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Abstract 

A general equilibrium model has been constructed in a stochastic endogenous growth 

economy driven by an Itô-Lévy diffusion process. The minimum time to “economic maturity” for 

an underdeveloped economy has been computed both in the preference manifold of the modified 

Ramsey fashion and in that of the modified Radner fashion with its support, i.e., fiscal policies and 

savings strategy, endogenously determined. Furthermore, the effects of different information 

structures to the endogenous time have been thoroughly investigated, and local sensitivity 

analyses of optimal consumption per capita with respect to the initial level of capital stock per 

capita have been smoothly incorporated into the current macroeconomic model. 
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1. INTRODUCTION 

For any underdeveloped economy, like China, both the government and the 

people are motivated to choose appropriate fiscal policies and optimal investment 

strategies, respectively, to make the economy reach its maturity level
2
 as quickly as 

possible. The state of “economic maturity” can be, in the category of macroeconomics, 

translated into the well-known von Neumann equilibrium (see, Neumann, 1945-1946; 

Kemeny et al, 1956; Howe, 1960; Yano, 1998), “turnpike”
3
 (e.g., Hicks, 1961; 

Radner, 1961; Morishima, 1961; McKenzie, 1963a, 1963b; Atsumi, 1965; Cass, 1966; 

and Gale, 1967), the Golden Age or modified Golden Age (e.g., Champernowne, 1962; 

Pearce, 1962; Phelps, 1961, 1962, 1965; Samuelson, 1965). And in turn, provided the 

existence of the von Neumann path or the “turnpike” of the economy, the problem 

facing us, including the government and the representative agent, is to choose 

appropriate fiscal policies and savings strategy, respectively, to effectively support the 

convergence of the economical system, thereby implying the economy will spend 

almost all time staying at least in the neighborhood of the von Neumann equilibrium 

or the “turnpike” (see, Cass, 1966; Yano, 1984b; McKenzie (1998) and references 

therein), which indeed represents the maximal and sustainable terminal path level 

(e.g., Kurz, 1965; McKenzie, 1976) of the corresponding economy in the present 

model. 

And the current paper is devoted to confirm the existence of the unique von 

Neumann path or the well-known “turnpike” of an aggregate endogenous growth 

economy equipped with AK production technology (e.g., Barro, 1990; Rebelo, 1991; 

Turnovsky, 2000; Aghion, 2004), in the background of a general equilibrium 

framework. Nonetheless, the major goal of this paper is to explicitly compute the 

minimum time needed to reach the “economic maturity” for an underdeveloped 

economy and in an uncertainty environment. Moreover, it’s easy to notice that our 

                                                        
2 Undoubtedly, it should reflect not only high speed of economic growth but also high quality of economic 

development. More about this topic of growth and development, one can refer to Solow (2003). 
3 Related preferences see, Inada, 1964; Morishima, 1965; Nikaidô, 1964; Tsukui, 1966, 1967; McKenzie, 1982; 

Winter, 1967; Coles, 1985; Yano, 1984a, 1985; Bewley, 1982; Gantz, 1980; Drandakis, 1966; Araujo and 

Scheinkman, 1977; and Joshi, 1997; Dai, 2012. 
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paper is a natural extension of the seminal and interesting paper of Kurz (1965)
4
, 

where optimal paths of capital accumulation under the minimum time objective are 

thoroughly investigated. It is, nevertheless, worth emphasizing that our results are 

based upon the general equilibrium framework and the minimum time is 

endogenously determined provided the welfare of the representative agent is 

maximized
5
. 

The advantage of the method used here is that the endogenous time
6
 or the 

minimum time to “economic maturity” can be explicitly computed
7

 in some 

conditions, e.g., when the preference or the criterion of the modified Radner fashion 

(1961) is employed. Noting that the minimum time is endogenously determined, even 

applying economic intuitions, by the optimal savings strategy of the representative 

agent and the optimal taxation policies of the government, which are thoroughly 

explored under different information distributions or information structures, thereby 

implying that the endogenous time can be completely characterized and 

comparatively studied in different information structures, which obviously throws 

new insights into our understanding of the minimum time needed to reach “economic 

maturity” for an underdeveloped economy. 

The current paper proceeds as follows. Section 2 introduces the general model 

and the basic idea behind the macroeconomic model. Section 3 computes the 

endogenous time in preference manifold one. Section 4 computes the endogenous 

time in preference manifold two. Section 5 analyzes the effects of different 

information structures to the corresponding endogenous time. Section 6 gives the 

local sensitivity analyses of the optimal consumption strategy, which supports the 

existence of the endogenous time in section 3, with respect to the initial level of 

capital stock per capita. There is a brief concluding section. All proofs, unless 

otherwise noted in the text, appear in the Appendix. 

                                                        
4 It is regarded as a continuation of Srinivasan's work (1962) in a certain sense. 
5 In other words, pursue of speed of economic growth is based upon the quality of economic development. 
6 In the current paper, we will take no difference between “the endogenous time” and “the minimum time to 

‘economic maturity’”. 
7 That is, a simple formula is supplied for the first time. And also, it is easy to see that the maximal terminal path 

level of capital stock per capita is utility-optimal and simultaneously determined with the endogenous time in the 

present model. 
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2. THE GENERAL MODEL 

2.1. Two Types of Preference Manifolds 

In order to determine the minimum time needed to reach the so-called von 

Neumann path or “economic maturity” for an underdeveloped economy, the following 

two kinds of criterions are naturally and indeed comparatively investigated. 

The first one has been widely employed to prove the well-known turnpike 

theorems, and noting that it is pioneered by Radner (1961), we call it the Radner 

fashion. However, it is worth noting that the discount factor is naturally incorporated 

into the criterion while it is excluded in the seminal paper of Radner, that is, we 

employ the modified Radner fashion in the current paper. Formally, given a 

probability space ( , , )W  , similar to Dai (2012), the corresponding problem can be 

written as, 

( )sup ( )e u c
rt

t
t

t-
{ <¥}

Î

é ùê úë û


1 , 

where  denotes admissible stopping times, 0 1r< < denotes subjective discount 

factor, c denotes consumption per capita, :u +   is a strictly concave 

instantaneous utility function, and t{ <¥}1 represents the indicator function of 

set ; ( )w t w{ ÎW <¥} . 

The second one has been widely used in studying aggregate economic growth 

and optimal fiscal policies. And the idea is certainly due to Ramsey (1928), who 

studied endogenous saving with this kind of criterion. As a consequence, we call it the 

Ramsey fashion. As usual, and to meet the regular requirements, only finite time 

horizon, endogenously determined, and discounted sum are discussed in the current 

paper, i.e., only the modified Ramsey fashion is considered. Formally, based on the 

same stochastic basis ( , , )W  , the corresponding problem is expressed as, 

( ) ( )
0

sup ( ) ( )t
e u c t dt e u y
t

r rt

t
t

t- -
{ <¥}

Î

é ù
+ê úê úë ûò


1 , 
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where y denotes national income per capita and other notations are the same as in the 

modified Radner fashion. And it is worth emphasizing that the modified Ramsey 

fashion internally requires perfect foresight of the representative agent. 

REMARK. It is easy to see from our specification that there is a natural one to 

one correspondence between the optimal stopping time and the minimum time needed 

to “economic maturity” for any underdeveloped economy. Accordingly, this 

equivalence reflects the fact that the above two kinds of preference manifolds, i.e., the 

modified Radner fashion and the modified Ramsey fashion, imply different standards 

characterizing the corresponding state of “economic maturity”. Notice that the 

modified Radner fashion reflects some psychological effects that would be called as 

“the peak preference”
8

 or its natural correspondence “the Ratchet effect” in 

traditional consumption theory. Consequently, we may claim that the modified Radner 

fashion is much stronger than the the modified Ramsey fashion in certain sense. In 

other words, the modified Radner fashion requires much higher level of standard 

about “economic maturity”. Therefore, the “turnpike” of the modified Radner fashion 

should be located above that of the modified Ramsey fashion for any given economy. 

 

2.2. Computation Algorithm of the Endogenous Time 

As usual, the environment consists of the firm, the representative agent and the 

government. And the firm is, without loss of any generality, assumed to be 

competitive. There are alternative goals for the government, that is, government is 

either motivated to choose taxation policies so as to maximize the welfare of the 

representative agent or directly to minimize the time to “economic maturity”. For the 

representative agent, she will first determines the minimum time to “economic 

maturity” given the taxation policies of the government, then to choose optimal 

savings strategy based upon the objective of discounted sum of future instantaneous 

utility in finite time horizon provided the taxation policies of the government. That is 

                                                        
8 That is, the representative agent pursues the highest level of utility or welfare of any single period. And it is just 

the highest level of the welfare that represents the corresponding state of “economic maturity” in the current 

model. 
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to say, the order of action is like this: the government moves first to choose optimal 

taxation policies, then the representative agent determines the minimum time to 

“economic maturity” or the time horizon based upon the optimal taxation policies, 

and finally, the representative agent chooses optimal savings strategy conditional on 

the optimal taxation policies and the endogenous time horizon representing the 

process leading to “economic maturity”. 

Therefore, based on the backward induction rationality principle in computing 

sub-game perfect Nash equilibrium in dynamic game theories, we introduce the 

following computation algorithm of the current model, 

STEP 1: The representative agent chooses optimal savings strategy given the 

taxation policies and the finite time horizon of the program. 

STEP 2: Based on the results of Step 1, the representative agent will determine 

the minimum time to reach “economic maturity” with the criterions introduced in 

section 2.1. 

STEP 3a: If the goal of the government is to choose taxation policies so as to 

maximize the welfare of the representative agent, thus based upon the results of Step 1 

and Step 2, the optimal tax rates are derived. 

STEP 3b: If the goal of the government is to choose taxation policies in order to 

directly minimize the time to “economic maturity” derived in Step 2, then the 

corresponding optimal taxation policies are endogenously determined and hence the 

endogenous time is completely characterized with these optimal tax rates. 

STEP 4: The step is necessary only when Step 3a is chosen. Substituting the 

optimal tax rates into the endogenous time derived in Step 2, and so the minimum time 

to “economic maturity” is finally and completely determined. 

 

3. PREFERENCE MANIFOLD ONE 

3.1. Firm 

In the current paper, we introduce the following Cobb-Douglas type production 
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function
9
, 

1( ) ( ) ( )pY t G t K t
a a-= , 0 1a< <                                     (1) 

where K denotes the capital stock and
p

G represents the flow of services from 

government spending
10

 on the economy’s infrastructure. Particularly, suppose that 

these services are not subject to congestion so that
p

G is a pure public good. Further to 

put
p p

G g Y= 11
, that is government will claim a fraction,

p
g , of aggregate outputY , 

for expenditure on infrastructure. And, in particular, to make things easier and without 

loss of any generality,
p

g will be assumed to be exogenously given
12

 

with 0 1
p

g< < throughout the paper, then the production function in (1) can be 

rewritten as, 

1( ) ( )pY t g K t
a a-= , or 1( ) ( )py t g k t

a a-=                             (1’) 

which reveals that the Cobb-Douglas type function given in (1) rather exhibits AK 

production technology, which indeed enssures ongoing economic growth. Therefore, 

equilibrium wage rate is equal to zero and equilibrium return to capital reads as 

follows, 

1

k pr g
a a-= ,                                                    (2) 

where the depreciation rate is assumed to be zero for the sake of simplicity. 

 

3.2. Representative Agent 

                                                        
9 For simplicity’s sake, endogenous labor supply has been excluded in the present paper. However, it is easy to 

show that endogenous labor supply can be naturally incorporated into the current model, thereby inducing a much 

more complicated model. 
10 Gong and Zou (2002) set up a theoretical model linking the growth rate of the economy to the growth rate and 

volatility of different government expenditures. On a theoretical basis, they found that volatility in government 

spending can be positively or negatively associated with economic growth depending on the intertemporal 

elasticity in consumption. And it follows from our specification of the government spending that the volatility is 

endogenously determined by the unbalanced macro-economy as a whole. That is to say, the volatility of 

government spending is not exogenously given but internally and closely linked to the whole economic body. And 

we argue from the specification that government in reality is indeed deeply involved with the whole economy and 

therefore it itself will unavoidably be affected by the macroeconomic activities. One may certainly exogenously 

add volatility to the government spending, which however will be strongly disagreed by the theory of real business 

cycle (see, Kydland and Prescott, 1982; Long and Plosser, 1983). 
11 This specification follows from Turnovsky (2000). 
12 This in some extent follows from Kydland and Prescott (1977)’s analyses that policymakers should follow rules 

rather than have discretion. 
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It is assumed that the economy consists of ( )L t identical individuals at time t , 

each of whom possesses perfect foresight. Suppose that
0( )

t T
B t £ £{ } is a standard 

Brownian motion defined on the following filtered probability 

space ( ) ( ) ( ) ( )

0( , , , )B B B B

t t T£ £W { }   with ( )

0

B

t t T£ £{ } the ( )B - augmented filtration 

generated by 0( )
t T

B t £ £{ } with ( ) ( )B B

T
=  . Furthermore, we assume that a Poisson 

random measure ( , )N dt dz associated with a Lévy process is defined on the stochastic 

basis
   ( ) ( ) ( ) ( )

0( , , , )N N N N

t t T£ £W { }   . And we denote by 

( , ) ( , ) ( )N dt dz N dt dz dz dtn= - the compensated Poisson random measure associated 

with a Lévy process 
00

( ) ( , )
t

t zN ds dzh ò ò with jump measure ( , )N dt dz and Lévy 

measure ( ) ([0,1], )O N On = [ ] for 0( )OÎ B , i.e., O is a Borel set with its 

closure 0OÌ , where 0 -{0}   . In what follows, our reference stochastic basis 

will be 0( , , , )
t t T£ £W { }   with

( ) ( )B NW=W ´W , 
( ) ( )B N= Ä   , 

( ) ( )B N

t t t
= Ä    

and
( ) ( )B N= Ä   , and also the underlying probability measure space is assumed to 

satisfy the so-called “usual conditions”
13

. Based on the above constructions and 

assumptions, we now define
14

, 

0

( ) ( ) ( ) ( , )dL t L t ndt dB t zN dt dzs g- é ù
= + +ê úê úë ûò ,                        (3) 

where n denotes the natural growth rate of population, 0s Î is an exogenously given 

constant, 1zg >- a.s. n- , (0) 0B = a.s.- and, 

( , ) ( ) ( , ),               
( , )

( , ),                                                  

N dt dz dz dt N dt dz z Z
N dt dz

N dt dz z Z

nìï - <ïïíï ³ïïî


              (4) 

for some [0, ]Z Î ¥ . As usual, we define the following law of motion of capital 

                                                        
13 That is, the probability space is complete and the filtration satisfies right continuity. 
14 It is in line with Merton (1975) that the uncertainty comes from the growth of population. Itô-Lévy process has 

been widely applied in finance, e.g., Yan et al (2000). And here we apply Lévy diffusion to macroeconomics, 

which would be regarded as reasonable via noting the properties of both Lévy diffusions and macroeconomic 

phenomenon. 
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accumulation, 

( ) 1 ( ) 1 ( )k k cK t r K t C tm t t= [( - ) -( + ) ]  

    1 1 1 1 ( )p k c p sg g r K ta am t t-= [( - )-( + )( - - )] ,                     (5) 

where 0mÎ is some exogenously given parameter,
k

r denotes the equilibrium return 

to capital given in (2),
k
t denotes tax rate on capital income,

c
t represents consumption 

tax rate,C denotes aggregate consumption level and
s

r denotes the savings rate. Hence, 

combining (3) with (5) and by applying Itô formula for Itô-Lévy process, we get, 

{ }1 2( ) 1 1 1 ( )
p k c p s

dk t g g r n k t dt
a am t t s- -= [( - )-( + )( - - )]- +  

2( )

1
( ) ( )

z

z
z Z

dz k t dt
g

g
n -

+<
+ò ( ) ( )k t dB ts --

0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò ,    (6) 

Without loss of any generality, we put Z =¥ , then by (4), (6) becomes, 

{ }1 2( ) 1 1 1 ( )
p k c p s

dk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò ,                       (7) 

where, 

2( )

1
( )

z

z
b dz

g

g
n+ò ,                                               (8) 

Suppose that the representative agent performs log preferences and the 

intertemporal objective function is specifically given as, 

ˆ
ˆ( )

0
ln ( )s tU e c t dt U

t
r t- +é ù

= +ê úê úë ûò  

( )
ˆ

ˆ( ) 1

0
ln (1 ) ( )s t

p s pe g r g k t dt U
t

r a a t- + -é ù
= - - +ê úê úë ûò .                  (9) 

where denotes expectation operator with respect to probability measure ,r is the 

subjective discount factor, ˆ0 s t" £ < and t̂ is an
t
- optimal stopping time, which 

with the term
ˆ

U
t are simultaneously determined by the following optimal stopping 

problem of the modified Radner fashion, 

( )( , ) ( ) 1ˆ ( , ( )) sup ln ( )s k s

p
g k e g k

r t a a

t
t

t t t- + -
{ <¥}

Î

é ù
ê úë û 


1  
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( , ) ( )sup ln( ( ))s k s
e y
r t

t
t

t- +
{ <¥}

Î

é ù= ê úë û


1  

( )ˆ( , ) ( ) 1

ˆ
ˆln ( )s k s

p
e g k
r t a a

tt- + -
{ <¥}

é ù= ê úë û 1 .                     (10) 

subject to the stochastic differential equation (SDE) in (7), ( , )s k denotes expectation 

operator based on initial condition ( , ) ( , (0))s k s k , t{ <¥}1 is an indicator function of 

set ( )w t w{ ÎW; <¥} , and { -  stopping times} . 

Now it follows from Step 1 introduced in section 2.2 that we are to consider the 

following stochastic optimal control problem facing the representative agent, 

( )
ˆ

ˆ( ) 1

0 1 0
max ln ( ) ( )

s

s t

p s p
r

e g r g k t dt U
t

r a a t- + -

< <

é ù
1- - +ê úê úë ûò .                 (9’) 

s.t.  

{ }1 2( ) 1 1 1 ( )
p k c p s

dk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò ,                      (7’) 

where t̂ and
ˆ

U
t are taken as exogenously given up to present. We prove that there 

exists a continuously differential function ( , ( ))V t k t , satisfying the following 

stochastic Bellman partial differential equation (PDE), 

2 21
2

( , ( )) ( ) ( , ( ))t kkV t k t k t V t k ts- -  

( )
0

1 1
, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )

z z

kz z
V t k t k t V t k t k t V t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

{ }

1

1 20 1

exp( ( )) ln (1 ) ( ) ( , ( )) ( )
max

1 1 1s

p s p k

r
p k c p s

s t g r g k t V t k t k t

g g r n b

a a

a a

r

m t t s

-

-< <

ì üï ï- + [ - - ]+ï ïï ï= í ï ï´ [( - )-( + )( - - )]- + +ï ïï ïî 
.       (11) 

with the boundary condition, 

ˆˆ ˆ( , ( ))V k U
tt t = ,                                               (12) 

Thus, we get, 

LEMMA 1. Conditional on the above constructions and assumptions, and up to 

the present step, we obtain the optimal savings rate as follows, 

1
ˆ 1

( )
s p

p c

r g
g
a a

r

m t-= - -
1+

, 
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Moreover, the value function ( , ( ))V t k t satisfies the following boundary condition, 

ˆ1

1
ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C k U

tt t r t r t-= - + [ + ]= . 

where, 

( )
0

1 1 2

( )
1

1 2 1 11 1
2 1 1

ln (1 )

1 ln ( )

c p k

z

z z

g n b

C
dz

r a a

m t

g

g g

r m t s

r
s r r n

- -
1+

-
- -

+ +

ì üï ï+ [ - - + + ]ï ïï ïí ï ï- - + +ï ïï ïî ò
 . 

Proof. See Appendix A. ▌ 

REMARK. Lemma 1 represents a conclusion of Step 1 introduced in section 2.2. 

That is, provided the taxation policies of the government and the finite time horizon 

of the program, the optimal savings rate is derived. And the boundary condition 

shown in Lemma 1 will be useful in computing the exact form of the endogenous 

time as is shown in the sequel. 

Now, by applying Step 2 of the computation algorithm in section 2.2, we are in 

the position to calculate the term
ˆ

U
t and the optimal stopping time t̂ , given in (9), in 

a stochastic diffusion process. Firstly, via applying Lemma 1, (7) can be rewritten as, 

{ }1 2ˆ( ) 1 1 1 ( )
p k c p s

dk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

       ( ) ( )k t dB ts -- 
0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò ,                      (7’’) 

Let ( ) ( , ( ))Y t s t k t+  , (0) ( , )Y s k  , then the generator of ( )Y t reads as follows, 

{ }1 2ˆ( , ) 1 1 1
p k c p ss k

s k g g r n b k
f fa af m t t s¶ ¶-
¶ ¶= + [( - )-( + )( - - )]- + +  

         
2

2

0

2 21
2 1 1

( , ) ( , ) ( )
z z

z z kk
k s k k s k k dz

f g g f

g g
s f f n¶ ¶

+ + ¶¶
+ + [ - - + ]ò ,    (13) 

for 2 2( )Cf" Î  . If we try a functionf of the form, 

( , ) s
s k e k

r bf -= , for some constantb Î  

We obtain, 

{ }( )1 2ˆ( , ) 1 1 1s

p k c p s
s k e k g g r n b

r b a af r b m t t s- -= - + [( - )-( + )( - - )]- + +

              
0

21 1
2 1 1

( 1) ( ) 1 ( )
zs s

z z
e k e k dz

g br b r b b

g g
s b b n- -

+ ++ - + [ - + ]ò  

       ( )s
e k h
r b b-= , 
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in which, 

{ }1 2ˆ( ) 1 1 1
p k c p s

h g g r n b
a ab r b m t t s-- + [( - )-( + )( - - )]- + +  

       
0

21 1
2 1 1

( 1) ( ) 1 ( )
z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ]ò .                  (14) 

Notice that, 

(0) 0h r=- <   and 
| |
lim ( )h
b

b
¥

=¥ . 

Therefore, there exists 0b> such that ( ) 0h b = and with this value ofb , we put 

1

,                       ( , )
( , )

ln( ),           ( , )

s

s

p

e Ck s k D
s k

e g k s k D

r b

r a a
f

-

- -

ìï Îï=íï Ïïî
                          (15) 

for some constant 0C> and the continuation region D , to be determined. Thus, if we 

define 

1( , ) ln( )s

pg s k e g k
r a a- - . 

We have, by (13), 

{ 1 1 ˆ( , ) ln( ) 1 1 1s

p p k c p s
g s k e g k g g r

r a a a ar m t t- - -= - + [( - )-( + )( - - )]  

}21
2

n b ds- + + +                                (16) 

0>  

{ }1 21
2

ˆ1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - <  

where 

( )
0

1
1 1

ln ( )
z

z z
d dz

g

g g
n+ ++ò ,                                     (17) 

Hence, we can define, 

( ){ }1 21
2

ˆ1 1 11( , ); exp p k c p sg g r n b d

p
U s k k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- -= < ,         (18) 

Thus, it is natural to guess that the continuation region D has the form, 

ˆ( , );0D s k k k={ < < } .                                          (19) 

for some k̂ such thatU DÍ , i.e., 

( )1 21
2

ˆ1 1 11ˆ exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- -³ ,                    (20) 

Thus, (15) can be rewritten as follows, 
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1

ˆ,                       0
( , )

ˆln( ),                 

s

s

p

e Ck k k
s k

e g k k k

r b

r a a
f

-

- -

ìï < <ïï=íï ³ïïî
                          (21) 

where ˆ 0k> and C remain to be determined. Moreover, continuity and 

differentiability off at ˆk k= give, 

1ˆ ˆ( ) ln( )
p

C k g kb a a-=  

1 1ˆ ˆ( ) ( )C k k
bb - -=  

Combining the above equations reveals that, 

ˆ( ) 1

ˆ( )

ˆln( )
C k

pC k
g k

b

b

a a

b

-=  

1 1ˆ exp( )
p

k g a a

b

- - =                                          (22) 

And 

11 1 1ˆ( ) exp( )
p

C k gb a a b

b b b

- - - -= = [ ] .                                (23) 

To summarize, we have, 

LEMMA 2. Under the above assumptions and constructions, if 0s< , 

1 0zg- < <  a.s. n- ,
0

21
1

( ) 1 ( )
z

dzb

g
n+ò [ - ] <¥ and 

21
2

( )n z dzs g n- -ò  

1 ˆ1 1 1p k c p sg g r
a am t t-< [( - )-( + )( - - )] 

{ }
0

2 2 23 1 1
2 2 1

min , ( ) 1 ( ) ( )
z

n b n dz z dz
g

r s r s n g n+£ + - - + - - [ - ] -ò ò 
, 

And, 

1 ˆ2 1 1 1 2 ( )
p k c p s

g g r z dz
a abm t t b g n- [( - )-( + )( - - )]+ ò  

0

2 2 21
1

2 ( 2 ) ( ) 1 ( )
z

n dz
b

g
b b b s n+- + + + [ - ] <¥ò , 

where b is defined in (8). Then we obtain the optimal
t
- stopping time, 

ˆˆ inf 0; ( )t k t kt { ³ = } . In other words, 

ˆ1 ˆˆ ( , ) ( )sg s k e k k Ur b b t

b

- -= = , 
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which is a supermeanvalued majorant of ( , )g s k with k̂ given by (22) and b is a 

solution of ( ) 0h b = in (14). 

Proof. See Appendix B. ▌ 

REMARK. Obviously, Lemma 2 can be regarded as a conclusion of Step 2 

introduced in section 2.2. And k̂ given in (22) would be seen as the maximal and 

sustainable terminal path level of capital stock per capita that is 

criterion-of-the-modified-Radner-fashion optimal. Noting that k̂ is endogenously 

determined in the current paper while the maximal terminal path level is usually 

exogenously specified in existing literatures
15

, for instance, the interesting paper of 

Kurz (1965). Consequently, we argue that the advantage of the theory of optimal 

stopping time employed here is that it is available for us to make the minimum time 

to “economic maturity” and the utility-optimal and sustainable terminal path level of 

capital stock per capita simultaneously and endogenously determined. 

 

3.3. Government 

It is assumed that the government continues to tie expenditure levels to 

aggregate output as before, i.e.,
p p

G g Y= with 0 1
p

g< < , thus, in the absence of 

debt, tax revenues and government expenditures must satisfy the following balanced 

budget constraint, 

( ) ( ) ( ) ( )
k k c p
r K t c t L t g Y tt t+ = ,                                   (24) 

Using (1’), (2) and Lemma 1, (24) can be rewritten as, 

ˆ(1 )
k c p s p

g r gt t+ - - = .                                        (25) 

Now, following from Step 3a shown in section 2.2, we consider the following case, 

CASE 1. The goal of the government is to maximize the welfare of the 

representative agent. 

Substituting (25) into (7’’) gives, 

                                                        
15 See, Cass, 1966; and McKenzie, 1976. 
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
0

1 2

1
ˆ( ) ( ) ( ) ( ) ( , )

z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- -

+

é ù
= - + + - -ê úê úë ûò ,    (26) 

And hence the stochastic optimal control problem facing the government can be 

expressed as follows, 

( )
ˆ

ˆ( ) 1

0 1 0
0 1

ˆmax ln ( ) ( )
c

k

s t

p s pe g r g k t dt U
t

r a a t

t
t

- + -

< <
< <

é ù
1- - +ê úê úë ûò .                (9’’) 

s.t. 


0

1 2

1
ˆ( ) ( ) ( ) ( ) ( , )

z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- -

+

é ù
= - + + - -ê úê úë ûò . 

Accordingly, the corresponding stochastic Bellman partial differential equation (PDE) 

amounts to, 

2 21
2

( , ( )) ( ) ( , ( ))t kkW t k t k t W t k ts- -  

( )
0

1 1
, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )

z z

kz z
W t k t k t W t k t k t W t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

1

1 20 1
0 1

ˆexp( ( )) ln (1 ) ( )
max

ˆ( , ( )) ( )( )c

k

p s p

k p s

s t g r g k t

W t k t k t g r n b

a a

a at
t

r

m s

-

-< <
< <

ì üï ï- + [ - - ]ï ïï ï= í ï ï+ - + +ï ïï ïî 
.                   (27) 

with the following boundary condition, 

ˆˆ ˆ( , ( ))W k U
tt t = ,                                              (28) 

where ( , ( ))W t k t denotes the value function. To solve the above dynamic optimal 

control problem, the following lemma is derived, 

LEMMA 3. Provided the balanced budget constraint given in (25) and the 

optimal control problem expressed in (9’’), then the optimal capital income tax rate 

is equal to
k pgt* = while optimal consumption tax rate is zero. Moreover, we have, 

ˆ1

3
ˆˆ ˆ ˆ( , ( )) exp( ( ))( ln )W k s C k U

tt t r t r-= - + + = , 

where t̂ and
ˆ

U
t
are defined in Lemma 2, k̂ is given in (22) and, 

1 1

1

3 2 2 1 11
2

ln (1 )

1

p pg g n
C

b d

r a a

m
r m

r
s s r r

- -
-

- -

ì üï ï+ [ - -ï ïï ïí ï ï+ + ]- - +ï ïï ïî 
 , 

whereb and d are given in (8) and (17), respectively. 
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Proof. See Appendix C. ▌ 

REMARK. Lemma 3 would be regarded as a conclusion of Step 3a of the 

computation algorithm introduced in section 2.2, and the boundary condition given 

in Lemma 3 will play a crucial role in determining the exact form of the endogenous 

time in the sequel. Moreover, it is worthwhile mentioning that Lemma 3 provides us 

with a case against the well-known argument that capital income should not be taxed 

(Chamley, 1986; Judd, 2002) and even that the optimal income tax rate should be 

negative (Judd, 1997). Not only that, the optimal capital income tax rate is equal to 

an exogenously given constant which is known and controlled by the government, 

and which therefore implies a simple rule of taxation for the government. And it is 

from this character that we claim that our model is in accord with Kydland and 

Prescott (1977). 

Hence, by combining Lemma 3 with Lemma 1, we have, 

1
ˆ 1

p
s p g

r g a a

r

m -= - - ,                                            (29) 

And substituting (29) and the results in Lemma 3 into (14) produce, 

1 2( ) (1 )p ph g g n ba ab r b m r s-- + [ - - - + + ]  

          
0

21 1
2 1 1

( 1) ( ) 1 ( )
z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ]ò ,                  (14’) 

Now, by Lemma 2, we have, 

ˆ 1 ˆ( )sU e k kt r b b

b

- -= ,                                            (30) 

where (0) 0k k= > , k̂ is given in (22), andb is a solution of equation ( ) 0h b = in 

(14’). Combining (30) with Lemma 3 shows that, 

1

3
ˆˆ ˆ ˆ( , ( )) exp( ( ))( ln )W k s C kt t r t r-= - + +  

1 ˆexp( ) ( )s k kb b

b
r -= -  

 
ˆ

U
t= . 

which implies that, 

ˆ1 1

3
ˆˆ ln ( ) ( ln )k

k
C kbt r b r- -= [ + ] ,                                   (31) 

To summarize, we have the following theorem, 
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THEOREM 1. Based on Lemma 1 to Lemma 3, and suppose the goal of the 

government is to maximize the welfare of the representative agent, we have, 

ˆ1 1

3
ˆˆ ln ( ) ( ln )k

k
C kbt r b r- -= [ + ] , 

where (0) 0k k= > , k̂ is given in (22), b is a solution of ( ) 0h b = in (14’), and 3C is 

given in Lemma 3. 

REMARK. It is by Theorem 1 that we confirm that the minimum time needed to 

“economic maturity” is endogenously determined and explicitly represented. And, in 

particular, the endogenous time depends on the following relevant parameters: the 

subject discount factor, the initial level of capital stock per capita, the utility-optimal 

and sustainable terminal path level of capital stock per capita, the natural growth rate 

of population, the exogenous level of government spending and also the volatility of 

the macro-economy. And one may, if motivated, develop more thorough comparative 

static analyses of the endogenous time with respect to the above relevant parameters. 

Noting that Theorem 1 is a conclusion of Step 4 of the computation algorithm in 

section 2.2, we now consider the following case corresponding to Step 3b of the 

computation algorithm. 

CASE 2. The goal of the government is to minimize the optimal stopping time of 

the representative agent. 

Now by Lemma 2, we have, 

ˆ 1 ˆ( )sU e k kt r b b

b

- -= ,                                            (32) 

where (0) 0k k= > , k̂ is given in (22), andb is a solution of equation ( ) 0h b = in (14). 

Combining (32) with Lemma 1 and Lemma 2 shows that, 

1

1
ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C kt t r t r t-= - + [ + ] 

1

1
ˆˆexp( ( ))( ln )s C kr t r-= - + +  

1 ˆexp( ) ( )s k kb b

b
r -= -  

 
ˆ

U
t= . 

which implies that, 
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ˆ1 1

1
ˆˆ ln ( ) ( ln )k

k
C kbt r b r- -= [ + ] .                                   (33) 

where 1C is given in Lemma 1. Thus, the problem facing the government can be 

expressed as, 

PROBLEM 1. The government is motivated to choose taxation policies so as to 

minimize the stopping time defined in (33). 

REMARK. Problem 1 is actually a nonlinear optimization problem and here we 

don’t try to solve it due to its complication. Moreover, it is worth emphasizing that 

the stopping time given in (33) may be fundamentally different from that given in 

Theorem 1. It is easy to notice that different goals of the government usually lead to 

different fiscal policies, thereby resulting different short-run and direct economic 

consequences and even different speeds and paths of economic development. And it 

is especially worth noting that there is a conjecture or possibility that the minimum 

time needed to “economic maturity” when the goal of the government is to minimize 

the endogenous time may be much longer than that when the goal of the government 

is to maximize the welfare of the representative agent. And here we provide one 

reasonable explanation that the incentive or motivation of investment of the 

representative agent may be terribly distorted when the goal of the government is not 

to maximize the welfare of the representative agent but to directly minimize the time 

needed to “economic maturity”, thereby implying the micro-foundation of economic 

development is also distorted and hence retarding the speed of economic 

development. That is, there may exist a trade-off for the government, i.e., the speed 

of long-term economic development on the one hand and the short-term welfare of 

the representative agent on the other hand. Therefore, the lesson for us is that for the 

government of an underdeveloped economy, choosing an appropriate development 

strategy and hence appropriate fiscal policies are of crucial importance in affecting 

and even determining the long-term speed and path of the convergence of the 

corresponding economical system, and thus the long-term equilibrium level of the 

economy and welfare level of the representative agent. 
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4. PREFERENCE MANIFOLD TWO 

In this section, our goal is to introduce a new type of preference manifold of the 

representative agent different from that in section 3. The firm will employ the same 

kind of production technology as is shown in section 3.1, so we begin our analyses 

from the representative agent. 

 

4.1. Representative Agent 

Our analyses will proceed according to the computation algorithm introduced in 

section 2.2, that is, the representative agent will choose an optimal savings rate and 

then the optimal stopping time. Different from (9), we introduce the following 

objective function of the modified Ramsey fashion, 

( )( ) ( )

0
ln (1 ) ( ) ln ( )s t s

p s
U e g r y t dt e y

t
r r t t

*
*- + - + *é ù

ê ú= - - +
ê úë û
ò .           (34) 

where 0 s t*£ < andt* is an
t
- optimal stopping time, which is determined by the 

following optimal stopping problem, 

( , ( ))g kt t*  

( ) ( )( , ) ( ) 1 ( ) 1

0
sup ln (1 ) ( ) ln ( )s k s t s

p s p pe g r g k t dt e g k
t

r a a r t a a

t
t

t- + - - + -
{ <¥}

Î

é ù
- - +ê úê úë ûò 


1  

( ) ( )( , ) ( ) ( )

0
sup ln (1 ) ( ) ln ( )s k s t s

p se g r y t dt e y
t

r r t

t
t

t- + - +
{ <¥}

Î

é ù
= - - +ê úê úë ûò


1  

( ) ( )( , ) ( ) 1 ( ) 1

0
ln (1 ) ( ) ln ( )s k s t s

p s p p
e g r g k t dt e g k

t
r a a r t a a

t
t

*
*

*
- + - - + - *

{ <¥}

é ù
ê ú= - - +
ê úë û
ò 1  

(35) 

subject to the SDE defined in (7), and one may easily tell the difference between (35) 

and (10). Next, similar to (9’), we consider the optimal control problem as follows, 

( )( ) ( )

0 1 0
max ln (1 ) ( ) ln ( )

s

s t s

p s
r

e g r y t dt e y
t

r r t t
*

*- + - + *

< <

é ù
ê ú- - +
ê úë û
ò ,           (36) 

s.t. 
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{ }1 2( ) 1 1 1 ( )
p k c p s

dk t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

           ( ) ( )k t dB ts -- 
0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò .                      (37) 

where t* is taken as exogenously given up to present step. To solve the above 

dynamic optimization problem and employ ( , ( ))V t k t as the corresponding value 

function, then we get, 

LEMMA 4. Provided the above constructions and assumptions, the following 

optimal savings rate is derived, 

1
1

( )
s p

p c

r g
g
a a

r

m t

*
-= - -
1+

, 

And the value function ( , ( ))V t k t satisfies the following boundary condition, 

( ) 1 ( ) 1

1( , ( )) ln ( ) ln ( )s s

p
V k e C k e g k

r t r t a at t r t t
* ** * - + - * - + - *= [ + ]= [ ] . 

where 1C is defined in Lemma 1. 

REMARK. Lemma 4 is a natural correspondence to Lemma 1. 

Noting that the proof of Lemma 4 is the same as that of Lemma 1, so we take it 

omitted. In what follows, we will determine the optimal stopping timet* . After 

applying Lemma 4, the optimal path of capital accumulation can be expressed as 

follows, 

{ }1 2( ) 1 1 1 ( )
p k c p s

dk t g g r n b k t dt
a am t t s- * -= [( - )-( + )( - - )]- + +  

       ( ) ( )k t dB ts -- 
0

1
( ) ( , )

z

z
k t N dt dz

g

g

-
+- ò ,                     (37’) 

Let ( ) ( , ( ))Y t s t k t+  , (0) ( , )Y s k  , then the generator of ( )Y t reads as follows, 

{ }1 2( , ) 1 1 1
p k c p ss k

s k g g r n b k
f fa af m t t s¶ ¶- *
¶ ¶= + [( - )-( + )( - - )]- + +  

         
2

2

0

2 21
2 1 1

( , ) ( , ) ( )
z z

z z kk
k s k k s k k dz

f g g f

g g
s f f n¶ ¶

+ + ¶¶
+ + [ - - + ]ò ,    (38) 

for 2 2( )Cf" Î  . If we try a functionf of the form, 

( , ) ( )s
s k e k

rf j-= , for 2 ( )CjÎ   

Then we have, 
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{ }( )1 2( , ) ( ) 1 1 1 ( )s

p k c p s
s k e k g g r n b k k

r a af rj m t t s j- - * ¢= - + [( - )-( + )( - - )]- + +

         { }
0

2 21 1
2 1 1

( ) ( ) ( ) ( ) ( )
zs

z z
e k k k k k k dz

gr

g g
s j j j j n-

+ +
¢¢ ¢+ + [ - + ]ò  

       0 ( )s
e k
r j-  .                                              (39) 

Define 1( ) ln( )pg k g ka a- , 1( ) ln (1 )p s pf k g r g ka a* -[ - - ] , by (35) and (39), we see 

that, 

0 ( ) ( ) 0g k f k+ >  

1 1ln( ) ln (1 )p p s pg k g r g ka a a ar - * - - [ - - ]<  

1 21
2

1 1 1p k c p sg g r n ba am t t s- *[( - )-( + )( - - )]- + +  

0

1
1 1

ln( ) ( )
z

z z
dz

g

g g
n+ ++ [ + ]ò  

{ }1 21
2

1 1 11 1 ( 1)

1
(1 ) exp p k c p sg g r n b d

p p s
k g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
- < - - . 

whereb and d are defined in (8) and (17), respectively. Hence, 

( ){ }1 21
2

1 1 11 1 ( 1)

1
( , ); (1 ) exp p k c p sg g r n b d

p p s
U s k k g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
-= < - - (40) 

In view ofU DÍ it is natural to guess that the continuation region D has the form, 

( , );0D s k k k
*={ < < } .                                         (41) 

for some k
* satisfying, 

( )1 21
2

1 1 11 1 ( 1)

1
(1 ) exp p k c p sg g r n b d

p p s
k g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +* - - * -
-³ - - ,     (42) 

Now, in D we try to solve the equation, 

0 ( ) ( ) 0k f kj + = .                                            (43) 

The homogenous equation 0 0 ( )kj has a solution 0 ( ) r
k kj = if and only if, 

{ }1 2( ) 1 1 1
p k c p s

h r r g g r n b
a ar m t t s- *- + [( - )-( + )( - - )]- + +  

          
0

21 1
2 1 1

( 1) ( ) 1 ( ) 0
zrr

z z
r r dz

g

g g
s n+ ++ - + [ - + ] =ò ,                (44) 

Since (0) 0h r=- < and
| |lim ( )
r

h r¥ =¥ , we see that the equation ( ) 0h r = has two 

solutions 1r , 2r such that 2 10r r< < . We let r be a solution of this equation. To find a 
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particular solution 1( )kj of the non-homogenous equation, 

1

0 1( ) ln (1 ) 0p s pk g r g ka aj * -+ [ - - ]= ,                             (45) 

We try, 

1 5 6( ) lnk C C kj = + ,                                            (46) 

for some constants 5C , 6C to be determined. Substituting (46) into (45) and applying 

(39), we have, 

{ }1 2

5 6 6ln 1 1 1
p k c p s

C C k g g r n b C
a ar r m t t s- *- - + [( - )-( + )( - - )]- + +  

0

2 11 1
6 62 1 1

ln( ) ( ) ln (1 ) 0
z

p s pz z
C C dz g r g k

g a a

g g
s n * -

+ +- + [ + ] + [ - - ]=ò . 

which implies that, 

1

6C r-= ,                                                     (47) 

Hence, 

{ }
( )

0

1 1 2

1

5 2 1 1 11 1
2 1 1

(1 ) (1 )(1 )

ln ( ) ln (1 )

p k c p s

z

p s pz z

g g r n b

C
dz g r g

a a

g a a

g g

r m t t s

r
s r r n

- - *

-
- - * -

+ +

ì üï ï[ - - + - - ]- + + -ï ïï ï= í ï ï+ + + [ - - ]ï ïï ïî ò
.     (48) 

Consequently, for all constantsC the function, 

1

5( ) lnr
k Ck k Cj r-= + + ,                                      (49) 

is a solution of the equation defined in (43) with 5C given by (48). Thus, one can try 

to put, 

1

5

1

ln ,                       0
( )

( ) ln( ),                             

r

p

Ck k C k k
k

g k g k k ka a

r
j

- *

- *

ìï + + < <ï=íï ³ïî 
                  (50) 

where 0k
* > and C remain to be determined. Continuity and differentiability 

ofj at k k
*= give the following equations, 

1 1

5( ) ln ln( )r

pC k k C g ka ar* - * - *+ + = ,                             (51) 

1 1 1 1( ) ( ) ( )r
Cr k k kr* - - * - * -+ = .                                   (52) 

By (52) we get, 
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11
( )r

rC
k

r--* = ,                                                  (53) 

Inserting (53) into (51) produces, 

(1 )(1 ) 51
1

exp( )
C

p r
k g

ar

a r r

r

- -*
-= + ,                                       (54) 

And by (52) we get, 

1

( )r
r k

C
r

r *

-= .                                                    (55) 

which implies that we should choose, 

2 0r r= < ,                                                    (56) 

in (44). To sum up, we have the following lemma, 

LEMMA 5. Under the above assumptions and constructions, if 0s< , 

1 0zg- < <  a.s. n- , (1 ) ( )r r
r k k

*- > and 

ln(1 )p sg rr *- - -  

1 21
2

(1 ) (1 )(1 )p k c p sg g r n b da am t t s- *³ [ - - + - - ]- + + + , 

whereb and d are defined in (8) and (17), respectively. And, 

21
2

( )n z dzs g n- -ò  

1 1 1 1p k c p sg g ra am t t- *< [( - )-( + )( - - )] 

0

2 23 1 1
2 2 1

( ) 1 ( ) ( )
z

n dz z dz
g

r s n g n+£ + - - [ - ] -ò ò 
 

Then we obtain the optimal
t
- stopping time, inf 0; ( )t k t kt* *{ ³ = } . That is to 

say,
1 1

5( )
( , ) lnr

s r

r k
g s k e k k C

rr

r
r*

-* - -= [ + + ] is a supermeanvalued majorant 

of ( , )g s k with k
* given by (54), (0) 0k k= > , 0r< determined by (44) and 5C given in 

(48). 

Proof. See Appendix D. ▌ 

REMARK. Lemma 5 is a natural correspondence to Lemma 2. And one can 

clearly and easily tell the differences between the two lemmas. 

 

4.2. Government 
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Similar to section 3.3, and applying Lemma 4, the balanced budget constraint 

(24) can be expressed as follows, 

(1 )k c p s pg r gt t *+ - - = .                                       (25’) 

CASE 1. The goal of the government is to maximize the welfare of the 

representative agent. 

Hence, the stochastic optimal control problem facing the government can be 

written as follows, 

( ) ( )( ) 1 ( ) 1

0 1 0
0 1

max ln (1 ) ( ) ln ( )
c

k

s t s

p s p p
e g r g k t dt e g k

t
r a a r t a a

t
t

t
*

*- + - - + - *

< <
< <

é ù
ê ú- - +
ê úë û
ò (57) 

s.t. 


0

1 2

1
( ) ( ) ( ) ( ) ( , )

z

p s z
dk t k t g r n b dt dB t N dt dz

ga a

g
m s s- - *

+

é ù
= - + + - -ê úê úë ûò .    (58) 

Solving the problem gives, 

LEMMA 6. Provided the balanced budget constraint given in (25’) and the 

optimal control problem expressed in (57) and (58), then the optimal capital income 

tax rate is
k pgt* = and optimal consumption tax rate is zero. Moreover, the 

corresponding value function satisfies the following boundary condition, 

( ) 1 ( ) 1

3( , ( )) ( ln ) ln( )s s

p
W k e C k e g k

r t r t a at t r
* ** * - + - * - + - *= + = , 

wheret* is defined in Lemma 5, k
* is given in (54) and 3C is given in Lemma 3. 

REMARK. Lemma 6 is a natural correspondence to Lemma 3. 

Noting that the proof is the same as that of Lemma 3, we take it omitted here. 

Applying Lemma 6 to Lemma 4, we get, 

11
p

s p g
r g a a

r

m -
* = - - .                                            (59) 

Inserting (59) into (58) produces the following optimal law of motion of capital 

accumulation, 

{ }
0

1 2

1
( ) ( ) (1 ) ( ) ( , )

z

p p z
dk t k t g g n b dt dB t N dt dz

ga a

g
m r s s- -

+= [ - - - + + ] - -ò (60) 

Moreover, applying Lemma 6 and (59) to (44) and (48) shows, 
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1 2( ) (1 )p ph r r g g n ba ar m r s-=- + [ - - - + + ]  

          
0

21 1
2 1 1

( 1) ( ) 1 ( ) 0
zrr

z z
r r dz

g

g g
s n+ ++ - + [ - + ] =ò ,                (44’) 

And, 

1 1

1

5 2 2 1 11
2

(1 )

ln

p pg g n
C

b d

a a

r

m

r m r
r
s s r r

- -

-

- -

ì üï ï[ - - - +ï ïï ï= í ï ï+ ]- + +ï ïï ïî 
.                          (48’) 

whereb and d are defined in (8) and (17), respectively. So k
* in (54) can be expressed 

as, 

(1 )(1 ) 51
1

exp( )
C

p r
k g

ar

a r r

r

- -*
-= + ,                                      (54’) 

where 0r< is a solution of (44’) and 5C is defined in (48’). Therefore, we conclude 

the following theorem, 

THEOREM 2. Based on Lemma 4 to Lemma 6, and provided the goal of the 

government is to choose tax policies so as to maximize the welfare of the 

representative agent, then the optimal stopping time given in Lemma 5 can be 

completely characterized as follows, 

inf 0; ( )t k t kt* *{ ³ = } ,                                        (61) 

where ( )k t is determined by (60) and k
*
is given in (54’). 

REMARK. Theorem 2 is a natural correspondence to Theorem 1. 

Furthermore, it follows from Theorem 2 that, 

COROLLARY 1. Suppose
0

2( 1) ( )z dznò  <¥ , where
2 21 min ,1z z { } , 

and
0 1
( ) ( )

z p

z
dz

g

g
n+ò <¥ for p" Î and 2p³ . Then the solution of (60) is 

in
2 ( , )L W  and 

( )( ),
0

sup ( ) 1
p p

M T p
t T

k t k k k
* *

< £

é ù
- £ + -ê ú

ê úë û
 Y , 

where (0) 0k k= > , k
*
is given in (54’) and 

{ 0

2 21 2 2

( ), 1
exp ( ) 1 (1 ) ( ) ( )

z

M T p p p z
M T g g n b dz

ga a

g
m r s s n-

+
é + - - - + + + +ò +êë Y
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( ) }0 0

2
1 2 2

1 1
(1 ) ( ) ( ) ( ) ( )

pp p z z p

p p z z
g g n b dz dz

g ga a

g g
m r s s n n-

+ +
ù- - - + + + + ò +ò ú
û  , 

for some constant 0M > and M depends onT with 0 T< £¥ . 

Proof. See Appendix E. ▌ 

CASE 2. The goal of the government is to minimize the optimal stopping time of 

the representative agent. 

As a matter of fact, we get the following interesting theorem, 

THEOREM 3. Suppose that
0

2( 1) ( )z dznò  <¥ and
0 1
( ) ( )

z p

z
dz

g

g
n+ò <¥  

for p" Î and 2p³ , then the solution of (58) is in
2 ( , )L W  and 

( )( ),
0

sup ( ) 1
p p

M T p
t T

k t k k k
* *

< £

é ù
- £ + -ê ú

ê úë û
 Y , 

where (0) 0k k= > , k
*
is given in (54’),

( ),M T p
Y is minimized by letting

k p
gt = and 

0
c
t = , and

( ), ( ),M T p M T p
Y Y point-wise as 0

c
t  or

k p
gt  . 

Proof. See Appendix F. ▌ 

REMARK. In view of Theorem 1 and Theorem 2 shows that there is a technical 

difference between the modified Radner fashion and the modified Ramsey fashion, 

that is, the endogenous time can be explicitly computed and represented in the 

preference manifold of the modified Radner fashion shown in Theorem 1 while this 

cannot be realized in that of the modified Ramsey fashion. Therefore, noting that the 

endogenous time can not be explicitly represented as in Theorem 2, Corollary 1 and 

Theorem 3 are of crucial economic intuitions and implications. Specifically, 

Theorem 3 reveals that in the case of p ( p" Î and 2p³ ) order moment of uniform 

topology, the goal of the government expressed in the above Case 2 can be 

equivalently expressed as choosing optimal tax rates corresponding to the best 

constant 
( ), ( ),0,

|
c k p

M T p M T pgt t* *= =
=Y Y . Obviously, one may choose different distance 

functions equipped with different topologies, thereby resulting different equivalent 

expressions of the above Case 2 and thus even different corresponding optimal tax 

rates. Finally, it is worthwhile emphasizing that the utility-optimal and sustainable 
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terminal path level of capital stock per capita is usually not the same between the 

above two different preference manifolds, and thus the corresponding endogenous 

times may be not equivalent. That is to say, one type of preference manifold may 

imply a faster speed to its corresponding “economic maturity” than that of other 

types of preference manifolds
16

. 

 

5. THE EFFECT OF INFORMATION STRUCTURE 

In this section, we will investigate the influences of different information 

structures on the endogenous time, and we will take preference manifold one in 

section 3 for example. 

 

5.1. Definitions and Notations 

First of all, besides the filtration 0t t T£ £{ }  introduced in section 3.2, we 

suppose that we are given another two filtrations 0t t T£ £{ }H  and 0t t T£ £{ }M   

with, 

t t t
Í Í   , 0 t T£ £ . 

which represent three kinds of information levels available to the agent at time t . 

And we give the following definitions
17

, 

DEFINITION 1. ( Incomplete Information): 

If the control of the agent is H- predictable, we say that the agent has 

incomplete information. 

DEFINITION 2. (Complete Information): 

If the control of the agent is - predictable, we say that the agent has complete 

information. 

DEFINITION 3. (Perfect Information): 

                                                        
16 The current paper shows that different preference structures lead to different levels of “economic maturity” with 

a high probability and thus different speeds and paths of economic development. However, it is also possible that 

the convergence rate is equal between different economical systems with different preference manifolds although 

they have totally different sustainable terminal path levels of capital stock per capita. 
17 Similar definitions can be found in Miao (2009), who studies optimal consumption and portfolio choice in a 

Merton-style model with incomplete information when there is a distinction between ambiguity and risk. 
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If the control of the agent isM-predictable, we say that the agent has perfect 

information. 

Moreover, based upon the above three definitions, we can define, 

DEFINITION 4. (Symmetric Information): 

For any two agents, if they share the same level of information, no matter it is 

incomplete, complete or perfect information, we say that the information is 

symmetric between the two agents. 

DEFINITION 5. (Asymmetric Information): 

For any two agents, if they don’t share the same level of information, we say 

that the information is asymmetric between them. 

 

5.2. Representative Agent 

It is worth emphasizing that we focus on different information structures 

between the representative agent and the government, so the firm in this section is 

the same as that in section 3.1. And hence, we begin our analyses from the 

representative agent. Firstly, a little different from the SDE defined in (3), we 

introduce, 


0

( ) ( ) ( ) ( , )d L t L t ndt d B t zN d t dzs g- - -é ù
= + +ê úê úë ûò ,                    (3’) 

where we have put Z =¥ in (4) and ( )d B t
- , ( , )N d t dz

- denote forward integrals. 

Then, combining (3’) with (5) and applying Itô-Ventzell formula for forward 

processes, 

{ }1 2

0( ) 1 1 1 ( )
p k c p s

d k t g g r n b k t dt
a am t t s- -= [( - )-( + )( - - )]- + +  

            ( ) ( )k t d B ts -- 
0

1
( ) ( , )

z

z
k t N d t dz

g

g

-
+- ò ,                     (62) 

where, 

2

0

( )

0 1
( )

z

z
b dz

g

g
n+ò ,                                             (8’) 

Hence, by (1’), (62) and Itô-Ventzell formula, we have, 

{ }1 1 2

0( ) 1 1 1 ( )
p p k c p s

d y t g g g r n b k t dt
a a a am t t s- - -= [( - )-( + )( - - )]- + +  
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            1 ( ) ( )pg k t d B ta as- -- 
0

1

1
( ) ( , )

z

p z
g k t N d t dz

ga a

g

- -
+- ò  

          
0

( , , ) ( , ) ( ) ( , , ) ( , )t dt t d B t t z N d t dzV x w w q w- -+ +ò  ,          (63) 

wherew ÎWand, 

1 p sg rx - - ,                                                 (64) 

And hence, a little different from (9’) and (7’), we consider the following stochastic 

optimal control problem facing the representative agent, 

( )
ˆ

ˆ( )

0 1 0
max ln ( )

s

s t

r
e y t dt U
t

r tx- +

< <

é ù
+ê úê úë ûò ,                               (65) 

s.t. 


0

( ) ( , , ) ( , ) ( ) ( , , ) ( , )d y t t dt t d B t t z N d t dzV x w w q w- - -= + +ò , 

Thus, the corresponding Hamiltonian
18

 can be expressed as follows, 

( , , , ) exp( ( )) ln ( ) ( ) ( , , ) ( , )tH t y s t y t t t D tx w r x G V x w w+
é= - + [ ]+ +ë   

0

, ( , , ) ( ) ( , ) ( )t z tD t z dz t D tq w n w G+
ù

+ +úúûò   

0

, ,( ) ( , , ) ( , , ) ( )
t z t z

D t t z D t z dzG q w q w n++ [ + ]ò ,           (66) 

wherew ÎW ,
t

D ,
t

D + ,
,t z

D and
,t z

D + denote Malliavin derivatives and,  

ˆ
( )( ) ln ( )s

y
t

t e y d
t

r lG x l l- + ¶
¶ [ ]ò  

ˆ
( ) 1

( )

s

y
t

e d
t

r l

l
l- += ò ,                                       (67) 

Then we have the following proposition, 

PROPOSITION 1. Based on Definition 1 to Definition 3, and provided the above 

specifications, we have: 

(i) If the representative agent has incomplete information, then the optimal 

savings rate is, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                         (68) 

where ( ( ))
( ) ( )sr t

k t k t and ( ( ))
( ) ( )sr t
t tG G with( )

s
r t -H predictable. 

                                                        
18 See Meyer-Brandis et al (2009). 
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(ii) If the representative agent has complete information, then the optimal 

savings rate is, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                         (69) 

where ( ( ))
( ) ( )sr t

k t k t and ( ( ))
( ) ( )sr t
t tG G with( )

s
r t - predictable. 

(iii) If the representative agent has perfect information, then the optimal savings 

rate is, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
= - -  

,                         (70) 

where ( ( ))
( ) ( )sr t

k t k t and ( ( ))
( ) ( )sr t
t tG G with( )

s
r t M-predictable. 

Proof. See Appendix G. ▌ 

REMARK. Proposition 1 is a natural correspondence to Lemma 1. And we may 

easily tell the differences between Proposition 1 and Lemma 1, which reflects the 

fact that consideration of different information structures is not only necessary but 

also important. 

Now, we are in the position to calculate the term
ˆ

U
t and the optimal stopping 

time t̂ given in (65). That is, we are to solve the optimal stopping problem defined in 

(10) subject to the following SDE, 

 { }1 2

0( ) 1 1 1 ( ) ( )p k c p sd k t g g r t n b k t dta am t t s- -= [( - )-( + )( - - )]- + +  

        ( ) ( )k t d B ts --  
0

1
( ) ( , )

z

z
k t N d t dz

g

g

-
+- ò ,                     (71) 

where( )
s

r t and( )k t are given in Proposition 1, and 0b is defined in (8’). It is easy to 

see that the construction of this problem is quite similar to that one in section 3.2, 

and rather, we have the following proposition, 

PROPOSITION 2. Conditional on the same assumptions and constructions as 

that of Lemma 2, if 

1 2

01 1 1 (0)
p k c p s

g g r n b
a am t t r s- [( - )-( + )( - - )]< + - - , 

21
02

n b ds- - -  

1 1 1 1 ( )
p k c p s

g g r t
a am t t-< [( - )-( + )( - - )] 
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21
02

n b dr s£ + - - - , a.e. 

And, 

1 21
02

1 1 1 ( )p k c p sg g r t n b da am t t s- [( - )-( + )( - - )]- + + + <¥ , a.e. 

where 0b and d are defined in (8’) and (17), respectively, and ( )
s

r t is given in 

Proposition 1. Then we obtain the optimal
t
- stopping time ˆˆ inf 0; ( )t k t kt { ³ = } . 

In other words, 

ˆ1 ˆˆ ( , ) ( )sg s k e k k Ur b b t

b

- -= = , 

which is a supermeanvalued majorant of ( , )g s k with k̂ given by (22), andb is a 

solution of, 

 { }1 2

0( ) 1 1 1 (0)p k c p sh g g r n ba ab r b m t t s-- + [( - )-( + )( - - )]- + +  

       
0

21 1
2 1 1

( 1) ( ) 1 ( ) 0
z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò , 

with(0)
s

r determined by Proposition 1. 

Proof. See Appendix H. ▌ 

REMARK. Proposition 2 is a natural correspondence to Lemma 2. And a 

comparison of Proposition 2 and Lemma 2 shows that different information 

structures will intrinsically lead to different sustainable terminal path levels of capital 

stock per capita thanks to Proposition 1, where optimal savings rate strictly depends 

on the given level of information. Therefore, noting that the utility-optimal and 

sustainable terminal path level of capital stock per capita changed, thereby implying 

a different minimum time needed to “economic maturity” relative to Lemma 2. 

 

5.3. Government 

Firstly, similar to section 3.3, the balanced budget constraint defined in (24) can 

be expressed as follows, 

(1 ( ))
k c p s p

g r t gt t+ - - = ,                                     (25’’) 

And we specifically consider the following case, 
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ASSUMPTION 1. The goal of the government is to choose tax policies so as to 

maximize the welfare of the representative agent. 

Inserting (25’’) into (71) gives, 

   
0

1 2

0 1
( ) ( ) ( ( ) ) ( ) ( , )

z

p s z
d k t k t g r t n b dt d B t N d t dz

ga a

g
m s s- - - -

+

é ù
= - + + - -ê úê úë ûò ,  (72) 

Thus applying Itô-Ventzell formula leads to, 

   
0

1 1 2

0 1
( ) ( ) ( ( ) ) ( ) ( , )

z

p p s z
d y t g k t g r t n b dt d B t N d t dz

ga a a a

g
m s s- - - - -

+

é ù
= - + + - -ê úê úë ûò

          
0

ˆˆˆ( , , ) ( , ) ( ) ( , , ) ( , )
c

t dt t d B t t z N d t dzV t w w q w- -+ +ò  ,          (73) 

Hence, the stochastic optimal control problem facing the government can be written 

as follows, 

 ( )
ˆ

ˆ( )

0 1 0
0 1

max ln (1 ( )) ( )
c

k

s t

p se g r t y t dt U
t

r t

t
t

- +

< <
< <

é ù
- - +ê úê úë ûò ,                    (74) 

s.t. 

 
0

ˆˆˆ( ) ( , , ) ( , ) ( ) ( , , ) ( , )
c

d y t t dt t d B t t z N d t dzV t w w q w- - -= + +ò , 

where
ˆ

U
t and t̂ are given in Proposition 2, and ( )

s
r t is given in Proposition 1. 

Accordingly, the corresponding Hamiltonian
19

 amounts to, 

   ˆ ˆˆ( , , , ) exp( ( )) ln (1 ( )) ( ) ( ) ( , , ) ( , )c p s c tH t y s t g r t y t t t D tt w r G V t w w+
é ù é= - + - - + +ê ú ëë û



                 
0

,
ˆ ˆ( , , ) ( ) ( , ) ( )t z tD t z dz t D tq w n w G+

ù
+ +úúûò   


0

, ,
ˆ ˆ( ) ( , , ) ( , , ) ( )

t z t z
D t t z D t z dzG q w q w n++ [ + ]ò ,           (75) 

wherew ÎW ,
t

D ,
t

D + ,
,t z

D and
,t z

D + denote Malliavin derivatives and,  

  ˆ
( )

ˆ( ) ln (1 ( )) ( )s

p sy
t

t e g r y d
t

r lG l l l- + ¶
¶
é ù- -ê úë ûò  



ˆ
( ) 1

( )

s

yt
e d
t

r l

l
l- += ò ,                                       (76) 

where( )y t is determined by SDE in (73). Therefore, the following proposition is 

derived, 

                                                        
19 See Meyer-Brandis et al (2009). 
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PROPOSITION 3. Based upon Assumption 1 and the above specifications, we 

establish, 

(i) If the information is symmetric between the representative agent and the 

government, then the optimal consumption tax rate is zero and the optimal capital 

income tax rate is equal to
p

g . 

(ii) If the information is asymmetric between the representative agent and the 

government, and particularly, the representative agent gets more information than 

the government, then we obtain that the optimal consumption tax rate is zero and the 

optimal capital income tax rate is equal to
p

g . 

(iii) If the information is asymmetric between the representative agent and the 

government, and particularly, the government has more information than the 

representative agent, then, 

(iii-a) If the government has perfect information while the representative agent 

has complete information, then we have, 

   (1 ) ( ) ( ) ( ) ( )
c t t

k t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                        (77) 

where
ct
* denotes the optimal consumption tax rate and 

  ( )

( ) ( )
c

k t k t
t**

 ,  ( )

( ) ( )
c

t t
t

G G
**

 , 

with
ct
*
M-predictable. 

(iii-b) If the government has perfect information while the representative agent 

has incomplete information, then we get, 

   (1 ) ( ) ( ) ( ) ( )
c t t

k t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                        (78) 

where  ( )

( ) ( )
c

k t k t
t**

 and  ( )

( ) ( )
c

t t
t

G G
**

 with
ct
*
M-predictable. 

(iii-c) If the government has complete information while the representative 

agent has incomplete information, then we get, 

   (1 ) ( ) ( ) ( ) ( )
c t t

k t t k t tt G G
* ** **é ù é ù+ =ê ú ê ú

ë û ë û
   ,                         (79) 

where  ( )

( ) ( )
c

k t k t
t**

 and  ( )

( ) ( )
c

t t
t

G G
**

 with
ct
*
- predictable. 
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Proof. See Appendix I. ▌ 

REMARK. Proposition 3 is a natural correspondence to Lemma 3. And it is 

worth emphasizing that Proposition 3 itself is very interesting and important 

especially for the case where the government gets more information than the 

representative agent. Specifically, for the current endogenous growth economy, if the 

information is symmetric between the government and the representative agent or 

the representative agent gets more information than the government, then the optimal 

capital income tax rate is always equal to the exogenously given constant
p

g . 

However, optimal tax rate on capital income may be zero when the government gets 

more information than the representative agent. 

Thus, combining Proposition 3 with Proposition 1 gives the following corollary, 

COROLLARY 2. (i) For this case of symmetric information or the representative 

agent has more information, we have: 

(i-a) If the representative agent has incomplete information, then the optimal 

savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                           (80) 

(i-b) If the representative agent has complete information, then the optimal 

savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                           (81) 

(i-c) If the representative agent has perfect information, then the optimal 

savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                          (82) 

(ii) For the case of asymmetric information and particularly the government 

has more information: 

(ii-a) If the government has perfect information while the representative agent 

has complete information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                          (83) 

(ii-b) If the government has perfect information while the representative agent 
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has incomplete information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                          (84) 

(ii-c) If the government has complete information while the representative agent 

has incomplete information, then the optimal savings rate is, 


 2 1

1

exp( ( )) ( ) ( ) |
( ) 1

p t

s p
s t g k t t

r t g
a ar m G

* *-

*

+ [ ]
= - -

 
,                           (85) 

Now, by Proposition 2, we have, 

ˆ 1 ˆ( )sU e k kt r b b

b

- -= , 

Thus, 

ˆ ˆ( ) 11 ˆ ˆ( ) ln( )s s

p
U e k k e g kt r b b r t a a

b

- - - + -= =  

ˆ1 1 ˆˆ ln ( ) ln( )k
pk

g kb a at r b- - = [ ],                                  (86) 

Therefore, we conclude the following theorem, 

THEOREM 4. Based on the above propositions and Corollary 2, we have, 

(i) The corresponding optimal stopping time is given by (86), 

where (0) 0k k= > , k̂ is given in (22) andb is a solution of, 

 ( )1 2

0( ) (0)
p s

h g r n b
a ab r b m s

* *-- + - + +  

      
0

21 1
2 1 1

( 1) ( ) 1 ( ) 0
z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò ,                (87) 

where(0)
s

r
*
is determined by (80). 

(ii) The optimal stopping time is given by (86), where (0) 0k k= > , k̂ is given in 

(22) , andb is a solution of (87) with(0)
s

r
*
determined by (81). 

(iii) The optimal stopping time is given by (86), where (0) 0k k= > , k̂ is given in 

(22) , andb is a solution of (87) with(0)
s

r
*
determined by (82). 

(iv) The optimal stopping time is given by (86), where (0) 0k k= > , k̂ is given in 

(22) , andb is a solution of, 

 { }1 2

0( ) 1 1 1 (0)p k c p sh g g r n ba ab r b m t t s
* *- * *é ù- + ( - )-( + )( - - ) - + +ê ú

ë û
  
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0

21 1
2 1 1

( 1) ( ) 1 ( ) 0
z

z z
dz

g bb

g g
s b b n+ ++ - + [ - + ] =ò ,               (88) 

where
c
t* is determined by (77),

k
t* is determined by (77) and (25’’), and(0)

s
r

*
is 

determined by (83). 

(v) The optimal stopping time is given by (86), where (0) 0k k= > , k̂ is given in 

(22) , andb is a solution of (88), where
ct
* is determined by (78),

kt
* is determined by 

(78) and (25’’), and(0)
s

r
*
is determined by (84). 

(vi) The optimal stopping time is given by (86), where (0) 0k k= > , k̂ is given in 

(22) , andb is a solution of (88), where
ct
* is determined by (79),

kt
* is determined by 

(79) and (25’’), and(0)
s

r
*
is determined by (85). 

REMARK. This theorem shows that different information structures lead to 

different endogenous times directly on the one hand and indirectly by leading to 

different utility-optimal and sustainable terminal path levels of capital stock per 

capita on the other hand. That is to say, information constraint is of crucial 

importance in determining the minimum time needed to “economic maturity”. The 

economic implication is that certain level of information would make the economy 

reach its “maturity” faster than other levels of information, and also certain kind of 

information structure would make the economy reach its “economic maturity” much 

faster than other kinds of information structure. Accordingly, Theorem 4 implies that 

the issue of information constraint consists of at least two parts: one is that the 

absolute quantity of information is nontrivial and the other is that the distributive 

functions of information among the agents are also of great importance from the 

viewpoint of economic development. All in all, this theorem provides us with an 

efficient mechanism to build a close linkage between the micro-information-structure 

and the macro-economic-development. 

 

6. LOCAL SENSITIVITY ANALYSES 

In this section, we will make local sensitivity analyses of optimal consumption 
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strategy of the representative agent with respect to the initial level of capital stock 

per capita. And, in particular, we will take preference manifold one discussed in 

section 3 for example. In order to make local sensitivity analyses, some preparations 

should be firstly supplied. And, specifically, the following theorem and 

corresponding corollary are employed to prove our results. 

For any given Itô-Lévy process defined on the probability space ( , , )W  , 


0

( ) ( ) ( ) ( ) ( , ) ( , ), 0,

(0)

dQ t t dt t dB t t z N dt dz t T

Q q

Jìï = + + Î[ ]ïïíïï = Îïî

ò


 ψ
 

Thus, the following theorem is established, 

THEOREM 5. (Representation Theorem for Functions of Jump Diffusions)
20

: 

Let :F   be a function with Fourier transform, 

 1
2

( ) ( )i xe x dxl

p
l -F = Fò , l Î  

satisfying the Fourier inversion property, 

( ) ( )ie dlkk l lF = Fò , kÎ  

Then, 

( ) ( ) ( ) exp ( )q qQ t t dll làF = F {L }ò , 0,t TÎ[ ] 

where, 


0

( , )

0 0
( ) ( ) ( ) 1 ( , )

t t
q i s z

t i q i s dB s e N ds dz
l

l l lL + + [ - ]ò ò ò  ψ
 

{ }
0

2 2 ( , )1
2

0
( ) ( ) 1 ( , ) ( )

t
i s zi s s e i s z dz dsllJ l l n+ - + [ - - ]ò ò ψ ψ , 0,t TÎ[ ]. 

Moreover, we have, 

COROLLARY 3
21

. LetF be a real function as in Theorem 5, then we have, 

( ) ( ) ( )exp( ( ))qQ t i q t dll l lé ùF = F +ê úë û ò F , 

where 

{ }
0

2 2 ( , )1
2

0
( ) ( ) ( ) 1 ( , ) ( )

t
i s zt i s s e i s z dz dsl

l lJ l l n- + [ - - ]ò ò  ψ ψF . 

                                                        
20 See Theorem 14.13 in pp. 259 of Di Nunno et al (2009). 
21 See Corollary 14.14 in pp. 259 of Di Nunno et al (2009). 
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Now, we begin our local sensitivity analyses. Firstly, inserting (29) into (26) 

produces, 

{ }
0

1 2

1
( ) ( ) (1 ) ( ) ( , )

ˆ(0) 0, 0,

z

p p z
dk t k t g g n b dt dB t N dt dz

k k t

ga a

g
m r s s

t

-
+

ìïï = [ - - - + + ] - -ïïíïï = > Î[ ]ïïî

ò (89) 

And by (29), the optimal consumption strategy is given by, 

( ) ( )c t k t
r

m
= , ˆ0,t tÎ[ ].                                         (90) 

where ( )k t is determined by (89). Noting that m , s and zg are deterministic and 

suppose that 1zg e>- + for a.a. z , for some 0e> , and, 

0

ˆ
1 2 2 2

1
0

(1 ) ( ) ( )
z

p p z
g g n b dz dt

t
ga a

g
m r s s n-

+

é ù
- - - + + + + <¥ê úê úë ûò ò ,    (91) 

By the Itô formula for Lévy processes, the solution of (89) is given as follows, 

{ 1 21
2

( ) exp (1 )k

p p
k t k g g n b d t

a am r s-= [ - - - + + + ]  

 }
0

1
1

0
( ) ln ( , )

t

z
B t N ds dz

g
s +- +ò ò  

( )exp ( )q
Q t ,                                            (92) 

whereb and d are defined in (8) and (17), respectively, and, 


0

( ) ( ) ( ) ( ) ( , ) ( , )q
dQ t t dt t dB t t z N dt dzJ= + +ò ψ ,                    (93) 

with 

lnq k ,                                                     (94) 

1 21
2

( ) (1 )p pt g g n b da aJ m r s- - - - + + + ,                        (95) 

( )t s- ,                                                    (96) 

1
1

( , ) ln
z

t z
g+ψ ,                                                (97) 

If :h   , then by (90), 

( ) ( ) ( )( ) ( )( ) ( ) exp ( ) ( )k q qh c t h k t h Q t Q t
r r

m m
é ùé ù é ùé ù = = = Fê ú ê úê úë û ë ûë û ë û

    ,         (98) 

where 
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( )( ) exp( )h
r

m
k kF  , forkÎ                                     (99) 

IfF satisfies the conditions of Theorem 5, then by Corollary 3, 

( ) ( )ln( ) ( )kd d
dk dk

h c t Q té ùé ù = Fê úë û ë û   

              ( ) exp( ln ( ))d
dk

i k t dll l l= F +ò F  

              ( ) exp( ln ( ))i
k

i k t dl
ll l l= F +ò F ,                     (100) 

where, 

{ }1
1

0

ln1 2 2 21 1 1
2 2 1

0
( ) (1 ) 1 ln ( )z

t i

p p z
t i g g n b d e i dz dsg

la a

l g
l m r s l s l n+-

+[ - - - + + + ]- + [ - - ]ò òF

                                                                (101) 

Noting that we focus on local sensitivity analyses, and without loss of any generality, 

we put, 

,
( ) ( )

M M
h r r

m m

k k
[ ]

 1 , with 0 M M< < <¥ .                         (102) 

which combines with (99) produces, 

( )
,

( ) exp( )
M M
r r

m m

r

m
k k

[ ]
F  1 , kÎ                                 (103) 

and, 

 ( ) ( )1

,
2 ( ) ( ) exp( )

iii i

iM M
e d e d M Mr r

m m

llrlk lk

m l
p l k k k k

--- -

[ ]
F = F = = -ò ò 

1 , (104) 

Substituting (104) into (100) leads to, 

( ) ( )1
2,

( ) exp( ln ( ))
iid

dk kM M
c t M M i k t dr r

m m

ll

lp
l l

--

[ ]

é ùD = - +ê ú
ë û ò  1 F ,   (105) 

where ( )tlF is defined in (101). Moreover, by Di Nunno et al (2009)
22

 we see that, if 

for some 0d> , 

( )
0

ˆ
2 2 21

1
0

1 cos( ln ) ( )
z

dz ds
t

g
l s l n dl+

é ù
+ - ³ê úê úë ûò ò ,                    (106) 

Then the integral in (105) converges. Therefore, the following theorem has been 

established, 

THEOREM 6. Based on preference manifold one introduced in section 3, 

if 1zg e>- + for a.a. z , for some 0e> , and (91), (106) are fulfilled, and also, 

                                                        
22 See pp. 262. 
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( ) exp(Re ( ))t dll l lF <¥ò F , 

Then we get, 

( ) ( )1
2,

( ) exp( ln ( ))
iid

dk kM M
c t M M i k t dr r

m m

ll

lp
l l

--

[ ]

é ùD = - +ê ú
ë û ò  1 F , 

with ( )tlF given in (101). 

REMARK. It is well-known that sensitivity analyses have been widely applied in 

literatures of finance. Theorem 6 shows that this kind of analysis method can be 

naturally brought into macroeconomic analyses. And so by Theorem 6, we can tell 

the extent of the dependence of optimal consumption strategy on the initial 

conditions of the corresponding economical system. That is to say, we can show how 

much would the optimal consumption change for a given scale change of the initial 

conditions of the economical system. Most importantly, local sensitivity analyses can 

be applied to different preference manifolds corresponding to different endogenous 

times. Therefore, we have been supplied an appropriate variable instrument to tell 

the differences between different preference manifolds and hence different minimum 

times to “economic maturity”. Finally, we need to argue that different economical 

systems may share the same level ofD , while different levels ofD absolutely 

correspond to different economical systems. 

 

7. CONCLUDING REMARKS 

The major goal of the current paper is to determine the minimum time needed to 

reach “economic maturity” for an underdeveloped economy in the background of 

stochastic endogenous growth. And the major novelties can be summarized as 

follows: first, the minimum time to “economic maturity” and the sustainable and 

utility-optimal terminal path level of capital stock per capita are simultaneously and 

endogenously determined; second, the endogenous time can be explicitly computed 

in some conditions, specifically for the criterion or the preference of the modified 

Radner fashion, which will completely support comparative static analyses; third, 

two kinds of preference manifolds are simultaneously incorporated into our model 
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and the resulting different endogenous times are comparatively studied for the first 

time, which, in other words, implies that there may exist a one-to-one 

correspondence between the preference manifold and the endogenous time; forth, the 

effects of the endogenous time with respect to optimal fiscal policies and different 

information structures are thoroughly explored for the first time to the best of our 

knowledge in the background of general equilibrium framework; and fifth, local 

sensitivity analyses
23

 of the optimal consumption strategy with respect to initial 

level of capital stock per capita are incorporated into the unbalanced macroeconomic 

models. 

Finally, it would be clear that the methodology introduced here can be easily 

employed to compute the optimal stopping times in finance. Noting that a 

considerable number of literatures (see, Myneni, 1992; Shepp and Shiryaev, 1993; 

Hobson, 1998; Guo and Shepp, 2001; Avram et al, 2004; Choi et al 2004; Alili and 

Kyprianou, 2005) have been devoted to the issue of optimal stopping problems in 

finance, the advantage of the current method is that it will support the explicit 

computation
24

 of the corresponding optimal stopping times in certain conditions and 

therefore to further analyze the influences of other parameters, e.g., those reflect 

different financial institutions and different preferences of information structure, on 

the optimal stopping times. 

 

 

APPENDIX 

A. Proof of Lemma 1 

Applying the maximization operator in (11) yields, 

11
1

exp( ( )) ( , ( )) ( ) (1 ) 0
p s k p cg r

s t V t k t k t g a ar m t-
- -- - + + + =  

1

1

exp( ( )) ( , ( )) ( ) (1 )
1

k p c
p s s t V t k t k t g

g r a ar m t-+ +
 - - = ,                         (A.1) 

Substituting (A.1) into (11) gives, 

                                                        
23 One can easily tell the differences between the method used here and those in empirical literatures, see, 

Kydland and Prescott, 1982; Levine and Renelt, 1992; Canova, 1995; and Fernández and Rogerson, 1998. 
24 That is to say, a simple formula of the optimal stopping time can be derived in certain conditions. 
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2 21
2

( , ( )) ( ) ( , ( ))t kkV t k t k t V t k ts- -  

( )
0

1 1
, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )

z z

kz z
V t k t k t V t k t k t V t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

( )( )exp( ( )) ln ( , ( )) (1 ) 1s t

k c
s t e V t k t

rr m t+é ù=- - + + +ê úë û  

1 2( , ( )) ( ) 1k p kV t k t k t g n ba am t s-+ [ ( - )- + + ] ,                     (A.2) 

Naturally, one can try, 

1 2( , ( )) exp( ( )) ln ( )V t k t s t C C k tr= - + [ + ] ,                         (A.3) 

for some constants 1C , 2C to be determined. Hence, by (A.3), 

1 2( , ( )) exp( ( )) ln ( )
t

V t k t s t C C k tr r=- - + [ + ] ,                      (A.4) 

1

2( , ( )) exp( ( )) ( )kV t k t C s t k tr -= - + ,                              (A.5) 

2

2( , ( )) exp( ( )) ( )kkV t k t C s t k tr -=- - + ,                            (A.6) 

Inserting (A.3)-(A.6) into (A.2) produces, 

( )
0

21 1
1 2 2 22 1 1

ln ( ) ln ( )
z

z z
C C k t C C dz

g

g g
r r s n+ ++ + - +ò  

1 2

2 2ln ln ( ) ln (1 ) 1 1c p kC k t C g n ba am t m t s-=- + - [ + ]+ [ ( - )- + + ]- ,  (A.7) 

which implies that, 

1

2C r-= ,                                                    (A.8) 

And combining (A.7) with (A.8) leads to, 

( )
0

1 1 2

( )
1

1 2 1 11 1
2 1 1

ln (1 ) 1

ln ( )

c p k

z

z z

g n b

C
dz

r a a

m t

g

g g

r m t s

r
s r r n

- -
1+

-
- -

+ +

ì üï ï+ [ - - + + ]-ï ïï ï= í ï ï- + +ï ïï ïî ò
.            (A.9) 

Thus, it follows from (A.1), (A.5) and (A.8) that, 

1 ( )
ˆ 1

p c
s p g

r g a a

r

m t- 1+
= - - ,                                       (A.10) 

And by (A.3), (A.8) and (12), we obtain, 

ˆ1

1
ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )V k s C k U

tt t r t r t-= - + [ + ]= .                 (A.11) 

where 1C is given in (A.9). ▌ 
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B. Proof of Lemma 2 

It follows from the “Integro-variational inequalities for optimal stopping” (see, 

Theorem 2.2, pp. 29) of Øksendal and Sulem (2005), we are to prove, 

(i) We need to prove that gf³ on D , i.e., 

1ln( )
p

Ck g kb a a-³  for ˆ0 k k< <                                 (B.1) 

Define 1( ) ln( )
p

l k Ck g kb a a-- . By our chosen values of C and k̂ , we see that 

ˆ ˆ( ) ( ) 0l k l k¢= = . Moreover, noting that 2 2( ) ( 1)l k C k k
bb b - -¢¢ = - + . Thus, if we put 

1b> , we get ( ) 0l k¢¢ > for ˆ0 k k< < , and also we have ( ) 0l k > for all ˆ0 k k< < . 

Notice by (14) that, 

1 2ˆ(1) 1 1 1 0p k c p sh g g r n ba ar m t t s-=- + [( - )-( + )( - - )]- + + <  

1 2ˆ1 1 1p k c p sg g r n ba am t t r s- [( - )-( + )( - - )]< + - - ,         (B.2) 

Thus, (B.1) follows as long as (B.2) is fulfilled. 

(ii) Outside D we have 1( , ) ln( )s

ps k e g kr a af - -= and by (16), 

{ 1 1 ˆ( , ) ln( ) 1 1 1s

p p k c p s
g s k e g k g g r

r a a a ar m t t- - -= - + [( - )-( + )( - - )]  

}21
2

0n b ds- + + + £    for all ˆk k³  

{ }1 21
2

ˆ1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - ³ , ˆk k" ³  

{ }1 21
2

ˆ1 1 11ˆ exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- [( - )-( + )( - - )]- + + +- - ³ . 

which holds by (20). 

(iii) To check if t̂ <¥ almost surely. It is easy to see that one can choose parameters 

such that the geometric Lévy diffusion process defined in (7’’) satisfies the “At most 

linear growth” and “Lipschitz continuity” conditions, thereby implying a unique 

càdlàg (right continuous with left limits, i.e., RCLL processes) strong solution ( )k t . 

Then by (4), (8) and Itô formula, we obtain, 

{ }1 21
2

ˆln ( ) 1 1 1
p k c p s

d k t g g r n b dt
a am t t s-= [( - )-( + )( - - )]- + +  
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          ( ) 
0

1 1
1 1 1

( ) ln ( ) ln( ) ( , )
z

z z z
dB t dz dt N dt dz

g

g g g
s n+ + +- + + +ò ò 

 

{ }1 21
2

ˆ1 1 1
p k c p s

g g r n dt
a am t t s-= [( - )-( + )( - - )]- +  

          
2

0

( ) 1
1 1 1

( ) ( ) ( ) ln( ) ( , )
zz

z z z
dB t dz dz dt N dt dz

gg

g g g
s n n+ + +

é ù- + + +ê úë ûò ò ò  
 

{ }1 21
2

ˆ1 1 1 ( )
p k c p s

g g r n z dz dt
a am t t s g n-= [( - )-( + )( - - )]- + +ò               

0

1
1

( ) ln( ) ( , )
z

dB t N dt dz
g

s +- +ò . 

Hence, we get, 

{( 1 21
2

ˆ( ) exp 1 1 1
p k c p s

k t k g g r n
a am t t s-= [( - )-( + )( - - )]- +  

}
0

1
1

0
( ) ( ) ln( ) ( , )

t

z
z dz t B t N ds dz

g
g n s +

ö÷+ - + ÷÷øò ò ò 
          (B.3) 

We see that if, 

1 21
2

ˆ1 1 1 ( )
p k c p s

g g r n z dza am t t s g n- [( - )-( + )( - - )]> - -ò          (B.4) 

0zg <  a.s. n-                                                (B.5) 

And, 

0s< .                                                      (B.6) 

by the law of the iterated logarithm of Brownian motion, then we have, 

lim ( )
t

k t
¥

=¥   a.s. 

And particularly, t̂<¥ almost surely. 

(iv) Noting from (22) that k̂ <¥ , thus ˆ0,k[ ]is compact set by Heine-Borel theorem. 

Accordingly,f is bounded on ˆ0,k[ ]via applying the fact that 2 2( )CfÎ  and the 

well-known Weierstrass theorem. So, it suffices to check that, 

1ln ( )
p

e g k
rt a a

tt- -
Î{ [ ]}  is uniformly integrable on ˆ[ , )k ¥ . 

where denotes the set of admissible stopping time and the uniform topology is 

naturally induced by the norm, which is induced by inner product, of Hilbert 

space 2 ( , , )L W  . For this to hold, it suffices to show that there exists a 

constant M <¥ such that 
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2 1 2ln( ( ))
p

e g k M
rt a a t- -{ [ ] }£  for allt Î and ˆ( )k kt ³ .             (B.7) 

Since  

1 10 ln ( ) ( )
p p

g k t g k t
a a a a- -< [ ]<  on ˆ[ , )k ¥ . 

Hence, by (4) and (B.3), we have, 

2 1 2ln( ( ))pe g k
rt a a t- -{ [ ] }  

2 1 2 2( )pg e k
a a rt t- -£ [ ]  

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 1
1

0
2 3 2 2 ln( ) ( , )

z
n N ds dz

t

g
s r t +

ùö÷- + - + ú÷÷øúûò ò  

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

} 
0

2 1 1
1 1

0
2 3 2 2 ln( ) ( ) 2 ln( ) ( , )

z z
n dz N ds dz

t

g g
s r n t+ +

ùö÷- + - + + ú÷÷øúûò ò ò 
(B.8)                

{(2 1 2 1 ˆexp 2 ( ) 2 1 1 1p p k c p sg k z dz g g r
a a a ag n m t t- -é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 21 1 1
1 1 1

0
2 3 2 2 ln( ) ( ) ( ) 1 2ln( ) ( )

z z z
n dz dz ds

t

g g g
s r n t n+ + +

ùö÷- + - + + [ - - ] ú÷÷øúûò ò ò 

                                                                (B.9) 

{(2 1 2 1 2ˆexp 2 1 1 1 2 3 2p p k c p sg k g g r n
a a a am t t s r- -é= [( - )-( + )( - - )]- + -êë

  

}
0

21
1

( ) 1 ( ) 2 ( )
z

dz z dz
g

n g n t+

ùö÷ú+ [ - ] + ÷÷øúû
ò ò 

. 

We conclude that if, 

1 ˆ2 1 1 1p k c p sg g r
a am t t- [( - )-( + )( - - )]  

0

2 21
1

2 2 3 ( ) 1 ( ) 2 ( )
z

n dz z dz
g

r s n g n+£ + - - [ - ] -ò ò 
,               (B.10) 

Then (B.7) holds and so does (iv). Specifically, from (B.8) to (B.9), we have used the 

following fact. For the following equation, 
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
0

( , )( ) ( ) ( 1) ( , )t z
dX t X t e N dt dz

y-= -ò , (0) 1X = .                  (B.11) 

which has the solution, 

{ }
0 0

( , )

0 0
( ) exp ( , ) ( , ) ( 1) ( )

t t
s z

X t s z N ds dz e dz ds
yy n= - -ò ò ò ò 

{ }
0 0

( , )

0 0
exp ( , ) ( , ) 1 ( , ) ( )

t t
s z

s z N ds dz e s z dz ds
yy y n= - [ - - ]ò ò ò ò 

 

(B.12) 

Suppose 

0

( , ) 2

0
( 1) ( )

t
s z

e dz ds
y n- <¥ò ò , 

Then by (B.11) we see that ( ) 1X t[ ]= and hence by (B.12) we obtain, 

 { }
0 0

( , )

0 0
exp ( , ) ( , ) exp 1 ( , ) ( )

t t
s z

s z N ds dz e s z dz ds
yy y n

é ùæ ö÷ç = [ - - ]ê ú÷ç ÷è øê úë ûò ò ò ò 
  

If we put 21
1

( , ) ln( )
z

s z
g

y += , then (B.9) follows. 

(v) We need to prove that, 

(ˆ 2

0

ˆ( ( )) ( ( )) ( ) ( ( ))k

kk k t k t k t
t

f t f s f
é

+ + -êêë ò   

0

2

1
( ( ) ( )) ( ( )) ( )

z

z
k t k t k t dz dt

g

g
f f n+

ùö÷+ - - <¥ú÷÷ø úûò     for t" Î    (B.13) 

where ( ( )) ( )k t Ck t
bf = withC given in (23) andb satisfying ( ) 0h b = in (14). Noting 

that, 

{ }1 2ˆ ˆ( ( )) 1 1 1 ( )
p k c p s k

k t g g r n b k t
fa af m t t s ¶-
¶= [( - )-( + )( - - )]- + +               

2

2

0

2 21
2 1 1

( ) ( ( ) ( )) ( ( )) ( ) ( )
z z

z z kk
k t k t k t k t k t dz

f g g f

g g
s f f n¶ ¶

+ + ¶¶
+ + [ - - + ]ò  

( ) ( ( ))h k tb r f=[ + ]  

( ( ))k trf= .                                         (B.14) 

2 2 2( ) ( ( )) ( ) ( )
k

k t k t C k t
bs f sb- = ,                               (B.15) 

And 
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0

2

1
( ( ) ( )) ( ( )) ( )

z

z
k t k t k t dz

g

g
f f n+- -ò  

0

2 21
1

( ) 1 ( ) ( ( ))
z

dz k t
b

g
n f+= [ - ] [ ]ò ,                               (B.16) 

Consequently, given, 

0

21
1

( ) 1 ( )
z

dz
b

g
n+[ - ] <¥ò ,                                    (B.17) 

and via applying (iii), (B.13) follows as long as we show that 2( )k
k t

b[ ]<¥ almost 

everywhere on ˆ0,t[ ] . In particular, here we have 1b> by (B.2). Obviously, our 

following proof is similar to that of (iv). By (4) and (B.3), we have, 

2( )k
k t

b[ ]  

{(2 1 ˆexp 2 ( ) 2 1 1 1k

p k c p sk z dz g g r
b a ab g n bm t t-é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 2 1
1

0
2 ( 2 ) 2 ln( ) ( , )

t

z
n t N ds dz

g
b b b s b +

ùö÷- + + + ú÷÷øúûò ò  

{(2 1 ˆexp 2 ( ) 2 1 1 1k

p k c p sk z dz g g r
b a ab g n bm t t-é

= + [( - )-( + )( - - )]êêë ò  

} 
0

2 2 1 1
1 1

0
2 ( 2 ) 2 ln( ) ( ) 2 ln( ) ( , )

t

z z
n dz t N ds dz

g g
b b b s b n b+ +

ùö÷- + + + + ú÷÷øúûò ò ò 
               

{(2 1 ˆexp 2 ( ) 2 1 1 1k

p k c p sk z dz g g r
b a ab g n bm t t-é

= + [( - )-( + )( - - )]êêë ò  

}
0

2 2 21 1 1
1 1 1

0
2 ( 2 ) 2 ln( ) ( ) ( ) 1 2 ln( ) ( )

t

z z z
n dz t dz ds

b

g g g
b b b s b n b n+ + +

ùö÷- + + + + [ - - ] ú÷÷øúûò ò ò 

    {(2 1 2 2ˆexp 2 1 1 1 2 ( 2 )k

p k c p sk g g r n
b a abm t t b b b s-é= [( - )-( + )( - - )]- + +êë
  

}
0

21
1

( ) 1 ( ) 2 ( )
z

dz z dz t
b

g
n b g n+

ùö÷ú+ [ - ] + ÷÷øúû
ò ò 

. 

Consequently, we show that if, 

1 ˆ2 1 1 1 2 ( )
p k c p s

g g r z dz
a abm t t b g n- [( - )-( + )( - - )]+ ò  

0

2 2 21
1

2 ( 2 ) ( ) 1 ( )
z

n dz
b

g
b b b s n+- + + + [ - ] <¥ò ,               (B.18) 
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Then we get 2( )k
k t

b[ ]<¥ almost surely. ▌ 

 

C. Proof of Lemma 3 

Performing the maximization in (27) produces, 

1ˆ ˆ1
ˆ1

exp( ( )) ( , ( )) ( ) 0
p s c c

r r
k pg r

s t W t k t k t g a a

t t
r m -¶ ¶

- - ¶ ¶- - + + = ,            (C.1) 

1ˆ ˆ1
ˆ1

exp( ( )) ( , ( )) ( ) 0
p s k k

r r
k pg r

s t W t k t k t g a a

t t
r m -¶ ¶

- - ¶ ¶- - + + = .            (C.2) 

Noting by Lemma 1 and (25) that ˆ 0
c

r
t
¶
¶ ¹ and ˆ 0

k

r
t
¶
¶ ¹ , so (C.1) and (C.2) becomes, 

1

1

exp( ( )) ( , ( )) ( )
ˆ1

k p
p s s t W t k t k t g

g r a ar m -+
- - = ,                              (C.3) 

Substituting (C.3) into (27) gives rise to, 

2 21
2

( , ( )) ( ) ( , ( ))t kkW t k t k t W t k ts- -  

( )
0

1 1
, ( ) ( ) ( , ( )) ( ) ( , ( )) ( )

z z

kz z
W t k t k t W t k t k t W t k t dz

g g

g g
n+ +

é ù- - - +ê úë ûò  

( )( )exp( ( )) ln ( , ( )) 1s t

k
s t e W t k t

rr m+é ù=- - + +ê úë û  

1 2( , ( )) ( ) 1k p pW t k t k t g g n b
a am s-+ [ ( - )- + + ],                    (C.4) 

If we choose ( , ( ))W t k t of the following form, 

3 4( , ( )) exp( ( )) ln ( )W t k t s t C C k tr= - + [ + ] ,                         (C.5) 

for some constants 3C , 4C to be determined. Then, 

3 4( , ( )) exp( ( )) ln ( )
t

W t k t s t C C k tr r=- - + [ + ] ,                      (C.6) 

1

4( , ( )) exp( ( )) ( )kW t k t C s t k tr -= - + ,                              (C.7) 

2

4( , ( )) exp( ( )) ( )kkW t k t C s t k tr -=- - + ,                            (C.8) 

Inserting (C.5)-(C.8) into (C.4) yields, 

( )
0

21 1
3 4 4 42 1 1

ln ( ) ln ( )
z

z z
C C k t C C dz

g

g g
r r s n+ ++ + - +ò  

1 2

4 4ln ln ( ) ln 1 1p pC k t C g g n b
a am m s-=- + - + [ ( - )- + + ]- ,         (C.9) 

which implies that, 

1

4C r-= ,                                                   (C.10) 
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And hence, 

( )
0

1 1 2

1

3 2 1 11 1
2 1 1

ln (1 ) 1

ln ( )

p p

z

z z

g g n b

C
dz

r a a

m

g

g g

r m s

r
s r r n

- -

-
- -

+ +

ì üï ï+ [ - - + + ]-ï ïï ï= í ï ï- + +ï ïï ïî ò
.              (C.11) 

Thus, by (C.7) and (C.10), (C.3) becomes, 

1
ˆ1

p
p s g

g r a a

r

m -- - = ,                                           (C.12) 

which combining with Lemma 1 shows that, 

0ct
* = .                                                    (C.13) 

Hence, by (25), we have, 

k pgt* = .                                                   (C.14) 

And by (C.5), (C.10), (28) and Lemma 2, we obtain, 

1

3
ˆ ˆ ˆ ˆ( , ( )) exp( ( )) ln ( )W k s C kt t r t r t-= - + [ + ]  

1

3
ˆˆexp( ( ))( ln )s C kr t r-= - + +  

 
ˆ

U
t= . 

where 3C is given in (C.11). ▌ 

 

D. Proof of Lemma 5 

(i) We need to prove that gf³ on region D , i.e., 

1 1

5ln ln( )r

pCk k C g k
a ar- -+ + ³  for 0 k k

*< <                     (D.1) 

Define 1 1

5( ) ln ln( )r

pk Ck k C g k
a az r- -+ + - . By our chosen values ofC and k

* , 

we see that ( ) ( ) 0k kz z* *¢= = . And, 

2 1 2

0 0

( ) ( 1) (1 )r
k Cr r k kz r- - -

> <

¢¢ = - + -  , 

by (55) and (56). And using (55), we obtain, 

( ) 0 (1 ) ( )r r
k r k kz *¢¢ >  - > ,                                   (D.2) 

where (0) 0k k= > and 5C is defined in (48). Thus, as long as (D.2) holds, we 
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have ( ) 0kz ¢¢ > for all 0 k k
*< < , and also we have ( ) 0kz > for all 0 k k

*< < . 

Therefore, (D.1) follows as long as (D.2) is satisfied. 

(ii) Outside of D , we have 1( ) ln( )pk g k
a aj -= , and by (39), 

1

0 ( ) ln( )pk g k
a aj r -=-  

{ }1 21
2

1 1 1
p k c p s

g g r n b d
a am t t s- *+ [( - )-( + )( - - )]- + + +  

k k
*" ³  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +- - ³ ,      k k
*" ³  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
k g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +* - - ³ .        (D.3) 

Combining (42) with (D.3) shows that, 

( )1 21
2

1 1 11 1 ( 1)

1
(1 ) exp p k c p sg g r n b d

p p s
g g r

a am t t sa a r

r

- *[( - )-( + )( - - )]- + + +- - * -
-- -  

{ }1 21
2

1 1 11 exp p k c p sg g r n b d

p
g

a am t t sa a

r

- *[( - )-( + )( - - )]- + + +- -³  

ln(1 )p sg rr *- - -  

1 21
2

(1 ) (1 )(1 )p k c p sg g r n b d
a am t t s- *³ [ - - + - - ]- + + + ,        (D.4) 

Thus, (D.3) follows as long as (D.4) holds. 

It is easy to check that the remaining proof is quite similar to that of Lemma 2, 

so we take it omitted. ▌ 

 

E. Proof of Corollary 1 

Firstly, we introduce a Lévy process ( )Z t and denote by ( )Z sD the jump of ( )Z t at 

time s , i.e., ( ) ( ) ( )Z s Z s Z sD - - . Then, combining with the SDE defined in (60) 

shows that the corresponding Lévy process ( )Z t has the following Lévy 

decomposition, 

1 2( ) ( ) (1 )p pZ t B t g g n b t
a as m r s-=- +[ - - - + + ]  

       
0

( ) 11

0

( , ) ( )
z

Z sz

s t

N dt dz Z s
g

g {|D |³ }+
< £

+ + Dåò 1 ,                   (E.1) 
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where
( ) 1Z s{|D |³ }1 denotes the indicator function of the set | ( , ) | 1Z sw w{ ÎW; D ³ } . 

Moreover, we define a sequence of stopping times as follows, 

inf 0 | ( ) | 0m t k t mt { ³ ; > > } .                                   (E.2) 

Hence, it is easy to see that
m
t is increasing with respect to m , 

i.e., lim
m m
t¥ =¥ almost surely. And we put, 

( ) ( ) ( )m

m mt m tk t k t k
t

t tt-
{ < } { ³ }+ - 1 1 ,                              (E.3) 

Then if we suppose that, 

0

2( 1) ( )z dzn <¥ò , 

And 

0

1
( ) ( )

z p

z
dz

g

g
n+ <¥ò . 

for p" Î and 2p³ . We can apply Lemma 4.1 and Lemma 5.1 of Protter and Talay 

(1997) to produce, 
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0
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1
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2
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1
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p p z
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g
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0 1
0

( ) ( ) ( ) (0)m

T p p
z p

pz
dz k d C k k

g t

g
n l l

- *
+

ù+ò - + -úû ò   ,           (E.4) 

where 0
p

C > is a constant depends on p , k
* is given in (54’). And noting that the 

right hand side of (E.4) is finite because ( )mk mt - £ <¥ , and by triangle 

inequality, 

( ) ( )m mk k k k
t tl l- - * *- £ - - + , 

Thus, applying Gronwall’s lemma to (E.4) leads to, 
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( )( ),
0
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p p

M T p
s t

k s k k k
t - * *
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é ù
- £ + -ê ú

ê úë û
 Y ,                   (E.5) 

where, 
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z
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M T g g n b dz
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g
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+
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( ) }0 0

2
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1 1
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pp p z z p

p p z z
g g n b dz dz

g ga a

g g
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+ +
ù- - - + + + + ò +ò ú
û  . 

with ( ) 0M T > and 0 T< £¥ . Noting that the right hand side of (E.5) is independent 

of m , so employment of Fatou’s lemma and Levi lemma gives the result in our 

theorem. ▌ 

 

F. Proof of Theorem 3 

The proof is the same as that of Corollary 1. Hence, combining with (58), we see 

that, 

 { 0

2 21 2 2

( ), 1
exp ( ) 1 ( ) ( )

z

M T p p s z
M T g r n b dz

ga a

g
m s s n- *

+
é + - + + + +ò +êë Y  
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2
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g ga a
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m s s n n- *

+ +
ù- + + + + ò +ò ú
û  ,  (F.1) 

where ( ) 0M T > and0 T< £¥ . So,
( ),M T p

Y is an increasing function of
s

r
* , which is 

itself an increasing function of
c
t by Lemma 4. Hence,

( ),M T p
Y is minimized by 

sending
c
t to zero. And by the balanced budget constraint given in (25’), we see 

that
k p

gt = . Thus, substituting 0
c
t = into Lemma 4 shows that, 

11
p

s p g
r g a a

r

m -
* = - - ,                                            (F.2) 

Inserting (F.2) into (F.1) gives
( ),M T p

Y defined in Corollary 1. And this completes the 

proof. ▌ 

 

G. Proof of Proposition 1 

By (66) and (63), we have, 



 53

2 11exp( ( )) (1 ) ( ) ( )H
p cs t g k t t
a a

x x
r m t G-¶

¶ = - + - + ,                    (G.1) 

Thus, if the representative agent has incomplete information, the corresponding first 

order condition (FOC) is, 

ˆ| 0H
tx x x

¶
¶ =
[ ] =  ,                                              (G.2) 

Substituting (G.1) into (G.2) shows, 

2 11
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=
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ˆ
p c ts t g k t t
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x -
=+ [ + ]

 =  
,                             (G.3) 

Combining (G.3) with (64) gives, 


2 1

1

exp( ( )) (1 ) ( ) ( )|
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p c t
s p s t g k t t

r t g a ar m t G-+ [ + ]
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,                        (G.4) 

where, 

 ( ( ))
( ) ( )sr t

k t k t  and  ( ( ))
( ) ( )sr t
t tG G ,                             (G.5) 

with ( )
s

r t -H predictable. And hence (G.4)-(G.5) give the result in (i) of the 

proposition. Noting that the proof of (ii) and (iii) is quite similar to the above one, so 

we take it omitted. ▌ 

 

H. Proof of Proposition 2 

The proof of Proposition 2 proceeds as follows, 

(i) To prove that gf³ on region D . This proof is quite similar to that of Lemma 2. 

Hence, we argue that (i) follows as long as, 

1 2

01 1 1 (0)
p k c p s

g g r n b
a am t t r s- [( - )-( + )( - - )]< + - - ,            (H.1) 

(ii) To prove that outside D we always have ( , ) 0g s k £ for ˆk k" ³ . This proof is the 

same as that of Lemma 2. 

(iii) To check that t̂ <¥ almost surely. By (71) and Itô-Ventzell formula, we have, 

 { }1 21
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-
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Hence, we get, 
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 { }1 21
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It follows from Duality formula for forward integrals that, 
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é ù é ù
- = - =ê ú ê úê ú ê úë û ë ûò ò  , 0T" >                 (H.4) 

And, 
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So, we get by Lebesgue monotone convergence theorem, 

0
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¥
-- <¥ò  a.e.                                      (H.6) 

And 
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0
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Hence, by (H.3), we see that if, 
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Then we get, 

lim ( )
t
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=¥   a.s. 

And also, t̂ <¥ almost surely. 

(iv) Similar to that of Lemma 2, we need to prove that, 
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By (H.3) we get, 
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       
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So combining (H.10) with (H.6) and (H.7) shows that, if 
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a am t t- [( - )-( + )( - - )]  

21
02

n b dr s£ + - - - , a.e.                                   (H.11) 

Then (H.9) holds and so does (iv). 

(v) Similar to the proof of Lemma 2, we need to prove that  2
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Thus, applying (H.6) and (H.7), we find if, 

1 21
02

1 1 1 ( )p k c p sg g r t n b d
a am t t s- [( - )-( + )( - - )]- + + + <¥ , a.e. (H.12) 

Then (v) follows. ▌ 

 

I. Proof of Proposition 3 

The proof will be naturally divided into two parts. 

(i) Symmetric information: 

For instance, if both the representative agent and the government have complete 

information, then by (69) in Proposition 1, we get, 


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( ) 1

p c t
s p s t g k t t
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,                         (I.1) 

By (75), (73) and (I.1), we see that, 
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Since we have the following FOC, 
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which combining with (I.2) implies that, 
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inserting (I.1) into (I.4) and applying the law of iterated expectation, 

   (1 ) ( ) ( ) ( ) ( )
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which yields, 

0ct
* = ,                                                       (I.6) 

Hence, by (25’’), we obtain, 

k pgt* = ,                                                      (I.7) 

(ii) Asymmetric information: 

(ii-a) As usual, suppose that the representative agent has private information, that is, 

the representative agent has more information than the government. For example, the 

representative agent has perfect information while the government has complete 

information, then by (70) in Proposition 1 we get, 


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( ) 1

p c t
s p s t g k t t

r t g a ar m t G-+ + [ ]
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,                         (I.8) 

And the corresponding FOC is given in (I.3). Thus, combining (I.2) and (I.3) with 

(I.8), we obtain by the law of iterated expectation, 

  (1 ) ( ) ( ) ( ) ( )
c c

c t t t
k t t k t t

t t

t G G
*

***

=

é ùé ùé ù+ = ê úê úê úë ûë û ë û
     ,                  (I.9) 
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which implies that, 

0ct
* = ,                                                      (I.10) 

Hence, by (25’’), we obtain, 

k pgt* = ,                                                     (I.11) 

Similarly, it is easy to show that (I.10) and (I.11) follow for other cases as long as the 
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representative agent gets more information than the government. 

(ii-b) Suppose that the government has more information than the representative agent. 

For example, the government has perfect information while the representative agent 

has complete information. Then the FOC is, 


0

c
c c

H
tt
t t*

¶
¶ =
é ù =ê úë û  ,                                            (I.12) 

Then combining (I.2), (I.12) with (69) given in Proposition 1, we get by the law of 

iterated expectation, 
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t t
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which gives the desired result. Noting that the proof of other cases is similar to this 

one, so we take it omitted. ▌ 
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