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ABSTRACT

We investigate the size of the Durbin-Wu-Hausman tests for exogeneity when instrumental

variables violate the strict exogeneity assumption. We show that these tests are severely

size distorted even for a small correlation between the structural error and instruments.

We then propose a bootstrap procedure for correcting their size. The proposed bootstrap

procedure does not require identification assumptions and is also valid even for moderate

correlations between the structural error and instruments, so it can be described as robust

to both weak and invalid instruments.

Key words: Exogeneity tests; weak instruments; instrument endogeneity; bootstrap tech-

nique.

JEL classification: C3; C12; C15; C52.
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1. Introduction

Instrumental variables (IV) estimation can cure many ills where alternative least squares

(OLS) methods yield biased and inconsistent estimators of model coefficients. This is espe-

cially the case when explanatory variables are correlated with the error term so that OLS

estimators measure only the magnitude of association, rather than the magnitude and direc-

tion of causation which is needed for policy analysis. IV estimation of such models provides

a way to obtain consistent parameter estimates, once the effect of common driving variables

has been eliminated. Even though coefficients estimated in this way may have interesting

interpretations from the viewpoint of economic theory, IV procedure usually requires the

availability of exogenous instruments, at least as great as the number of coefficients to be

estimated, whereas the validity of those initial instruments is not testable. This identify-

ing indisputable exogeneity assumption has been questioned in many applied studies1. In

most IV applications, the instruments often arrive with a dark cloud of invalidity hanging

overhead and researchers usually do not know whether their correlations with the error are

exactly zero.

Concerns have intensified in recent years about the effects of instrument endogeneity

on standard inference procedures. Bound et al. (1995) provide evidence on how a slight

violation of instrument exogeneity can cause severe bias in IV estimates, especially when

identification is weak. Hausman and Hahn (2005) show that even in large-sample, the IV

estimator can have a substantial bias even when the instruments are almost uncorrelated

with the error. Recently, Chaudhuri and Rose (2009) investigate the estimation of the ef-

fect of military service on civilian earnings where both veteran status and schooling are

suspected endogenous. However, Hausman (1978) test fails to reject joint exogeneity of

both variables, though IV estimates seem larger than OLS estimates. Chaudhuri and Rose

(2009) then advocate weak instrument issues as a potential cause of the non rejection of

exogeneity. Indeed in this implication, Shea (1997)’s partial R2 statistics [see also Hall,

Rudebusch and Wilcox (1996)] are low and Stock and Yogo (2005) test suggests that the

nominal size of 5 percent Wald test for the joint significance of veteran status and schooling

is likely to be more than 25 percent. However, it may be that the non rejection of vet-

1See for example, Bound, Jaeger and Baker (1995) and Murray (2006)
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eran status and schooling joint exogeneity is due to the fact that some of the lottery and

proximity-to-colleges instruments used are invalid. Although the C-test and Sargan (1958)

test for instrument orthogonality confirm that over-identification restrictions are satisfied,

these tests also require the identifying assumption that at least two instruments are indis-

putably orthogonal to the error. Hence, there is still a reason for concern. Doko Tchatoka

and Dufour (2008), and Guggenberger (2011) show that inference on structural parameters

based on identification-robust statistics such as Anderson and Rubin (1949, AR-statistic),

Kleibergen (2005, KLM-statistic), and Moreira (2003, CLR-statistic), as well as their gen-

eralized empirical likelihood versions, is unreliable from the viewpoint of size control when

instruments violate “exogeneity” .

Murray (2006) [see also Samuel and Michael (2009)] suggests avoiding invalid instru-

ments in IV procedures. However, since it is difficult to test the validity of all candidate

instruments, it might seem that if we want to avoid invalid instruments, there is no hope

in trying to use IV methods. Our ultimate gaol is to show how valid inference can still be

conducted even if the strict exogeneity of the instruments is fundamentally wrong. Several

authors have recently adopted this position and this paper attempts to make a progress in

this direction. Imbens (2003) shows that bounds on average treatment effect in program

evaluation can be recovered via a sensitivity analysis of the correlations between treatment

and unobserved components of the outcomes. Ashley (2009) shows how the discrepancy

between OLS and IV estimates can be used to estimate the degree of bias under any given

assumption about the degree to which the exclusion restrictions are violated. Kiviet and

Niemczyk (2006) show that the realizations of IV estimators based on strong but invalid

instruments seem much closer to the true parameter values than those obtained from valid

but weak instruments. Imbens et al. (2011) show that consistent point estimators can

still be obtained in linear structural models with invalid instruments if the direct effects of

these instruments are uncorrelated with the effects of the instruments on the endogenous

regressors. The main findings of these studies suggest that valid inference can be conducted

even when the instruments are invalid.

In this paper, we focus on linear structural models and we wish to develop valid tests

for assessing exogeneity hypotheses allowing for a possibility that some instruments violate

“strict exogeneity”. To achieve this goal, we find useful to investigate first the sensitivity
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to instrument endogeneity of the standard exogeneity tests of the type proposed by Durbin

(1954), Wu (1973), and Hausman (1978), henceforth DWH tests. Although DWH tests are

widely used as pretests in applied work to decide whether OLS or IV method is appropriate,

there is little evidence on how they behave when instruments violate “strict exogeneity”.

Our theoretical analysis in this paper focuses on local-to-zero invalid instruments, i.e.,

situations where the parameter which controls instrument endogeneity approaches zero at

rate [n−
1

2 ] as the sample size n increases. A similar specification has been considered by

Hausman and Hahn (2005), Doko Tchatoka and Dufour (2008), Guggenberger (2011), and

Berkowitz et al. (2008). However, our simulations extend to fixed endogeneity setup, i.e.,

cases where instrument endogeneity does not depends on the sample size.

First, we provide a characterization of the limiting distribution of DWH statistics un-

der the null hypothesis of exogeneity and instrument local-to-zero invalidity. When model

identification is strong, we find (non-degenerate) asymptotic noncentral chi-square distri-

butions for all statistics, though both OLS and IV estimators are still asymptotically con-

sistent. When identification is weak, we show that the statistics converge to a mixture of

non-degenerate noncentral chi-square distributions. Therefore, the corresponding tests are

seriously size distorted whether identification is strong or weak. However, our results indi-

cate that they are more sensitive to instrument endogeneity when identification is strong

than when it is weak.

Second, we propose size correction of the tests by resorting to bootstrap techniques.

We present a Monte Carlo experiment indicating that the proposed bootstrap tests have

an overall good performance even when instrument endogeneity is moderate, so they can

be described as robust to instrument endogeneity. We apply our theoretical framework to

the trade and growth model of Frankel and Romer (1999). Our results suggest that the

instrument constructed on the basis of countries geographic characteristics in this model

is not strictly exogenous. Consequently, standard DWH tests lead to conflicting results.

However, all proposed bootstrap tests attribute the discrepancy between the OLS and 2SLS

estimates to instrument invalidity.

The remainder of this paper is organized as follows. Section 2 formulates the model and

present the statistics studied. Section 3 characterizes the asymptotic distributions of the

statistics with locally invalid instruments and also explore their sensitivity to instrument
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endogeneity through a Monte Carlo experiment. The bootstrap test procedure is presented

in Section 4, while Section 5 deals with the empirical application. Finally, Conclusions are

drawn in Section 6 and proofs are presented in the Appendix.

2. Framework

We consider the standard linear structural model described by the following equations:

y = Xβ + u, (2.1)

X = ZΠ+ V (2.2)

where y ∈ R
n is a vector of observations on a dependent variable, X ∈ R

n×m is a matrix of

(possibly) endogenous explanatory variables, Z ∈ R
n×k is a matrix of instruments (k ≥ m),

u = (u1, . . . , un)
′ ∈ R

n is a vector of structural disturbances, V = [V1, . . . , Vn]
′ ∈ R

n×m is

a matrix of reduced form disturbances, β ∈ R
m is an unknown structural parameter vector,

while Π ∈ R
k×m is the unknown reduced-form coefficient matrix. Model (2.1)-(2.2) can be

modified to include exogenous variables Z1. If so, our analysis will not qualitatively alter

by replacing the variables that are currently in (2.1)-(2.2) by the residuals that result from

their projection onto the space spanned by the columns of Z1.

Let ui, Vi and Zi denote the i-th row of u, V, and Z respectively, written as col-

umn vectors (or scalars) and similarly for other random variables. We shall assume that

{(ui, Vi, Zi) : 1 ≤ i ≤ n} is drawn i.i.d across i and the instrument matrix Z has full col-

umn rank k with probability one. Our main objective is to develop inference procedures

for assessing the exogeneity of X in (2.1)-(2.2), i.e. the hypothesis

H0 : cov(Xi, ui) = σXu = 0, (2.3)

taking into account that the instruments Z may be invalid, at least locally. To achieve this

goal, our approach is based essentially on DWH procedures. From that perspective, we find

useful to study the sensitivity to instrument endogeneity of these tests first.
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2.1. DWH statistics for exogeneity

We consider the following unified formulation of DWH statistics [Doko Tchatoka and Dufour

(2011b, 2011a)]:

Tl = κl(β̃ − β̂)′Σ̃−1
l (β̃ − β̂) , l = 2, 3, 4, (2.4)

Hj = n(β̃ − β̂)′Σ̂−1
j (β̃ − β̂) , j = 1, 2, 3 (2.5)

where Tl, l = 2, 3, 4, are the statistics proposed by Wu (1973, 1974), Hj , j = 1, 2, 3,

are three alternative Hausman (1978) type statistics, β̂ = (X ′X)−1X ′y and β̃ =

(X ′PZX)−1X ′PZy are the OLS and IV estimators respectively,

Σ̃2 = σ̃22∆̂, Σ̃3 = σ̃2∆̂, Σ̃4 = σ̂2∆̂,

Σ̂1 = σ̃2Ω̂−1
IV − σ̂2Ω̂−1

LS , Σ̂2 = σ̃2∆̂, Σ̂3 = σ̂2∆̂,

∆̂ = Ω̂−1
IV − Ω̂−1

LS , Ω̂IV = X ′PZX/n, Ω̂LS = X ′X/n,

σ̃2 = (y −Xβ̂)′(y −Xβ̂)/n, σ̂2 = (y −Xβ̂)′(y −Xβ̂)/n,

σ̃22 = σ̂2 − (β̂ − β̂)′∆̂−1(β̂ − β̂),

κ2 = (n−2m)/m, and κ3 = κ4 = n−m. When the instruments are strictly exogenous, all

statistics in (2.4)-(2.5) are pivotal under H0 even in finite-sample, whether identification is

strong or weak [see Doko Tchatoka and Dufour (2011b)]. Further, their pivotality in finite-

sample does not require the usual Gaussian assumption on model disturbances, i.e., the

corresponding tests remain valid in finite-sample even for non-Gaussian errors. A crucial

and relevant question is how they behave when the instruments do not satisfy the strictly

exogeneity assumption.

Our theoretical analysis in this paper considers two main setups regarding the strength

of the instruments: (A) Π is fixed with rank(Π) = m; and (B) Π = Π0/
√
n, where

Π0 ∈ R
k×m is a constant matrix (possibly zero). The full rank condition of Π in (A) can

however be weakened to allow for partial identification2. The setup for (B) is Staiger and

Stock (1997) local-to-zero weak instrument asymptotic. In this setup, the parameter which

2Further details can be fond in Choi and Phillips (1992), Doko Tchatoka and Dufour (2011a), and
Doko Tchatoka (2011).

5



controls instrument strength approaches zero at rate [n−
1

2 ] as the sample size n increases.

2.2. Notations and model assumptions

Throughout this paper, Iq stands for the identity matrix of order q. For any full rank

n ×m matrix A, PA = A(A′A)−1A is the projection matrix on the space spanned by A,

MA = In − PA. The notation vec(A) is the nm× 1 dimensional column vectorization of A

and B > 0 for a squared matrix B means that B is positive definite (p.d.). The convergence

in probability is symbolized by “
p→ ” , “

d→ ” stands for convergence in distribution while

Op(.) and op(.) denote the usual (stochastic) orders of magnitude. Finally, ‖U‖ denotes the

Euclidian norm of a vector or matrix U, i.e., ‖U‖ = [tr(U′U)]
1

2 .

Along with the basic model (2.1)-(2.2), we shall assume the following generic assump-

tions on model variables and parameters.

Assumption 2.1 The errors {(ui, Vi) : 1 ≤ i ≤ n} have zero mean and the same nonsin-

gular covariance matrix Σ given by

Σ =







σ2u σ′V u

σV u ΣV






: (m+ 1)× (m+ 1).

Furthermore, we have E(ZiZ
′
i) = QZ > 0, E[Zi(ui, V

′
i )] = (σZu, 0) for all i, where

σZu = d/
√
n (2.6)

for some constant k × 1 constant vector d in R
k.

First, Assumption 2.1 requires the errors u and V to be homoskedastic. It it can

however be adapted to account for serial correlated errors. Second, while we impose Z not

be correlated with the reduced-form errors V , (2.6) implies that Z and u are correlated

when d 6= 0. However, their correlation approaches zero at rate [n−
1

2 ] as the sample size

increases. Nevertheless, moderate correlations are still allowed, depending on how large

is d with respect to
√
n. A similar local-to-zero instrument invalidity has been used by

Berkowitz et al. (2008) [see also Doko Tchatoka and Dufour (2008) and Guggenberger

(2011)]. The analysis in Berkowitz et al. (2008) however assume that the support of d is
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compact with the same lower and upper bounds for all instruments. Assumption 2.1 does

not require these restrictions.

Assumption 2.2 When the sample size n converges to infinity, the following convergence

results hold jointly:

(i) 1
n

∑n
i=1(ui, V

′
i )

′(ui, V ′
i )

p→ Σ, 1
n

∑n
i=1 Zi(ui, V

′
i )

p→ 0, 1
n

∑n
i=1 ZiZ

′
i

p→ QZ ;

(ii) 1√
n

∑n
i=1 (Ziui − σZu, ZiV

′
i , Viui − σV u)

d→ ψ = (ψz, ψV u), where ψz = (ψzu, ψzv),

vec(ψ) ∼ N (0,Ω) , vec(ψz) ∼ N (0,Σ⊗QZ) and ψV u ∼ N (0,ΣV u) with ΣV u ≡

σ2uΣV when σV u = 0.

The Gaussian assumption on the limiting distributions in Assumption 2.2-(ii) is implied

by Assumptions 2.1 and the central limit theorem (CLT). Assumption 2.1-(ii) along with

Assumption 2.2-(ii) then entail that

1√
n

n
∑

i=1

Ziui
d→ ψzu + d ∼ N

(

d , σ2uQZ

)

. (2.7)

So, Z ′u/
√
n converges in distribution to a Gaussian with nonzero mean if d 6= 0, though Z

is asymptotically uncorrelated with u
[

p limn→∞
(

Z′u
n

)

= 0
]

.

We can now examine the asymptotic behavior of the statistics in (2.4)-(2.5).

3. Asymptotic behavior with locally invalid instruments

We now wish to analyze the sensitivity to instrument endogeneity of DWH statistics. Section

3.1 characterize their null limiting distribution when identification is strong and weak.

Section 3.2 explores the size of the corresponding tests through a Monte Carlo experiment.

3.1. Asymptotic null distributions of the statistics

To characterize the null limiting distribution of the statistics, we find useful to examine first

the sensitivity to instrument endogeneity of the vector of contrasts β̂ − β̃ that is used in

their expressions. Lemmas A.1-A.2 in the Appendix present the results for both strong and

weak identification setups. The results indicate that when model identification is strong,

the inconsistency of the vector of contrasts β̂ − β̃ is of order n−1/2 under H0. Therefore,
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√
n(β̂ − β̃) converges to a Gaussian process with nonzero mean under H0 when d 6= 0,

despite the fact that p limn→∞(β̂ − β̃) = 0. Moreover, when identification is weak, β̂ − β̃

converges under H0, to a mixture of Gaussian processes which have nonzero mean with

probability 1 as long as d 6= 0.

We can now prove the following two results on the asymptotic behavior of the statistics.

Theorem 3.1 Suppose (2.1) - (2.2) and Assumptions 2.1-2.2 are satisfied and let συu = 0.

If further rank(Π) = m, then

T2 d→ 1

m
χ2(m; ‖τ̄d‖2), Tl d→ χ2(m; ‖τ̄d‖2), l = 3, 4

Hj
L→ χ2(m; ‖τ̄d‖2), j = 1, 2, 3

where τ̄d = 1
σu

[(Π′QZΠ)−1 − (Π′QZΠ+ΣV )
−1]1/2Π′d is a k × 1 constant vector.

As seen, if d 6= 0, all DWH statistics converge asymptotically to non-degenerate non-

central χ2 distributions under H0. Hence, the corresponding tests are invalid (level is not

controlled) even when instrument exogeneity d is small, though both OLS and 2SLS estima-

tors are consistent in such situations when συu = 0. The magnitude of the size distortions

of the tests depends on how large the non centrality parameter ‖τ̄d‖2 is. So, d may be

relatively small but the tests still exhibit large size distortions. Furthermore, as instrument

endogeneity d is unknown and difficult to estimate consistently, it is practically infeasible

to use the critical values of χ2(m; ‖τ̄d‖2) for size correction.

Moreover, since Π[(Π′QZΠ)−1 − (Π′QZΠ + ΣV )
−1]Π′ > 0, ‖τ̄d‖2 is an increasing

function of ‖d‖, i.e., the size distortions of the tests increases with instrument endogeneity.

In addition, it is easy to show that ‖τ̄d‖2 ∈ [λp‖d‖2, λ1‖d‖2], where λp and λ1 are the

smallest and largest eigenvalues of σ−2
u Π[(Π′QZΠ)−1− (Π′QZΠ+ΣV )

−1]Π′, respectively.

So, for a given value of instrument endogeneity d, one can establish bounds on test size

distortions through the estimates of λp and λ1.

We now derive the asymptotic null distributions of the statistics when instruments are

weak.

Theorem 3.2 Suppose (2.1) - (2.2) and Assumptions 2.1-2.2 are satisfied and let συu = 0.
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If further Π = Π0/
√
n, where Π0 ∈ R

k×m is a constant matrix (possibly zero), then we have:

T2 d→ 1

m

∫

R
k×m

χ2(m; ‖ν̄d‖2)pdf(x2)dx2

T3 d→
∫

R
k×m

χ2(m; ‖ν̄d‖2)
1 + χ2(m; ‖ν̄d‖2)

pdf(x2)dx2 ≤
∫

R
k×m

χ2(m; ‖ν̄d‖2)pdf(x2)dx2

T4 d→
∫

R
k×m

χ2(m; ‖ν̄d‖2)pdf(x2)dx2

H3
L→

∫

R
k×m

χ2(m; ‖ν̄d‖2)pdf(x2)dx2

Hj
d→

∫

R
k×m

χ2(m; ‖ν̄d‖2)
1 + χ2(m; ‖ν̄d‖2)

pdf(x2)dx2 ≤
∫

R
k×m

χ2(m; ‖ν̄d‖2)pdf(x2)dx2 for j = 1, 2

where pdf(.) is the probability density function of ψzv and ν̄d ≡ ν̄d(x2) = σ−1
u [(Π0 +

Q−1
Z x2)

′QZ(Π0 +Q−1
Z x2)]

−1/2(Π0 +Q−1
Z x2)

′d.

As indicated the above results, the statistics T2, T4 and H3 converge now to a mixture

of noncentral χ2 distributions under H0 while the asymptotic distributions of T3, H1, and

H2 is bounded away by a mixture of noncentral χ2 distributions. Hence, T3, H1 and H2

are less size distorted than T2, T4 and H3. Again, we can show here that the size distortions

of all tests increase with instrument endogeneity d. An interesting question however is how

big or small the distortions are when identification is weak compare to when it is strong.

Although we do not provide a formal mathematical proof about any dominance between

both setups, it is interesting to observe that test sensitivity to instrument endogeneity is

likely more important when identification is strong than when it is weak.

To see why, consider the following two extreme situations: (1) the instruments com-

pletely irrelevant (i.e., Π0 = 0 in Theorem 3.2), and (2) they are very strong (i.e, Π is

large in Theorem 3.1). For large or relatively moderate values of instrument endogeneity d,

case (2) implies large values of the non centrality parameter ‖τ̄d‖2 [see Theorem 3.1] while

in case (1), the non centrality parameter ‖ν̄0
d
‖2 = σ−2

u d′Q−1
Z ψzv(ψ

′
zvQ

−1
Z ψzv)

−1ψ′
zvQ

−1
Z d

[see Theorem 3.2] is bounded with probability one, independently of Π. If the mean of

‖ν̄0
d
‖2 is less than ‖τ̄d‖2 with probability one (which seems highly likely to be the case

when Π is large), the tests will exhibit less size distortions in Theorem 3.2 than in Theo-

rem 3.1. By the continuity of ‖ν̄d‖2 with respect to Π0, the above argument extends to

small values of Π0 (weakly identified model). Clearly, the fact that the tests T3, H1 and
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H2 are conservative when identification is weak may be viewed in some extends as an asset

for statistical inference when instruments are not strictly exogenous.

Section 3.2 illustrates our theoretical findings through a Monte Carlo experiment.

3.2. Simulation experiment

We consider a single endogenous variable model described by the following data generating

process (DGP):

y = Xβ + u, X = ZΠ+ υ (3.1)

where y and X are n× 1 vectors, the errors (u, υ) are such that:

u = (1 + ρ2υ)
−1/2(ε1 + ρυυ) (3.2)

where (ε1i, υi)
′ i.i.d∼ N (0, I2) for all i. Z contains k ∈ {2, 5, 15} instruments each generated

i.i.d N(0, 1) and its correlation with the error u is rzu ∈ {0, 0.05, 0.1, 0.2, 0.3} , where

rzu = 0 characterizes exogenous instruments while rzu 6= 0 are for invalid instruments.

In particular, small values of rzu (for example rzu = 0.05) characterize locally invalid

instruments. From (3.1)-(3.2), the exogeneity hypothesis of X is then expressed as H0 :

ρυ = 0. We set the true values of β at 2 andΠ =
√

η2

n‖ZΠ0‖Π0, whereΠ0 is a vector of ones,

η2 is the concentration parameter. Through this experiment, we vary η2 in {0, 13, 1000},

where η2 ≤ 613 correspond to weak instruments and η2 > 613 is for strong instruments [see

Hansen et al. (2008) ]. The simulations are run with sample sizes n = 100; 300, N = 10, 000

replications and nominal level of 5%.

Tables 1 presents the results. When rzu = 0, i.e., when the instruments are exogenous,

all DWH tests have correct level whether identification is weak (columns η = 0; 13) or strong

(columns η = 1000). More precisely, T2, T4 and H3 have correct size in all cases, but T3,

H1 and H2 are overly conservative when identification is weak [see also Staiger and Stock

(1997), Guggenberger (2010) and Doko Tchatoka and Dufour (2011b, 2011a)]. Now, when

rzu 6= 0, the empirical rejections of all tests exceed the nominal size with a huge margin.

As suggested our theoretical findings, the distortions increase with instrument endogeneity
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rzu and the maximal rejection can be as great as 100%, suggesting that the asymptotic size

of the tests converges to 1 especially when identification is strong and endogeneity fixed

(rzu 6= 0 does not dependent on the sample size). In addition, the effect of instrument

endogeneity on the tests increases with model identification strength, i.e., the tests are in

general more size distorted when identification is strong (η2 = 1000) than when it is weak

(η = 0; 13), thus confirming our prior intuition. As expected, T3, H1 and H2 are less

sensitive to instrument endogeneity than T2, T4 and H3, especially when identification is

weak (see columns η = 0; 13 in the table).

Overall, our main recommendation is to use DWH tests only when we have the certitude

the instruments are strictly exogeneity. Since it is practically impossible to test the validity

of all candidate instruments, it is importance to develop tests that accounts for the violation

of instrument strict exogeneity.
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Table 1. Size (in %) of DWH-tests at nominal level 5%; n = 100; 300

n = 100
rzu = 0 rzu = .05 rzu = .1 rzu = .2 rzu = .3

Statistics k2 ↓ η2 → 0 13 1000 0 13 1000 0 13 1000 0 13 1000 0 13 1000

T2 2 5.2 4.8 4.9 8.3 9.4 7.6 17.3 21.4 16.1 47.7 59.8 47.1 67.4 81.0 80.9
T3 2 0.0 0.2 4.5 0.1 0.5 7.1 0.2 1.8 15.4 1.6 8.8 45.7 4.0 19.8 80.0
T4 2 5.2 4.8 4.9 8.2 9.2 7.6 17.1 21.3 16.1 47.5 59.7 46.9 67.3 80.9 80.7
H1 2 0.0 0.1 4.2 0.1 0.4 6.7 0.2 1.5 14.7 1.5 8.1 44.3 3.6 18.6 79.2
H2 2 0.0 0.2 4.7 0.1 0.5 7.3 0.2 1.9 15.6 1.7 9.2 46.1 4.2 20.3 80.2
H3 2 5.2 4.9 5.0 8.4 9.4 7.7 17.4 21.5 16.2 47.9 59.9 47.3 67.5 81.1 81.0

T2 5 5.0 4.9 4.7 8.9 12.8 11.2 18.9 33.3 29.6 41.7 70.2 80.4 54.2 80.9 98.7
T3 5 0.4 0.8 4.6 0.8 3.0 10.7 2.1 11.4 28.7 9.4 39.6 79.9 15.8 52.7 98.6
T4 5 4.9 4.8 4.7 8.8 12.7 11.1 18.8 33.2 29.4 41.6 70.1 80.3 54.1 80.9 98.7
H1 5 0.3 0.7 4.2 0.7 2.6 10.2 1.8 10.6 27.4 8.8 37.9 79.1 14.6 51.1 98.5
H2 5 0.4 0.8 4.6 0.8 3.1 10.9 2.2 11.6 29.0 9.7 40.0 80.1 16.2 53.3 98.6
H3 5 5.1 4.9 4.8 8.9 13.0 11.3 19.1 33.5 29.8 41.8 70.3 80.6 54.3 81.0 98.7

T2 15 5.2 5.1 5.2 7.8 15.3 12.7 15.1 40.0 36.0 27.7 70.3 86.0 35.0 80.0 99.1
T3 15 2.5 3.0 5.1 4.1 10.8 12.5 9.0 32.8 35.4 19.9 65.0 85.6 27.5 75.6 99.1
T2 15 5.1 5.1 5.2 7.8 15.3 12.6 15.0 39.9 35.8 27.5 70.2 85.9 34.8 79.9 99.1
H1 15 2.2 2.6 4.8 3.7 9.9 11.9 8.3 31.6 34.3 19.0 63.9 85.0 26.4 74.8 99.0
H2 15 2.5 3.1 5.2 4.3 11.0 12.7 9.2 33.1 35.9 20.2 65.4 86.0 27.9 75.9 99.1
H3 15 5.3 5.2 5.3 8.0 15.4 12.9 15.2 40.2 36.2 27.8 70.4 86.2 35.1 80.1 99.1

n = 300
rzu = 0 rzu = .05 rzu = .1 rzu = .2 rzu = .3

Statistics k2 ↓ η2 → 0 13 1000 0 13 1000 0 13 1000 0 13 1000 0 13 1000

T2 2 5.25 5.15 5.28 12.77 15.38 18.56 36.79 44.82 55.9 70.59 80.32 98.69 80.48 88.36 100
T3 2 0.04 0.2 4.68 0.14 0.67 17.19 0.99 3.86 53.86 4.49 15.84 98.55 7.38 21.85 100
T4 2 5.21 5.13 5.27 12.74 15.36 18.53 36.75 44.78 55.82 70.58 80.31 98.69 80.48 88.34 100
H1 2 0.04 0.18 4.59 0.14 0.62 16.87 0.95 3.67 53.46 4.35 15.43 98.52 7.18 21.45 100
H2 2 0.04 0.2 4.75 0.14 0.68 17.31 1.02 3.95 54.02 4.54 15.98 98.57 7.43 21.94 100
H3 2 5.27 5.22 5.3 12.82 15.47 18.6 36.87 44.92 55.95 70.65 80.36 98.69 80.51 88.36 100

T2 5 4.85 4.76 5.07 14.53 21.84 38.34 36.19 55.86 91.33 62.13 79.78 100 71.24 85.7 100
T3 5 0.31 0.55 4.75 1.49 5.06 36.97 6.89 22.97 90.83 20.97 47.3 100 28.1 54.41 100
T4 5 4.8 4.73 5.07 14.52 21.81 38.28 36.16 55.84 91.3 62.12 79.76 100 71.22 85.69 100
H1 5 0.28 0.52 4.6 1.41 4.87 36.58 6.63 22.64 90.66 20.5 46.68 100 27.56 54 100
H2 5 0.32 0.57 4.77 1.49 5.1 37.12 6.97 23.22 90.88 21.09 47.44 100 28.27 54.55 100
H3 5 4.91 4.76 5.08 14.56 21.89 38.41 36.21 55.92 91.36 62.17 79.82 100 71.26 85.71 100

T2 15 5.28 5 5.14 14.53 31.22 73.06 32.43 64.89 99.9 52.38 82.7 100 59.22 86.68 100
T3 15 2.37 2.57 4.94 8.56 23.67 72.54 23.52 57.84 99.89 44.88 79.03 100 52.05 83.63 100
T4 15 5.25 5 5.14 14.52 31.17 72.99 32.4 64.85 99.9 52.36 82.69 100 59.18 86.67 100
H1 15 2.32 2.5 4.79 8.38 23.17 72.34 23.11 57.48 99.89 44.56 78.76 100 51.73 83.54 100
H2 15 2.39 2.59 5 8.59 23.77 72.6 23.61 57.99 99.89 44.94 79.15 100 52.1 83.72 100
H3 15 5.29 5.02 5.16 14.59 31.28 73.15 32.49 64.89 99.91 52.42 82.71 100 59.26 86.7 100
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4. Bootstrap exogeneity tests with invalid instruments

We now wish to propose a bootstrap procedure to deal with the invalidity of the standard

DWH tests when instruments are strictly exogenous. In addition to the basic assumption

(2.1)-(2.2), we shall make the following assumption on model errors (u, V ) and instruments:

Assumption 4.1 u = Zb+e, where b is a k×1 vector of unknown fixed coefficients, (e, V )

are independent of Z and

(ei, V
′
i )

′ |Z ∼ JŪi for all i = 1, . . . , n (4.1)

where J : (m + 1) × (m + 1) is a lower triangular positive matrix of unknown coefficient,

Ūi : (m+ 1)× 1 are i.i.d. across i with zero mean and a completely specified distribution.

Assumption 4.1 entails that (ei, V
′
i )

′ is homoskedastic with a distribution completely

specified up to an unknown factor. It is particularly satisfied in the standard Gaussian

assumption context where (ei, V
′
i )

′
∼ IDN[0, Σ∗] with Σ∗ = JJ′ =







σ2e σ′V e

σV e ΣV






, in

which case we have

Ūi ∼ IDN[0, Im+1] for all i = 1, . . . , n. (4.2)

However, non-Gaussian distributions are covered, including heavy tailed distributions which

may lack moments (such as Cauchy distributions). This assumption can be weakened in

large-sample [see for example, Assumption 2.2].

Since E(ZiZ
′
i) = QZ > 0 for all i = 1, . . . , n , Assumption 4.1 entails that cov(Zi, ui) =

σZu = QZb. So, σZu = 0 if and only if b = 0, i.e., Z is invalid as long as b 6= 0.

In the above setup, the local-to-zero endogeneity of Z is expressed as b = ρ/
√
n, where

ρ is a k × 1 constant vector. It is therefore straightforward to see that E(Z ′u/
√
n) =

1√
n

∑n
i=1E(ZiZ

′
i)b = QZρ ≡ d, where d is the constant vector of Assumptions 2.1-(2.6).

If the errors u = (u1, u2, . . . , un)
′ were observed, we could estimate consistently the

instrument endogeneity b from Assumption 4.1. The difficulty however is that u is not

observed. To alleviate this, we adopt the following methodology.
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Consider the following regression

û = Z∗b+ e∗ (4.3)

obtained by post-multiplying the first equation in Assumption 4.1 by MX = In −

X(X ′X)−1X ′, so that all û, Z∗ and e∗ are residuals from projection onto the space

spanned by the columns of X3. Then the dependent variable û = MXy in (4.3) is also

the vector of residuals from the OLS regression of the structural equation (2.1). So,

if H0 and Assumptions 2.1-4.1 are satisfied, we have Z ′
∗e∗/n = Z ′MXe/n = Z ′e/n −

(Z ′X/n)(X ′X/n)−1(X ′e/n)
p→ 0, i.e., Z∗ and e∗ are asymptotically uncorrelated. Let

b̂ = (Z ′
∗Z∗)−1Z ′

∗û denotes the OLS estimator of b from (4.3). It is easy to see that

b̂ − b = Z ′
∗Z∗/n)−1(Z ′

∗e∗/n)
p→ 0 under the same above conditions, i.e., b̂ is a consistent

estimator of b. Note that this consistency requires the exogeneity of X, at least asymptot-

ically.

Moreover, let ê∗ denotes the vector of residuals from the OLS estimation of (4.3). We

can write û as: û = Z∗b̂+ ê∗, so that

Z ′
∗û = Z ′

∗Z∗b̂, V̂ ′û = V̂ ′Z∗b̂ (4.4)

where V̂ = MZX is the matrix of residuals from the first-stage OLS estimation, satisfying

V̂ ′ê∗ = 0. This suggests that the structural error-instruments and structural-reduced form

errors covariances can be estimated by

σ̂Zu =
Z ′
∗û

n− k
=

n

n− k
Q̂∗b̂, σ̂V u =

n

n− k
Q̃∗b̂ (4.5)

where Q̂∗ = (Z ′
∗Z∗/n) and Q̃∗ = (V̂ ′Z∗/n).

We are now ready to present the implementation of the bootstrap tests.

3It is important to note that if the structural equation (2.1) contains exogenous instruments Z1, the first
equation in Assumption 4.1 must be projected on the space orthogonal to [X, Z1].
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4.1. Bootstrap tests implementation

To easy the exposition, we shall consider the following linear structural model M with

Gaussian errors:

yi = X ′
iβ + ui, Xi = Π′Zi + Vi, (4.6)

ui = Z ′
ib+ ei, (ei, V

′
i )

′
∼ IDN[0, Σ∗] for all i = 1, . . . , n (4.7)

where Σ∗ =







σ2e σ′V e

σV e ΣV






. The null hypothesis of interest is H0 : σV e = 0. Thus the

model M0 that represents the null hypothesis is (4.6)-(4.7) where σV e is replace by 0 in the

expression of Σ∗, i.e,

yi = X ′
iβ + ui, Xi = Π′Zi + Vi, (4.8)

ui = Z ′
ib+ ei, (ei, V

′
i )

′
∼ IDN[0, diag(σ2e, ΣV )] for all i = 1, . . . , n. (4.9)

The first step in constructing the bootstrap tests is to estimate each equation in (4.8)-

(4.9) by OLS from observed data, yielding the restricted estimates β̂, Π̂, σ̂2e = (û−Z∗b̂)′(û−

Z∗b̂)/(n−k), Σ̂V = (X−ZΠ̂)′(X−ZΠ̂)/(n−k), σ̂2 = û′û/(n−m) and b̂ = (Z ′
∗Z∗)−1Z ′

∗û,

where Z∗ =MXZ and û = y −Xβ̂. Then the bootstrap DGP µ̂ is given by

y∗i = X∗′
i β̂ + u∗i , X

∗
i = Π̂′Zi + V ∗

i , (4.10)

u∗i = Z ′
i b̂+ e∗i , (e

∗
i , V

∗′
i )′ ∼ IDN[0, diag(σ̂2e, Σ̂V )] for all i = 1, . . . , n. (4.11)

To implement the bootstrap tests, we need to compute the realization of DWH statistics

from observed data. For this purpose, we also need to compute the IV estimates β̃ and σ̃2 of

β and σ2u from observed data. Let Ŵ denotes one of the statistics Hi and Tl in (2.4)-(2.5),

computed from the observed data.

The bootstrap tests can be implemented following the above four steps:

1. Compute the realizations of all data-dependent things needed to setup the bootstrap

DGP µ̂ and the test statistic Ŵ from the original sample.

2. Generate B bootstrap samples using µ̂, and for each one compute a realization of the
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bootstrap statistic, W∗
r , r = 1, . . . , B.

3. Compute the simulated bootstrap p-value as the proportion of bootstrap statistics

W∗
r that are more extreme that Ŵ, i.e.

p̂bs =
1

B

B
∑

r=1

1[W∗
r > Ŵ ] (4.12)

where 1[C] = 1 if condition C holds and 0 otherwise.

4. The bootstrap test rejects the null hypothesis of exogeneity at level α if p̂bs < α.

As seen, the above algorithm can be generalized easily to non-Gaussian errors satisfying

Assumption 4.1. The algorithm can also be improved in some cases using sophisticated

bootstrap techniques.

4.2. Performance of the bootstrap tests

We consider again model M in (4.6)-(4.7) with one endogenous variable (m = 1) and k

instruments Z generated as Zji
i.i.d∼ N(0, 1), independent of the errors (ei, V

′
i )

′ for all i and

j. We generate the errors as (ei, V
′
i )

′
∼ IDN[0, Σ∗] with Σ∗ =







1 σ′V e

σV e 1






and we test

the null hypothesis σV e = 0. The other model parameters true values are set at β = 2,

Π =
√

η2

n‖ZΠ0‖Π0, where Π0 is a vector of ones and η2 ∈ {0, 13, 1000}. The correlation

between Zj and u is kept constant at rzu ∈ {0, 0.1, 0.3, 0.4, 0.5} . The simulations are run

with sample sizes n = 50; 100; 300, and the nominal level is set at 5%. Finally, the number

of instruments k varies in {5, 15} .

We evaluate the empirical rejection frequencies of the bootstrap tests using the the fast

approximation recently proposed by Davidson and Mackinnon (2007). We use the true

DGP µ to generate M = 100, 000 samples of size n. For each replication r = 1, . . . , M,

a replication Wr of the statistic W is computed from the simulated sample, along with a

realization µ̂r of the bootstrap DGP. In addition, µ̂r is used to draw a single bootstrap

statistic W∗
r . We estimate the rejection probability (RP) as the proportion of the Wr that

are less than Q̂∗(α), the 1−α quantile of the W∗
r . This yields the following estimate of the
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RP of the bootstrap test:

R̂P bs =
1

M

M
∑

r=1

1[Wr < Q̂∗(α)]. (4.13)

Table 2 reports the results. As before, rzu = 0 corresponds to exogenous instruments

while rzu 6= 0 characterize invalid instruments. Also, η2 ≤ 613 is for weak identification and

η2 > 613 characterize strong identification. We see that all tests have an overall correct

level whether identification is strong or weak. In addition, level is controlled even for a

relatively small sample (n = 50) and moderate instrument endogeneity (rzu = 0.5). The

maximal size distortion of the bootstrap tests is around 6.7% and is obtained when n = 50

and k = 5, further with exogenous instruments (rzu = 0). This is a substantial improvement

compared to standard DWH tests whose maximal rejection was as great as 100% [see Table

1]. Furthermore, it is interesting to note that when model parameters are completely non

identified (η2 = 0) or close so, all bootstrap tests have correct level irrespective of the size

of instrument endogeneity. However, the tests tend to be conservative when instruments

endogeneity is large and identification strong. This is mainly justified by the fact that

the effect of instrument endogeneity on the tests increases with identification strength (see

Theorems 3.1-3.1 and simulations in Table 1). When identification is strong and instrument

endogeneity is large, the quantiles of the null distribution of the statistics tend to explode,

as discussed in Theorem 3.2. However, the non centrality parameter is always bounded with

probability when identification is weak, even if instrument endogeneity is large (Theorem

3.2). Therefore, the occurrence of the events [Wr < Q̂∗(α)] is higher when identification

is weak than when it is strong. This is particularly why the tests have correct level in all

cases when η2 = 0 (irrelevant instruments).
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Table 2. Rejection frequencies (in %) of bootstrap DWH-tests at nominal level 5%; n = 50; 100; 300

n = 50
rzu = 0 rzu = .1 rzu = .3 rzu = .4 rzu = .5

Statistics k2 ↓ η2 → 0 13 1000 0 13 1000 0 13 1000 0 13 1000 0 13 1000

T2bs 5 6.59 6.65 6.33 5.90 4.72 6.04 5.20 4.65 4.80 4.86 4.73 3.64 5.16 4.83 3.09
T3bs 5 6.59 6.66 6.33 5.90 4.72 6.04 5.20 4.66 4.80 4.87 4.74 3.64 5.17 4.84 3.09
T4bs 5 6.59 6.65 6.33 5.90 4.72 6.04 5.20 4.65 4.80 4.86 4.73 3.64 5.16 4.83 3.09
H1bs 5 6.59 6.66 6.33 5.90 4.72 6.04 5.20 4.66 4.80 4.87 4.74 3.64 5.17 4.84 3.09
H2bs 5 6.59 6.66 6.33 5.90 4.72 6.04 5.20 4.66 4.80 4.87 4.74 3.64 5.17 4.84 3.09
H3bs 5 6.59 6.65 6.33 5.90 4.72 6.04 5.20 4.65 4.80 4.86 4.73 3.64 5.16 4.83 3.09

T2bs 15 5.46 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44
T3bs 15 5.47 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44
T4bs 15 5.46 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44
H1bs 15 5.47 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44
H2bs 15 5.47 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44
H3bs 15 5.46 5.23 5.97 4.90 3.19 5.53 4.40 2.96 5.06 3.63 2.79 3.91 3.54 2.73 3.44

n = 100
rzu = 0 rzu = .1 rzu = .3 rzu = .4 rzu = .5

Statistics k2 ↓ η2 → 0 13 1000 0 13 1000 0 13 1000 0 13 1000 0 13 1000

T2bs 5 5.87 5.70 5.63 5.48 4.10 4.59 4.79 4.00 2.86 4.88 3.95 3.12 4.71 4.07 3.43
T3bs 5 5.88 5.70 5.63 5.48 4.11 4.59 4.81 4.03 2.87 4.91 3.99 3.13 4.74 4.13 3.44
T4bs 5 5.87 5.70 5.63 5.48 4.10 4.59 4.79 4.00 2.86 4.88 3.95 3.12 4.71 4.07 3.43
H1bs 5 5.88 5.70 5.63 5.48 4.11 4.59 4.81 4.03 2.87 4.91 3.99 3.13 4.74 4.13 3.44
H2bs 5 5.88 5.70 5.63 5.48 4.11 4.59 4.81 4.03 2.87 4.91 3.99 3.13 4.74 4.13 3.44
H3bs 5 5.87 5.70 5.63 5.48 4.10 4.59 4.79 4.00 2.86 4.88 3.95 3.12 4.71 4.07 3.43

T2bs 15 5.38 5.37 5.29 5.18 3.72 3.25 4.77 3.89 2.07 4.76 3.76 2.02 4.90 3.84 2.02
T3bs 15 5.38 5.37 5.29 5.18 3.73 3.25 4.77 3.90 2.07 4.76 3.77 2.02 4.91 3.84 2.02
T4bs 15 5.38 5.37 5.29 5.18 3.72 3.25 4.77 3.89 2.07 4.76 3.76 2.02 4.90 3.84 2.02
H1bs 15 5.38 5.37 5.29 5.18 3.73 3.25 4.77 3.90 2.07 4.76 3.77 2.02 4.91 3.84 2.02
H2bs 15 5.38 5.37 5.29 5.18 3.73 3.25 4.77 3.90 2.07 4.76 3.77 2.02 4.91 3.84 2.02
H3bs 15 5.38 5.37 5.29 5.18 3.72 3.25 4.77 3.89 2.07 4.76 3.76 2.02 4.90 3.84 2.02

n = 300
rzu = 0 rzu = .1 rzu = .3 rzu = .4 rzu = .5

Statistics k2 ↓ η2 → 0 13 1000 0 13 1000 0 13 1000 0 13 1000 0 13 1000

T2bs 5 5.75 5.62 4.99 5.26 4.62 3.17 5.11 4.25 3.35 4.79 4.18 3.06 4.82 4.20 2.85
T3bs 5 5.75 5.79 4.99 5.27 4.63 3.17 5.17 4.36 3.04 4.87 4.34 2.46 4.91 4.42 2.46
T4bs 5 5.75 5.62 4.99 5.26 4.62 3.17 5.11 4.25 3.35 4.79 4.18 3.06 4.82 4.20 2.85
H1bs 5 5.75 5.63 4.99 5.27 4.63 3.17 5.17 4.36 3.04 4.87 4.34 2.46 4.91 4.42 2.46
H2bs 5 5.75 5.63 4.99 5.27 4.63 3.17 5.17 4.36 3.04 4.87 4.34 2.46 4.91 4.42 2.46
H3bs 5 5.75 5.62 4.99 5.26 4.62 3.17 5.11 3.25 3.35 4.79 4.18 3.06 4.82 4.20 2.85

T2bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.26 2.28 4.62 3.20 2.11 4.59 3.18 2.04
T3bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.27 2.21 4.63 3.21 2.07 4.59 3.18 2.04
T4bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.26 2.28 4.62 3.20 2.11 4.59 3.18 2.04
H1bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.27 2.21 4.63 3.21 2.07 4.59 3.18 2.04
H2bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.27 2.21 4.63 3.21 2.07 4.59 3.18 2.04
H3bs 15 5.27 5.21 5.05 5.28 3.91 2.89 4.79 3.26 2.28 4.62 3.20 2.11 4.59 3.18 2.04
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5. Empirical illustration

We illustrate our theoretical results through the trade and growth model [Frankel and

Romer (1999), Harrison (1996), Mankiw, Romer and Weil (1992)]. The model studies

the relationship between standards of living and openness. Because the trade share (ratio

of imports or exports to GDP) commonly used as an indicator of openness is possibly

endogenous, Frankel and Romer (1999) suggest instrumental variables method to estimate

the income-trade relationship. The basic structural equation studied is given by:

ln(wi) = β0 + βTradei + γ1ln(Popi) + γ2ln(Areai) + ui, i = 1, . . . , n (5.1)

where w is the income per capita, Pop is the population and Area is country area. The in-

strument Z suggested by Frankel and Romer (1999) is constructed on the basis of geographic

characteristics and the first stage specification is

Tradei = b0 + b1Zi + c1ln(Popi) + c2ln(Areai) + Vi, i = 1, . . . , n. (5.2)

Concern has raised in recent studies that the instrument constructed in this way may be

invalid, weak, or both [see the review of Samuel and Michael (2009)].

Here, we want to assess the exogeneity of “Trade” taking into account a possibility

that Z may be invalid or weak. The data are from Frankel and Romer (1999) and contain

initially 150 countries for year 1985. The first stage F -statistic4 in ( 5.2) is about 13,

hence the constructed instrument is not very poor compared to Staiger and Stock (1997)’s

rule of thumb of 10. We use both the standard and bootstrap DWH tests to assess the

exogeneity of “Trade”Ḟirst, we observe that the OLS and 2SLS estimates of β are 0.2809 and

2.0251 respectively, while the magnitude of the regression endogeneity parameter estimate

seems relatively small (b̂ = 0.0079) but is significantly different from zero at level 5%

(tb̂ = 2.026 > 1.96). This corresponds to error-instrument covariance estimate of about

σ̂Zu = 12.309 and the estimate of the covariance between structural and reduced-form

errors (here Trade endogeneity parameter) of approximately σ̂Zu = −0.0149. This suggests

that the instrument Z is not strictly exogenous. Hence, it is very likely that the discrepancy

4See also Frankel and Romer (1999, Table 2, p.385) and Dufour and Taamouti (2007).

19



between OLS and 2SLS estimates is more due to instrument endogeneity rather than trade

share exogeneity.

Table 3 presents the outcomes for both standard and boostrap tests. The bootstrap tests

are run for 999, 9, 999 and 99, 999 replications. The results indicate that T2, T4 andH3 reject

the the exogeneity of the trade share at level 5%, but T3, H1 and H2 fail to reject it even at

level 10%, despite the large discrepancy between OLS and 2SLS estimates. The maximal

p-value is 12.43% and is obtained with T3. Since model identification is weak, it is more

likely that this contradiction among the DWH tests is attributable to instrument invalidity.

This is confirmed by the bootstrap tests (that account for instrument endogeneity) which

find no evidence against the exogeneity of trade share with p-values above 38%, even for

large bootstrap samples. This underscores how the standard DWH tests may be misleading

if the instruments violate (even locally) the strict exogeneity assumption.

Table 3. Exogeneity of Trade in growth model (p-values in %)

DWH tests T2 T3 T4 H1 H2 H3

p-value 04.95 12.43 04.99 12.22 11.93 04.69

Boostrap tests with B = 999 T2bs T3bs T4bs H1bs H2bs H3bs

p-value 50.15 38.14 50.15 38.14 38.14 50.15

Boostrap tests with B = 9, 999 T2bs T3bs T4bs H1bs H2bs H3bs

p-value 49.6 38.14 49.6 38.14 38.14 49.6

Boostrap tests with B = 99, 999 T2bs T3bs T4bs H1bs H2bs H3bs

p-value 50.34 38.2 50.34 38.2 38.2 50.34

6. Conclusion

This paper focuses on linear structural models and investigate the size of the standard

Durbin-Wu-Hausman tests for exogeneity when instruments violate “strict exogeneity”.

We characterize the asymptotic distributions of the tests under local-to-zero endogeneity
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which clearly show that these tests are severely size distorted even for a small correlation

between instruments and the structural error. A Monte carlo experiment suggests that the

maximal size distortion can be as great as 100% when instrument endogeneity is fixed and

identification strong.

We then propose a bootstrap procedure to correct the size of the tests. The simulations

indicate that the bootstrap tests have an overall good performance even for moderate in-

strument endogeneity. We apply our theoretical framework to the trade and growth model

of Frankel and Romer (1999). We find that the instrument constructed on the basis of

countries geographic characteristics is not strictly exogenous. Therefore, the use of the

standard DWH tests for assessing the exogeneity of the trade variable lead to conflicting

results, though the structural parameter is identified [see Dufour and Taamouti (2007)].

More precisely, the tests T2, T4 and H3 find evidence against the exogeneity of the trade

variable with a p-values less than 5%, while T3,H1 and H2 cannot reject the exogeneity even

at level 10%. However, all proposed bootstrap tests that account for instrument endogene-

ity conclude the non rejection of exogeneity with p-values above 38%. This suggests that

the large discrepancy between OLS and 2SLS estimates is more attributable to instrument

invalidity rather than trade share endogeneity.
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APPENDIX

A. Proofs

Lemma A.1 Suppose Assumptions 2.1-2.2 are satisfied and rank(Π) = m. If συu = 0, then:

(i) β̂
p→ β, β̃

p→ β, β̃ − β̂
p→ 0;

(ii)
√
n(β̂ − β)

d→ N
[

(Π′QZΠ+ΣV )
−1Π′d, σ2

u(Π
′QZΠ+ΣV )

−1
]

,
√
n(β̃ − β)

d→ N
[

(Π′QZΠ)−1Π′d, σ2
u(Π

′QZΠ)−1
]

,
√
n(β̃ − β̂)

d→ N
(

τd, σ
2
u[(Π

′QZΠ)−1 − (Π′QZΠ+ΣV )
−1]

)

where τd = [(Π′QZΠ)−1 − (Π′QZΠ+ΣV )
−1]Π′d.

Proof of Lemma A.1 First, observe that β̂ − β̃ as:

β̂ − β = Ω̂−1
LSX

′u/n, β̃ − β = Ω̂−1
IV X

′PZu/n,

β̃ − β̂ = Ω̂−1
IV X

′PZu/n− Ω̂−1
LSX

′u/n. (A.1)

If Assumptions 2.1-2.2 hold and if further rank(Π) = m and συu = 0, then Ω̂LS
p→ Π′QZΠ+ΣV ,

Ω̂IV
p→ Π′QZΠ, X ′u/n = Π′Z ′u/n + V ′u/n

p→ 0, and X ′PZu/n = Π′Z ′u/n + V ′PZu/n
p→ 0.

Thus Lemma A.1-(i) holds.

Now from (A.1), we have:
√
n(β̂ − β) = Ω̂−1

LSX
′u/

√
n,

√
n(β̃ − β) = Ω̂−1

IVX
′PZu/

√
n, and

√
n(β̃− β̂) = Ω̂−1

IVX
′PZu/

√
n−Ω̂−1

LSX
′u/

√
n. Under the condition of the lemma, we have X ′u/

√
n =

Π′ 1√
n

∑n
i=1 Ziui +

1√
n

∑n
i=1(Viui − σV u)

d→ Π′(ψzu + d) + ψV u, and X ′PZu/
√
n = Π′Z ′u/

√
n +

V ′PZu/
√
n = Π′Z ′u/

√
n+ op(1)

d→ Π′(ψzu + d). So, we find

√
n(β̂ − β)

d→ (Π′QZΠ+ΣV )
−1[Π′(ψzu + d) + ψV u],

√
n(β̃ − β)

d→ (Π′QZΠ)−1Π′(ψzu + d)

√
n(β̃ − β̂)

d→ Ψd = (Π′QZΠ)−1Π′(ψzu + d)− (Π′QZΠ+ΣV )
−1[Π′(ψzu + d) + ψV u].

Under H0 and Assumption 2.2, we have (ψzu + d, ψV u) ∼ N



d, σ2
u





QZ 0

0 ΣV







 jointly, so

that Lemma A.1-(ii) follows directly.

Lemma A.2 Suppose Assumptions 2.1-2.2 are satisfied and let συu = 0. If further Π = Π0/
√
n,

where Π0 ∈ R
k×m is a constant matrix (possibly zero), then:
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(i) β̂
p→ β, β̃ − β

d→
∫

R
k×m N

(

νd, σ
2
u[(Π0 +Q−1

Z x2)
′QZ(Π0 +Q−1

Z x2)]
−1

)

pdf(x2)dx2;

(ii) β̃ − β̂
d→
∫

R
k×m N

(

νd, σ
2
u[(Π0 +Q−1

Z x2)
′QZ(Π0 +Q−1

Z x2)]
−1

)

pdf(x2)dx2

where νd ≡ νd(x2) = [(Π0+Q
−1
Z x2)

′QZ(Π0+Q
−1
Z x2)]

−1(Π0+Q
−1
Z x2)

′d and pdf(.) is the probability

density function of ψzv.

Proof of Lemma A.2 Let Π = Π0/
√
n where Π0 is a k × m constant matrix. When

συu = 0, we have Ω̂LS
p→ ΣV > 0 and X ′u/n

p→ 0 so that β̂ − β = op(1) and β̃ − β̂ =

(nΩ̂IV )
−1X ′PZu − Ω̂−1

LSX
′u/n = (nΩ̂IV )

−1X ′PZu + 0p(1) = β̃ − β + op(1). Since nΩ̂IV =

X ′PZX = (X ′Z/
√
n)(Z ′Z/n)−1(Z ′X/

√
n) and Z ′Z/n

p→ QZ , Z
′X/

√
n

d→ QZΠ0 + ψzv, it is

clear that nΩ̂IV
d→ (Π0 + Q−1

Z ψzv)
′QZ(Π0 + Q−1

Z ψzv). By the same way, we have X ′PZu
d→

(Π0 +Q−1
Z ψzv)

′(ψzu + d). Therefore β̂ − β̃ = β̃ − β + op(1)
d→ ΨZv,d where

ΨZv,d = [(Π0 +Q−1
Z ψzv)

′QZ(Π0 +Q−1
Z ψzv)]

−1(Π0 +Q−1
Z ψzv)

′(ψzu + d).

Because ψzv is independent of ψzu under H0, we have ΨZv,d|ψ
zv

∼

N
(

νd, σ
2
u[(Π0 +Q−1

Z ψzv)
′QZ(Π0 +Q−1

Z ψzv)]
−1

)

, where νd = [(Π0 + Q−1
Z ψzv)

′QZ(Π0 +

Q−1
Z ψzv)]

−1(Π0 +Q−1
Z ψzv)

′d. By integrating with respect to ψzv, the result follows.

Proof of Theorem 3.1 Let rank(Π) = m and suppose Assumptions 2.1-2.2 hold with συu = 0.

From Lemma A.1, we have

σ̂2 = u′u/n− (u′X/n)Ω̂−1
LS(X

′u/n)
p→ σ2

u, σ̃2
2 = σ̂2 + 0p(1)

p→ σ2
u (A.2)

σ̃2 = u′u/n− 2(u′X/n)Ω̂−1
IV (X

′PZu/n) + (u′PZX/n)Ω̂
−1
IV (X

′PZu/n)
p→ σ2

u . (A.3)

Lemma A.1 along with (A.2)-(A.3) then entail that

T2 d→ 1

mσ2
u

Ψ ′
d
[(Π′QZΠ)−1 − (Π′QZΠ+ΣV )

−1]−1Ψd ∼ 1

m
χ2(m;µd),

Tl, Hj
d→ 1

m
Ψ ′
d
[(Π′QZΠ)−1 − (Π′QZΠ+ΣV )

−1]−1Ψd ∼ χ2(m;µ
d
), , l = 3, 4 and j = 1, 2, 3

where µd = 1
σ2
u

τ ′
d
[(Π′QZΠ)−1 − (Π′QZΠ + ΣV )

−1]−1τd = ‖τ̄d‖2, τ̄d = 1
σu

[(Π′QZΠ + ΣV )
−1 −

(Π′QZΠ)−1]−1/2τd = 1
σu

[(Π′QZΠ)−1 − (Π′QZΠ+ ΣV )
−1]1/2Π′d.

Proof of Theorem 3.2 As in the above proof of Theorem 3.1, we still have:

σ̂2 = u′u/n− (u′X/n)Ω̂−1
LS(X

′u/n)
p→ σ2

u, σ̃2
2 = σ̂2 + 0p(1)

p→ σ2
u. (A.4)
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However, we can see from Lemma A.2 that we now have

σ̃2 = u′u/n− 2(u′X/n)Ω̂−1
IV (X

′PZu/n) + (u′PZX/
√
n)(nΩ̂IV )

−1(X ′PZu/
√
n)

d→ σ̄2
u = σ2

u + Ψ ′
Zv,d(Π0 +Q−1

Z ψzv)
′QZ(Π0 +Q−1

Z ψzv)ΨZv,d ≥ σ2
u . (A.5)

The independence between ψzu and ψzv under H0, along with Lemma A.2 then imply that

Ψ ′
Zv,d(Π0 +Q−1

Z ψzv)
′QZ(Π0 + Q−1

Z ψzv)ΨZv,d|ψzv
∼ σ2

uχ
2(m; ‖ν̄d‖2). Therefore, σ̃2|ψ

zv

d→ σ2
u[1 +

χ2(m; ‖ν̄d‖2)] ≥ σ2
u, where ν̄d = 1

σu
[(Π0 +Q−1

Z ψzv)
′QZ(Π0 +Q−1

Z ψzv)]
−1/2(Π0 +Q−1

Z ψzv)
′d. By

the same way, we get T2|ψ
zv

d→ 1
mχ

2(m; ‖ν̄d‖2), T4, H3|ψ
zv

d→ χ2(m; ‖ν̄d‖2), and T3, Hj |ψ
zv

d→
χ2(m; ‖ν̄d‖2)
1+χ2(m; ‖ν̄d‖2 ≤ χ2(m; ‖ν̄d‖2 for j = 1, 2. By integrating with respect to ψzv, the results follow.
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