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1. INTRODUCTION

Our goal of this paper is to study turnpike theorems and the effects of temporary fiscal policy,
which is specifically chosen to be capital income taxation, in a stochastic endogenous growth
model, with the source of uncertainty is the population size of the representative household.
Competitive equilibrium assumptions are also employed, that is the firm, using AK production
technology (e.g., Barro, 1990; Rebelo, 1991; Turnovsky, 2000; Aghion, 2004), has zero profit in
the equilibrium of the economy.

In the past several decades, the so-called turnpike theorems have been extensively studied and
well understood. Most of them (e.g., Morishima, 1961, 1965; Tsukui, 1966, 1967; McKenzie, 1963,
1976; Winter, 1967; Coles, 1985; Yano, 1984a, 1984b, 1985; Bewley, 1982; Gale, 1967; Gantz,
1980; Drandakis, 1966; and Araujo and Scheinkman, 1977), however, focused on the following
four types of specifications: first, multi-sector economies or general equilibrium models with many
consumers and producers; second, fiscal policies are generally excluded in their models; third, they
just concern the deterministic cases, i.e., uncertainty is usually excluded in their models; and fourth,
the horizon of the abstract economy, fixed finite of infinite, and the terminal stock are all
exogenously given. There are certainly some exceptions, for instance, fiscal policy has been
considered and carefully studied in Yano (1998)’s model. Rather, Yano demonstrated that a
temporary change in fiscal policy has almost no effect on present and future consumption with
taking the general equilibrium price effect into account in a dynamic general equilibrium model,
hinging on the following three types of assumptions: first, the existence of an interior dynamic
general equilibrium; second, the smoothness of utility and production functions; and third, the
uniqueness of a stationary equilibrium consumption vector in the case of undiscounted future
utilities. Moreover, Joshi (1997) provided a comprehensive development of turnpike theory in a
stochastic aggregative growth model, extending the classical turnpike theory to general
non-convex and non-stationary environments. Although the model in the paper is a stochastic
aggregative growth model with the effect of temporary fiscal policy being thoroughly examined,
unlike Yano (1998), our conclusion of the inefficacy of temporary fiscal policy on equilibrium
consumption path holds true in comparatively weak conditions, say, given the initial level of

capital stock sufficiently low, in the case of discounted future utilities, and in a more realistic



stochastic environment. What’s more, here the source of uncertainty is supposed to be population
size of the representative household, thereby leading to a stochastic diffusion process of capital
accumulation, while Joshi (1997) directly and exogenously introducing the stochastic
environments as independent variables into production functions.

Furthermore, when discussing efficient capital accumulation (e.g., Gong and Zou, 2000,2002),
efficiency is usually defined with reference to the final state (see, Radner, 1961; Kurz, 1965) or the
terminal stocks (see, McKenzie, 1963, 1976). In this paper, also, the terminal stock, equivalent to
efficient capital accumulation in some sense, is endogenously determined as well as the stopping
time of the economy, which is an optimal stopping time that maximizes the final-state objective
function of the representative household, i.e., choosing a minimum time so as to maximize the
discounted utility function, which, to some extent, resembles Kurz (1965)’s specification, that is,
minimizing the time to economic maturity. And hence it is argued that one contribution of this
paper is to show that the horizon of the economy and the terminal capital stock, also efficient
capital accumulation, can be simultaneously and endogenously determined, thereby endogenously
generating a single welfare function in an aggregated model of optimal growth. And it is easy to
see that our result is a natural correspondence to Bewley (1982)’s, which shows that the social
welfare function is endogenously determined by the market mechanism in decentralized models of
optimal growth.

Finally, noting that existing turnpike theorems, in optimal growth theory, as Yano (1985)
argued that, can be summarized as the following two types, one is neighborhood turnpike theorem
(see, Yano, 1984b; McKenzie, 1982) which asserts that an optimal path in a growth model
converges to a small neighborhood of a stationary path, the other is asymptotic turnpike theorem
(e.g., Araujo and Scheinkman, 1977; Bewley, 1982; Yano, 1985) which means that an optimal path
converges to a stationary path. Here, we have proved much stronger turnpike theorems in the sense
of uniform topology, which we may call uniform-topology turnpike theorems, and this would
appear to be the second innovation of the present paper.

The rest of the paper is organized as follows: section 2 presents the model and our key
theorems, section 3 gives some concluding remarks and the appendix provides the main

mathematical derivations.



2. THE MODEL
We assume that the economy admits a representative household with instantaneous utility

functionu(-) =1In(-), i.e., with log preferences. Our goal in the paper is to investigate turnpike

theorems in a stochastic abstract economy, and here the source of uncertainty is the population

size L(t) (e.g., Merton, 1975), which grows in accordance with the following stochastic differential
equation (SDE),

dL(t) = nL(t)dt + o L(t)dB(t) (1)
where 0 € R is some constant and B(¢)is a standard Brownian motion on a given complete
probability space (€2, F, {Z,}.,,P) with natural filtration { %;},.,and B(0) =0 P—a.s..

To prepare for the household optimization, let us denote the asset holdings of the

representative household at timesby A(7), then we get the following law of motion for the total
assets of the household

A0) = (1= ) (OA@) + W) L(t) — c() L(2) )
where c¢(¢) is consumption per capita of the household, r(¢)is the interest rate on assets,

w(t)L(¢) is the flow of labor income earnings of the household and r' is supposed to be an effective
tax rate on the rate of return from capital income. Put per capita assets asa(r) = A(r)/L(t), then it
follows from (1), (2) and I1t6 formula that,
da(t) =[(1—r")r(t)a(t) +w(t)—c(t) —na(t) + o a(t)]dt — oca(t)dB(t) 3)
On the other hand, we specifically adopt the following aggregate production function,
Y(t)= AK(1)
with A>0 . Notice that this production function does not depend on labor, thus wage

earnings, w(t), in (3) will be equal to zero. Dividing both sides of this equation by L(¢), and as

usual, define k() £ K (¢)/ L(t) as the capital-labor ratio, we obtain per capita output as

fk(@) = y(k(t) = y(t) =Y (1)/ L(t) = Ak(2) 4)



from which it is easily seen that output is only a function of capital, and there are no diminishing

returns. What’s more, the Inada conditions are no longer satisfied. In particular,

lim f'(k(H))=A>0

k(t)—o0
which is essential for sustained growth.

The conditions for profit-maximization require that the marginal product of capital be equal to

the rental price of capital, R(t) = r(¢)+ ¢, in whichdis the depreciation rate. Since, as is obvious

from equation (4), the marginal product of capital is constant and equal to A, thus R(¢) = A for allz,
which implies that the net rate of return on the savings is constant and equal to
rt)=A—-6, V>0 (5)
Next using the fact thata(t) =k(t), w(t)=0, c¢(t)=(1—r")Ak(¢) and equation in (5), one can
rewrite (3) as
dk(t)=[r'A—6—(A—8)r" —n+o’lk(t)dt — ok(t)dB(t) (6)
with k(0) £ k and r* denoting the saving rate. Then it follows that,

LEMMA 1. There is somee(p,T) < oo such that

E

sup |k(t)|p

0<r<T

<e(p.T)

forV2< p<ooandvV0<T <.

Proof. See Appendix A. [

Now, we consider the following special objective function,
[ exp(—pt— ) nfeld +U” 9
where 0 <s <7 and7"is anF -stopping time, which with the termU " are determined by the

following optimal stopping problem

g (7. k(7)) 2 sup EY [e " In[(1— ") Ak(7)]| 7, |

TeT

[: supE“Y [e " In[e(n)]| ]]

T€T



=E | In[(1—r*)Ak(T")]| F. (7°)

subject to the stochastic differential equation in (6), and 7 £ {F — stopping times}. In what
follows, we will calculate the optimal stopping time in a stochastic diffusion process.

LetY(¢) £ (s +t,k(t))" and Y (0) = (s,k(0))" £ (s,k)", then the generator of Y (¢) s,

20 . , 00 1 5,0%
A¢(s,k):E+[r A—6—(A=O)r +az—n]ka+gazk2W (8)

If we try a function ¢ of the form

#(s,k)=e "k for some constant A € R

we get
Ap(s, k)= e "kM—p+[r'A—5—(A—=8)r' + o> —n]\+[c° A\ —1)/2]}
=e "k*h()\)
in which
BN 2 (N [2)+[rA—6—(A=8)r' +(0°/2)—n]A—p )

Solving equation ~(\) = 0 gives the unique positive root,

_ 6+ (A= +n—r'A—(*/)+VA

A (10)
o
where
A=[r'A—§—(A=8)r' +(c?/2)—n]* +20%p
with this value of A we put
b(5.k) = e " Ck*, (s,k)e D (a1

e " In[(l—r")Ak], (s,k)gD
for some constant C , to be determined. If we let g(s,k) = e In[(1—r*)Ak], we have
Ag(s,k)=e " {—pIn[(1—r')AK]+[r'A—5—(A=8)r' + 0> —n]—(0°/2)}
>0

&k <exp{[r'A—6—(A=6)r' —n+(0"/2))/p}/[1—-r")A]



Therefore,
U= {(s;k)k <exp{[r'A=8§—(A=0)r' —n+(a* /D) p}/[1-r)Al  (12)
Thus, we guess that the continuation region D has the form

D={(s,k);0 <k <k™} (13)
for some k* such thatU C D, i.e.,

k' > exp{[rrA—6—(A=8)r' —n+(0°/2))/p}I[1—r)A] (14)
Hence, by (13) we can rewrite (11) as

e "Ck, 0<k<k'

7k -
P k) e In[(1—r*)Ak], k> k"

(15)

for some constantC > 0 (to be determined). We guess that the value function¢ isC'atk = k* and
this gives the following “high contact”-conditions,
C(k*)' =In[(1—r*)Ak"] (continuity at k =k") (16)
and
CAk* )" =(k*)™" (differentiability atk = k") (17)
Combining (16) with (17) one can get

C(k')y'  In[(1—r")Ak’]

CA(kH)! (k")
& k" =[exp(/N]/[(1-r")A] (18)
and
C= (k) /A= {lexp(UN)]/[(1—r)A]} /A (19)

To summarize, then we get,

THEOREM 1. (ENDOGENOUS EFFICIENT TERMINAL CAPITAL STOCK)

Under above assumptions and constructions, ifoc <0,0° < p, and
S+ (A=8)r +n+(02) <o +rA<s+n+(A=8)r' +p—(c*/2),

then we obtain the optimal F, — stopping time 7" = 7, Zinf{t > 0;k(t) =k’ }. In other words,



g*(s,k) — e*ps (k*)f)\k)\//\ — UT*’
which is a supermeanvalued majorant of g(s,k) with k" and X\ is given by (18) and (10),

respectively.

Proof. See Appendix B. |l

REMARK. The theorem shows that the horizon of the economy and the terminal stock, which
is also efficient capital accumulation in the sense of maximizing the discounted welfare function of
the representative household referring to (7’), are endogenously determined. Next we will study
the turnpike theorems in the stochastic growth model.

THEOREM 2. (LOCAL UNIFORM-TOPOLOGY TURNPIKE THEOREM)

Given a complete filtered probability space (2, F, {,7-: }QO ,P).If
FPA+0>=6+(A=8r +n,
then k(t)is uniformly bounded fort €[0,T)(VT > 0)and fora.aw,and furthermore k(t)uniformly

converges tok” fort €[0,7,]and for a.a.w,where T, is the optimal stopping time defined in Theorem

1.

Proof. See Appendix C. [

Now, we will provide some local characterizations of the efficient terminal capital stock by
the following theorem.

THEOREM 3. (NEIGHBORHOOD PROPERTIES OF THE EFFICIENT CAPITAL STOCK)

If rA+o0" =6+n+(A=8)r" , k(t) will still be a local martingale on probability
space (2, F,,Q) (VT > 0), where Q is equivalent tolP, and k(t) is stochastically ultimately bounded.
Moreover, there exists a constant E > 0and a Wiener measurev, defined on the canonical
probability space for Brownian motion, on Borel sigma algebra B(C[0,00)) generated

by (k(t);t > 0) such that

dist(k, k*)

. k
(i) BY |7 | S 2




” . |1 NE
(ii) hrtlliupEQ {;j; ‘k(s)—k ds} <E,
(iii) v{B,(k)}>1 —52,
Q
in which
B (k)2 {k(z); k(t)— k| < a, Vi > o}, Ty o 2inf {6k € B, (k)},

And

dist(k,k") 2 k" log(k" [k),
which is the Kullback-Leibler distance between k and k* with E <o’ ,Ya >0, Yk(0)=k >0

andk” is defined in (18).

Proof. See Appendix D. 1

Moreover, we can obtain the following turnpike theorem about capital accumulation, thereby
extending the conclusion in Theorem 2.

THEOREM 4. (UNIFORM-TOPOLOGY TURNPIKE THEOREM 1)

There exists some C(p,T) > 0such that

E

k(t)—k*

sup
0<t<T

p]SC(p,T) for Np>2 and NT >0

Particularly, ifo — 0, then we have

E|lim sup [k()—k’

T—00 g<4<1

pl—>0.

REMARK. This turnpike theorem implies that the path of capital accumulation will uniformly

Proof. See Appendix E. |

converge to the efficient capital stock, also the terminal capital stock, if the stochastic effect is
sufficiently close to zero. And thus this theorem provides conditions under which the terminal
capital stock is uniformly reachable, which is obviously much stronger than Joshi (1997)’s
argument.

Now we consider the following stochastic optimal control problem facing the representative

household,



max [ exp(—p(1— 5)) In(c(e)ds
subject to
dk(t) = {[(1—r"WA—8)—n+0o’1k(t)—c(t)ydt — ok(t)dB(t)

We prove that there exists a continuously differential functionW (k(¢)), satisfying the following
Bellman-Isaacs-Fleming differential equation,
pW (k(1)) —%Uzk (1) W, (k(1)) = max (In(e(0) + W, (k(O){[(1=r A=) —n+0°Tk(1) — (1)} ) (20)
Applying the maximization operator, yields the following condition for a maximum as

(1) =1/W, (k1)) 2D
Substituting (21) into (20) produces

pW (k(1)) —%Uzk(t)szk (k(1)) = —In[W, (k(0)]+ W, (k(t)[(1 = r' WA= 8) —n+ 0 Tk(1) —1
Try
W(k(t))=C, +C, In(k(t))

for some constants C, , C, to be determined. Then it is easy to get,

C, ={In(p)—(c”p "' [2)+p '[1—rYA—8)—n+0"]1-1}/p
And
G=p
And hence by (21)
¢ (1) = pk(t) = pk(0)exp{[r'A—6 — (A—6)r' +(02/2)—n]t —oB(t)} (22)
Thus, in order to study the effect of temporary fiscal policy, i.e., capital income taxation, on

equilibrium consumption path, we now define
SR T = pk (1) 2 pk(t,7),& () 2 ¢ (0,7 = pk(1) 2 pk(t,7) .k (0) = k(0)
where 7, and 7, are two different temporary fiscal policies. Then we get the following theorem,

THEOREM 5. (INEFFICACY OF TEMPORARY FISCAL POLICY)

If we choose k(0) such that



— P |k(0)|2 ~ 2T +o?)T
2T |7 — i| —(exp(R,T)—1)e <e/3, VO<T <0, VYe>0
R

1

where

2rA—6—(A—8)7 +0° —n,

&

2rA-6—(A—8F +0o*—n,

=

R, Z22r'A=26—2(A—6)i +30° —2n,

oc=0,

Then we obtain,

E

lim sup ‘E*(Z)—E*(l‘)‘zlﬁo as €—0.

T—00 o<1

Proof. See Appendix F. i

REMARK. This theorem shows that, given two different temporary capital income taxation

policies 7, and 7, , the distance between the corresponding equilibrium paths of consumption

allocation, c¢”(f)andc”(t), is arbitrarily small in the sense of mean-square uniform topology if the

initial level of capital stock is sufficiently low, which differs from Yano (1998)’s requirement that
the discount factor is sufficiently close to 1.

By Theorem 1, one can put,
¢ E2(1-r")Ak"
And, by (22), It6 formula and (6), we get
dc'(t) = p[r'A—6—(A—8)r' —n+0o’lk(t)dt — pok(t)dB(t) (23)
Then we get the following theorem,
THEOREM 6. (UNIFORM-TOPOLOGY TURNPIKE THEOREM 2)

There exists some C(p,T) > 0such that

p

E c'(t)—c"

sup <C(p,T) Vp=2

0<t<T

Moreover, if p— 0 oro — 0, then we get

11



E c-c|'|-0 vp>2.

lim sup
T—o0 0<t<T

Proof. See Appendix G. i

REMARK. This turnpike theorem shows that the equilibrium consumption path will uniformly
converge to the efficient consumption allocation of the dynamic equilibrium economy, conditioned
on sufficiently small discount factor or stochastic effect. And it is easy to find out the difference
between this turnpike theorem and those in Yano (1984a, 1984b, 1985), which, in stationary
environments, require the discount factor sufficiently close to one.

Now we will prove the turnpike theorem for equilibrium allocation vector paths of the
dynamic economy, and we define

O 2(—k() ) <O) (24)

T

(I)*é(—k* vy c*) (25)

where k" is defined in (18), andc¢* 2 (1—r*)Ak™ = (1—r’)y". Then by (4), (6) and (23), we put

—dk(t)] [—[rrA—6—(A=8)r' —n+07] 1
dD(1)=| dy(r) |=| Al A—6—(A—8)r —n+o>]|k(t)dt +| —A|ok(t)dB(t) (26)
dc™ (1) p[r’rA—6—(A—=8)r —n+0’] —p
3 1
25, [k()de +|—A|ok(H)dB(r)
S —p

Then we obtain the following theorem,

THEOREM 7. (UNIFORM-TOPOLOGY TURNPIKE THEOREM 3)

There exists some C(p,T) > 0such that

E

sup |[@(1) — ®”

0<t<T

1SQnD Vp >2,
P

Moreover, ifo — 0, then we have

E|lim sup |@()— @’

T—00 g<4<1

p]—>0 Vp>2,
p

where || ||p denotes [’ — norm.



Proof. See Appendix H. [l

REMARK. The economic intuition of this turnpike theorem is that the equilibrium allocation
vector path of the dynamic economy will uniformly converge to the efficient allocation vector
including capital, output and consumption, when the stochastic effect is sufficiently small. And,
what’s more, we can easily see that this turnpike theorem does not depend on the constraint of

discount factor like those turnpike theorems proved in Yano (1984a, 1984b, 1985).

3. CONCLUDING REMARKS

In the paper, stochastic versions of turnpike theorems have been established in a stochastic
endogenous growth model and the inefficacy of temporary fiscal policy which is specifically
chosen to be capital income taxation has also been demonstrated under relatively weak conditions.
To summarize, there are three novelties in the paper: first, we provide a possible way making the
horizon of the economy and the terminal capital stock, also efficient capital accumulation in some
sense, all endogenously determined; second, we prove that a single welfare function in an
aggregated model of optimal growth can also be endogenously defined as is shown in
decentralized models; third, we prove much stronger turnpike theorems under uncertainty and in
the sense of uniform topology, which we call uniform-topology turnpike theorems.

Obviously, the present study can be easily extended at least from the following three
directions: first, jump diffusion process like [t6-Lévy process can be introduced into stochastic
optimal growth models; second, more complicated and more comprehensive method, say,
integro-variational inequalities for optimal stopping problems (see, @ksendal and Sulem, 2007) in
stochastic analysis, making the horizon, the terminal stock and further the welfare function of the
abstract economy endogenously determined, can be reasonably employed; third, the methodology
of studies on turnpike theorems can be naturally extended to investigate the distance and the
convergence between different economical systems, when their evolutionary or development paths
are abstractly determined by different differential equations, ordinary or stochastic, of capitals,

including physical capital, environmental capital and also human capital.

APPENDIX



APPENDIX A: Proof of Lemma 1

Since by (6)
dk(t) = f (k(t))dt + g (k(1))dB(t)
where
fk@) 2[r"A=5—(A=8)r' +0° —nlk(r) = wk(t)
g(k(1)) & —ok(r)
Then by the It6 formula,

kO =[k@F +2 [ (£, ks)ds + [ gk ds+2 [ (k(s), gk()dB(s))

where (-, -)denotes standard inner product. Choose some 7y such that,

[ (@), k(D) V]| g (k@] < (v +0) k()]

Thus for some e = e(p)andt, € [O,T] ,

p+

4 5 p/2 '
S o ds| o+ sup | [0, ethk(s)B(s)

0<r<t,

sup |k(1)|" < e{|k(0)
0<r<t

P/2}
p/z]

p/2

It follows from Cauchy-Schwarz inequality that

sup [k(1)|" <el|k(0)|" +|o+1|" T(”_z)/zftl |k(s)|" ds + sup
0<r<y, 0 0<r<y,

[ (s, g k(5)aB(s)

Taking expectations and for|a + 'y| >T@ P2 we have

E| sup |k(1)|"

0<t<,

[ (), gk(s))dB(5))

sup
0<r<t,

<elo+o| T {E|k(0)|" +E fo k()| ds+E

|

Applying the Burkholder-Davis-Gundy inequality (see, Karatzas and Shreve, 1991, pp.166), and

for somee =eé(p),

E

sup |k (1)|"

0<r<t,

s+ [ o etk fas

" /4
§é|a+'y|pT(”2>/2{E|k(0)|p+ j; E|k(s) : } (A-1)

Next, by the Young inequality (see, Higham et al, 2003) and Holder inequality,

pl4

<E

El [ k() |2 k() ds

o W[ [tk dS]W]



14 T(p72)/2 p/2

1

P i 2
N Zé|a+7|p T2 b oiljgl |k(S)| 2 E[f(; |g(k(s))| ds
1 P e P _|P rp— i p
- Zé|0'+’7|p (=22 E Osgl;lgl |k(S)| +E|O-+/7| |O-| rr zElL |k(S)| ds

Substituting this into (A-1) yields,

E|sup [k(0)] | < 28|0 +A|" 70" |E|k(0)| + [ Bl ds +e|0+7| b" T [ [ s ds}
0<t<t
If(e I’T"’z)/221,then for somee =e(p),
E| sup [k(r)|" §|a+7|2p|a|pT3(”2>/22(E|k(0)|p+ | "E|k(s)|”ds]
0<t<T 0
<|o—+7|2”|o—| T2 (p )[|k(0)| +| ()| [exp(eT) —1]
in which

e=8(p)2 plr'A—5—(A—8)r' +(0°/2)—n]+(p*c’ [2)

Givenk(0), there is some e ( D, T) < oo such that

E|sup |k(t)|p

0<t<T

<e(p.T)

APPENDIX B: Proof of Theorem 1
By the Theorem in Qksendal (2003), pp.224-226, it is easy to see that we just need to prove the

following cases,

(1) We need to prove that¢ > gon D, i.e., that

Ck* >In[(1— r*)Ak]  for 0<k <k’
Definel(k) 2 Ck* —In[(1—r*)Ak]. By our chosen values of C andk* we havel(k)=1'(k")=0.
Moreover, sincel”(k) = CAA—Dk* > +k 2, if we putA>1, then!”(k) > 0for0 < k < k*and thus

we havel(k) > 0for all0 < k <k*. By (10),



A>1

& JIFA—5—(A=8)r +(0%/2)—nT +20%p
>0 +[rA—8—(A=8)r +(0°/2)—n]
If
r'A+ (0% [2) <6+ (A=6)r' +n,
Then A > 1 always holds. Otherwise, put

r'A4+0>>8+n+(A=6)r' —(6°/2)

Then,
A>1
S[rA=64(0%/2)—(A=8)r —n] +20%p
> {02 +[rA—6—(A=8)r +(c*/2)—n]}’
Sp+6+(A=8r' +n>0"+r'A
Thus,
A>1  when r'A+(30°/2)<6+n+(A-6)r
or

A>1 when p+86+(A=8)r +n>0” +r'A>64+n+(A—8)r —(0%/2)
To sum up, either (B-1) or (B-2) can make (i) hold true.

(i1) Outside D we have ¢(s,k) =e ” In[(1—r’)Ak] and therefore
Ap(s,k)=e " {—pIn[(1—r")Ak]+[r'A—6—(A—8)r' 4+ (0?/2)—n]}

<0 for Vk>k”

(B-1)

(B-2)

S k>exp{[r'A—6—(A=8)r —n+(a* /21 p}/[(1—r)A], Vk>k'

S k' >exp{{rA—5—(A=8)r' —n+(0”/2)]/p}/I(1—r")A]
which holds by (14).

(111) To check if 7, < 0o a.s., we consider the solution k(¢) of (6). First, we define



G(1) = In[k(1)]
Then by It6 formula,
dG(1) =[r'A—6—(A—8)r' +(0°/2)—nldt — odB(7)
Hence,
G(t)=G(0)+[r'A—5— (A=) +(02/2)—nlt — o B(r)

And this gives the solution

k(1) =kexp{[r'A—8—(A—8)r' +(0*/2)—nlt —oB(1)} (B-3)
We see that if
rA+(0%)2)> 64+ (A=6)r +n (B-4)
And
o<0 (B-5)
Then,

limk(t) = oo a.s.

1—00

by the law of the iterated logarithm of Brownian motion. And in particular 7, <oo a.s.,as

required.

Remark: A comparison of (B-2) and (B-4) shows that we must put
p>(0*/2) (B-6)

(iv) Since ¢ is bounded on[0, k"], it suffices to check that

{e " In[(1—r")Ak(T)]},.; 1is uniformly integrable on[k",00)
For this to hold it suffices that there exists a constant M such that

E{e > [In((1—r")Ak(T))} <M forallT € T andk(7) >k’
Since
0<In[A—r")Ak(t)]<(A—r")Ak(t) on[k",00)

Hence by (B-3) we have

Bie > [In(1—-r")Ak(T)} <Ble > [(1—-r")Ak(T)]'}



=(1—-r") Ak’ Elexp{[2r'A—26 —2(A—8)r' +0° —2n—2p]|r —20B(7)}]
=(1-r") Ak’ Elexp{[2r'A—26 —2(A—6)r' + 30> —2n—2p]r}]
We conclude that if
rA+@o?[2) <6+n+p+ (A=) (B-7)

the desired result is then immediate.

Remark: A comparison of (B-4) and (B-7) shows that we must put

p> o’ (B-8)

APPENDIX C: Proof of Theorem 2
By (6), we have

k() =kexp{[r'A—6—(A—8)r' +(0*[2) —n)t—oB(1)}
Lets £ —o, we have

k() =kexp{[r'A—6—(A—8)r' +(7/2)—nlt +7B(1)}
Put

rA—86—(A—=6)r' +(5%/2)—n=—-5/2
Then
rPA+o> =6+(A=8)r +n (C-1)
Hence, with B, £ B(t) , we have
k()= kexp{&B, — (7°1/2)}
Lett > s> 0, one can find
E[k(1)|F,] = kB|exp{7B, — @1/ 2)}| 7, |

= kexp{7B,—(5°t/2)} E[exp{7(B, — B,)}| 7]

= kexp{7B, —(5°t/2)} E[exp{7(B, - B,)}]



Y
=kexp{7B,—(1/2)} f eXp{axhié i S()t S)]}du(x)

=kexp{FB, —(5't/2)}exp{(F/2)(t—5)} x

exp{—[x—5(t—9)'/2(t —5)}
ﬁe L2t —s) 4u(x)

=kexp{FB,—(55/2)}
=k(s)
with ;o the canonical Lebesgue-Stieltjes measure. Hence, k(f)is anF, —martingale w.r.z. P.On the
other hand, noting that by (C-1)
E[|k(1)]] = kE [exp {[rA—5—(A=8) +(0°/2)—nlt - aB(t)H
=kexp{[r'A—5—(A—8)r' +0° —nt}

=k 2 k(0) < 00
Thus, by the Doob’s martingale inequality,

P{sup Ik(t)|>A}< —B[Jk(T)]| = 5\M>ovr>o

0<t<T

Without loss of generality, we put A = 2" form € N, then,

{sup |k<r>|>2'"}<2_k VmeN

0<t<T

By the Borel-Cantelli lemma,

IP’{ sup |k(t)| > 2" for infinitely many m} -0

0<t<T

So for a.a.w there exists m(w) such that

sup |k(t)| <2™ for m>m(w)

0<t<T

Thus,
limsup sup |[k(1)|<2" for m>m(w) (C-2)

T—oo 0<i<T

Consequently, k(t) = k(¢,w) is uniformly bounded fort €[0,7](VT > 0) and for a.a.w. Moreover, it



is easily seen thatk(r) —k"is also anF, —martingale. So, applying Doob’s martingale inequality

again, we obtain,

k(t)—k*

Z€}§M,V5>O,VT>O

s
€

0<t<T

Using the definition of7,in Theorem 1, we see that there existsc >0 such that the above

martingale inequality still holds forVz € B, (7,)= {t;

t—TD| < a} .Without loss of generality, we

seta=2", VmeN. Hence, VT, € B (7,)and according to the continuity of martingale w.r.t ¢

(givenw ), condition (C-2) and Lebesgue bounded convergence theorem, we have

limsupEHk(Tm)—k* ]
> 6} < oo =0. as.
g

limsup}P{ sup ‘k(f) —k
m—oo 0=t<T,

which yields

0<1<T,,

limsupIP’{ sup k(f)—k*‘<5}21 a.s.

m—o00

Lettinge =27',Vi € N, we get

limsupIP’{Oiug k(f)—k*‘<2i}:1 VieN a.s.

—

It follows from Fatou lemma that,

p{ sup [k(r)—k’

0<t<7)

<2_i}:1 VieN a.s.

Thus, by the Borel-Cantelli lemma,

p{ sup [k(r)—k’

0<t<7p

< 27" for infinitely many i } 1

So for a.a.w there exists i (w) such that

sup [k(t)—k'|<27 for i>i(w)

0<t<rp

Therefore, k(r)uniformly converges tok” forr €[0,7,]and fora.a.w. |

APPENDIX D: Proof of Theorem 3

Note from Theorem 2 thatk(f) will not be a martingale on probability space (2, 7,,[P) for VT >0

whenr’A4 o> =6+n+(A—6)r'". Since,
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dk(t) = b(t,w)dt + o(t,w)dB(t)

where
b(t,w)E[rFA—6—(A=06)r' + 0’ —nlk(?)
o(t,w) & —ok(1)
B(0) 20 P—a.s.
We now put
by a 2tw) St (A= —r'A=0" sy g e [0,7]x0
o(t,w) o

Then,

Z(n)2 exp{— fo t@(s)dB(s)—% fo r92(s)ds}

= exp(—0B(1) — (6°1/2))
Define a measure Q on 7, by,
dQ(w) =Z(T)dP(w)
1.e.,Z(T) s the so-called Radon-Nikodym derivative. Since,

E.[Z(T)]= E,[exp{—0B(T)— (0°T/2)}]
— exp{0°T/2—(6°T/2)}
=1

which shows, according to Girsanov theorem, that@Qis a probability measure on F,, Qis

equivalent to Pand k() is a local martingale w.r.r. QQ . Moreover,

E, —exp(0°T/2)< oo for 0<T < oo

exp[(1/2) [ T92(s)ds]

which satisfies the Novikov condition. Using Girsanov theorem again, we conclude that the

following process

Bz [ "0(s)ds + B(t) = 0t + B(), 0<t<T
0
is a Brownian motion w.r.t. QQ with I§'(0) = B(0) =0 a.s.and expressed in terms of I§'(t) we can get
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dk(t) = —ck(1)dB(t), 0<t<T
Thus, it is easily seen that
k(t) = k(0)exp{—cB(r) — (azt/ 2)}

which is defined on the measure space ({2, 7,.,Q) . Then,

By [[k(t)|| = kEq[exp{—oB(t) — (o71/2)}1=k (D-1)
and
Bq kO] = VKB [expi—(@B(1)/2) (0"1/4)}]
= Jk exp(—o’t/8)
Thus,

fm o {fecef =

Now for any € > O0and any constant H > 0, by the Chebyshev’s inequality,

E k
@{Ik<r>I>H}sw

Hence,

limsup@{|k(t)| > H} <0

which implies

limsup Q{|k(t)| < H} =1
Therefore, k(t)is stochastically ultimately bounded. Now we define M ()2 k(t)—k", also a
Q@ -local martingale, satisfying

M () = k() — &

<k(n)+k
Hence,
lim M (1)| < lim[k exp{~oB(1) —(0’1/2)} ]+ k'
= lim{k exp[(B(1)/1)(~01) = (0"1/2)]} +k°
=0+k'=k"  as.

by the strong law of large numbers for martingale and the fact0xco=0. Hence,
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tlim|M(t)| <400 a.s.

For any integeri > 1, define the stopping time (or Markov time),

7, 2inf{r > 0;|M (1)| > i}

Clearly, 7, T 0o a.s., and Q(Q)=1, where

s U{w; T, (W) = oo}
i=1
Note that for anyz >0,
Eo[[M A7) <i
Lettingt — oo and using Fatou lemma, we obtain

linl sup By [|M (1 A7) < By =B, ||M(r)||<i

limsup “M (N Ti)”

Thus,

E, Hk(Tl.)—k*Hgi<oo

Since k(t A 7,) — k" is aQ - martingale, thus by (D-1) and the Doob’s martingale inequality,

|

SEQ“k(TiT")”H :’”;k* ¥ AT >0

B, Hk(T/\T,.)—k*
A

Q{w; sup [k(t A7)~ k*

0<t<T

ZA}S

On the other hand, by Kolmogorov’s inequality, we have

var, Hk(T/\T,.)—k*

)\2

},VA,T>O

k(tAT)—k"

Q{w; sup

0<t<T

ZA}S

Hence, we have

vary, Hk(T/\Ti)—k*H _ k+k'

3 VAT >0

& var, Hk(T AT)—k"

]g(k+k*)A YAT >0 (D-2)
Since by the Minkowski inequality,

var, Hk(T AT)—k"

|<E, “k(TM,.)—k*

2
]—(k—k*)z VT >0
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Hence, by (D-2) we get

E, Uk(T/\Tl.)—k*ﬂ <h+hMA+ k=K ) <00 VAT >0 (D-3)

Thus, k(T AT1,)—k*(VT > 0)is square-integrable martingale. Define

&Ek@nr)—k| VieN
And let
& 2kenr)—k | 2 suplk(saT)—k'| VieN
0<s<t

et )~k

SN2
ZQ{EQ“k(t/\Ti)—k* }} VieN

denote the L —norm and L’ — norm, respectively. Let( >0be some constant, then by Doob’s

martingale inequality and Fubini theorem, we have

Bo 6 A< | =2/ refwsg @Acz A} r

dA

= 21;00 [f{w;s?(ww»} §(w)dQ(w)
=2 7[ [ 6Nt 2

—2f gi(w)[ﬁ'wdx

) fQ E(W)(E (W) AOAQ(w)

dQ(w)

= 2B, [£(& A Q)]

It follows from Holder inequality and [(5[* AC )2] < (* <oothat,

& ndl =Eo[& 102 <2lgl |6 A¢]

2
e nd, <2kl
Hence, applying Lebesgue dominated convergence theorem,

Je:1, = timle: A¢], <2

(—00

&l

1.€.,
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12 2

{EQ :ggk(s/\ﬂ)—k*zn §2{EQ“k(t/\Ti)—k*2H VieN
2 2

& B sup [k(s A7)~k l§4EQ“k(t/\Ti)—k }

<ANk+Kk)+4(k—k) YA>0,VieN

by (D-3). Lettingi — coand by Lebesgue bounded convergence theorem,

B | sup [£(5) & <Nk K T4k =k VA0
Thus
fim sup k(s) — k' ‘<o as.
Therefore, there exists some constant F Sljlcih that
k)~k[<F w0 (D-4)

almost surely. Moreover, since on the probability space (€2, ,,QQ) we have
dk(t) = —ok(t)dB(1)
Hence, we can define the following characteristic operator ofk (),

. 1 g
Ag(k) 2 =0’k =2
s =50k =0

for any k > 0. We define the Kullback-Leibler distance (see, Bomze, 1991; Imhof, 2005) between
k and k" as follows
g(k) 2 dist(k, k") 2 k" log(k" [k) > 0
Then,
Ag(k)= %ozk* ,forany k>0
Thus, by (D-4),

2

2 k[ +E (D-5)

Ag(k) < %a%* +2F —[k—k°

where E £ (azk*/Z) +2F > 01s some constant. Define,
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B, (k') 2 {k(t)>0;

k() —k*

<a,t> 0}
Fe7, . 2inf{sk@) € B, (")}
where B, (k*)denotes B, (k*)’s closure. Suppose thata® > E, for everyk & B, (k*), i.e.,k € BC(k"),
we have
Ag(k)<—a’ +E
by (D-5). Then by Dynkin’s formula,
0< B {gk AR} = g+ B [ Ag(k(s)ds < g (k) + (E—a”)E {117}

Sincet AT | T ast — oo .Then by Lebesgue monotone convergence theorem, we have,

0< g(k)+(E—a’)Ey {F(w)}

which yields,
- g(k)  dist(k,k")
B |7y (@) =BG [F@)] < S =2 (D-6)
as required in (1). Furthermore, for some constantW > g(k), set up
T, Zinf{t > 0; g(k(t)) =W}
Then, by Dynkin’s formula and inequality (D-5),
INTy A
0< B {gTk(t AT )T = g () +Bf [ Ag(k(s))ds
X ATy . 2 X
< g(k)—EQJ; [k(s)— k[ ds+ EBSy (1 Ay )
IfW — oo, thent A1, — ¢, and by Lebesgue bounded convergence theorem,
< TRk ! L+ 2
0< g(k) ]EQJ; lk(s)—k°[ ds + Et
which yields,
k 1 ! * 2 g k)
B tfo [k(s)—&"[ ds <ESGE
Thus,
k ! * 2
limsup B |~ f [k(s)— k[ ds| < E (D-7)
t—00 0
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Then the required assertion in (ii) follows. If we let x denote the indicator function of BS (k*),

BE (k™)

and letv, induced by Brownian motion é(t),t >0, denote the Wiener measure (see, Karatzas and

Shreve, 1991, pp.71) on Borel sigma algebra B(C[0,00)) generated by k(¢),t > 0, then we get

v [Ef (k" )] = limsup Eg

1—00

1 prt
) X, ks

2
(|k(s)—k"
<limsup B %fo %ds <E/o?

t—00

Hence we have,
E

v[B.(|z1-— (D-8)

which gives the desired result in (iii). |

APPENDIX E: Proof of Theorem 4
By (6), we have

dk(t) = f(k(t))dt + g(k(1))dB(t)
where

fk@®)E[rPA=6—(A=6)r' +0° —nlk(t) £ wk(1)

g(k(1)) £ —ok(1)
Now, by It6 formula,
()~ k°

=k -k T+ 2fot (k(s)— k", f (k(s)))ds

+2 [ k() — K", g (k(s)dB(s)) + [ |5 ds

where (-, -)denotes the standard inner product. Fort, €[0,7], andn =n(p), we get

’ —1—“:1 (02|k(s)|2)ds

p/2

-+ sup

0<r<s,

p/2

sup
0<r<t,

kn—k| < n{\k(O) —k

+ sup

0<r<s,

[ k) =k fk(s))ds

[ ks) =k g (k(s))dB(s))

p/Z}

It follows from Cauchy-Schwarz inequality that
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! +|U|p T<p72>/2f0ll |k(s)|p ds

sup
0<r<t,

k) —k|" < n{\k(O)—k*

+ sup

0<r<t,

[ k)= k' g k(s))dB(s)

[ k) =k, £ k(s )ds

+ sup

0<r<s,

p/2}

Taking expectations and for somen = 7(p), we have

p

E

k(t)—k”

sup
0<r<y,

<o’ T2y {E\k(O) —k[ -I—E[ j; ' lk(s)|” ds

p/2 pl2

+E|sup | [ (k) =k fk(s))ds| |+ | sup | [ (k(s) k", g(k(s))dB(s)

sup

0<t<y

sup
0<r<y

|

Applying Burkholder-Davis-Gundy inequality (see, Karatzas and Shreve, 1991, pp.166), for some

="1(p)

[E| sup

0<r<r,

kn)—k|

<|o|’ T(”z)/zﬁ{E‘k(O)—k*‘p + fo ' Elk(s)|" ds

’ +EU;"\k(s)—k*\2|g(k(s))|2dsp j(E-l)

+E[ [ k)= [ [ tksnf ds

Next, by the Young inequality (see, Higham et al, 2003) and Holder inequality,

f |2 2 p/4 2 ; , /4
E[fo k@ =k [f k(o) ds|  <E sup [k(s)—k [ IRUS) ds]
1 L (2|cr|pT(”’2)/2ﬁ) l i\ , P
= 2(2|0-|1’ T(P*2)/2ﬁ) 1 Osilslgl k(s)—k + 7 B j; |f(k(S))| ds
1 _slP (2|a’|"’ T(P*Z)/Zﬁ) (22 » l 4 »
S2(2|0|P T<p72>/zﬁ)E Oilfgl k(s)—k ‘ * > r || B fo |k(s)|" ds|(E-2)
Similarly, we get
B [kt k[ lekisnf s < : E| sup [k(s)— k|’
lﬂ) ‘ (S)_ g( (S))| S < 2(2|0_|p T(pfz)/zﬁ) Osgl;lgl (S)—
Qlo|" T P75y )
L@ 5 TPl Bl [ k(o) ds|  (E-3)

Hence, substituting (E-2) and (E-3) into (E-1) yields,
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E

k(t)— k|’

sup
0<t<t

<2lo|" T 2>/2~{ Uk(O) k|

+ [ Blk(s)|" ds+iT"2 o] B

fo |k()|” ds

ol +1=1")}

There must be some 7 = 77( p) such that,

5| sup k() — k| |<2lof T 2>/2(|a| +|=|” )n(p)[E\k(O) K|+ f E|k(s)|" ds]
Since by (6),
k() = k(0)exp{[r"A— 6 —(A—8)r' +(0°[2)—n]t—oB(r)}
Thus
E[|k(t)|p = k()| B|exp{plr'A—5—(A—8)r' +(0°/2)~n}t — poB(1)}]
= [k(0)|" exp(n(p))
where
1(p) 2 plr'A—6—(A=6)r' +(a°[2) —nl+(p’a’[2)
Hence
[ B[kl |as= @[exp(ﬁn 1]
Therefore,
B sup ki —k| ]<2| B (|a| +|ef’ )T}(p) k() k| +| © )| [exp(7T)—1]
Put
Cp T 220" T2 o+ e i Jeco) -k | + L )| [exp(7T) 1]

Then we have

E

sup
0<t<T

K-k ]< C(p,T)

In particular, wheno — 0, by Levi lemma we have
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lim E

T—o0

k(t)—k*

k(t)—k~

lim sup

sup
T—o0 0<t<T

0<t<T

"]:E

pl_>0

APPENDIX F: Proof of Theorem 5

Noting that

E| sup

0<t<T

sup
0<r<T

& (1) — 5*(r)\2] — oE

k() — /E(z)r] (F-1)

Hence, we now prove that

El lim sup

T—00 g<4<T

k() —é(r)\zl 0
From lemma 1 and for V2 < p < oo there is some constantW such that

E

sup
0<t<T

sup
0<t<T

%(r)\”]vE

/E(z)\”] <W (F-2)

where

KO =k©O)+ [ [P A—6—(A— 87 +0° —nfk (s)ds + [ "(—o)k (5)dB(s)

K=k + [ [rA—6—(A—8)F +0* —nJk(s)ds + [ "(—o)k(s)dB(s)
Suppose ‘l? (t)‘ Vv ‘lg(t)‘ <W ,Vt>0, otherwise we just consider k (r) AW and lg(t) AW instead of
k(r) andk (), respectively, for some 0 <W < co. In what follows, we firstly define the following

stopping time,

7, 2inf{r >0; £ inf{r > 0;

k()| >Wh,7

k0| > Wiy 27,

w

By the Young inequality (see, Higham et al, 2003) and for anyv >0,

B| sup [K(0) &) | =B sup [F(@0) ~ £ Xiry oo, |+ B| sup [F0) O x

sup
0<r<T

sup
0<t<T

sup
0<t<T

{Tw=T . orfyy <T'} ]

<E

— ~ 2
k(A7) —k(EAT )‘ Xirg>T)

sup
0<t<T

+ 2
p

sup
0<t<T

k (r)—lS(z)\”]ﬂjﬁ#Pﬁw <T,orf, <T} (F-3)
v
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It follows from (F-2) that,

k(7y)"
Wﬁ

<1E

_Wp

sup
0<t<T

_ — w
]P{TW < T} = ElX{TW<T} k ([)‘pl < W

And similarly, P{7, <T} <(W/W"). So,
_ 5 _ 3 2W
Pi7,; <T,ort, <T}<P{7; <T}+P{7, <T} < W

Thus we obtain,

E

sup
0<t<T

sup
0<t<T

‘E(r)‘p + ‘Ig(t)‘p )] <2'W

I?(t)—lg(t)‘p] <2''E

Hence (F-3) becomes,

2w (p—2)2W

& —
p p/UZ/p72Wp

+

KanTg) k(@A) (F-4)

E(z)—é(z)\z] <E

sup
0<t<T

sup
0<t<T

Define
REFrA—6—(A-8)T +0’ —n
REFA—6—(A—8)F +0° —n

Thus by the Cauchy-Schwarz inequality and the triangle inequality,

2

k@nry)—kanry)| = ‘ [ " RE () — R (s))ds + [ " oi (s)— K (s)1B(s)

2

<2 [ ()~ E(5)1aBs)

g T RE ()~ fk(s)] ds+o

<or T fRF R~ k(o) ds+2r [ e AR ds+20° [ () F(5)1dB(s)|

So for any 7 < T, by It isometry, we have

B sup [k A )~ £t A )|

sup
0<t<r

§2(T|E|2 +02)EM’ATW \1€(s)—1€(s)\2 ds|+ 2T |7 — [’ fOTE\E(s)\Z ds

sup
0<t,<s

<2(rlFl +o°) [ B

—_ ~ 2 _ 12 T ~ 2
k(t, ATy ) — k(1 /\TW)‘ ]a’s+2T|/1 — 7| j; E‘k(s)‘ ds
Since by (6),

31



K(t) = k(0) exp{[rSA—(S—(A—é)FOt +(a2/2)—n]t—aB(t)}

Thus
E“lé(r)ﬂ = [k(0)] exp(#,1)
Where
R, Z2r'A—26—2(A—6)il +30° —2n
Then
f Bl dr eXp( T)—1)
Accordingly,
E|sup [k(t ATy)—k(t AT, )\ <2(T|/<:| Yo )fE sup E(rOATW)—/E(rO/\TW)Hds
0<i<r 0 0<1)<s

+27 [~ ([k(O)f /7 ) (exp(7,T) 1)

So the Gronwall’s inequality (see, Higham et al, 2003) yields

B|sup |k(tAT;)—k(t AT, )‘ <2T|r— |2| © )| (exp(R,T)— l)exp[2(T|/<c| +o )T}
0<r<t
Inserting this into (F-4) gives
B sup [k (1)~ k()| ]<2T|‘ A O ( )| (exp(i ) — 1) -0 2 W 2p D
0<I<T p pvz/(P%)W P

Hence, for Ve > 0, we can choose some vand W such that,

2 oW <E and —Z(p—Z)‘iV <£

p -3 pUZ/(pr)Wp —3

And for any givenT , we put k(0) such that

2T|% — & |k( )|

(exp(R,T)—1) 77T < /3
So, forVe >0,

E

k(1) — k(t)‘

sup
0<t<T

Therefore, we have
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lim | sup E(z)—é(z)\2]—> 0,as ¢—0
0 0<t<T
By Levi lemma, we obtain
E[hm sup |k (z)—iE(t)r] 0
T—00 o<1
which yields,
B lim sup E*(r)—é*(r)f] 0 as £—0
T 0<<T
by (F-1).]

APPENDIX G: Proof of Theorem 6
By (23), we have,

dc™(t) = f(k(t))dt + g(k(t))dB(t)
Where

Fk(@) & p[r'A—6—(A—=8)r' + 0> —nlk(t) & Tk(t)

g(k(1)) & —opk(t)
Now, by It6 formula,

c(t)—c" ‘2 = ‘c*(O) —c

2 5) =, Fk(s))ds
+2 [ ()=, gk(s)aB)) + [ g k() ds

where (-, -)denotes the standard inner product. For#, €[0,7], and{ = {(p),Vp > 2 we get

[l 5 p/2
sup |e* (1) — ¢ §({c*(0)—c* ! +[j; (ﬁaz () )ds +
t p/2 ' p/2
sup | [ (9) =" (k(s))ds Qgﬁwmwwmwmm}

It follows from Cauchy-Schwarz inequality that

”gc{

c'(t)—c"

c’'(0)—c"

sup
0<r<t,

p P (p-2)/2 1 P
+lool" 772" [ k()| ds+
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p/2

+ sup

0<r<t,

sup
0<r<t,

[ )= gkis)dB(s)

17/2}

[l @=c. flksn)ds

Taking expectations and for some ¢ = ¢(p), we have

" «|P h p
E ¢ (0)—c +Ef0 k()| ds|+

c*(t)—c*‘p

< |p0|1’ T(p2)/2£{E

sup
0<r<t,

p/2 p/2

E + | sup

0<r<n

sup
0<r<n

[ - gkis)dB(s)

|

[l @=c, flksmds

Applying Burkholder-Davis-Gundy inequality (see, Karatzas and Shreve, 1991, pp.166), for

some ¢ =((p),

E| sup [ (1) —c'|"| <|po|” T#212¢ {E )= + f ' E|k(s)|" ds+
0<r<y, 0
4 ) 5 pl4 4 ) ) pl/4
B [l @ lrwofa| +B|[ |- fls@efa] 6D
Next, by the Young inequality (see, Higham et al, 2003) and Holder inequality,
h 2 2 pi4 P2 4 ) pl4
E[ fo c(s)—c'| | fk(s))| ds| <E|sup|c"(s)—c" [ f | f (k(s))| ds]
0<s<t, 0
pl2

1

P

P (p-2)/2 F
L Qoo 700

S 1) as

E| sup ‘c*(s)—c*

<
T 2Q2po| T PRE)  osss 2
P (p—2)/2 F "
< 71 _E| sup c*(s)—c*p +(2|p0| e C)T(p—z)/z |cU|p E{f |k(s)|p ds
2(2|p0' TP D20)  fossy 2 0
(G-2)
Similarly, we get
B ho <2 k zd pis < 1 E * «|P
INSORAN R < ST T sup Je' ()¢’
Po(p-2)/2F ;
+(2|p0| T Q)T(pfz)/z |pa|p E‘f |k(s)|p ds| (G-3)
2 0

Hence, substituting (G-2) and (G-3) into (G-1) yields,

E () —c'|"

c*(t)—c*‘p

<2|po]’ T2/ {E

sup
0<r<t,
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p
ds

+ fo tlE|k(s) ’ ds+5T”E[ fo ll|k(s)

(oot +1pot [af")|

Then there must be some ¢ = ¢ (p) such that,

E0S<111£ c(t)— c‘ <2|pof?” T2 (|p0’| +|@|” )c(p)[ c*(0)— c\ +f E|k(s)|" ds]
Since by (6),
k() = k(0)exp{[r"A—6—(A—8)r' +(0°[2) —n]t— o B(r)}
Thus
E[|k(r)|p} = k(O Elexp{ plr'A—6 —(A—6)r' +(0*/2)—n}t — po B
=[k(0)|" exp(¢(p)F)
where
C(P) 2 pIrA=5—(A=0)r' +(o° /D) —n]+(p’0’ [2).
Hence
I8k ”}ds—| O fexpiéry -1
Therefore,
E|sup e (1) —¢| | <2lpof" 772" |po]” +|&" | < ()| e @~ LFOF “' [exp(CT)—1]
Put
C(p.T) 2 2|pof" T (|oo| + |21 ) (p) \c*(O)—c*\”+| OF fexp(cry—1

Then we have

E

c(t)— c*‘p

sup
0<t<T

<C(p,T)

Thus, if p — 0 oro — 0, then by Levi lemma we get

hm E

—00

—0

c'(t)—c ‘p

sup
0<t<T

c'(t)— c*‘p

= E[ lim sup

T—00 o<t
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APPENDIX H: Proof of Theorem 7

By (26), we see that,
—dk(t)) (-[rrA—6—(A=8)r' —n+0o7] 1
d®()=| dy(t) |=|A[r'A—6—(A—8r" —n+o’]|k(t)dt +|—A|ok(t)dB(t)
dc* (1) p[rPA—8—(A=8)r' —n+0"] —p

1>

G & ) k@di+(1 —A —p) ok(r)dB(r)

1>

Sk(ndt+(1 —A  —p) ok(t)dB(r)

2 f(k(t))dt + g(k(t))dB(1)
Now, by It6 formula,

|o¢) - o[ =) - o

2 t —
42 [ (@)~ @, F(k(s))ds
t . - ry 2
+2 [ @(s) - @, g(k())dB(s)) + [ g (kis)ds
where (-, -)denotes the standard inner product. Fort, €[0,7], and¢ =((p),Vp >2 we get

p/2

D(t)— D"

' +[ j; ! ((1 +p* 4+ AY)o? |k(s)|2)ds

sup
0<r<t,

= <{H<I>(0)—<I>*

p/2

+ sup | [ (@(s)~ @, F(k(s))ds [ @)~ @, gk(s)dB(s)

0<r<t,

+ sup

0<r<t,

p/Zj>

It follows from Cauchy-Schwarz inequality that

sup |[@(7) — D"

0<t<t,

'<¢{ow-o

z+(l+pz+A2),;/2

U|p T(]Fz)/zj;tl|k(s)|p ds

p/2

-+ sup

+sup | [[(@(5) @ Fk())ds|  + sup| [ @(s)~ @, g(k(s)dB(s))

0<t<,

p/2}

Taking expectations and for some ¢ = ((p), we have

E| sup [|@(¢)— @[ | <1+ p* + A*)"? |o—|”T<"2>/2g{EH<D(0)—<I>* ”+E[ f ' lk(s)|" ds
0<t<y p = P 0
" N pl2 ; p/2
+E[sup | [ (@(5)— @, F(k(s))ds| |+E| sup | [ (@(s)—®", g(k(5))dB(s)) ]
o<r< |V 0 o<i<y [Y 0
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Applying Burkholder-Davis-Gundy inequality, for some { = C(p),

E

D) — @ H

sup <+ + AL o) TODPE {EH(I)(O) o

0<r<ty

y ; /4
+ [ Blks)]" ds+ B "as|
/4
iR ,, } (H-1)
Next, by the Young inequality (see, Higham et al, 2003) and Holder inequality,
pl4 pl4
[ f | — @ H H f(k(s))H ds| < sup () — @ Hp/ 2( ds] ]

1
<
22(1+ 9 + Ao TR0

sup
0<r<t

1,

s oo, s

1]

p/2

L QAP+ Ao TV
2

_ 1
T 20201+ p* + AN

sup
0<r<t

o p T(pr)/2<~)

2 2\p/2 | |P T (P—2)/2 F 4
QU AVl T 0 oo oo o] a1
Similarly, we get
< ! E| sup |®(t) — D" H l
2201+ p7 + AP o] TR0 osiss
2 2Np/2 | |P (p-2)/2 F f
+(2(1+p +A )2 |U| T C)T(”’z)/z(l—f—pz—i—Az)p/z |O-|pE j; |k(s)|p ds| (H-3)

Hence, substituting (H-2) and (H-3) into (H-1) yields,

E

D) — P H

sup
0<t<y

<214 p> + A2 |U| T(r-2R¢ {EH(D(O) R H +
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[V Bk ds+(1+p* + 427 o] ET“E[ [ ko))" as
0 0

(Il + 4 97 + a7y |a|p)}

Then there exists some { = ( (p) such that,

Bl sup [@(0) - o[ <21+ p7 + A% [of " T2 (||<|| +(1+p* + A o )
X[E[H(I)(O)—(I)*HZ + j; "Blk(s)’ ds]
<214 p* + A% [o] T T2 (||6||§ +(1+p” + A IJIP)E ()
X[E[H(I)(O)—(I)*HZ +f TE|k(s)|”ds]
Since by (6),
k(1) = k(0)exp{[r'A— 6 — (A—8)r' + (0 [2) —n)t — o B(1)}
Thus
E[|k(r)|p} = k(O Elexp{ plr'A—6 —(A—6)r' +(0*/2)—nlt — po B
=[k(0)| exp(¢(p)Y)
where
((p)2 plrA—§—(A=O)r +(0°/2)—n]+(p’* [2)
Hence
f “k(t)| }ds_| O [exp(CT) —1]
Therefore,
B sup |[0()— @’ I ]<2(1—i—,0 + A o TR G+ (14 p 4+ A7) o]
()| o)+ EOL )| fexp(CT) 1]
Put

C(p.T) 2201+ p* + A*) |o] " TP (||E||§ +(1+p* + A |o—|”)
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*C(p) eXlD(C T)—1]
Then we have
E| sup * p]SC(p,T)
0<t<T P

Thus, ifoc — 0, by Levi lemma we get the following desired result,

lim E| sup =[E|lim sup —0

T—oo  |o<i<r T—00 0<s<T
I
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