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Abstract 
 

Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are 
extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to 
analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly 
developed family of econometric models that deal with these concepts by benefiting from both 
LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-
GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and 
LSTAR models have significant architectural similarities. Accordingly, linear GARCH, 
fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated 
asymmetric power APGARCH models are augmented with a family of Neural Network models. 
The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to 
their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-
APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these 
models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and 
investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-
GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN 
augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, 
LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-
MLP.  
Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and 
asymmetric power versions provided improvements among the GARCH family models in terms of 
forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in 
out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-
LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models.     
iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured 
most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting 
capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-
LST-APGARCH-MLP model provided the best performance overall.  
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I. Introduction 
 

            Econometric modeling of volatility in financial market returns following the ARCH 
specification of conditional volatility of Engle (1982) and further extended to Generalized 
ARCH (GARCH) model in Bollersev (1986) has found many significant applications in light 
of modeling the distributional aspects such as volatility clustering, heavy tails, non-normal 
distribution. The Asymmetric GARCH model (AGARCH) developed by Engle (1990) aims 
modeling asymmetric effects of negative and positive shocks; whereas, negative and positive 



news have different effects on volatility. Accordingly, the Exponential GARCH (EGARCH) 
model developed by Nelson (1990) and the GJR-GARCH model developed independently by 
Glosten, Jaganathan and Runkle (1993) and by Zakoian (1994) are among the main modeling 
techniques followed in applied econometrics literature. The Asymmetric Power GARCH 
(APGARCH) model developed by Ding, Granger and Engle (1993) models  are based on 
different power transformations without simple squared shocks and conditional variances as 
in the traditional GARCH models. Further, by showing that financial macroeconomic time 
series has long memory characteristics such that volatility show strong persistency, Baillie, 
Bollerslev and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) proposed the 
Fractionally Integrated GARCH (FIGARCH) model that encounters for both the short-run 
dynamics of  the conditional mean process modeled following ARMA process in the standard 
GARCH model  and the long-run persistence that decays following hyperbolic rates and 
further investigated by Chung (1999) and Conrad and Haag (2006). Alternative specifications 
of FIGARCH models were further discussed by Giraitis, Robinson, and Surgailis (2004), 
Karanasos, Psaradakis, and Sola (2004), and Zaffaroni (2004). Further, Tse (1998) combines 
the FIGARCH model and APGARCH model and obtain the FIAPGARCH model. For a 
discussion and further analysis of the evolution of GARCH family models, we refer to 
Bollersev (2009), Zhang and Wei (2010). 

Following the Zakoian (1991) Threshold GARCH (TGARCH) model that aims to 
capture asymmetric effects of negative and positive shocks, the intuition to capture different 
effects below and above a certain threshold is investigated. The other studies regarding the 
regime models were important in terms of smooth transition models. Franses and van Dijk 
(2000) noted the importance of ST-GARCH models. Hagerud (1997) and Gonzalez-Rivera 
(1998), Lundbergh and Teräsvirta (1998a), Anderson, Nam and Vahid (1999), Dufrénot, 
Marimoutou and Péguin-Feissolle (2002) developed the STGARCH model.  Anè and Rangau 
(2006) combined the PGARCH model of Ding, Granger and Engle (1993), an extension of the 
GARCH family models, with RS-GARCH model and thus developed the RS-APGARCH 
model. Tse and Tsui (1997) determined the APGARCH model. Brooks et.al (2000) showed 
the leverage effect and the usefulness of including a free power term.   Lundbergh and 
Terasvirta (1998) developed STAR-STGARCH models that allow nonlinearity in both 
conditional mean and conditional variance. Chan and McAleer (2002, 2003) have determined  
statistical properties in context of estimation of STAR-STGARCH family models. Busetti and 
Manera (2003) have used STAR-GARCH models to examine the market interactions in the 
Pacific Basin Region. Shively (2003) has examined nonlinear dynamics of stock prices for six 
developed economies using a three-regime threshold random walk model and found that stock 
prices are consistent with regime reverting process. McMillan (2003) has examined nonlinear 
predictability of UK Stock Returns. Ostermark et al. (2004) have used STAR type models for 
modelling Finnish Banking and Finance branch index. Narayan (2005) has examined 
properties of the stock prices for Australia and New Zealand and found that stock prices for 
both countries are nonlinear processes with unit root, consistent with the efficient market 
hypothesis. And most recently Hasanov and Omay (2008) have examined properties of the 
stock prices for Turkey and Greece and found that stock prices for both countries are 
nonlinear processes, and found out that nonlinear out of forecasting performance is better than 
the linear which is inconsistent with the efficient market hypothesis.  
       Futher, the ANN-GARCH (Artificial Neural Network ARCH) developed by Donaldson 
and Kamstra (1997) process augments the GJR model with multi-layer perceptron based 
neural network architecture with logistic squashing functions to capture nonlinearity by 
utilizing the universal approximation property (Cybenko, 1989) of ANN models. Further, 
following increasing advances with respect to asymmetry in volatility (Glosten et al., 1993; 
Zakoian, 1994; Nelson, 1991), ARCH (GARCH) family models are extended to different 



nonlinear modeling structures; specifically, regime switching (Cai, 1994; Hamilton and 
Susmel, 1994; Gray, 1996; Klaassen, 2002; Haas et al. 2004), threshold based regression 
space division with smooth sigmoid type continuous functions (Hagerud, 1997; Anderson et 
al., 1999; Gonzalez-Rivera, 1999; Lee and Degennaro, 2000; Lundberg and Terasvirta, 1998) 
and artificial neural networks (Donaldson and Kamstra, 1997; Bildirici and Ersin, 2009).  
 
Models with STAR type nonlinearity are evaluated in Part II. Models with neural network 
based architectures are discussed in Part III. Empirical results are given in Part IV. Part V. 
conludes.  
 

.  
 
 

II. Models 
 

Time series models may be subject to follow nonlinear processes in different proportions, 
in the conditional mean and/or in the conditional variance. Accordingly, models investigated 
in the study are divided into groups by possessing nonlinearity in the conditional mean, 
variance, or none (or both) in the conditional variance and mean.   

In the study, first group of models are linear GARCH, fractionally integrated FI-GARCH, 
Asymmetric Power APGARCH (Ding, Granger and Engle; 1993) and the fractionally 
integrated FIAPGARCH models (Baillie, Bollerslev and Mikkelsen; 1996). These models are 
taken as the baseline family of models.  

Models with STAR type nonlinearity in the conditional mean will be investigated under 
the second group. The STAR-GARCH model (Lundberg and Terasvirta, 1998; Chan and 
McAleer, 2001) allows the conditional mean to follow STAR type nonlinearity. In the study, 
STAR-GARCH model is extended to FIGARCH, APGARCH and FIAPGARCH processes 
and evaluated models under this group are LSTAR-GARCH, LSTAR-FIGARCH, LSTAR-
APGARCH and LSTAR-FIAPGARCH models.  

In the third group, we allowed models to follow STAR type nonlinearity both in the 
conditional mean and the variance which are evaluated under LSTAR-LST-GARCH 
architecture. LSTAR-LST-GARCH models are LSTAR-LST-GARCH, LSTAR-LST-
FIGARCH, LSTAR-LST-APGARCH and LSTAR-LST-FIAPGARCH models and possess 
both ST-GARCH (Lundberg and Terasvirta, 1998) and STAR-GARCH characteristics since 
both the conditional mean and the conditional variance is allowed to follow STAR type 
nonlinearity1.  

Multi-Layer Perceptron type neural networks are commonly applied to economic time 
series in the literature. MLP-GARCH models are the fourth group of models which follow a 
similar modeling methodology as given for the STAR-GARCH models. Accordingly, the 
conditional mean is modeled with MLP with error terms following GARCH process. Models 
in this group are MLP-GARCH, MLP-FIGARCH, MLP-APGARCH and MLP-
FIAPGARCH. One point that cannot be overlooked is that MLP-GARCH models are 
different than the NN models as discussed by Donaldson and Kamstra (1997). It should be 
noted that the methodology followed in this group is different in the sense that, MLP-GARCH 
model allows conditional mean to have MLP as the STAR-GARCH model that has STAR 
process in the conditional mean; therefore, neural network modeling techniques discussed in 

                                                 
1 ST-GARCH model shares similarities but have differences with the GJR-GARCH (Glosten, Jagannathan and 
Runkle; 1993) and TGARCH (Zakoian; 1994) models in terms of the transition function since ST-GARCH 
models allow smooth transition functions instead of threshold function in defining regime changes.  



Bildirici and Ersin (2009); model selection, estimation with ANN learning algorithms and  
algorithm cooperation and weight decay are not applied.   

The fifth group is the neural network augmented versions of the second group, LSTAR-
GARCH models to obtain LSTAR-GARCH-MLP models.  

The sixth group is LSTAR-LST-GARCH-MLP model group that augments the third 
group with MLP architecture and modeling techniques to improve the generalization power of 
LSTAR-LST-GARCH models.  

Following Bildirici and Ersin (2009), estimation of LSTAR-GARCH-MLP and LSTAR-
LST-GARCH-MLP models is conducted with conjugant-gradient based back-propagation 
algorithm (for a review, see: Bishop; 1995). The learning and model selection processes are 
gathered to improve forecast accuracy as follows. Neural networks are estimated for n number 
of models with optimization conducted simultaneously in the training and test samples. 
Optimization is early stopped at the epoch at which MSE in the test sample starts to increase 
though still continues to decrease in the training sample; the model with the lowest MSE is 
selected. During learning, weight decay in the output layer and hidden layer is utilized to 
eliminate the insignificant coefficients (Weigend, Rumelhart and Huberman, 1991; Bartlett, 
1997; Krogh and Hertz; 1995). For details regarding weight decay in learning process, an 
investigation is given by Gupta and Lam (1998). In total, each model is estimated with  
different architecture variations in terms of number of neurons. Number of estimated models 
of each architecture type, n is selected as 20 for saving CPU time. Only the best model is 
reported for each model architecture.  Models to be compared are allowed to have their 
number of neurons to range between 3 to 10 considering the sample size. Neurons are 
constrained as being logistic activation functions in the hidden layer and linear function in the 
output layer. Best models with the lowest error criteria such as MSE or RMSE are selected. 
The selected models are further utilized for out-of-sample forecasting. Therefore, since each 
model architecture is estimated n=20 times, and since there are 8 different neural network 
based model architecture to be estimated; namely, LSTAR-GARCH-MLP, LSTAR-
APGARCH-MLP, LSTAR-FIGARCH-MLP, LSTAR-FIAPGARCH-MLP, LSTAR-LST-
GARCH-MLP, LSTAR-LST-APGARCH-MLP, LSTAR-LST-FIGARCH-MLP and LSTAR-
LST-FIAPGARCH-MLP models, total number of estimated models are 160; whereas, the best 
8 model is taken into consideration2.  

In the next section, GJR-GARCH, ST-GARCH, STAR-GARCH and STAR-ST-GARCH 
models will be investigated. The threshold principle of GJR-GARCH will provide basis for 
STAR type nonlinearity which will be further extended to MLP models.  

 
 
 
 

                                                 
2 The methodology is as follows. Model estimation is gathered through utilizing backpropagation algorithm and 
the parameters are updated with respect to a quadratic loss function; whereas, the weights are iteratively 
calculated with weight decay method to achieve the lowest error. Alternative methods include Genetic 
Algorithms (Goldberg, 1989) and 2nd order derivative based optimization algorithms such as Conjugate Gradient 
Descent, Quasi-Newton, Quick Propagation, Delta-Bar-Delta and Levenberg-Marquandt, which are fast and 
effective algorithms but may be subject to over-fitting (see Patterson, 1996; Haykin, 1994; Fausett, 1994). In the 
study, we followed a two step methodology. Firstly, all models were trained over a given training sample vis-à-
vis checking for generalization accuracy in light of MSE criteria in test sample. The approach is repeated for 
estimating each model for 100 times with different number of sigmoid activation functions in the hidden layer. 
To obtain parsimonic models, best model is further selected with respect to the AIC information criterion (see 
Faraway and Chatfield, 1998). For estimating NN-GARCH models with early stopping combined with algorithm 
corporation, readers are referred to Bildirici and Ersin (2009). 
 



i. ST-GARCH Model 

GJR-GARCH model, developed by Glosten, Jagannathan and Runkle (1993), is based on the 
modeling of conditional variance with varying responses to negative and positive lagged 
innovations with respect to an indicator function. GJR-GARCH model is represented as 

( )2 2 2 2
1 1t t t t tw Iσ αε ε γε βσ− −= + + +        (1) 

where,  ( )1tI ε − is an indicator function being ( )1tI ε − =0 if 1 0
t

ε − ≥  and ( )1tI ε − =1 otherwise. 

The asymmetry introduced with the γ  and the indicator function I(.) is called as “the leverage 

effect”; hence, γ  is typically estimated to be positive so that the volatility is increasing 

proportionately more after negative shocks compared to the impact of the positive shocks. 
The identity function will be augmented with the logistic function and GJR structure will 
provide a basis for ST-GARCH models.  
            The Smooth Transition Autoregressive (STAR) model further developed by 
Luukkonen et al. (1988), Granger and Terasvirta (1993) and Terasvirta (1994) aim nonlinear 
modeling of the conditional mean by introducing smooth transition between regimes of 
autoregressive processes based on logistic and exponential functions belonging to squashing 
functions of neural network models. In STAR methodology (Terasvirta, 1994), by taking 
logistic and exponential functions as transition functions, LSTAR and ESTAR models are 
obtained. Hagerud (1997) and Gonzalez-Rivera (1998) proposed the ST-GARCH model that 
allows smooth transition between the α  and ϒ , coefficients of lagged squared error terms of 
the GJR-GARCH model. A convenient way to formulate the GJR, 

 2 2 2 2
1 1 1 1 1 11 0 0

t t t t t t t t
w I Iσ ε α ε ε ε β σ− − − − −= + − > + > ϒ +( ) ( [ ])    (2) 

if the I(.) indicator function is replaced with the F(.) logistic transition function, the Logistic 
Smooth Transition GARCH (LSTGARCH(1,1)) model is obtained as 

 ( )( ) ( )2 2 2 2
1 1 1 1 1 1 1 11

t t t t t t
w F Fσ ε α ε ε ε β σ− − − − −= + − + ϒ +     (3) 

where, the transformation function F is defined as 

 
( )1

1

1

1 t

t
F

e
θε

ε
−

− −
=

+
( ) .        (4) 

The logistic function is bounded between [0 , 1] and the transition between the regimes occurs 
from negative to positive values, 0θ >  has non-negativity constraint and the logistic 
transition function F is a monotonic and increasing function of 1t

ε − . As 1t
ε −  increases from 

negative values to positive values the impact of 2
1t

ε −  moves proportionately from 1α  to 1ϒ . If 

θ  is positive and large enough, LSTGARCH model transforms into the GJRGARCH model.  
By replacing the the logistic transformation function with the exponential function 

Hagerud (1997) proposedthe Exponential Smooth Transformation GARCH (ESTGARCH) 
model. ESTGARCH(1,1), differentiated from the LST-GARCH model with the exponential 
function, 

( ) ( )2
1

1 1 t

t
F e

θε
ε −

−

−
 = − 
 

        (5) 

 As a result of formulating (3) with the exponential function given in Eq. (5), the dynamics 
of the conditional variance is modeled depending on the size of shocks. This type of nonlinear 
GARCH formulation is symmetric in terms of the sign of the shocks. The most significant 
reason of using the exponential function instead of logistic function is the allowance of 

1( )
t

F ε −  to vary between the boundaries of [0, 1] as 2
1t

ε −  varies between the extreme values.  

It is noted that, in the ST-GARCH models presented above following the models of 
Hegerud(1997), Gonzales-Rivera(1998) and Lee and Degennaro (2000), the smooth transition 
is introduced in ARCH parameters. Following Anderson(1999) and Lundbergh and Terasvirta 



(2002), ST-GARCH model may be modeled by allowing the intercept, ARCH and GARCH 
terms to follow smooth transition between regimes as 

 ( )( ) ( ) ( )2 2 2
1 1 1 11

t t t t t
F , w F ,σ ε θ β σ α ε ε θ− − − −= − + + +* *     (6) 

where, the parameters of the second regime is denoted with an asterix. The conditional 
volatility may depend both on the size and sign of the shocks on 1t

ε − . Relative effects of 

negative and positive shocks with equal magnitude depend on the amplitude of the conditional 
volatility of shocks so that a negative shock may produce a larger shock compared to the one 
that a positive shock with similar size could have produced. Negative surprises with large 
amplitudes may show leverage effects and may lead to volatility with comparatively larger 
size compared to the positive surprises. (Taylor J.W., 2004). 
 

ii.  ST-FIGARCH Model 

 
The ARCH and GARCH models, developed by Engle (1982) and Bollerslev (1986) 

respectively, are short memory processes resulting from the fact that the response of a shock 
on the conditional variance decreases at an exponential rate. On the other hand, the 
conditional volatility of financial market returns may change slowly over time as a result of 
long memory characteristics of financial series. Consequently, the autocorrelation functions 
may decay at a hyperbolic rate3.  
Fractionally Integrated GARCH (FIGARCH(1, d, 1)) model is developed under these findings 
by Bollersev and Mikkelsen(1996) and Baillie, Bollerslev, and Mikkelsen(1996) as an 
extension of the GARCH model to account for long memory. In this section, we will first 
evaluate fractional integration in a GARCH setting to evaluate long memory in conditional 
variance. Afterwards, smooth transition type nonlinearity setting will be introduced to the 
evaluated FIGARCH and FIAPGARCH models.  
Assume that a time series following a random walk process in its conditional mean and its 

conditional variance, 2
tσ =Var ( )1t t

ε −Ω , where the information set up to time t-1 is denoted 

as 1t−Ω , follows a FIGARCH(1,d,1) process 

             

( ) ( ) ( ) ( )( )( )
22

1 11 1 1 1
d

t t tL L L Lβ σ α β φ ε γε− −− = + − − − − −    (7) 

or alternatively, 

( ) ( ) ( )( ) ( )
22 2

1 1 11 1 1
d

t t t tL L Lσ α βσ β φ ε γε− − −= + + − − − − −
     

(8)  

where, t
z is assumed to be normally distributed N(0,1) white noise process,  

t
z ~ ( )

21
0,1 exp

22
t

z
N

π

 
=  

 
        (9) 

FIGARCH(1, d, 1) model nests the GARCH model if d = 0 and the IGARCH model of Engle 
and Bollerslev (1986) if d = 1, the estimated fractional integration parameter. The fractional 

                                                 
3 Bollerslev and Mikkelsen (1996) develop the necessary conditions for FIGARCH model and note that for a 
well defined FIGARCH model, all the coefficients in the infinite ARCH representation must be non-negative 
(see: Bollerslev andMikkelsen (1996, p. 159). FIGARCH models are further discussed in Nelson and Cao (1992) 
and Conrad and Haag (2006), following these studies, nonnegativity constraints on parameters of FIGARCH 
processes are relaxed and shown that, for p=2, the second lag of conditional variance can become negative. 
Futher, Conrad and Haag (2006) allow conditions so that even if all parameters are negative (apart from d), the 
conditional variance can be nonnegative for FIGARCH models following the inequality constraints of Conrad 
and Haag (2006). 



integration parameter d is 0<d<1 and as 0d →  ( )1d →
 
the model has short memory (long 

memory) characteristics. For alternative specifications of FIGARCH model, readers are 
referred to Karanasos, Psaradakis, and Sola (2004), Giraitis, Robinson, and Surgailis (2004) 
and Zaffaroni (2004). 
  The ST-FIGARCH model which generalizes the ST-GARCH type nonlinearity to account 
for fractional integration is represented as follows,  

 ( )( ) ( )2 2 2
1 11

t t s t t s t
F , F ,σ ω ε γ ασ β ε γ σ− − − −= + − +   

( )( ) ( ) ( )( ) 21 1 1 1
d

t s t s t
L F , LF , L L uα ε γ β ε γ φ φ− −

  + − − − − − −  
 (10)  

for 0γ ≠  the width of the volatility clusters and, α and β  characterizes the dynamics of the 

conditional volatility. The range of the cluster of the volatility changes between ( ) 0F =.  and 

( ) 1F =. . The constant term takes on values between ( )1ϕ ω α= −  and ( )1ϕ ω β= −  based 

upon whether the conditional volatility is is the regime dictated by ( ) 0F =.  and ( ) 1F =. . 

Accordingly, since, in the ST-GARCH model, the constant term ranges between the extreme 
regimes, the level of conditional volatility will change in different regimes (Kılıç, 2010). If 
the transition function ( )F .  is logistic function  

( )1
1

1

1 t

t
F

e
θε

ε
−

− −
=

+
( )          (11)  

the model becomes logistic smooth transition FIGARCH (LST-FIGARCH) model. 
 

iii. ST-FIAPGARCH Model 

Tse (1998) introduced the FIAPGARCH model which combines long memory property of 
Baillie, Bollerslev, and Mikkelsen (1996) FIGARCH model with Asymmetric Power GARCH 
(APGARCH) model of Ding, Engle, and Granger (1993) by extending the FIGARCH model 
to account for different asymmetric dynamics. Accordingly, the fractionally integrated 
APGARCH model is represented as, 

( ) ( ) ( )( )( ) ( )1 11 1 1 1
d

n n nL L L L
δδβ σ ω β φ ε γε− −− = + − − − − −    (12) 

where; L denotes the lag operator, d is the 0 1d≤ ≤  functional differencing parameter, β  

denotes the autoregressive parameters, φ  represents the moving average parameters of the 

conditional variance equation. δ  represents the optimal power transformation. γ  represents 

the asymmetry parameter and γ < 1 ensures that positive and negative innovations of the 

same size can have asymmetric effects on the conditional variance (Conrad, Rittler and 
Rotfuss; 2010). Further, after imposing the restrictions δ =2 and d=0, the FIAPGARCH 
model reduces to AGARCH model; whereas, if the restriction δ =2 is applied, the model 
reduces to FIAGARCH, and if d=0 the model reduces to APGARCH model.  
       The ST-ARCH modeling methodology developed by Hegerud (1997), Gonzales-Rivera 
(1998), Lee and Degennaro (2000) allows smooth transition type nonlinearity in ARCH 
parameters and the ST-GARCH models of Anderson (1999) and Lundbergh and Terasvirta 
(2002) accept a modeling structure so that in addition to the ARCH terms, the intercept and 
the GARCH terms are extended to be modeled with smooth transition type nonlinearity in 
different regimes. Accordingly, following the ST-FIGARCH model structure, smooth 
transition fractionally integrated asymmetric power GARCH model denoted as ST-
FIAPGARCH is obtained by allowing the smooth transition type nonlinearity between two 
FIAPGARCH models in two different regimes defined as   

( )( ) ( )1 11
t t s t t s t

F , F ,δ δ δσ ω ε γ ασ β ε γ σ− − − −= + − +   



( )( ) ( ) ( )( ) ( )1 11 1 1 1
d

t s t s n n
L F , LF , L L

δ
α ε γ β ε γ φ φ ε γε− − − −

  + − − − − − − −    
(13) 

if the transition function ( )F .  is defined as a logistic function bounded between 0 and 1, 

( )
1

1

1

1
t

t
F ε

γε
−

− =
+ −

( )
exp

         (14) 

the obtained model is defined as the logistic smooth transition fractionally integrated 

asymmetric power GARCH (LST-FIAPGARCH) model. 
 

v. STAR-GARCH Models 

       STAR-GARCH models, evaluated by Lundberg and Terasvirta (1999, 2000) and Franses 
Neele and van Dijk (1998) and further examined by Chan and McAleer (2001) are time series 
models with STAR type nonlinear processes in the conditional mean with heteroscedasticy 
given as GARCH errors. Consider the following STAR model (Terasvirta, 1994) with two 
regimes, 

( )( ) ( )1 1 2 2
1 1

1
r r

t i t i t i t i t t

i i

y y F s c y F s cφ φ γ φ φ γ ε− −
= =

= + − + + +∑ ∑; , ; ,     (15) 

where, 

( ) ( )

1

1 t
t s c

F s c
e

γ
γ

− −
=

+
; ,          (16) 

defined with the logistic function. By allowing GARCH errors,  

2 2 2
1 1

1 1

p r

t i t i t

i i

σ ω α ε β σ− −
= =

= + +∑ ∑
       

(17) 

the model is called Logistic Smooth Transition Autoregressive GARCH (LSTAR-GARCH) 
model. As the information matrix of the log-likelihood function of STAR-GARCH is block 
diagonal, the parameters in the conditional mean and conditional variance equations can be 
estimated separately, as in the case of ARMA-GARCH. The general GARCH properties are 
expected to hold (Chan and McAleer, 1999). 
  
iv. STAR-ST-GARCH Model  

The Smooth Transition Autoregressive (STAR) model further developed by Luukkonen et 

al. (1988), Granger and Terasvirta (1993) and Terasvirta (1994) aim nonlinear modeling of 
the conditional mean by introducing smooth transition between regimes of autoregressive 
processes based on logistic and exponential functions belonging to squashing functions. In 
STAR models, commonly applied transition functions are logistic and exponential functions 
and the relevant models are called LSTAR and ESTAR models. STAR–STGARCH model is 
a model that allows STAR type nonlinearity in both the conditional mean and the conditional 
variance and is developed based on the following STAR model. The error terms follow 
smooth transition in the GARCH process, 
            

( )( )

( )

2 2 2
1 1 1 1 1

1 1

2 2
2 2 1 2 1

1 1

1
p r

t i t i t i t

i i

p r

i t i t i t

i i

w H n

w H n

σ α ε β σ ε ς

α ε β σ ε ς

− − −
= =

− −
= =

 
= + + 
 

 
+ + + 
 

∑ ∑

∑ ∑-

- ; ,

                                       ; ,  
  (18) 

with the transition function, 

 
( ) ( )1

1

1 t
t n

H n
e

ς ε
ε ς

−− −
=

+
; ,    .         (19) 



t
ς   is the parameter defining the speed of transition and n is the threshold coefficient.  

Model will be extended to STAR-ST-FIGARCH model.  
 

vii. STAR-ST-FIGARCH Model 

 
The ARCH and GARCH models, developed by Engle (1982) and Bollerslev (1986) 

respectively, are short memory processes resulting from the fact that the response of a shock 
on the conditional variance decreases at an exponential rate. On the other hand, the 
conditional volatility of financial market returns may change slowly over time as a result of 
long memory characteristics of financial series. Consequently, the autocorrelation functions 
may decay at a hyperbolic rate4.  
        Fractionally Integrated GARCH (FIGARCH(1, d, 1)) model is developed under these 
findings by Bollersev and Mikkelsen (1996) and Baillie, Bollerslev, and Mikkelsen (1996) as 
an extension of the GARCH model to account for long memory. In this section, we will first 
evaluate fractional integration in a GARCH setting to evaluate long memory in conditional 
variance. Afterwards, smooth transition type nonlinearity setting will be introduced to the 
evaluated FIGARCH and FIAPGARCH models.  
Assume that a time series following a random walk process in its conditional mean and its 

conditional variance, ( )1var
t t t

h ε −= Ω , where the information set up to time t-1 is denoted as 

1t−Ω , follows a FIGARCH(1,d,1) process,           

( ) ( ) ( )( )( )( )
22

1 11 1 1 1
d

t t tL L L Lβ σ ω β φ ε γε− −− = + − − − − −    (20) 

or alternatively, 

( ) ( )( )( ) ( )
22

1 11 1 1
d

t t t th L L Lσ ω β β φ ε γε− −= + + − − − − −
   

(20) 

where, t
z is assumed to be normally distributed N(0,1) white noise process  
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21

~ 0,1 exp
22
t

t

z
z N

π

 
=  

 
        (21) 

FIGARCH(1, d, 1) model nests the GARCH model if d = 0 and the IGARCH model of Engle 
and Bollerslev (1986) for estimated fractional integration parameter of d = 1. Consequently, 

the fractional integration parameter d is 0<d<1 and as 0d →  ( )1d → the model has short 

memory (long memory) characteristics. For alternative specifications of FIGARCH model, 
readers are referred to Karanasos, Psaradakis, and Sola (2004), Giraitis, Robinson, and 
Surgailis (2004) and Zaffaroni (2004). 
          The STAR-STFIGARCH model which generalizes the ST-GARCH type nonlinearity to 
account for long memory is represented as,  
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(22)  

                                                 
4 Bollerslev and Mikkelsen (1996) develop the necessary conditions for FIGARCH model and note that for a 
well defined FIGARCH model, all the coefficients in the infinite ARCH representation must be non-negative 
(see: Bollerslev andMikkelsen (1996, p. 159). FIGARCH models are further discussed in Nelson and Cao (1992) 
and Conrad and Haag (2006), following these studies, nonnegativity constraints on parameters of FIGARCH 
processes are relaxed and shown that, for p=2, the second lag of conditional variance can become negative. 
Futher, Conrad and Haag (2006) allow conditions so that even if all parameters are negative (apart from d), the 
conditional variance can be nonnegative for FIGARCH models following the inequality constraints of Conrad 
and Haag (2006). 



for 0γ ≠  the width of the volatility clusters and, α and β  characterizes the dynamics of the 

conditional volatility. The range of the cluster of the volatility changes between ( ) 0F =.  and 

( ) 1F =. . The constant term takes on values between ( )1ϕ ω α= −  and ( )1ϕ ω β= −  based 

upon whether the conditional volatility is is the regime dictated by ( ) 0F =.  and ( ) 1F =. . 

Accordingly, since, in the ST-GARCH model, the constant term ranges between the extreme 
regimes, the level of conditional volatility will change in different regimes (Kılıç, 2010). If 

the transition function ( )F .  is logistic function 
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                (23)the 

model becomes logistic smooth transition FIGARCH (LST-FIGARCH) model. 
 
 

v. STAR-ST-FIAPGARCH Model 

Tse (1998) introduced the FIAPGARCH model which combines long memory 
property of Baillie, Bollerslev, and Mikkelsen (1996) FIGARCH model with Asymmetric 
Power GARCH (APGARCH) model of Ding, Engle, and Granger (1993) by extending the 
FIGARCH model to account for different asymmetric dynamics. Accordingly, the fractionally 
integrated APGARCH model is represented as 

( ) ( ) ( ) ( )( )( )1 11 1 1 1
d

n n nL w L L L
δδβ σ β φ ε γε− −− = + − − − − −    (24) 

where; L denotes the lag operator, d is the 0 1d≤ ≤  functional differencing parameter, β  

denotes the autoregressive parameters, φ  represents the moving average parameters of the 

conditional variance equation. δ  represents the optimal power transformation. γ  represents 

the asymmetry parameter and γ < 1 ensures that positive and negative innovations of the 

same size can have asymmetric effects on the conditional variance (Conrad, Rittler and 
Rotfuss; 2010). Further, after imposing the restrictions δ =2 and d=0, the FIAPGARCH 
model reduces to AGARCH model; whereas, if the restriction δ =2 is applied, the model 
reduces to FIAGARCH, and if d=0 the model reduces to APGARCH model.  
        The ST-ARCH modeling methodology developed by Hegerud (1997), Gonzales-Rivera 
(1998), Lee and Degennaro (2000) allows smooth transition type nonlinearity in ARCH 
parameters and the ST-GARCH models of Anderson (1999) and Lundbergh and Terasvirta 
(2002) accept a modeling structure so that in addition to the ARCH terms, the intercept and 
the GARCH terms are extended to be modeled with smooth transition type nonlinearity in 
different regimes. Accordingly, following the ST-FIGARCH model structure, smooth 
transition fractionally integrated asymmetric power GARCH model denoted as ST-
FIAPGARCH is obtained by allowing the smooth transition type nonlinearity between two 
FIAPGARCH models in two different regimes defined as, 
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if the transition function ( )F .  is defined as a logistic function bounded between 0 and 1, 

( )
1

1

1

1
t

t
F ε

γε
−

− =
+ −

( )
exp

         

(26) 



the obtained model is defined as the logistic smooth transition fractionally integrated 

asymmetric power GARCH (LST-FIAPGARCH) model. 
 

 
III. Neural Network Augmentations of the Nonlinear GARCH Models 

 
Artificial Neural Network (ANN) models have significant applications in modeling 

economic variables and time series. Kanas (2001), Kanas and Yannopoulos (2001), Shively 
(2003) applied ANN models to stock return forecasting, whereas, Donaldson and Kamstra 
(1996) proposed hybrid architecture of commonly applied GARCH family models, GARCH, 
GJR and EGARCH, with ANN architecture. Further analysis is conducted with Bildirici and 
Ersin (2009) to obtain a large class of GARCH family models with benefits from ANN 
modeling. Multi Layer Perceptron (MLP), an important class of neural networks consists of a 
set of sensory units defined with an input layer, one or more hidden layers and an output layer 
with estimation algorithms that include back-propagation and gradient descent type 
algorithms (See, Rumelhart et al., 1986; Bishop, 1994). Following Donaldson and Kamstra 
(1996) GJR-GARCH-NN, EGARCH-NN and GARCH-NN models, Bildirici ve Ersin (2009) 
proposed a family of NN-GARCH models including the NN-APGARCH model.  

 
i. NN-GARCH Model  

       Start with the basic model, NN-GARCH (p,q,m) model is an augmented GARCH(p,q) 
process with single hidden layer ANN consisting sigmoid type neuron functions, 
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dtwdhwdhht zz λλλψ      (28) 

( )[ ] ( )2εεε EEz dtdt −= −−         (29) 

( ) wdh ,,2
1 λ ~ uniform [ ]1,1 +−         (30) 

( )htz λψ  is the sigmoid type activation function of the form 1/(1+exp(-x));  ξ = w  is the weight 

vector; define htz λ = ix  as the input variables in the activation function with hλ  as given in 

equation (30).  
ii. NN-APGARCH Model 

       Asymmetric power GARCH (APGARCH) structure of Ding et.al. (1993) has interesting 
features in volatility modeling. The NN-APGARCH model belongs to the NN-GARCH 
models discussed in Bildirici and Ersin (2009) and is an extention of Donaldson and Kamstra 
(1997) NN-GARCH models. The NN-APGARCH model is obtained by augmenting 
APGARCH model with artificial neural network architecture and modeling techniques, 
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wdh ,,2

1
λ ~ uniform [ ]1,1 +−         (34) 



where, ( )htz λψ  is the logistic function. The NN-APGARCH nests several models. The model 

reduces to the standard  NN-GARCH model for  δ =2 and kγ =0, the NN-NGARCH model 

for kγ =0, and the NN-GJR-GARCH model for δ =2 and 10 ≤≤ kγ ; the NN-TGARCH 

model for for δ =1 and 10 ≤≤ kγ . For estimation of NN-APGARCH models, readers are 

referred to Bildirici and Ersin (2009).  
 
iii. NN-FIAPGARCH Model 

     In this study, NN-FIAPGARCH model is an augmented version of NN-APGARCH model 
proposed by Bildirici and Ersin (2009). NN-FIAPGARCH model is also an augmented 
version of fractionally integrated asymmetric power GARCH model with neural network 
architecture. The model is defined as, 
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wdh ,,2

1
λ ~ uniform [ ]1,1 +−         (38) 

where, ( )htz λψ  is the logistic function and h number of neurons. Logistic function belongs to 

the sigmoid type function family applied in neural network literature. The NN-FIAPGARCH 
nests several models. The model given in (35)-(38) reduces to the NN-FIGARCH model for 

restrictions on the power termδ =2 and kγ =0; the model reduces to NN-FINGARCH model 

for kγ =0; and to the NN-FIGJRGARCH model if δ =2 and kγ  is so that it varies between 

0 1kγ≤ ≤ . Further, the model may be shown as NN-GARCH model if δ =1 in addition to the 

0 1kγ≤ ≤  restriction. For traditional representations of GARCH models readers may refer to 

Bollersev, 2007). Furthermore, the model could be represented with short memory 
characteristics under restrictions on fractional integration parameters. By imposing 0d =  to 

the fractional differentiation parameter the model in Eq. (35) reduces to NN-APGARCH 
model, the short memory model variant.  In this study, only FIGARCH and FIAPGARCH 
versions will be evaluated.   
 

iv. LSTAR-GARCH-MLP Model 

       In this section of the study, the Multi Layer Perceptron Neural Network models that 
belong to the ANN family will be combined with LSTAR-GARCH models to benefit from  
the forecast capabilities of ANN models5. The LSTAR-GARCH-MLP model is a neural 
network model that consists of a set of sensory units with an input layer passed to two or more 
locally linear conditional mean processes with smooth transition logistic transition function, 
namely a LSTAR process with errors following GARCH type conditional volatility modeled 
as a NN-GARCH process.  

                                                 
5 Donaldson and Kamstra (1996) proposed hybrid modeling to combine GARCH, GJR and EGARCH models 
with ANN architecture; whereas, NN-GARCH models are further extended to NN-GARCH, NN-EGARCH, 
NN-TGARCH, NN-GJR-GARCH, NN-SAGARCH, NN-PGARCH, NN-NPGARCH, and NN-APGARCH 
models by Bildirici and Ersin (2009). 



The LSTAR-GARCH-MLP model is defined as a two regime LSTAR process in the 
conditional mean of which errors follows a single regime GARCH process augmented with 
neural networks with multi-layer perceptron structure, 
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( )[ ] ( )2εεε EEz dtdt −= −−           (41) 
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1
λ ~ uniform [ ]1,1 +−         (42) 

where, ( )t
F s cγ; ,  is the logistic transition function restricted to allow the transition to be a 

function of a single variable s and its respective distance to the threshold c. ( )htz λψ  is the 

logistic activation function,  h is the number of neurons. The weight vector ξ = w ; ψ =g 

logistic activation function and input variables are defined as htz λ = ix  where hλ  is defined as 

in Eq.(42). 
 

v. LSTAR-APGARCH-MLP Model 

        LSTAR-APGARCH-MLP model is a model with conditional mean following a LSTAR 
process with APGARCH type heteroscedasticity modeling of the conditional variance 
extended to NN-APGARCH model of Bildirici and Ersin (2009) following Donaldson and 
Kamstra (1997)  NN-GARCH models. The LSTAR-APGARCH-MLP model is a two regime 
LSTAR model with the conditional variance following APGARCH process augmented with 
MLP neural network structure, 
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where, ( )htz λψ  is the logistic function. The model given in Eq.’s (41)-(46) nest several 

models. If the restrictions are applied as δ =2 and kγ =0 in 

Error! Reference source not found., the LSTAR-APGARCH-MLP model reduces to the 
LSTAR-GARCH-MLP model; for 

h
ξ =0, the model reduces to LSTAR-APGARCH model; 

and further, if γ =0,  δ =2 and kγ =0 in addition to 
h

ξ =0, the model reduces to a single 

regime GARCH model.  
 

vi. LSTAR-FIGARCH-MLP Model 

       LSTAR-FIGARCH-MLP model is a LSTAR in the conditional mean process with errors 
following time varying conditional variance. The model is an augmented version of NN-



FIGARCH model which allows for fractional integrated time-varying conditional variance 
with neural networks.  
The model is defined as, 
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1
λ ~ uniform [ ]1,1 +−         (50) 

Similar to the previous models, ( )htz λψ  is the logistic function with h number of neurons. 

 

 

 

vii. LSTAR-FIAPGARCH-MLP Model 

        LSTAR-FIAPGARCH-MLP model is an augmented version LSTAR-FIGARCH-MLP 
with asymmetric power structure in the conditional variance. The model is stated as, 
The model is defined as, 
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( )htz λψ  is taken as logistic activation function. The model given in (51) nests the LSTAR-

FIGARCH-MLP model for restrictions of δ =2 and kγ =0. Further, reduces to LSTAR-

GARCH-MLP model if δ =1 and by allowing 0 1kγ≤ ≤ . If the fractional differentiation 

parameter 0d = , the model reduces to LSTAR-APGARCH-MLP.  
 
viii. LSTAR-LST-GARCH-MLP Model 

       By augmenting the LSTAR-LST-GARCH model defined with neural networks, 
following LSTAR-LST-GARCH-MLP model is obtained with LSTAR process in the 
conditional mean and the conditional variance modeled with LST-GARCH-MLP. 

  
MLP augmented LST-GARCH process,
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( ) ( )1

1

1 t
t n

H n
e

ς ε
ε ς

−− −
=

+
; ,             (56) 

and, 



( ), , 1
,

, , , , , , ,
1 1

1

1 exp
i t i h i

m
w i

h d w i h d w i t d i

d w

z

z

ψ λ

λ λ −
= =

=
   

+ − +       
∑ ∑

      (57) 

i=1,2 and inputs defined as, 

( )[ ] ( )2εεε EEz dtdt −= −−           (58) 
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1
λ ~ uniform [ ]1,1 +−         (59) 

The model will be augmented with asymmetric power term in the conditional variance to 

obtain LSTAR-LST-APGARCH-MLP model. 

 
 

 

 

 

ix. LSTAR-LST-APGARCH-MLP Model 

       LSTAR-LST-APGARCH-MLP model is a LSTAR-LST-APGARCH model augmented 

with neural networks in each regime of the conditional variance process. The model is defined 

as, 
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where i=1,2, the number of regimes. Accordingly, LSTAR-LST-APGARCH-MLP model is 

an hybrid model consisting of two regime LSTAR process in the conditional mean as in Eq.’s 

Error! Reference source not found.-Error! Reference source not found., with residuals 

following a nonlinear neural network model for the conditional variance as in Eq.’s (7)-

Error! Reference source not found. with multi-layer perceptrons in each regime of LST-

APGARCH process. Therefore, the model is an augmented version of LSTAR-LST-

APGARCH model to benefit from generalization capabilities of neural networks.   

 
x. LSTAR-LST-FIGARCH-MLP Model 

          LSTAR-LST-FIGARCH-MLP model is a LSTAR-LST-GARCH-MLP model with 

fractional integration in the conditional variance process. LSTAR-LST-FIGARCH model is 

defined as, 
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where i=1,2. The LSTAR-LST-FIGARCH-MLP model reduces to LSTAR-LST-GARCH-

MLP if the fractional integration parameter d=0. 

 

xi. LSTAR-LST-FIAPGARCH-MLP Model 

          LSTAR-LST-FIAPGARCH-MLP model is a model based on the LSTAR-LST-

FIAPGARCH model augmented with MLP neural networks. The model is defined as, 

( ) ( ) ( )( )( )( )( ) ( )( )

( ) ( )( )( )( )( ) ( )( )

11

0 1 1 1 1 1 1

22

0 2 2 1 2 1 1

1 1 1 1 1

1 1 1

di

n n k n t

d

n k n t

L L L L H n

L L L H n

δδ

δ

β σ ω β φ ε γ ε ε ς

ω β φ ε γ ε ε ς

− − −

− − −

− = + − − − − −

+ − − − − −

,,,
, ,

,,

, ,

- ; ,

                         + ; ,  
(67) 

( )
1

1
,

, , , , , , , , ,
1 1

1 exp
m

w i

i t i h i h d w i h d w i t d i

d w

z zψ λ λ λ

−

−
= =

    
= + − +          

∑ ∑      (68) 

( ) ( )2
, ,t d i t d i

z E Eε ε ε− − = −           (69) 

, , ,

1

2 h d w iλ ~ uniform [ ]1,1 +−         (70) 

where i=1,2. LSTAR-LST-FIAPGARCH-MLP nests the models analyzed in the study. The 

model reduces to LSTAR-LST-GARCH-MLP if the fractional integration parameter d=0. 

Further, if the asymmetric power term is equal to 2, the model becomes LSTAR-LST-

FIGARCH-MLP model.  
 
 
 

IV. Econometric Results 
4.1. Data  
       According to Lundbergh and Terasvirta (1998) and Hagerud (1996), Chan and McAleer 
(2002) and Chan and McAleer (2003),  the empirical specification procedure for STAR-
GARCH and STAR-STGARCH models consist of the six steps.  

In order to test forecasting performance of the above-mentioned models, stock return 
in Turkey is calculated by using the daily closing prices of Istanbul Stock Index ISE 100 
covering the 07.12.1986-13.12.2010 period corresponding to 5852 observations. To obtain 
return series, the stock returns data is calculated as follows: y=ln(Pt/Pt-1) where ln(.) is the 
natural logarithms. In the process of model estimation, the sample is divided between training, 
test and out-of-sample samples with the percentages of 80%, 10%, 10%.  
 



    4.2. Econometric Results 
     At the first stage, among the GARCH family models, we selected basic GARCH model, 
and APGARCH models  FIGARCH,  taken as baseline models are estimated for evaluation 
purposes. Results are given in Table 1. Included models have different characteristics to be 
evaluated; namely, fractional integration, asymmetric power and fractionally integrated 
asymmetric power models, namely, GARCH, APGARCH, FIGARCH and FIAPGARCH 
models. 

It is observed that, all volatility models perform better than the FIAPGARCH model in 
light of Log Likelihood criteria. If AIC and SIC criteria are evaluated, the lowest AIC (-
4.5612) is calculated for the FIAPGARCH model; whereas, the lowest SIC is calculated as -
4.5548 for the FIGARCH model. The sum of ARCH and GARCH parameters is calculated as 
0.9857 for the GARCH model and similarly is less than 1 for the APGARCH, FIGARCH and 
FIAPGARCH model. For the fractionally integrated models, the differentiation parameters 
are estimated as 0.40 (FIGARCH) and 0.38 (FIAPGARCH).  

 
Table 1. Baseline Models 

Baseline  

GARCH Models 

Baseline Fractionally 

 Integrated GARCH Models  

1.  

GARCH 

2.  

APGARCH 

3.  

FIGARCH 

4.  

FIAPGARCH 

Cst(M) 0.0016** 0.0014** 0.0016** 0.00145** 
(5.36) 4.917   (5.488) (5.16) 

Cst(V) 0.1998**  0.7554 0.2842** 0.15264 
(3.21) (1.20) (3.15) (1.08)   

d-Figarch 0.4064** 0.3797** 
(8.21) (6.66) 

ARCH 0.1572** 0.1643** 0.2317** 0.2067* 
(6.36) (7.07) (2.24) (1.76) 

GARCH 0.8285** 0.8326** 0.4338** 0.3793** 
(29.99) (31.71) (3.73) (2.72) 

APARCH(Gamma1) 0.0518* 0.0592* 
(1.60) (1.78) 

APARCH(Delta) 1.6594** 2.0994** 
(8.18) (17.12) 

LogL 13361.16 13366.35 13405.95 13410.05 
AIC: -4.5455 -4.5466 -4.5605 -4.5612 
SIC: -4.5410 -4.5398 -4.5548 -4.5532 

Q(  5) 

14.1874 
[0.00] 

17.6420    
[0.00] 

5.8026    
[0.12] 

5.29105 
[0.15] 

Q( 10) 

26.9742 
[0.00] 

30.9775    
[0.00] 

14.085    
[0.07] 

12.6800 
[0.12] 

SB: 

0.38924 
[0.69] 

0.4958 
[0.61] 

0.6236 
[0.53] 

0.8391 
[0.40] 

ARCH (1-2): 

4.4142 
[0.012] 

6.1645  
[0.00] 

0.8560  
[0.42] 

0.55257 
[0.57] 

ARCH (1-5): 

2.7684 
[0.02] 

3.4571  
[0.00] 

1.1540  
[0.32] 

1.0520 
[0.38] 

   LogL: Loglikelihood, Q(p): pth order autocorrelation test, SB: Sign bias test, ARCH(p): 
   pth order ARCH-LM test. 
     

Power terms obtained for returns calculated for stock indices in many developing 
economies are calculated comparatively higher than those obtained for the various indices in 
developed countries in various studies. The calculated power term is 1.65 in the APGARCH 
model and is estimated as 2.09 in the FIAPGARCH model showing high levels of asymmetry. 
It is noteworthy to evaluate several studies. Haas (2008) calculated three state RS-GARCH, 



RS-PGARCH and RS-APGARCH models for the daily returns in NYSE and estimated the 
power terms are calculated as 1.25, 1.09 and 1.08. For Turkey, Ural (2009) estimated a RS-
APGARCH model for returns in ISE100 index in Turkey in addition to United Kingdom 
FTSE100, CAC40 in France and NIKKEI 225 indices in Japan and reported highest power 
estimates (1.84) compared to the power terms calculated as 1.26, 1.31 and 1.24 for FTSE100, 
NIKKEI 225 and CAC40. Telatar and Binay (2001) estimated APARCH models for Turkey 
and 10 national stock indices and noted that power terms reported for developing countries 
tend to be high and varying though those reported for the developed countries are estimated 
with low and close values.  Ané and Ureche-Rangau (2006), estimated single regime GARCH 
and APGARCH models in addition to RS-GARCH and RS-APGARCH models following 
Gray (1996) model. Power terms in single regime APGARCH models were calculated for 
daily returns as 1.57 in Nikkei 225 Index, as 1.81 in Hang Seng Index, as 1.69 in Kuala 
Lumpur Composite Index and as 2.41 in Singapore SES-ALL Index. We will further evaluate 
LSTAR-GARCH and LSTAR-LST-GARCH models. LSTAR-GARCH models are tested by 
assuming that the error terms follow student-t distribution with the help of BFGS algorithm. 
Statistical inference regarding the empirical validity of two-regime switching process was 
carried out by using nonstandard LR tests (Davies, 1987).  The non-standard LR test is 
statistically significant and this suggests that linearity is strongly rejected. Further, Lukkonnen 
et al. (1988) LM type nonlinearity tests are evaluated and concluded that the nonlinearity is 
accepted and linearity is rejected for the transition variable of one lagged daily returns. 

STAR-GARCH models allow STAR type nonlinearity in the conditional mean with 
GARCH type heteroscedasticity in the conditional variance, where, the GARCH process is a 
single regime process. Chan and McAleer (2003) discuss that the results obtained with 
modeling time series inherently heteroscedastic in STAR-GARCH models and draws 
attention on the following three possibilities: (a) the variance is not constant, so that STAR-
GARCH should be used; (ii) the use of alternative optimization algorithms is required for 
gains in modeling, and (iii) the use of alternative initial values in optimization. In this study, 
different types of nonlinearity either in mean or variance are evaluated with augmenting the 
STAR-ST-GARCH models with neural networks and support vector machines to encounter 
the following problems noted by Chan and McAleer (2003), regarding the likelihood 
functions: a) the log-likelihood functions of Exponential STAR-GARCH (ESTAR-GARCH) 
models tend to be flat around the global optimum near the true values of the transition rates. 
There are difficulties in estimating the transition rates by maximizing the log-likelihood 
functions using conventional gradient-based optimization algorithms. b) The planes of the 
log-likelihood functions of the Logistic STAR-GARCH models are prone to be lumpy in 
addition to being flat around the local optimums. These situations explain the sensitivity of 
QMLE to initial values. As noted by Lundbergh and Terasvirta (1999) and van Dijk, 
Terasvirta and Franses (2002), the convergence of QMLE is sensitive to the initial values.  
There are two result of these findings: (i) the shapes of the log-likelihood functions are 
determined mostly by the choice of transition functions and (ii) it may be possible to 
transform the shapes of the log-likelihood functions by transforming the parameters in the 
models. According to Chan and Theoharakis (2011), Although  there are the popularity in 
applying regimes switching models, the statistical and structural properties for STAR-
GARCH models are limited and the results are generally restricted to the two-regimes state. 
As their opinion, the lack of general structural and statistical properties makes valid 
inferences difficult to conduct for multi-regimes switching models. The transition rates in the 
STAR models are particularly difficult to estimate with the Quasi-Maximum Likelihood 
Estimator (QMLE). 

Furthermore, GARCH models are extended to model nonlinearity in both the 
conditional mean and the conditional variance. ST-GARCH model has a linear process such 



as the random walk for the majority of studies, whereas, the conditional mean follows a two 
regime GARCH process in which the transition between the regimes are governed by a 
continuous, twice differentiable function such as the exponential or the logistic function to 
smooth transition. By hybridization of two groups of nonlinear models; we obtain          
STAR-ST-GARCH model that allows for STAR type nonlinearity in both the conditional 
mean and variance. By allowing the transitions to be governed by logistic function, LSTAR-
LST-GARCH model is obtained. By comparing three groups of models, single regime 
GARCH, STAR-GARCH and STAR-ST-GARCH, we obtained several results. To encounter 
the problem of forecast accuracy, the study extends GARCH models to nonlinearity both in 
mean and variance with neural networks. Firstly, following Donaldson and Kamstra (1997) 
and Bildirici and Ersin (2009) we estimated NN-GARCH models. Similar to the methodology 
followed to obtain NN-GARCH models. Secondly, we suggested the hybrid modeling 
methodology as proposed in the paper to augment STAR-ST-GARCH models with neural 
networks and generalize to LSTAR-LST-GARCH-MLP, Logistic Smooth Transition 
Autoregressive in conditional mean, logistic smooth transition in conditional variance 
augmented with multi layer perceptron neural network model.  

For comparative purposes, LSTAR-GARCH and LSTAR-LST-GARCH models are 
reported in Table 2.  In the first part of Table 2, the stability condition is achieved for all 
LSTAR-GARCH family models, LSTAR-GARCH, LSTAR-APGARCH, LSTAR-FIGARCH 
and LSTAR-FIAPGARCH. The fractional integration parameters are estimated as 0.44 and 
0.43 for the LSTAR-FIGARCH and LSTAR-FIAPGARCH models showing that the degree 
of fractional integration is calculated close but higher than those reported for the single 
regime in conditional variance models; FIGARCH and FIAPGARCH. The asymmetric power 
parameter is estimated at high levels as 1.73 and 1.95 for the LSTAR-APGARCH and 
LSTAR-FIAPGARCH models. The loglikelihood values are also high as was for the single 
regime models. AIC and SIC criteria report similar conclusions for the in-sample results 6. On 
the other hand, the results show significant improvements after LSTAR-LST-GARCH models 
which allow nonlinearity in the conditional variance as well as in the conditional mean. 
Loglikelihood values are significantly reduced and AIC and SIC information criteria are 
significantly lower. Further differences include, after allowing the GARCH processes to 
follow LST type nonlinearity, the dynamics are strikingly different in light of the estimated 
parameters. In the LSTAR-LST-FIGARCH model, d parameters are estimated as 0.69 and 
0.16 for regime 1 and 2. Fort he LSTAR-LST-FIAPGARCH model, d parameters are 
estimated as 0.17 and 0.24 with comparatively low values.  

                                                 
6 On the other hand, though models have similar performances in the in-sample modeling, the relevant gains are 
achieved for the out-of-sample forecasting. The results will be reported in the following section.     



 Table 2. Models with STAR Type Nonlinearity in the Conditional Mean and Conditional Variance 

Note: P-values are given in brackets. t-statistics are given in parentheses. * (**) denotes %10 (%5) significance level.   

 
 

LSTAR-

GARCH 

LSTAR-

APGARCH 

LSTAR-

FIGARCH 

LSTAR-

FIAPGARCH 

LSTAR- 

LST-GARCH 

LSTAR- 

LST-APGARCH 

LSTAR- 

LST-FIGARCH 

LSTAR- 

LST-FIAPGARCH 

Single regime in GARCH process Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 

Cst(M) 0.0002 0.00003 0.0002 0.00003 0.0043** 0.0115** -0.0294**  0.0139** -0.0141* -0.0199** 0.0014 
(0.8) (0.11) (0.89) (0.12) (10.46) (16.48) (-45.20)  (11.69) (-1.88) (-18.26) (1.49) 

Cst(V) 0.1877** 0.5568 14.4879 17.7108 0.0586* 0.4759* 25.6249  0.0103** 2.7721** 0.010 0.0449* 
(3.15) (1.06) (-1.24) (0.71) (1.701) (1.624) (0.6704)  (2.36) (3.11) (0.89) (1.65) 

d-Figarch   0.4397** 0.4295**     0.6906** 0.1584* 0.1701** 0.2364** 
  (-5.79) (7.28)     (11.78) (1.74) (1.90) (3.70) 

ARCH 0.1489** 0.1576** 0.1811* 0.1715** 0.0822** 0.1685** 0.0783* 0.2475** 0.2925** 0.8486** 0.3056** 0.4420** 
(6.11) (6.59) (-1.85) (1.73) (4.504) (2.149) (1.71) (2.62) (4.48) (6.50) (2.48) (7.068) 

GARCH 0.8367** 0.8361** 0.4322 0.4136** 0.9137** 0.7239** 0.6920** 0.8816** 0.7966** 0.8435** 0.6786** 0.6212** 
(30.71) (31.27) (-3.24) (3.15) (46.85) (5.673) (2.38) (28.67) (14.47) (10.39) (2.746) (7.935) 

APARCH (Gamma1)  0.0664*  0.0741**   0.9995** 0.2677**   0.7518 0.5761** 
 (1.84)  (2.02)   (93.66 ) (2.73)   (1.08) (1.99) 

APARCH (Delta)  1.7318**  1.9518**   1.1437** 1.2286**   1.2027** 1.3730** 
 (7.67)  (11.87)   (2.784) (6.38)   (4.36) (10.69) 

ARCH  

in mean    
 

    -0.5072** 1.4267** 
  

2.9349** 
        (-15.63) (3.41)  (8.95) 

LogL 13385.219 13390.251 13430.24 13434.8 6761.74 3945.71 6898.49 6792.50 
AIC: -4.5568 -4.5578 -4.5718 -4.5727 -4.7725 -4.9625 -4.8654 -4.5537 
SIC: -4.5523 -4.5511 -4.5662 -4.5647 -4.7628 -4.9438 -4.8508 -4.5432 

Q(  5) 

8.5582 
 [0.03] 

9.76862 
[0.02] 

4.9787  
[0.17] 

4.8868 
 [0.18] 

3.747 
 [0.29] 

3.3781  
[0.34] 

1.9448 
[0.58] 

1.9632 
[0.58] 

Q( 10) 

20.4037 
[0.00] 

21.6716   
[0.01] 

14.0515  
[0.08] 

13.4890 
 [0.09] 

6.1430  
[0.63] 

5.9495  
[0.65] 

3.8414 
[0.87] 

4.7870 
[0.78] 

SB: 

0.6801 
[0.49] 

0.7548 
[0.45] 

0.467 
[0.62] 

0.9517 
[0.34] 

2.339 
 [0.02] 

0.2332 
 [0.82] 

1.5086 
[0.13] 

2.1264 
[0.03] 

ARCH  

(1-2): 2.4227 [0.08] 
2.9871 
[0.05] 

0.9872 
[0.42] 

0.4458  
[0.64] 

0.99732  
[0.37] 

1.0956  
[0.33] 

0.0214 
[0.97] 

0.0752 
[0.92] 

ARCH  

(1-5): 1.6886 [0.13] 
1.9327 
[0.08] 

1.4537 
[0.15] 

0.9722 
 [0.43] 

0.73513  
[0.60] 

0.6585 
 [0.65] 

0.3885 
[0.86] 

0.3895 
[0.85] 



Table 3. Models with  NN Type Nonlinearity in the Conditional Mean 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: P-values are given in brackets. t-statistics are given in parentheses. * (**) denotes %10 (%5) significance level.   
 
 

MLP- 

GARCH MLP-APGARCH 

MLP – 

FIGARCH 

MLP – 

FIAPGARCH 

    

Cst(M) -0.0002 -0.00001 -0.0002 -0.00003 
(-0.68) (-0.06) (-0.78) (-0.12) 

Cst(V) 0.2003** 0.5808 0.0133 0.0153 
(3.25) (1.19) (1.29) (0.70) 

d-Figarch   0.4332** 0.4259** 
  (6.20) (7.44) 

ARCH 0.1560** 0.1634** 0.1930** 0.1848* 
(6.37) (6.91) (1.99) (1.89) 

GARCH 0.8290** 0.8305** 0.4290** 0.4146** 
(30.31) (31.08) (3.39) (3.26) 

APARCH (Gamma1)  -0.060*  -0.0675** 
 (-1.82)  (-1.96) 

APARCH (Delta)  1.7318**  1.9684** 
 (8.52)  (12.07) 

LogL 13372.56 13377.5 13417.23 13421.37 
AIC: -4.5525 -4.5535 -4.5674 -4.5681 
SIC: -4.5480 -4.5467 -4.5617 -4.5602 

Q(  5) 

12.4986 
 [0.01] 

14.3909 
 [0.00] 

6.6036 
 [0.08] 

6.2299 
 [0.10] 

Q( 10) 

25.1365 
 [0.00] 

26.9583 
[0.00] 

15.5264  
[0.05] 

14.8638 
 [0.06] 

SB: 

0.8317 
[0.41] 

0.8713 
[0.3835] 

1.0132 
 [0.31] 

1.2050 
[0.22] 

ARCH  

(1-2): 

3.9319 
[0.01] 

4.8583 
[0.01] 

1.1320 
[0.32] 

0.9353 
[0.39] 

ARCH  

(1-5): 

2.4587 
 [0.03] 

2.8385 
 [0.01] 

1.3099 
[0.26] 

1.2395 
[0.28] 



Though differentiation parameters suggest stationarity except for the 1st regime of LSTAR-
LST-FIGARCH model, all LST-GARCH type models suggest that stability condition of 
addition of ARCH and GARCH parameters is not achieved.  Overall, it is noteworthy that 
following the LST-GARCH specification LogL, AIC and SIC calculations show significant 
improvement in light of in sample estimation. On the other hand, out-of-sample performances 
will be given in the next section.  

MLP-GARCH models are estimated to evaluate possible augmentation of GARCH 
models to overcome the known out of sample forecasting capability. We estimated 4 models 
with multi-layer perceptron (MLP) architecture in the conditional mean. The methodology 
aims to cope with the random walk in the mean and is similar to the approach followed by 
Chan and McAleer (2003) LSTAR-GARCH approach. Estimated models are given in Table 
3, whereas, model selection and learning results are given in Table 4. The estimated models 
show improvement over simple GARCH models in the in-sample and out-of sample 
performances as reported for the LSTAR-GARCH family models.  

      
Table 4. Model Architecture and Learning Results 

Models and Their Architectures: 

Learning Results: 

1. 

MLP- 

GARCH  

(4:6:1:1) 

2. 

MLP- 

APGARCH  

(4:4:1:1) 

3. 

MLP- 

FIGARCH  

(4:8:1:1) 

4. 

MLP- 

FIAPGARCH 

 (4:4:1:1) 

Training rho** 0.103297 0.112415 0.117989 0.109957 
Test rho 0.110626 0.100718 0.110351 0.097282 
Training MSE 0.002248 0.002243 0.00224 0.002244 
TEST MSE 0.002246 0.002249 0.002245 0.002251 
Training algorithm 

(Convergenge) BFGS 4 BFGS 25 BFGS 40 BFGS 6 
*All models possess logistic and identity activation functions in the hidden and output layers, respectively. 
Models are read as follows: a MLP-GARCH (4:6:1:1) model has 3 variables in the input layer (independent 
variables), passed to the hidden layer with 6 neurons connected to the output layer with single output with errors 
specified with single regime GARCH process.  
** Rho and MSE represent training and test sample correlation coefficient and mean squared error, respectively. 
BFGS is the Broyden–Fletcher–Goldfarb–Shanno nonlinear optimization algorithm. The algorithm and the 
epoch at which the algorithm is converged are reported in parentheses. 
 
    The above mentioned MLP-GARCH model assume neural network type nonlinearity in the 
conditional mean only; therefore, different than the approach based on neural networks 
methods. With following the methodology based on neural networks, NN-GARCH models 
are developed by Donaldson and Kamstra (1997) and further extended to a family of NN-
GARCH models in Bildirici and Ersin (2009).  

In the study, by following Bildirici and Ersin (2009) NN-GARCH modeling approach, 
the study extends to LSTAR- GARCH-NN and LSTAR-LST-GARCH-NN models to 
improve forecasting accuracy. Accordingly, estimation is conducted with conjugant-gradient 
based back-propagation algorithm; neural networks are estimated for a large amount of 
models with optimization conducted simultaneously in the training and test samples; 
optimization is early stopped at the epoch at which MSE in the test sample starts to increase 
though still continues to decrease in the training sample. During the optimization, weight 
decay in the output layer and hidden layer is utilized to eliminate the insignificant 
coefficients. In total, each model is estimated with 20 different NN architectures for each NN 
model amounting to 80 models with different numbers of hidden neurons constrained to range 
between 3 to 10 with logistic activation functions in the hidden layer. Best models with the 
lowest error criteria such as MSE or RMSE are selected. The selected models are further 



utilized for out-of-sample forecasting7. Estimated LSTAR-GARCH-MLP models are given in 
Table 6 and their relevant one-step-ahead forecast results are given in Table 7.        
Table 6. Model Architecture and Learning Results 

Models and Their Architectures: 

Learning Results: 

1. 
LSTAR- 
GARCH- 

MLP(3:2:1:7:1) 

2. 
LSTAR- 

APGARCH- 
MLP(3:2:1:5:1) 

3. 
LSTAR- 

FIGARCH- 
MLP(3:2:1:6:1) 

4. 
LSTAR- 

FIAPGARCH- 
MLP(3:2:1:5:1) 

Training rho** 0.951245000 0.950394000 0.909832000 0.907327000 
Test rho 0.917399000 0.921656000 0.859220000 0.855687000 
Training MSE 0.000280000 0.000272000 0.000370000 0.000303000 
TEST MSE 0.000605000 0.000564000 0.000797000 0.000666000 
Training algorithm 
(Convergenge) BFGS(21) BFGS(13) BFGS(63) BFGS(7) 

*All models possess logistic and identity activation functions in the hidden and output layers, respectively. 
Models are read as follows: a LSTAR-GARCH-MLP(3:2:1:7:1) model is a model with 3 input variables 
(independent variables), 2 regime LSTAR model with single regime GARCH conditional variance process 
passing through 7 neurons to the output layer with 1 output (dependent) variable.  
** Rho and MSE represent training and test sample correlation coefficient and mean squared error, respectively. 
BFGS is the Broyden–Fletcher–Goldfarb–Shanno nonlinear optimization algorithm. The epoch the algorithm 
converged is reported in parentheses.     

 
Table 7. One-Step-Ahead Forecast Results   

  

1. 
LSTAR- 
GARCH- 

MLP(3:2:1:7:1) 

2. 
LSTAR- 

APGARCH- 
MLP(3:2:1:5:1) 

3. 
LSTAR- 

FIGARCH- 
MLP(3:2:1:6:1) 

4. 
LSTAR- 

FIAPGARCH- 
MLP(3:2:1:5:1) 

Mean square error 0.000000072 0.000000068 0.000000116 0.000000114 
Mean absolute error 0.000119285 0.000124875 0.000151344 0.000150456 

Mean relative squared error 0.094764102 0.085696768 0.138781470 0.143717708 
Mean relative absolute error 0.154683209 0.157094878 0.192220780 0.194691964 

Correlation coefficient 0.942973734 0.943076423 0.896710097 0.895582401 
RMSE 0.000268701 0.000260770 0.000340147 0.000337639 

Among the LSTAR-GARCH-MLP models, the lowest RMSE value for the test sample 
is 0.000026 and is obtained for the LSTAR-APGARCH-MLP model. LSTAR-GARCH-MLP 
model is the 2nd with RMSE=0.000268. LSTAR-FIGARCH-MLP and LSTAR-
FIAPGARCH-MLP models took the 3th and 4th places with RMSE values calculated as 
0.000337 and 0.000340. Compared to the GARCH, LSTAR-GARCH, LSTAR-LST-GARCH, 
NN-GARCH model given below, LSTAR-GARCH-MLP models show significant 
improvement in terms of in-sample analysis.  

Further, the models are extended to LSTAR-LST-GARCH-MLP models. The model 
architectures and learning results are reported in Table 8. Compared to the results obtained for 
LSTAR-GARCH-MLP models, training and test MSE errors are calculated comparatively 
lower for the LSTAR-LST-GARCH-MLP models. Training MSE errors are 0.000145, 
0.00015, 0.00026 and 0.00033 for LSTAR-LST-GARCH, LSTAR-LST-APGARCH, 
LSTAR-LST-FIGARCH and LSTAR-LST-FIAPGARCH models, respectively, which shows 

                                                 
7 The methodology is as follows. Model estimation is gathered through utilizing backpropagation algorithm and the parameters are updated 
with respect to a quadratic loss function; whereas, the weights are iteratively calculated with weight decay method to achieve the lowest 
error. Alternative methods include Genetic Algorithms (Goldberg, 1989) and 2nd order derivative based optimization algorithms such as 
Conjugate Gradient Descent, Quasi-Newton, Quick Propagation, Delta-Bar-Delta and Levenberg-Marquandt, which are fast and effective 
algorithms but may be subject to over-fitting (see Patterson, 1996; Haykin, 1994; Fausett, 1994). In the study, we followed a two step 
methodology. Firstly, all models were trained over a given training sample vis-à-vis checking for generalization accuracy in light of MSE 
criteria in test sample. The approach is repeated for estimating each model for 100 times with different number of sigmoid activation 
functions in the hidden layer. To obtain parsimonic models, best model is further selected with respect to the AIC information criterion (see 
Faraway and Chatfield, 1998). For estimating NN-GARCH models with early stopping combined with algorithm corporation, readers are 
referred to Bildirici and Ersin (2009). 

 



that MSE’s are almost half of those reported for LSTAR-GARCH family models. A similar 
result holds for both one-step ahead and out-of-sample forecasts. For a typical, though MLP-
GARCH (Training MSE=0.0022) provides improved in-sample fit compared to the simple 
GARCH model, LSTAR-GARCH-MLP model provides significant improvement 
(MSE=0.00028) over MLP-GARCH model; thus LSTAR-LST-GARCH model has the 
modest in-sample fit (MSE=0.000145).          

  
Table 8. Model Architecture and Learning Results 

Models and Architectures: 

Learning Results: 

1. 
LSTAR- 

LST-GARCH- 
MLP(3:2:2:6:1) 

2. 
LSTAR- 

LST-APGARCH- 
MLP(3:2:2:5:1) 

3. 
LSTAR- 

LST-FIGARCH- 
MLP(3:2:2:7:1) 

4. 
LSTAR- 

LST-FIAPGARCH- 
MLP(3:2:2:8:1) 

Training rho** 0.891528500 0.913539000 0.788931500 0.905314000 
Test rho 0.953208500 0.969500000 0.894839000 0.924713000 
Training MSE 0.000145500 0.000150000 0.000262500 0.000327500 
TEST MSE 0.000099500 0.000059500 0.000090000 0.000237000 
Training algorithm 
(Convergenge) BFGS 17 BFGS 25 BFGS 19 BFGS 11 

*All models possess logistic and identity activation functions in the hidden and output layers, respectively. Models are read 
as follows: a LSTAR-GARCH-MLP(3:2:2:7:1) model is a model with 3 input variables (independent variables), 2 regime 
LSTAR model with two regime LST-GARCH conditional variance process passing through 7 neurons to the output layer 
with 1 output (dependent) variable.  
** Rho and MSE represent training and test sample correlation coefficient and mean squared error, respectively. BFGS is the 
Broyden–Fletcher–Goldfarb–Shanno nonlinear optimization algorithm. The epoch the algorithm converged is reported in 
parentheses.     

           One-step-ahead forecast results are given in Table 9. According to the one-step ahead 
forecast RMSE’s, LSTAR-LST-APGARCH-MLP (RMSE=0.000179) model has the lowest 
RMSE followed by LSTAR-LST-GARCH-MLP (RMSE=0.00019), LSTAR-LST-
FIAPGARCH-MLP (RMSE=0.000209) and LSTAR-LST-FIGARCH-MLP (RMSE=0.000306) 
models. If compared to the in-sample statistics obtained for the previous models, LSTAR-
LST-GARCH-MLP models provide the highest in-sample forecast accuracy following MLP 
specifications. On the other hand, evaluation of the models in terms of their relevant out-of-
sample performances will be provided for comparative purposes. 
     
Table 9. One-Step-Ahead Forecast Results   

  

1. 
LSTAR- 

LST-GARCH- 
MLP(3:2:2:6:1) 

2. 
LSTAR- 

LST-APGARCH- 
MLP(3:2:2:5:1) 

3. 
LSTAR- 

LST-FIGARCH- 
MLP(3:2:2:7:1) 

4. 
LSTAR- 

LST-FIAPGARCH- 
MLP(3:2:2:8:1) 

MSE* 0.000000039 0.000000034 0.000000095 0.000000045 
MAE 0.000074217 0.000072350 0.000124469 0.000106440 

MRSE 0.158236075 0.067518093 0.282407490 0.110035573 
MRAE 0.134280974 0.118900139 0.204427622 0.169819328 

Rho 0.900019470 0.922051824 0.798404384 0.907570660 
RMSE 0.000194822 0.000179186 0.000306982 0.000209570 

*MSE: Mean Squared Error, MAE: Mean Absolute Error, MRSE: Mean Relative Absolute Error, MRAE: Mean 
Relative Absolute Error, Rho: Correlation, RMSE: Root Mean Square Error. 
 
 
 
 
 
 
 
 

 



Table 10. Out of Sample Forecast Statistics, 80 Days Ahead 
GARCH APGARCH FIGARCH FIAPGARCH 

RMSE 0.000819000 0.00083000 0.00079600 0.00078900 
MAE 0.000321000 0.00032000 0.00032800 0.00034200 

LSTAR- 
GARCH 

LSTAR- 
APGARCH 

LSTAR- 
FIGARCH 

LSTAR- 
FIAPGARCH 

RMSE 0.000736000 0.00074700 0.000699000 0.00070100 
MAE 0.000326000 0.00032500 0.000338000 0.00033700 

LSTAR- 
LSTGARCH 

LSTAR- 
LSTAPGARCH 

LSTAR-
LSTFIGARCH 

LSTAR-
LSTFIAPGARCH 

RMSE 0.000935000 0.07046200 0.00090800 0.00094700 
MAE 0.000374000 0.03681100 0.00035500 0.00029700 

MLP- 
GARCH 

MLP- 
APGARCH 

MLP- 
FIGARCH 

MLP- 
FIAPGARCH 

RMSE 0.000777800 0.000787800 0.000740200 0.000741200 
MAE 0.000323100 0.000323100 0.000343600 0.000342700 

 

LSTAR- 
GARCH- 

MLP 

LSTAR- 
APGARCH- 

MLP 

LSTAR- 
FIGARCH- 

MLP 

LSTAR- 
FIAPGARCH- 

MLP 
RMSE 0.000054772 0.000060000 0.000068557 0.000080623 
MAE 0.000045418 0.000045972 0.000056786 0.000069807 

 

LSTAR- 
LST-GARCH- 

MLP 

LSTAR- 
LST-APGARCH- 

MLP 

LSTAR- 
LST-FIGARCH- 

MLP 

LSTAR- 
LST-FIAPGARCH- 

MLP 
RMSE 0.000036142 0.000025243 0.000057878 0.000036227 
MAE 0.000031714 0.000020036 0.000051148 0.000028500 

*RMSE: Root Mean Squared Error, MAE: Mean Absolute Error 
*Models are ordered from the lowest error criteria (for both RMSE and MAE) to the highest. The rank of each model is given 
in [ ] brackets. Models are evaluated in terms of their capability in forecasting the conditional mean and variance separately.    

 
Models are evaluated for their generalization capabilities in the out-of-sample with 

RMSE and MAE criteria. Results are given in Table 10 in which GARCH, LSTAR-GARCH, 
LSTAR-LST-GARCH, MLP-GARCH, LSTAR-GARCH-MLP and LSTAR-LST-GARCH-
MLP models generalized to APGARCH, FIGARCH and FIAPGARCH architectures totaling 
to 28 different conditional volatility models are compared to investigate their forecast 
accuracy for 80 work days (4 month period) ahead.   

First of all, the models having GARCH structure in common corresponding to the 1st 
column will be evaluated. If an overlook is to be provided, though there is improvement as we 
move from single regime GARCH model to LSTAR-GARCH and LSTAR-LST-GARCH 
model, we noted that the performance of MLP-GARCH model is almost identical to the 
LSTAR-GARCH model. The RMSE reported for GARCH model is 0.00082 which decreases 
to 0.00074 with the LSTAR-GARCH model. RMSE’s for MLP-GARCH models are 
calculated as 0.00077 showing improvement in 80 days ahead foreacasts though the 
improvement is low. Note that, the above mentioned models allow nonlinear modeling of 
conditional mean except for the LSTAR-LST-GARCH that allows STAR type nonlinearity 
both in the mean and in the varianve. On the other hand, if models are augmented with MLP 
architecture for generalization purposes the improvement is significant. Accordingly, the 
RMSE values for the The LSTAR-GARCH-MLP and LSTAR-LST-GARCH-MLP models 
are 0.0000547 and 0.000036 showing almost 10 times improvement in out of sample forecast 
accuracy. If models are evaluated by rows, in terms of RMSE criteria, LSTAR-LST-
APGARCH-MLP (RMSE=0.000025) has the highest forecast capability followed by the 
LSTAR-LST-GARCH-MLP and LSTAR-LST-FIAPGARCH-MLP models having almost 
same RMSE values (0.0000361 and 0.0000362). In the last row, LSTAR-LST-GARCH-MLP 
models provide the highest forecast accuracy followed by the LSTAR-GARCH-MLP models. 



In terms of the MAE criteria, LSTAR-LST-APGARCH-MLP model also has the best 
generalization capacity (MAE=0.000020) followed by the LSTAR-LST-FIAPGARCH-MLP 
model (0.0000285). Results support that though nonlinear volatility models with STAR type 
nonlinearity namely, LSTAR-GARCH and LSTAR-LST-GARCH family provide significant 
gains in in-sample accuracy, though there are significant improvement compared to single 
regime GARCH models, MLP augmentations in conditional volatility of these models provide 
significant forecast accuracy improvement. Thus, both model groups, LSTAR-GARCH-MLP 
and LSTAR-LST-GARCH-MLP show significant gains in terms of generalization in the out-
of-sample. Results suggest that nonlinear augmentations of GARCH models for forecasting 
may provide certain gains, significant improvement in forecasting is achieved following the 
neural network architecture and modeling techniques in nonlinear modeling of conditional 
volatility. 
       
Conclusion 
         The study aimed to investigate linear GARCH, fractionally integrated FI-GARCH and 
Asymmetric Power APGARCH models and their nonlinear counterparts based on a family of 
Neural Network models. GARCH models are extended to neural network based structures. In 
the study, nonlinear augmentations based on STAR type nonlinearity are evaluated and 
further augmented to MLP modeling methodology and architecture. The models analyzed are 
in spirit of NN-GARCH architecture of Donaldson and Kamstra (1997) which are enhanced to 
various NN-GARCH family models in Bildirici and Ersin (2009). 
         The models in the literature aim augmenting the conditional mean or the conditional 
variance or both with nonlinear techniques. In the study, we evaluated various forms of 
models and suggest MLP based augmentations. Baseline models analyzed include GARCH, 
FIGARCH, APGARCH and FIAPGARCH; their relevant LSTAR in the mean augmentations 
are LSTAR-GARCH, LSTAR-FIGARCH, LSTAR-APGARCH and LSTAR-FIAPGARCH; 
smooth transition type nonlinearity in the mean as well as the variance are LSTAR-LST-
GARCH, LSTAR-LST-FIGARCH, LSTAR-LST-APGARCH and LSTAR-LST-
FIAPGARCH models. Following the literature, we first evaluated modeling the conditional 
mean with state of the art nonlinear models, MLP model with errors following GARCH, 
APGARCH, FIGARCH and FIAPGARCH type processes. The obtained models are MLP-
GARCH, MLP-FIGARCH, MLP-APGARCH and MLP-FIAPGARCH models. Results show 
that though there is improvement in terms of insample and out-of sample accuracy as we 
move from GARCH towards LSTAR-GARCH, LSTAR-LST-GARCH and MLP-GARCH 
models, the improvement in a forecast horizon of 80 days ahead is not satisfactory. As a 
result, models are augmented with neural networks in conditional variance processes. The 
obtained LSTAR-GARCH-MLP and LSTAR-LST-GARCH-MLP model family showed 
significant improvement in terms of forecast accuracy in the out-of-sample, whereas, the 
highest gains are obtained from LSTAR-LST-APGARCH-MLP model.   
In conclusion at first step, models with fractional integration and asymmetric power GARCH 
provided gains compared to simple GARCH models. Specifications such as LSTAR-GARCH 
and LSTAR-LST-GARCH further augmented to their fractionally integrated and asymmetric 
power GARCH variants such as LSTAR-LST-FIAPGARCH in this study also provide gains 
in modeling. For MLP-GARCH model we obtained low improvement compared to the 
previous models. However, neural network augmented LSTAR-LST-GARCH-MLP models 
provided significant gains in forecast accuracy. Therefore, the NN extended versions of ST 
and FI type volatility models are shown to provide improved forecast results. Results suggest 
that volatility clustering, asymmetry and nonlinearity characteristics are modeled more 
efficiently and provide better forecast accuracy with neural networks based LSTAR-GARCH-
MLP and LSTAR-LST-GARCH-MLP models. 



 
 
References 
 
Abramson, A.,  Cohen, I. (2007), “On the Stationarity of Markov-Switching GARCH 
Processes,” Econometric Theory 23, 485–500. 
 
Abhyankar, A., Copeland, L. S.,  Wang, W. (1997). Uncovering nonlinear structure in real 
time stock market indexes: The Sand P 500, the DAX, the Nikkei 225, and the FTSE-100. 
Journal of Business and Economic Statistics, 15(1), 1–14. 
 
Anderson, H.M., Nam, K. and Vahid, F., 1999. Asymmetric nonlinear smooth transition 
GARCH models. Rothman, P., editor, Nonlinear time series analysis of economic and fi 
nancial data, Kluwer, Boston, 191-207. 
 
Alexander, C. Lazar, E. (2008), “Markov Switching GARCH Diffusion”, ICMA Centre 

Discussion Papers in Finance 2008-01. 
 
Ane, T. and Ureche-Rangau, L. (2006), Stock market dynamics in a regime switching 
asymmetric power GARCH model, International Review of Financial Analysis 15, 109-129 
 
Ang, A., Bekaert G.(2002), “International Asset Allocation with Regime Shifts”, Review of 
Financial Studies 15, 1137-1187. 
 
Ang, A., Bekaert, G. (2001), “Regime Switches in Interest Rates,” Journal of Business and 
Economic Statistics, 

 

Bartlett, P.L. (1997), "For valid generalization, the size of the weights is more important than 

the size of the network," in Mozer, M.C., Jordan,M.I., and Petsche, T., (eds.) Advances in 

Neural Information Processing Systems 9, Cambridge, MA: The MIT Press, pp. 134-140.  
 
Bauwens, L., Rombouts, J. (2004), “Econometrics,” In J. Gentle,W. Hardle and Y. Mori 
(Eds.), Handbook of  Computational Statistics: Concepts and Methods, 951–79. Heidelberg: 
Springer. 
 
Bauwens, L. Preminger, A., Rombouts, J. (2006), “Regime Switching GARCH Models,” 
CORE Discussion Paper 2006/11, Universite Catholique de Louvain, Louvain La Neuve. 
 
Bauwens, L. Preminger, A., Rombouts, J. (2007), “Theory and Inference for a Markov-
Switching GARCH Model,” CIRPEE Working Papers No. 07-33. 
 
Bauwens, L. Preminger, A., Rombouts, J. (2010), “Theory and Inference for a Markov-
Switching GARCH Model,” Econometrics Journal 13, 218–244. 
doi: 10.1111/j.1368-423X.2009.00307.x 
 
Billing SA, Jamaluddin SA, Chen S. (1990), “A comparison of the back propagation and 
recursive prediction error algorithms for training neural networks”. Mech Sys Signal Process, 
International  Journal  Control ;55: 233–55. 
 



Bildirici, M., Ersin, Ö. (2009), “Improving Forecasts of GARCH Family Models with the 
Artificial Neural  Networks: An Application to the Daily Returns in Istanbul Stock 
Exchange”, Expert  Systems with Applications,  36: 7355-7362 
 
Binner J. M. , Elger C. T., Nilsson B., Tepper J. A., (2006),  “Predictable non-linearities in 
U.S. inflation”,  Economics Letters 93;  323–328 
 
Bollen, N., Gray, S., Whaley, R. (2000), “Regime-Switching in Foreign Exchange Rates: 
Evidence From Currency Option Prices,” Journal of Econometrics 94, 239–76. 
 
Bollerslev, T., (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal 

of Econometrics, 31(3), April, 307–327. 
 
Bollerslev, T., Mikkelsen, O., (1996) “Modeling and Pricing Long Memory in Stock Market 
Volatility,” Journal of Econometrics, 73(1), 151–184.  
 
Brooks, R. D., Faff, R. W., McKenzie, M. D., and Mitchell, H. (2000), “A Multi-Country 
Study of Power ARCH Models and National Stock Market Returns,” Journal of International 

Money and Finance, 19, 377–397. 
 
Brooks, C. (1998). Predicting stock index volatility: Can Market Volume help? Journal of 

Forecasting, 17, 59–98. 
 
Cai, J. (1994): “A Markov Model of Switching–Regime ARCH,” Journal of Business 

and Economic Statistics, 12, 309–316. 
 
Campbell, J. Y., Grossman, S. J., and Wang, J. (1993). Trading volume and serial correlation 
in stock returns. The Quarterly Journal of Economics, 108, 905–936. 
 
Campbell, J.Y., A.W. Lo and A.C. MacKinlay, 1998, The econometrics of financial markets. 
Princeton, NJ: Princeton University Press. 
 

Castiglione, F. (2001). Forecasting price increments using an arti.cial neural network. 
Advances in Complex Systems, 4(1), 45–56. 
 
Chan, K. (1993), “A Review of Some Limit Theorems of Markov Chains and Their 
Applications,” In H. Tong (Ed.) Dimension Estimation and Models, River Edge, NJ: World 
Scientific Publishing. 
 
Chan F., 2011,  Billy Theoharakis, Estimating m-regimes STAR-GARCH model using 
QMLE with parameter transformation, Mathematics and Computers in Simulation 81: 1385–
1396 
 
Chan F., and  McAleer M., 2002. "Maximum likelihood estimation of STAR and STAR-
GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John 
Wiley & Sons, Ltd., vol. 17(5): 509-534 
 
Chan F., and  McAleer M., 2003. "Estimating smooth transition autoregressive models with 
GARCH errors in the presence of extreme observations and outliers," Applied Financial 
Economics, Taylor and Francis Journals, vol. 13(8):581-592 



 
Chang, B., Tsai, H. (2009), “Training Support Vector Regression by Quantum-Neuron-Based 
Hopfield Neural Net with Nested Local Adiabatic Evolution,” International Journal of 

Innovative Computing, Information and Control 5 (4), 1013-1026. 
 
Chen Q and  Li C.D. , (2006), “Comparison of Forecasting Performance of AR, STAR and 
ANN Models on the Chinese Stock Market Index”,  
 
Chung, C.-F. (1999): “Estimating the fractionally intergrated GARCH model,” National. 
Taïwan University working paper.  
 
Coakley, J. R., Brown, C. E. (2000). Artificial neural networks in accounting and .nance: 
Modeling issues. International Journal of Intelligent Systems in Accounting, Finance and 
Management, 9, 119–144. 
 
Conrad and Haag (2006), “Inequality Constraints in the Fractionally Integrated GARCH 
Model”, Journal of Financial Econometrics, 4 (3), 413–449. 
 
Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2010. "Modeling and Explaining 
the Dynamics of European Union Allowance Prices at High-Frequency," Working Papers 
0497, University of Heidelberg, Department of Economics 
 
Davidson, J. (1994), Stochastic Limit Theory, New York: Oxford University Press. 
 
Diebold, F. (1986), “Comment on Modelling the Persistence of Conditional Variances,” 
Econometric Reviews 5, 51–56. 
 
Diebold, F. and A. Inoue (2001), “Long Memory and Regime switching”, Journal of 

Econometrics 105, 131–59. 
 
Ding, Z., Granger, C.W.J., Engle, R.F. (1993). “ A Long Memory Property of Stock Market 
Returns and a New Model,” Journal of Empirical Finance, 1, 83-106. 
 
Donaldson, R.G., M. Kamstra (1997),  “An Artificial Neural Network-GARCH Model for 
International Stock Return  Volatility,” Journal of Empirical Finance 4, 17-46. 
 
Elman, J., 1990. Finding structure in time. Cognitive Science 14, 179–211. 
 
Dufr´enot, G., V. Marimoutou and A. P´eguin-Feissolle (2002). ”LSTGARCH effects in stock 
returns : the case of US, UK and France”, International Conference on Forecasting Financial 
Markets, London, May 
 
Engle, R.F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of 
theVariance of United Kingdom  Inflation,” Econometrica , 50, 987-1007. 
 
Engle R.F.,  Bollerslev T. (1986), Modelleing the Persistence of Conditional Variances, 
Econometric Reviews, 5(1): 1-50 
 
Engle, R.F.,  Ng V.K. (1993), “Measuring and Testing the Impact of News on Volatility,” 
Journal of Finance, 48, 1749-1778. 



 
Engle, Robert F, (1990), Stock Volatility and the Crash of '87: Discussion," Review of 
Financial Studies, Oxford University Press for Society for Financial Studies, vol. 3(1), pages 
103-06. 
 
Faraway, J. & C. Chatfield (1998), "Time-series forecasting with neural networks: A 
comparative study using the airline data," Applied Statistics, 47, 231-250. 
 
Francq, C., M. Roussignol and J.-M. Zakoian (2001), “Conditional heteroskedasticity driven 
by hidden Markov chains,” Journal of Time Series Analysis 22, 197–220. 
 
Francq, C. and J.-M. Zakoian (2002), “Comments on the paper by Minxian Yang: ‘Some 
properties of vector autoregressive processes with Markov-switching coefficients,”  
Econometric Theory 18, 815–18. 
 
Francq, C. and J.-M. Zakoian (2005), “The l2-structures of standard and switching-regime 
GARCH models,” Stochastic Processes and their Applications 115, 1557–82. 
 
Franses, P.H.B.F., Neele, J. & Dijk, D.J.C. van (1998). Modelling asymmetric volatility in 
weekly Dutch temperature data. Econometric Institute 9840/A 
 
Freisleben, B. (1992), Stock market prediction with back propagation networks, Proceedings 
of the 5th international conference on industrial and engineering application of arti.cial 
intelligence and expert system,  451–460 
 
Frömmel, M. (2007), “Volatility Regimes in Central and Eastern European Countries’ 
Exchange Rates,” Faculteit Economie En Bedrijfskunde Working Paper, 2007/487 
 
Gallant, R., Rossi, P. E., and Tauchen, G. (1992). Stock prices and volume. Review of 
Financial Studies, 5, 199–242. 
 
Garcia, R., Luger R., and Renault E. (2003), “Empirical Assessment of an Intertemporal 
Option Pricing Model with Latent Variables,” Journal of Econometrics 116. 
 
Gelfand, A. and A. Smith (1990), “Sampling Based Approaches to Calculating Marginal 
Densities,” Journal of the American Statistical Association 85, 398–409. 
 
Gerlach, R. and F. Tuyl (2006), “MCMC methods for comparing stochastic volatility and 
GARCH models,” International Journal of Forecasting 22, 91–107. 
 
Giraitis, L., Robinson, P.M., Surgailis, D., 2004. LARCH, leverage and long memory. Journal 
of Financial Econometrics 2, 
177–210. 
 
Giraitis, L., Leipus, R., Surgailis, D., 2005. Recent advances in ARCH modelling. In: Kirman, 
A., Teyssie`re, G. (Eds.), Long-memory in Economics. Springer, Berlin 
 
Glosten, L.R., Jagannathan, R., Runkle, D.(1993). “On the Relation Between the Expected 
Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48, 
1779-1801. 



 
Goldfeld, Stephen M.,. Quandt R.E.,(1973), A Markov Model for Switching Regressions,  
Journal of Econometrics 1, 3-16. 
 
Gonzalez-Rivera, G.,(1998), Smooth transition GARCH models. Studies in Non-linear 
Dynamics and Econometrics 3, 61.78. 
 
Gray, S. (1996), .Modeling the Conditional Distribution of Interest Rates as a Regime-
Switching Process., Journal of Financial Economics 42, 27-62. 
 

Gupta A, Lam M (1998) The weight decay backpropagation for generalizations with missing 

values. Ann Oper Res 78:165–187. 
 
Haas, M., Mittnik, S., and Paolella, M. S. (2004b): “A New Approach to Markov– Switching 
GARCH Models,” Journal of Financial Econometrics, 2, 493–530. 
 
Hagerud, G.E. (1997), .A Smooth Transition ARCH Model for Asset Returns., SSE/EFI 
Working Paper Series in Economics and Finance, No.162. 
 
Hamilton, J. D. and Susmel, R. (1994): “Autoregressive Conditional Heteroskedasticity 
and Changes in Regime,” Journal of Econometrics, 64, 307–333. 
 
Hao, W., Yu, S. (2006), “Support Vector Regression for Financial Time Series Forecasting,” 
in International Federation for Information Processing (IFIP), Vol. 207, Knowledge 
Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management, eds K. 
Wang, Kovacs, G., Wozni M., Fang, M., Boston: Springer, 825-830. 
 
Hasanov, M. and Omay, T., (2007) “Are the transition stock markets efficient? Evidence from 
non-linear unit root tests”, Central Bank Review, vol:7(2), 1-7. 
 
Hasanov, M. and Omay, T.,(2008) “Nonlinearities in Emerging Stock Markets: Evidence 
from Europe’s Two Largest Emerging Markets” Applied Economics. 40,(23),p.2645-2658. 
 
Hentschel, L. (1995). “All in the Family: Nesting Symmetric and Asymmetric GARCH 
Models.,” Journal of Financial Economics, 39, 71-104. 
 
Higgins, M. L, Bera, A. K. (1992). “A Class of Nonlinear ARCH Models,” International 

Economic Review, 33, 137 -158. 
 
Hiemstra, C., Jones, J. D. (1994). Testing for linear and nonlinear Granger causality in the 
stock price-volume relation. The Journal of Finance, 49, 1639–1664. 
 
Hilebrand, E. (2005), “Neglecting parameter changes in GARCH models. Journal of 

Econometrics 129, 121–38. 
 
Hu, L., Shin, Y. (2007), “Optimal Test for Markov Switching GARCH Model,” Studies in 

Nonlinear Dynamics & Econometrics 12(3), Article 3. 
 
Huang, S., Wu, T. (2008), “Integrating GA-based Time-scale Feature Extractions with SVMs 
for Stock Index Forecasting,” Expert Systems with Applications 35, 2080-2088. 



 
Hutchinson J.M.,  Lo A.W.,  Poggio T., (1994), “A Nonparametric Approach to Pricing and 
Hedging Derivative Securities Via Learning Networks”, The Journal of Finance, Vol. 49, No. 
3, 851-889 
 
Jeanne, Olivier and Paul Masson (2000), “Currency Crises, Sunspots, and Markov-Switching 
Regimes,” Journal of International Economics 50, 327-350. 
 
Jeng, J., Chuang, C., Su, S. (2003), “Support Vector Interval Regression Networks for 
Interval Regression Analysis,” Fuzzy Sets and Systems 138, 283-300. 
 
Jordan, M., 1986. Attractor Dynamics and Parallelism in a Connectionist Sequential Machine. 
Proceedings of the 8th Annual Conference of the Cognitive Science Society, pp. 531–545. 
 
Jorian P. (2000).Value at risk: The New Benchmark for Managing Financial Risk, 2ed., 

NewYork: McGraw Hill. 
 
Đnce, H., Trafalis, T. (2006), “A Hybrid Model for Exchange Rate Prediction,” Decision 

Support Systems 42, 1054-1062 
 
Karanasos, M., Psaradakis, Z., Sola, M., 2004. On the autocorrelation properties of long-
memory GARCH processes. Journal of Time Series Analysis 25, 265–281 
 
Kaufman, S. and S. Frühwirth-Schnatter (2002), “Bayesian analysis of switching ARCH 
models,” Journal of Time Series Analysis 23, 425–58. 
 
Klaassen, F. (2002), “Improving GARCH volatility forecasts with regime-switching 
GARCH,” Empirical Economics 27, 363–94. 
 
Kılıç, R. (2010), "Long memory and nonlinearity in conditional variances: A smooth 
transition FIGARCH model," Journal of Empirical Finance (2010), 
doi:10.1016/j.jempfin.2010.11.007 
 
Kramer, W. (2008), “Long Memory with Markov-Switching GARCH”, Cesifo WP no. 2225 
 

Krogh, A., Hertz, J. (1995), “A Simple Weight Decay Can Improve Generalization,”In 

Advances in Neural Information Processing Systems 4, J. Moody, S. Hanson and R. 

Lippmann, eds. Morgan Kauffmann Publishers, San Mateo: California. 
 
Lamoureux, C. and W. Lastrapes (1990), “Persistence in variance, structural change, and the 
GARCH model,” Journal of Business and Economic Statistics 8, 225–34. 
 
Lapedes, A. and Farber, R. (1987). Nonlinear signal processing using neural networks. 
Proceedings of the IEEE conference on neural information processing system-natural and 
synthetic. 
 
Lee J. and Degennaro, R. 2000. Smooth transition ARCH models: Estimation and testing. 
Review of Quantitative Finance and Accounting 15, 5-20. 
 
Lundberg, S., and TerÄasvirta, T., 1998. Modeling economic high-frequency time series with 



STAR-STGARCH models. Department of Economics, Stockholm School of Economics. 
 
Luukkonnen, R., Saikkonnen, P., Terasvirta, T. (1988), “Testing Linearity Against Smooth 
Transition Autoregressive Models,” Biometrika, 75, 491-499. 
 
Maheu, J. and Z. He (2009), “Real time detection of structural breaks in GARCH models,” 
Working paper, Department of Economics, University of Toronto. 
 
Mandic D., Chambers J.A., (2001), Recurrent Neural Networks for Prediction , John Wiley 
and Sons 
 
Mashor, M. Y. (2000). “Hybrid Multilayered Perceptron Networks”, International Journal of 

System Science, Vol. 31. No. 6. pp. 771-785. 
 
McKenzie, M. & Mitchell, H., (2002),"Generalized Asymmetric Power ARCH Modelling of 
Exchange Rate Volatility," Applied Financial Economics, 12(8): 555-64. 

McMillan, D.G. (2003) “Non-linear Predictability of UK Stock Market Returns”, Oxford 
Bulletin of Economics and Statistics, vol. 65, issue 5, pp. 557-573  

Meitz, S. and P. Saikkonen (2008), “Stability of nonlinear AR-GARCH models,” Journal of 

Time Series Analysis 29, 453–75. 
 
Mikosch, T. and C. Starica (2004), “Nonstationarities in financial time series, the long-range 
dependence, and the IGARCH effects,”  Review of Economics and Statistics 86, 378–90. 
 
Moeanaddin, R. and H. Tong (1990), “Numerical evaluations of distribution of non-linear 
autoregression,” Journal of Time Series Analysis 11, 33–48. 
 
Müller, K., Smola, A., Raetsch, G., Shoelkopf, B., Kohlmorgen, J., Vapnik, V. (1997), 
“Predicting Time Series with Support Vector Machines,” Proceedings of ICANN’97, 

Springer, LNCS 1327, 999-1004. 
 
Nam K., Pyun C.S. and Arize A.C., 2002, Asymmetric mean-reversion and contrarian profits: 
ANST-GARCH approach, Journal of Empirical Finance 9 (2002) 563– 588 
 
Nelson, D. B. (1990), “Stationarity and persistence in the GARCH(1,1) model,” Econometric 

Theory 6, 318–34. 
 
Nelson, D.B. (1991). “Conditional Heteroscedasticity in Assets Returns: A New Approach,” 
Econometrica, 55, 703-708. 
 
Nelson, D.B. (1992), “Filtering and Forecasting with Misspecified ARCH Models I: Getting 
the Right Variance with the Wrong Model,” Journal of Econometrics, 52, 61-90. 
 
Nelson, M., Hill, T., Temus, W., O’Connor, M. (1999). Time series forecasting using neural 
networks: Should the data be deseasonalized .rst? Journal of Forecasting, 18, 359–367. 
 
Pai, P., Lin, C., Hong, W., Chen, C. (2006), “A Hybrid Support Vector Regression for 
Exchange Rate Prediction,” Information and Management Sciences 17(2), 19-32. 



 
Phua, P. K. H., Ming, D. (2003). Parallel nonlinear optimization techniques for training neural 
networks. IEEE Transactions on Neural Networks, 14(6), 1460–1468. 
 
Phua, P. K. H., Zhu, X., Koh, C. (2003). Forecasting stock index increments using neural 
networks with trust region methods. Proceedings of IEEE International Joint Conference on 
Neural Networks, 1, 260–265. 
 
Potter, SM., 1995a, A nonlinear approach to U.S. GNP, Journal of Applied Econometrics 10, 
109-125 
. 
Potter, S.M. 1995b, Nonlinear impulse response functions, Mimeo, Department of 
Economics, UCLA. 
 
Refenes, A. P. N., Burgess, A. N., and Bentz, Y. (1997). Neural networks in financial 
engineering: a study in methodology. IEEE Transactions on Neural Networks, 8(6), 1222–
1267. 
 
Refenes, A. N., Zapranis, A., Francies, G. (1994). Stock performance modeling using neural 
networks: a comparative study with regression models. Neural Networks, 5, 961–970. 
 
Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer Verlag. 
 
 Taylor, M. (1994), “Historical Surface Level of the Great Salt Lake”. Master’s Thesis, Utah 
State University, Logan, Utah, USA. 
 
Teräsvirta, Timo. (1994) “Specification, Estimation, and Evaluation of Smooth Transition 
Autoregressive Models”. Journal of the American Statistical Association. c. 89. s. 425: 208-
218. 
Tse, Y.K. and Tsui, A.K.C. (1997) “Conditional Volatility in Foreign Exchange Rates : 
Evidence fro the Malaysian Ringgit and Singapore Dollar” Pacific-Basin Finance 

Journal (5) pp. 345 – 356 
 
Resta, M. (2000). Towards an arti.cial technical analysis of financial markets. Proceedings of 
the IEEE–INNS–ENNS international joint conference on neural networks, 5, 117–122. 
 
Robert, C. and G. Casella (2004), Monte Carlo Statistical Methods, New York: Springer. 
 
Schwert, G. (1989), “Why does stock market volatility change over time?” Journal of 

Finance 44, 1115–53. 
 
Spezia, L., Paroli, R. (2008), “Bayesian Inference and Forecasting in Dynamic Neural 
Networks with Fully Markov Switching ARCH Noises,” Communications in Statistics—

Theory and Methods, 37: 2079–2094. 
 
Stachurski, J. and V. Martin (2008), “Computing the distributions of economic models via 
simulations,” Econometrica 76, 443–50. 
 
Sims, Christopher, and Tao Zha (2004), “Were There Switches in U.S.Monetary Policy?”, 
working paper, Princeton University. 



 
Sitte, R., and Sitte, J. (2000). Analysis of the predictive ability of time delay neural networks 
applied to the Sand P 500 time series. IEEE Transactions on Systems, Man and Cybernetics – 
Part C: Applications and Review, 30(4), 568–572. 
 
Swanson N. and H. White, 1995. A model selection approach to assessing the information in 
the term structure using linear models and artificial neural networks, Journal of Business and 
Economics Statistics, 13, 265-275. 
 
Tanner, M. and W. Wong (1987), “The calculation of the posterior distributions by data 
augmentation,” Journal of the American Statistical Association 82, 528–40. 
 
Terasvirta, T.; Anderson, H.M. (1992), Characterizing nonlinearities in business cycles using 
smooth transition autoregressive models. Journal of Applied Econometrics, 7,119–136 
 
Thierry, A., Ureche-Rangau, L., (2006), “Stock Market Dynamics in a Regime-Switching 
Asymmetric Power GARCH Model,” International Review of Financial Analysis, Elsevier, 
vol. 15(2), pages 109-129. 
 
Tino, P., Schittenkopf, C., and Dorffner, G. (2001). “Financial Volatility Trading using 
Recurrent Neural Networks,”  IEEE Transactions on Neural Networks, 12(4), 865–874. 
 
Tjostheim, D. (1990), “Non-linear time series and Markov chains,” Advances in Applied 

Probability 22, 587–611. 
 
Tsay, R. (2005), Analysis of Financial Time Series, New York: John Wiley. 
 
Wang, H. (2005). Flexible .ow shop scheduling: Optimum, heuristics, and AI solutions. 
Expert Systems, 22(2), 78–85. 
 
Wang, H., Jacob, V., and Rolland, E. (2003). Design of e.cient hybrid neural networks for 
flexible .ow shop scheduling. Expert Systems, 20(4), 208–231. 
 
Wang, X., Phua, P. H. K., and Lin, W. (2003). Stock market prediction using neural networks: 
Does trading volume help in short-term prediction? Proceedings of IEEE International Joint 
Conference on Neural Networks, 4, 2438–2442. 
 

Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991). Generalization by weight-

elimination with application to forecasting. In: R. P. Lippmann, J. Moody, & D. S. Touretzky 

(eds.), Advances in Neural Information Processing Systems 3, San Mateo, CA: Morgan 

Kaufmann.  

 
Weigend, B.A. Huberman, D.E. Rumelhart, Predicting sunspots and exchange rates with 
connectionist networks, in: Proceedings of the 1990 NATO Workshop on Nonlinear 
Modeling and Forecasting, Addison Wesley, Santa Fe, NM, USA. 1991. 
 
Weigend A.S., Mangeas M.,  Srivastava A.N., “Nonlinear gated experts for time series: 
discovering regimes and avoiding overfitting”, International Journal of Neural Systems 6 
(1995) 373-399. 



 
White H. (1992), Artificial Neural Networks: Approximation and Learning Theory, 
Blackwell: Oxford. 
 
Yang, M. (2000), “Some properties of vector autoregressive processes with Markov-switching 
coefficients,” Econometric Theory 16, 23–43 
 
Yao, J. T., and Poh, H.-L. (1996), “Equity Forecasting: A Case Study on the KLSE Index,” In 
A.-P. N. Refenes, Y. Abu-Mostafa, J. Moody, and A. Weigend (Eds.), Neural Networks in 
Financial Engineering, Proceedings of the 3rd International Conference on Neural Networks 

in the Capital Markets (pp. 341–353). World Scientific. 
 
Yao, J. T., and Tan, C. L. (2000), “Time Dependent Directional Profit Model for Financial 
Time Series Forecasting,” Proceedings of the IEEE–INNS– ENNS International Joint 

Conference on Neural Networks, 5, 291–296. 
 
Yao, J. T., Tan, C. L., and Poh, H. L. (1999), “Neural Networks for Technical Analysis: A 
Study on KLCI,” International Journal of Theoretical and Applied Finance, 2 (2), 221–241. 
Yao, J. (2001), “On square-integrability of an AR process with Markov switching,” Statistics 

and Probability Letters 52, 265–70. 
 
Yao, J. and J.-G. Attali (2000), “On Stability of Nonlinear Process with Markov Switching,” 
Advances in Applied Probability 32, 394–407. 
 
Zaffaroni, P., 2004. Stationarity and memory of ARCH(l) models. Econometric Theory 20, 
147–160. 
 

Zakoian, J.M., (1994). “Threshold Heteroskedastic Models,” Journal of Economic Dynamics 

and Control, 18, 931-955 

   
Zhang, G., Patuwo, B.E., Hu, M.Y. (1998), “Forecasting with Artificial Neural Networks: the 
State of the Art,” International Journal of Forecasting 14, 35–62. 
 
Zhang, M. Y., J. Russell and R. Tsay (2001), “A Nonlinear Autoregressive Conditional 
Duration Model with Applications to Financial Transaction Data,” Journal of Econometrics 

104, 179–207. 
Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: 
Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 
87(6):1804-1814. 
 
Zhu, X., H. Wang, L. Xu, H. Li (2007), “Predicting Stock Index Increments by Neural 
Networks: The Role of Trading Volume under Different Horizons,” Expert Systems with 

Applications. doi:10.1016/j.eswa.2007.06.023 [www.elsevier.com/locate/eswa]. 
 


