x@-| |+5 [fo [x @ di }

0<r<y,

xo-+ e (xo)fa]

2 ‘
2

e[ (x| e

+E Il

r
4

+E! j R (X @).2")

Al (X(f)’ 4 )Hz dt}

Now, employing the Young Inequality (see, Higham et al, 2003), Holder Inequality

and Assumption 5 leads us to,

B[ o[ o) a]

sm{sup xo- ([l (xo) dﬂ

0<r<y

A
2

<

E[p X(r)—x*\\f}r%ml e (x)f o]

0<r<t

2(2¢)
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<52% swplxo -+ ] |+ 228 Jrof a

< ;El sup

4 | os=

X(@0)-x|] |+ B [ [Ixol; dt}, (B.2)
for that ¢ appears in (B.1). Similarly, we obtain,

T

R (X(0),2') j dt

B[ [xo-

<%E{OS?B X(t)- xH }+§Lt E' U"||X(z)||§dz}, (B.3)
And,

B[ (o2 o (x w2 ﬁd’T

gLl (oL [ B Lot al

_% B [|xol] ]+ < SEE|[x ol al. (B.4)

Substituting (B.2)-(B.4) into (B.1) yields,
o swlxo-<|, |s (@ [Jxo-<| ] [[Ixok al-w [lxok]),
Thus, applying Assumption 2 and the following fact (see, Higham et al, 2003),
2 {xol; |=¢ (r. @) 1B X O
=& p,f*(w))[l + ||x||§],

We obtain,

o s Jxo-+]|

b B[ ok e

<o,
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which implies that there exists a constant f = cf ( p.7 (), x, x*) <o such that,

E{ sup HX(I) x” } p,f*(a)),x,x*).

0<t<7" (w)

Similarly, one can also get,

Ez[ sup HY(I) yH }<§(P,T (a))yy)

0<t<7" (@)

where 7 (0)=7"(w)=...=7""(w)=...=7""(w) . And the required assertions follow
and this completes the whole proof. i
C. Proof of Theorem 2.

We define the characteristic operator of X (¢) as follows,

Ap(x) = i:‘x" ( TAy) 88(10 (x) +%§(in )2 (Ei' )T ok a(axgo)z (x)

+Z [ Z{ (x+77,1(x))—g?)(x)—<V¢(x),]7,l(x)>}v,]f‘ (z1),

k=1 01l

where,
7, (%) £ (x177”l (z}l ), ’xil77illl (zl’l‘ )""’x117711h (zl'l1 ))T,
x= (xl,...,xi‘ yerry X )T =X(0)e A.
And we define the Kullback-Leibler distance (see, Bomze, 1991; Imhof, 2005)

between x and x* as follows,
I »
o(x) = dist(x, x*) = in'* log (’;—'1) )
i=1

Thus, we have,

I

Agﬁ(x)——Z( TAy)x’1 +— Z( ) G

i=1 iy=1
+ZI i Zx" log +Zx" Vi (zfl‘ )}v,’l" (dz,’l“ ),
k=1 "1l 1= 7,111( 11)
Then by Lemma 1, we get,
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Ap(x) < —i(EiITAy)xi‘* +%i(5i‘ )T &ixt
i i=1

k=1 1+7, (Z, ) i=1

+i.f i Zx log——— ! +Zx 7,1(1,1)}!/,1 (dz,l)

(P @0 )~ e-x[]

el o0 @

+ZI z Zx log +Izlxi'*77il/l(zzl3) Vi (dzllfl)’
7 (le) h=

bl P
is some positive constant. Now, define,
B,(x')2 {X(r) e el x (@0~ x|, <d.r> o} :
Ho) 2, (@2 inf{t >0;X (1, 0) € B, (') £ clB, (»* )} ,
where B, (x") denotes the closure of B, (x"). Suppose that &’ >y, for any
xeB, (x'),ie, xeBS(x'), wehave,
Ap(x)<-a+y,

by (C.1). Then, applying the well-known Dynkin’s formula yields,
0

sEl[(zy{X(m%(w))ﬂ
=G(x)+ ' U “ 4 ~(X(s))ds}
s@(x)+(y7—&f’)El[m§(a>)],

Notice that t/\rc(a)) /! T:(a)) as t— o, thus by using Lebesgue Monotone

Convergence Theorem, we get,

0<@(x)+(7-a" B [é(w)}
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which implies that,

dist
[B( )(w)} 4] ago(i?/, ls( l//)

as required in (a.1). Moreover, for some constant Q > @(x), we set up,

75 () 2inf {1 > 0;¢(X (1,0)) = 0}
Then, by employing Dynkin’s formula and inequality in (C.1),
0

<E' [@{X(mfé(a)))ﬂ
= () + B [ j;AfQ(W)AgZJ(X(s))ds}

t/\r ()
<o -B'| [

X(s)—x j

}+y7El[t/\fQ~(a))}
If Q—> , then tntg(@) >t and application of Lebesgue Dominated

Convergence Theorem reveals that,

os¢(x)—E1U;\

}+1ﬁt,

which implies that,

| [ fxo-

Consequently,

}(o()

lirfliup E' B J.(: HX(S) —x j ds

o

which combines with Assumption 4 leads us to,

ﬁ[ég(x*)J—llmsupEl[ J.;(B o) (X (s,0))d }

t—w

<limsupE' !

1> t

0 al

<

A

<—=g,
a’

where X stands for the characteristic function of the set {} . Accordingly, one may
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obtain,

ﬁ[Ed(x*)}m—#él—g,

al’
which gives the desired result in (a.2). Noting that the proof of (b.1) and (b.2) is quite
similar to that of (a.1) and (a.2) shown above, so we take it omitted. And hence the

whole proof of Theorem 2 is completed. i
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