Gyarmati, Ákos and Lublóy, Ágnes and Váradi, Kata (2012): The Budapest liquidity measure and the price impact function. Published in: Crisis Aftermath: Economic policy changes in the EU and its Member States, Conference Proceedings, Szeged, University of Szeged , Vol. ISBN 9, (2012): pp. 112125.

PDF
MPRA_paper_40339.pdf Download (641kB)  Preview 
Abstract
During the 2007/2008 global economic crisis, market liquidity became an important issue both on the field of theoretical finance and in practice. In theory market liquidity is usually being modeled with price impact functions. In this study we show how the price impact function can be estimated from order book data. Our estimation is based on the Budapest Liquidity Measure (BLM) which is a liquidity measure that captures the transaction cost nature of liquidity.
The main outcome of this paper is a method with which market participants can easily estimate price impact functions. This is of major importance, as the price impact function can be a useful tool during a dynamic portfolio optimization process. The price impact functions can help investors in their trading decisions.
Item Type:  MPRA Paper 

Original Title:  The Budapest liquidity measure and the price impact function 
Language:  English 
Keywords:  market liquidity; price impact function; liquidity measure 
Subjects:  G  Financial Economics > G1  General Financial Markets > G14  Information and Market Efficiency; Event Studies G  Financial Economics > G1  General Financial Markets > G11  Portfolio Choice; Investment Decisions 
Item ID:  40339 
Depositing User:  Beata Farkas 
Date Deposited:  06. Aug 2012 14:08 
Last Modified:  12. Feb 2013 18:31 
References:  Acerbi, C. (2010): The value of liquidity – Can it be measured?. RBC Dexia Investor Services. Almgren, R. – Thum, C. – Hauptmann, E. – Li, H. (2005): Equity market impact. Risk, July, pp. 2128. Barclay, M. – Warner, J. (1993): Stealth Trading and Volatility: Which Trades Move Prices? Journal of Financial Economic, 34, pp. 281–305. Biais, B. – Hillion, P. – Spatt, C. (1995): An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse. Journal of Finance, 50(5), pp. 16551689. Bouchaud, JP. – Potters, M. (2002): More statistical properties of order books and price impact. Physica A, 324, pp. 133140. Bouchaud, JP. (2010a): Price impact. In: Encyclopedia of Quantitative Finance, Wiley Online Library. Bouchaud, JP. (2010b): The endogenous dynamics of markets: price impact and feedback loops. arXiv.org Quantitative Finance Papers. http://arxiv.org/PS_cache/arxiv/pdf/ 1009/1009.2928v1.pdf Downloaded: 14 July 2011. Bouchaud, JP. – Farmer, J.D. – Lillo, F. – des Meurisiers, O. (2008): How Markets Slowly Digest Changes in Supply and Demand, In: Hens, T. – SchenkHoppe, K. (eds). Handbook of Financial Markets: Dynamics and Evolution, Elsevier: Academic Press. Challet, D. – Stinchcombe, R. (2001): Analyzing and modeling 1+1d markets. Physisa A, Vol. 300, pp. 285299. Cont, R. – Kukanov, A. – Stoikov, S. (2011): The price impact of order book events. arXiv.org Quantitative Finance Papers. http://ssrn.com/abstract=1712822 Downloaded: 10 July 2011. Evans, M. D. D. – Lyons, R.K. (2002): Order flow and exchange rate dynamics. Journal of Political Economy, 110(1), pp. 170180. Farmer, J.D. – Gillemot, L. – Lillo, F. – Mike, S – Sen, A. (2004): What really causes large price changes? Quantitative Finance, 4(4), pp. 383397. Farmer, J.D. – Lillo, F. (2004): On the origin of powerlaw tails in financial markets. Quantitative Finance, 4(1), pp. 711. Ferraris, A. (2008): Equity Market Impact Models. Mathematics at the interface between business and research. Presentation, Stifterverband für die Deutsche Wissenschaft. 4 December 2008, Berlin. http://www.dbquant.com/Presentations/Berlin200812.pdf Downloaded: 28June 2011. Gabaix, X. – Gopikrishnan, P. – Plerou, V. – Stanley, H.E. (2003): A theory of powerlaw distributions in financial market fluctuations. Nature, Vol. 423, pp. 267270. Gabaix, X. – Gopikrishnan, P. – Plerou, V. – Stanley, H.E. (2006): Institutional investors and stock market volatility. Quarterly Journal of Economics, Vol. 121, pp. 461504. Gyarmati, Á. – Lublóy, Á. – Váradi K. (2012): Virtuális árhatás a Budapesti Érétktőzsdén (Virtual Price Impact on the Budapest Stock Exchange), Manuscript submitted to the Hungarian Review of Economics (Közgazdasági Szemle). Gyarmati, Á. – Michaletzky, M. – Váradi, K. (2010): Liquidity on the Budapest Stock Exchange 20072010, Working Paper, Budapest Stock Exchange. Available: http://ssrn.com/ abstract=1784324 Hausbrouck, J. (1999): Measuring the information content of stock prices. Journal of Finance, 46(1), pp. 179207. Hausman, J.A. – Lo, A.W. – MacKinlay, A.C. (1992): An ordered probit analysis of transaction stock prices. Journal of Financial Economics, 31(3), pp. 319379. Hopman, C. (2007): Do supply and demand drive stock prices? Quantitative Finance, 7(1) pp. 3753. Kempf, A. – Korn, O. (1999): Market Depth and Order Size. Journal of Financial Markets, 2, pp. 2948. Kutas, G. – Végh, R. (2005): A Budapesti Likviditási Mérték bevezetéséről (Introduction of the Budapest Liquidity Measure). Közgazdasági Szemle, LII. évfolyam, júliusaugsztus, pp. 686711. Lillo, F. – Farmer, J. D. – Mantegna, R. (2003): Master curve for price impact function. Nature, 421, pp. 129130. Lim, M. – Coggins, R. (2005): The immediate price impact of trades on the Australian Stock Exchange. Quantitative Finance, 5, pp. 365–377. Margitai, I. (2009): Piaci likviditás és mikrostruktúra (Market Liquidity and Market Microstructure). Thesis, Corvinus University of Budapest Maslov, S. – Mills, M. (2001): Price fluctuation from the order book perspective – empirical facts and a simple model. Physica A, Vol. 299, pp. 234 246. Niemeyer, J. – Sandas, P. (1995): An empirical analysis of the trading structure at the Stockholm Stock Exchange. Stockholm School of Economics Working Paper, No. 44. Plerou, V. – Gopikrishnan, P. – Gabaix, X. – Stanley, H.E. (2002): Quantifying Stock Price Response to Demand Fluctuations. Physical Review E, 66(027104), pp. 14. Torre, N. G. & Ferrari, M. J. (1999): The Market Impact ModelTM. BARRA Research Insights. 1999 BARRA, Inc. Weber, P. – Rosenow, B. (2005): Order book approach to price impact. Quantitative Finance, 5(4), pp. 357364. Zhou, W.X. (2011): Universal price impact functions of individual trades in an orderdriven market. Quantitative Finance, in press. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/40339 