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Abstract 

In the current paper, we study the asymmetric normal-form game between two heterogeneous 

groups of populations by employing the stochastic replicator dynamics driven by Lévy process. A 

new game equilibrium, i.e., the game equilibrium of a stochastic differential cooperative game on 

time, is derived by introducing optimal-stopping technique into evolutionary game theory, which 

combines with the Pareto optimal standard leads us to the existence of Pareto optimal endogenous 

matching. Moreover, stability of the Pareto optimal endogenous matching is confirmed by 

essentially using the well-known Girsanov Theorem. 
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1. INTRODUCTION 

It is convincing to argue that people live in a highly structured society consists of 

groups rather than individuals, which implies that random matching will not always 

provide us with compelling approximation to reality when we are concerned with the 

interactions among the players. In fact, Ellison (1993) shows that local interaction will 

have very important and also different implications in equilibrium selection relative to 

that of uniform interaction or random matching. So, given the importance of non- 

random matching in equilibrium selection, we express the motivation of the present 

paper as follows, i.e., can we directly prove the existence and stability of certain non- 

random matching that is Pareto optimal and also endogenously determined in a given 

game situation? If we can, what are the conditions we will rely on? In other words, the 

major goal of the present exploration is not to study any exogenously given matching 

mechanism but to find out the optimal matching mechanism in a given game situation, 

and to prove its stability.
2
 

In two pioneering papers, Kandori et al. (1993) and Young (1993) prove that the 

trial-and-error learning processes of the players will definitely converge to one 

particular pure-strategy Nash equilibrium, which is named as the long run equilibrium 

by Kandori et al. and the convention by Young. From the perspective of multiple- 

equilibrium problem, they provide us with an equilibrium selection device, under 

which the players are correctly predicted to play a particular Nash equilibrium. 

However, we can also evaluate their contribution from the following view of point, 

i.e., provided a particular Nash equilibrium, they prove that there exists a pattern of 

learning mechanism that will definitely lead the players to play the given Nash 

equilibrium. To summarize, they confirm the existence of certain type of learning 

mechanism, based upon which the players’ behavior will be uniquely predicted in the 

long run. Instead of emphasizing micro-strategy, we focus on macro-structure and it 

is confirmed that there exist certain macro-structure under which one particular Pareto 

                                                        
2 That is to say, in an artificial world, we can employ the matching mechanism to lead the players to play the 

Pareto optimal Nash equilibrium regardless of the enforcement cost. And in this sense, matching mechanism plays 

the role of equilibrium selection device. 
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optimal Nash equilibrium will be definitely played by the players. Obviously, in order 

to derive much more comprehension understanding of the strategic behaviors of the 

individuals in a given society, micro-strategy and macro-structure should be explored 

as a whole. Accordingly, the present study also examines the internal relationship 

between the micro-strategy and the macro-structure by analyzing the internal 

relationship between the learning mechanism and the matching mechanism. That is to 

say, the Pareto optimal endogenous matching as well as the Pareto- optimality Nash 

equilibrium can be regarded as the limit of the learning processes of the players in 

some sense by noting that there exists a one-to-one correspondence between the 

Pareto optimal endogenous matching and the Pareto optimal Nash equilibrium. 

Furthermore, if we argue that different matching mechanisms imply different Nash 

equilibria, we have demonstrated that there exists certain learning mechanism under 

which one particular matching mechanism will be achieved, that is, one particular 

micro-strategy implies one particular macro-structure under certain relatively weak 

conditions. To conclude, we indeed prove the following two important and also 

interesting claims: first, provided a particular Nash equilibrium, we show the 

existence of one matching mechanism such that the given Nash equilibrium will be 

endogenously chosen by the players as a rational prediction; second, given a 

particular matching mechanism, we demonstrate the existence of certain learning 

mechanism so that the given matching mechanism will be endogenously established 

by all the players spontaneously in the long run. We therefore believe that the present 

study has supplied an interesting and also relatively complete characterization of the 

internal relationship between the micro-strategy employed by the players and the 

macro-structure facing the players. 

In the paper, we are encouraged to study the asymmetric normal-form games 

between two heterogeneous groups of populations under the modified framework of 

evolutionary game theory.
3
 Each of the two groups is assumed to have countable 

many pure strategies. Hyper-rational assumptions (see, Aumann, 1976) about the 

                                                        
3 It will be without loss of nay generality when focusing on the case of two heterogeneous groups of populations 

by noting that two-sided markets broadly exist in reality, for instance, the marriage market and the labor market. 
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players broadly used in classical non-cooperative game theory will be dropped in the 

present model, instead, the players or individuals play the game following certain 

adaptive learning processes arising from the stochastic replicator dynamics driven by 

Lévy processes for the first time.
4
 On the contrary, the strategies themselves are 

supposed to be smart and rational enough to optimize their fitness
5
, which directly 

depend on the stochastic replicator dynamics or the learning processes of the players, 

following the classical as if methodology from the perspective of posteriori. And the 

corresponding control variables of these fitness-optimization problems
6
 are chosen to 

be stochastic stopping times or stopping rules, which reasonably reflects the fact that 

strategies themselves are no longer suitable for the roles of control variables as in the 

best-response correspondences of Nash equilibria because “strategies” of the players’ 

strategies will not be well-defined through the traditional approach. Luckily, noting 

that the optimal stopping rules are partially determined and completely characterized 

by the learning processes of the players, the optimal stopping rules as a whole may be 

exactly one of the Nash equilibra, no matter it is a mixed-strategy Nash equilibrium or 

a pure-strategy Nash equilibrium, of the original normal-form games derived from the 

best-response approach.
7
 Generally speaking, the optimal stopping rules as a whole 

                                                        
4 We extend the pioneering stochastic replicator dynamics of Foster and Young (1990) and Fudenberg and Harris 

(1992) to Lévy processes by emphasizing the role of jumps in learning processes. Binmore and Samuelson (1999) 

show the importance of drift in equilibrium selection, and here we point out that jumps not only really happen in 

social and biological evolution but also play crucial role in equilibrium selection. 
5 We prefer fitness to payoff because payoff will neglect some important and even determinant factors in 

equilibrium selection. Fitness will be a much more complete characterization of the objective of the player than 

payoff. Fitness not only focuses on the game itself like payoff but also pays attention to other factors, such as the 

environment where the game happens and also the importance of the game to the players by noting that players 

usually are faced with many different or alternative games at the same time, which often leads to the fact that there 

exist substitutive and complementary relationship between these games from the perspective of the players, 

thereby violating the usually implicit assumption that each game is regarded as an isolated one. To sum up, the 

concept of fitness will capture much more relevant factors of the game situations facing the players, including 

objective factors like payoff structure and also subjective factors like the degree of game participation. 
6 In the current model, we do not incorporate inter-temporal consideration like that of Matsui and Matsuyama 

(1995) into the present optimization problem because we insist that the present case is of independent interest. 
7 One major difference between the traditional non-cooperative game theory and evolutionary game theory is that 

we do not give dynamics characterizing the evolution of the strategy distribution in priori in the former case. In the 

traditional approach, individually and decentralized rational choice leads to the game equilibrium, which implies 

that strategies themselves are suitable control variables for the best response problems to derive Nash equilibria. 

However, in evolutionary game theory, we give dynamics reflecting the learning processes of the players to 

characterize the evolution of total strategy distribution over the populations, then we study certain limiting 

distribution, i.e., sending the number of population to infinity, sending the time to infinity or sending the mistakes 

to zero, and we finally compare it with the classical solution concept like Nash equilibrium. Therefore, if we argue 

that the traditional approach focuses on strategy-space dimension, evolutionary game theory pays relatively more 

attention to evolutionary-time dimension (see, Binmore and Samuelson, 1997, 1999; Binmore et al., 1995). 

Evolutionary game theory prefers to study the basin of attraction (see, Ellison, 2000), the steady state (Fudenberg 

and Levine, 1993) or the rest point of the evolutionary dynamics or learning processes, we argue that optimal 



 

 5

will not be equal to anyone of the Nash equilibria, that is, there exists certain 

difference between the both. However, it is confirmed that it is just the difference 

between the optimal stopping rules as a whole and the Pareto optimal Nash 

equilibrium of the original normal-form game that established our Pareto optimal 

endogenous matching. We, hence, to the best of our knowledge, enrich the matching 

rule widely used in evolutionary game theory by naturally adding into economic- 

welfare implications for the first time.
8
 

Moreover, it is shown that the well-known random matching (e.g., Maynard 

Smith, 1982; Fudenberg and Levine, 1993; Ellison, 1994; Okuno-Fujiwara and 

Postlewaite, 1995; Weibull, 1995) just represents one special and extreme case of the 

current endogenous matching and we supply the conditions under which the random 

matching will be asymptotically Pareto efficient.
9
 Thus, proving the existence of 

Pareto optimal endogenous matching would be regarded as one innovation of the 

present paper by noticing the above facts. 
                                                                                                                                                               
stopping rule plays the similar role except that rest point of dynamics only depends on the properties of the 

dynamics themselves while optimal stopping rule adding into a rational constraint. To summarize, the traditional 

approach emphasizes micro-strategy from the perspective of individual choice while evolutionary game theory 

focuses more on macro-structure from the viewpoint of group evolution, and the method introduced in the present 

paper will supply a linkage between the both, that is to say, optimal stopping rule is partially determined and 

completely characterized by macro-structure while it is also partially determined by micro-strategy. 
8 Existing studies usually focus on the enforcement or reputation mechanism for given matching mechanism (see, 

Kandori, 1992, for instance). Then they explore the corresponding welfare implications of the enforcement or 

reputation mechanism. We, however, directly examine the welfare implications of the matching mechanism by 

noting that it will lead us to the Pareto efficient equilibrium. 
9 For any given game, different matching patterns imply different payoffs for the players. Rather, if we let the 

payoffs corresponding to random matching, which does work in a perfect world with well-mixed population, 

denote the benchmark, the payoffs defined by any non-random matching would be regarded as certain 

perturbations to the benchmark-payoffs by noting the linearity of von Neuman-Morgenstern payoff functions. And 

in this sense, we argue that random matching just represents a special case where we have sent the payoff- 

perturbations to zero. However, why we argue that non-random matching, especially endogenous matching, is of 

crucial importance? Besides the argument of Ellison (1993), we point out the following problem, that is, random 

matching usually leads the dynamics or learning processes to equilibrium that is not Pareto efficient and even 

Pareto inefficient (see, Weibull, 1995, for instance). Consequently, in order to prevent the dynamics or learning 

processes from being attracted into the Pareto inefficient rest point, we introduce mutations or perturbations into 

the dynamics or the learning processes to produce efficient equilibrium (see, Canning, 1992; Binmore and 

Samuelson, 1999). And we show that non-random matching mechanism will be a suitable choice. Furthermore, it 

is easily noticed that most of the existing literatures (see, Fudenberg and Levine, 1993; Kandori et al., 1993; Young, 

1993, and among others) employ the random matching to study the game played by a large population of players, 

however, for the games in reality, random matching is much more suitable for the case that consists of small 

population of players, for example, in a village or in a community. Let us consider a gift-giving game in a village 

or in a community, and it is reasonably to suppose that the players will interact with each other equally thanks to 

the reputation effect or enforcement effect. Now, let us consider the same gift-giving game with the players coming 

from two isolated villages or communities, we can easily find that the interacting frequency in each village or 

community will be much higher than that between the two villages or communities. That is to say, this is an 

imperfect world and people live in a highly structured society. To sum up, if we study the game played by a small 

population of players, random matching really works, however, if we study the game played by a large population 

of players, random matching should not be directly applied to the whole population, and the population should be 

divided into many sub-populations (see, Young (1993)) and we apply random matching to each sub-population 

while non-random matching will be suitable for the interactions between these sub-populations. 
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Up to the present step of our story, we have been provided with a Pareto- 

optimality endogenous matching in the current game situation by solving the above 

fitness-optimization problems of the strategies and then smoothing the possible or 

potential difference between the corresponding optimal stopping rules as a whole and 

the Pareto optimal Nash equilibrium of the original normal-form game. In other words, 

the Pareto optimal Nash equilibrium of the original asymmetric normal- form game 

can be actually achieved by the two heterogeneous groups of populations as a rational 

solution of the above fitness-optimization problems given the existence of the Pareto 

optimal endogenous matching. Now, we proceed to the next step of demonstrating the 

stability of the Pareto optimal matching given its existence. Noting that there exists a 

one-to-one correspondence between the Pareto optimal matching and the Pareto 

optimal Nash equilibrium, we then just need to prove the stability of the Pareto 

optimal Nash equilibrium, and also it will be confirmed that this equivalent 

transformation will apparently and greatly lower the technical requirement. Indeed, 

we prove that the adaptive learning processes will uniformly and robustly converge to 

the above Pareto optimal Nash equilibrium as the time approaching infinity while the 

errors or stochastic perturbations in the learning processes always exist except that 

they are reasonably controlled in certain region following from the martingale 

property. That is to say, the learning processes will robustly converge to the 

modified
10

 optimal stopping rules as a whole, i.e., the Pareto optimal Nash 

equilibrium, in the sense of uniform topology as long as the adaptive learning 

processes exhibit martingale property, which, however, can be established by applying 

the well-known Girsanov Theorem under certain weak conditions
11

. Accordingly, the 

present paper not only proves the stability of the Pareto optimal endogenous matching 

but also confirms the following important and also interesting byproduct, i.e., we 

claim: the adaptive learning processes of the individuals will uniformly and robustly 

converge to the Pareto optimal Nash equilibrium, which is exactly the rational 

solution of the above fitness-optimization problems of the strategies given the Pareto 

                                                        
10 It is modified by the Pareto optimal endogenous matching. 
11 That is, the Novikov conditions are assumed to be fulfilled. 
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optimal endogenous matching, of the original normal-form game as long as they 

exhibit martingale property.
12

 We, hence, argue that this conclusion would be 

regarded as one major contribution of the current study when compared with existing 

literatures, for example, first, existing literatures
13

 (see, Canning, 1992; Young, 1993; 

Kandori et al., 1993) proved the similar convergence essentially requiring that the 

errors or perturbations approach zero; second, existing literatures showed that their 

learning processes will either converge to a mixed-strategy Nash equilibrium (e.g., 

Fudenberg and Kreps, 1993; Benaïm and Hirsch, 1999; Ellison and Fudenberg, 2000, 

and among others) or a pure-strategy Nash equilibrium (see, Young, 1993; Kandori et 

al., 1993) depending on the types of learning processes they specified
14

 while the 

current exploration confirms that convergence always happens under weak conditions 

and also the limit will be a Pareto optimal Nash equilibrium given the endogenous 

matching mechanism, thus, we supply a unified framework by introducing the 

endogenous matching; third, convergence of the learning processes not only implies 

the Pareto-dominant equilibrium in coordination games but can also yield cooperation 

equilibrium in PD games by slightly modifying the endogenous matching 

mechanism,
15

 which reflects that matching mechanism as well as learning mechanism 

should be paid at least equal attention to in our study;
16

 forth, the convergence result 

                                                        
12 What’s the aspiration of this conclusion? We emphasize the following three points: first, endogenous matching 

mechanism will meet the gap between the Pareto optimal Nash equilibrium and the limiting behavior of 

evolutionary dynamics or adaptive learning processes, and this Pareto optimal endogenous matching mechanism is 

exactly the matching mechanism that requires the least information, especially in computation; second, one can 

directly model stochastic learning processes with martingale property in future research; finally, our argument is in 

line with some of the existing studies (see, Harsanyi, 1973; Canning, 1992; Fudenberg and Kreps, 1993; Binmore 

and Samuelson, 1999) by noting that martingale process itself is a stochastic process, i.e., there exist persistent 

stochastic perturbations in the corresponding learning processes and hence the payoffs. 
13 Canning (1992) shows that, under certain regularity conditions, the stationary distribution of the perturbed 

process converges to a stationary distribution of the unperturbed one. Kandori et al. (1993) show that the stochastic 

evolutionary learning process defined on symmetric 2×2 games selects the risk dominant Nash equilibrium when 

the mistake probability is small. In his seminal paper, Young (1993) shows that the adaptive dynamics defined by 

random sampling will converge almost surely to a pure strategy Nash equilibrium, which he specifically names as 

the stochastically stable equilibrium, when the likelihood of mistakes goes to zero, otherwise, then the limiting 

distribution will occasionally switches from one pure strategy Nash equilibrium to another pure strategy Nash 

equilibrium. 
14 For example, one major difference between Fudenberg and Kreps’s (1993) model and Young’s (1993) model is 

that Fudenberg and Kreps use a generalization of fictitious play where the players asymptotically choose the best 

replies to other players’ past actions based upon the entire historical frequencies, while the players base their 

decisions on limited information in Young’s model. Moreover, in contrast to the model of Fudenberg and Kreps, 

the players do not always optimize in Young’s model. 
15 Noting that the risk-dominant equilibrium usually has a larger basin of attraction than the Pareto dominant 

equilibrium, and both-defect is the only Nash equilibrium in PD games, the endogenous matching mechanism truly 

plays a key role in equilibrium selection. 
16 It is compelling that matching mechanism would be regarded as an equilibrium selection device in some sense. 
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implicitly argues that the learning approach need not to be absolutely different from 

the traditional rational-approach, otherwise, we can tell why the difference exists and 

what forms the difference, and finally we demonstrate that the endogenous matching 

mechanism will provide us with a practical bridge that links the learning approach and 

the traditional approach, thereby effectively meeting the so-called unbridgeable gap; 

last but not least, our robust convergence happens in a persistently non-stationary 

environment and in the sense of uniform topology, and hence it is obviously much 

stronger than that of existing studies (see, Kandori et al., 1993; Young, 1993; 

Fudenberg and Kreps, 1993; Benaïm and Hirsch, 1999) after a quick check. 

Although the major contribution of the present limited study has been expressed 

above, the following innovations are also worth noticing in some sense. Indeed, the 

existence and stability of the Pareto optimal endogenous matching are not necessarily 

independent of each other. For instance, on the one hand, one can easily find that the 

stability assertion intimately depends on the characterization of the existence result by 

checking the details of the following proof in Appendix C.
17

 On the other hand, the 

expected fitness of the strategies will also exhibit martingale property if the 

corresponding adaptive learning processes are martingale processes by noting the 

mathematical conclusion that martingale property keeps invariant under affine 

transformation. To conclude, stability produces existence in turn in the following 

sense, i.e., stability of the Pareto optimal endogenous matching implies the existence 

of Pareto optimal matching with fairness because the game between different 

strategies will become a fair-game after the martingale-payoffs being incorporated 

into the game-situations. And this is why the word “fairness” specifically appears in 

the title of the paper. 

Furthermore, the present paper defines a much stronger stability concept of 

equilibrium strategy and hence matching pattern by naturally combining the 

traditional interpretation and the evolutionary interpretation. Because the strategies 

                                                                                                                                                               
Indeed, the current study is concerned with the case that matching leads to unique equilibrium. Moreover, the 

stability of the matching mechanism implies the stability of the equilibrium selection. 
17 However, similar to that of Young (1993), the existence of the endogenous matching does not supply a 

sufficient condition for the convergence and hence stability of the endogenous matching. 
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are proposed to be as if rational “players” in some sense, it is easily discovered below 

that the optimal stopping rules as a whole is computed by satisfying the following two 

constraints, i.e., individually-rational solution and no blocks exist
18

, which implies 

certain stability from the concept of Nash bargaining solution (see, Nash, 1950) in 

cooperative game theory. However, we do not stop here by just focusing on rational 

requirements of stability from the viewpoint of micro-structure. We also emphasize 

the importance of evolutionary interpretation from the group level as a whole, i.e., the 

macro-structure. We do this by building up new adaptive-learning processes via 

introducing exogenous perturbations into the original learning processes, and we 

prove that the new learning processes and the original learning processes will 

converge to the same equilibrium as the exogenous perturbations approaching zero. 

We should specifically emphasize that the original learning processes themselves are 

driven by Lévy processes, i.e., including both diffusion terms and jump terms. Thus, 

in order to build up new learning processes, all we have to do is to disturb the original 

drift terms, diffusion terms and the original jump terms. Consequently, the new 

adaptive learning processes are also driven by Lévy processes. To summarize, we 

check the stability from the viewpoint of macro-structure by not essentially changing 

the errors or perturbations existing in the original learning processes, and we take 

limit just by sending the exogenous perturbations to zero. 

In the next section, some well-known examples of crucial importance in non- 

cooperative game theory will be presented and discussed to help capture some basic 

ideas and intuitions of the formal model. Section 3 will construct the formal model, 

introduce some basic concepts and prove the key theorem of the present paper. 

Section 4 is used to demonstrate the stability of the Pareto optimal endogenous 

matching. There is a brief concluding section. All proofs, unless otherwise noted in 

the text, appear in the Appendix. 

 

2. EXAMPLES 

                                                        
18 Here, we interpret “no blocks exist” in the following sense, that is, everybody is coordinated to follow the 

optimal stopping rule in each group of populations and potential departure is avoided.  
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Before constructing formal models, we will first introduce some well-known and 

also simple examples of non-cooperative game theory in the current section. And it is 

believed that these examples would help a lot in understanding the formulation in the 

following section and capturing the economic intuitions behind the model for the 

readers. Moreover, it is worth noting that these examples would have effectively 

reflected some ideas of the formulation, they are nevertheless far away from 

representing the whole story of the current investigation. 

EXAMPLE 1—Classical Prisoner’s Dilemma. 

Player 2 

C          D 

   

        

     

Fig.1: Symmetric PD Game 

In Fig.1, C and D are used to denote strategies cooperation and defection, 

respectively. And it is assumed that d a b c   . As usual, the entries in the matrix 

represent corresponding payoffs of player 1 and player 2, respectively, for any given 

strategy choices. For instance, ( , )c d  implies that player 1 will get payoff c  if she 

chooses strategy C given player 2 chooses strategy D, and vice versa. And it is well 

known that (D, D) is the only Nash equilibrium in one-short situations and for rational 

players with common knowledge (see, Aumann, 1976) although (C, C) strictly Pareto 

dominates it. And most of excellent existing literatures have been devoted to 

searching for possible mechanism, i.e., enforcement mechanism
19

, rational 

mechanism
20

, learning mechanism
21

 and evolutionary mechanism
22

, so that (C, C) 

will be actually chosen, thereby breaking through the so-called dilemma. In the 

                                                        
19

 See, Fudenberg and Maskin (1986), Kandori (1992), Ellison (1994) and among others. 
20

 See, Kreps et al. (1982), Andreoni and Samuelson (2006). 
21 See, Selten and Stoecker (1986), Kirchkamp and Nagel (2007). 
22

 See, Axelrod (1984), Fudenberg and Maskin (1990), Young and Foster (1991), Nowak et al. (2004), Imhof 

(2005), Imhof and Nowak (2006) and among others. 

 

Player 1

C a , a  c , d  

D d , c  b ,b  
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current paper, we study the mechanism of endogenous matching. Indeed, one can 

easily note below that our approach is equivalent to that of disturbing payoff to some 

extent and in some sense. Noting that pure strategy stands for one special case of 

mixed strategy, i.e., all other pure strategies are given zero-probability weights while 

the chosen pure strategy with one-probability weight. Moreover, by noting the 

symmetry, we just consider the case that player 2 chooses to randomize his strategy 

choice between C and D, i.e., she chooses C with probability p  and chooses D with 

probability 1 p  with 0 1p  . Now, we introduce endogenous matching by 

adding   to p  while adding   to 1 p , that is, we get a new weighting form 

( ,1 )p p    . And we define the generalized expected payoffs of player 1 by 

1(EU C, ( ,1 ))p p    ( ) (1 )a p c p      (1 )ap c p   (a )c   and 

1EU ( D, ( ,1 ))p p    ( ) (1 )d p b p      (1 ) (dp b p d     )b  , where 

( )a c   and ( )d b   could be regarded as perturbations of the expected payoffs of 

strategy C and strategy D, respectively, for player 1 and provided that player 2 

randomizes between strategy C and strategy D by ( ,1 )p p  with 0  1p  .  

Letting 1(EU C, ( ,p  1 ))p   1EU ( D, ( ,1 ))p p    , we obtain   

  ( ) ( )(1 ) ( )a d p c b p d b c a       . Noting that (C, C) Pareto dominates (D, 

D), we put 1p   and then we get the Pareto optimal endogenous matching
23

 

 ( , ), ( , )         with ( ) ( )a d d b c a       . And thus, we call (C, C) the 

induced Pareto optimal game equilibrium, i.e., an equilibrium induced by the above 

Pareto optimal endogenous matching  ( , ), ( , )        . 

EXAMPLE 2—Asymmetric Prisoner’s Dilemma. 

                                                        
23 One can easily tell the difference between the definition of matching in the current paper and that in existing 

literatures. That is to say, we use the word “matching” in a generalized fashion because our “endogenous 

matching” really plays similar role as that of matching usually used and understood. Moreover, one can also 

interpret our definition of matching in the following way, i.e., we call the “disturbance” itself that essentially 

induces new matching pattern as the definition of endogenous matching because we only care about the 

“disturbance” in most cases. 
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Player 2 

C          D 

   

        

     

Fig.2: Asymmetric PD Game 

Noting that Fig.2 shows an asymmetric PD game, we then must have 21 11a a  

 22a 12a  and 12 11 22 21b b b b   . Here we specifically study the asymmetric PD 

game because asymmetric games themselves play a very important role in 

non-cooperative game theory. In particular, asymmetric games usually appear in 

evolutionary game theory where we study the replicator dynamics of interacting 

heterogeneous populations in stationary or fluctuating environments
24

. Again, (D, D) 

is the unique strictly Nash equilibrium while (C, C) Pareto (or payoff) dominates (D, 

D). Now, suppose that player 2 randomizes between C and D, i.e., she chooses C with 

probability  2p  while she employs D with probability 21 p  with 20 1p  . And 

we introduce endogenous matching by adding 2  to 2p  while adding 2  to 

21 p , then we get a new weighting form 2 2 2 2( ,1 )p p    . So, the generalized 

expected payoffs of player 1 can be expressed as 1(EU C, 2 2 2 2( ,1 ))p p     

11 2 2 12 2 2( ) (1 )a p a p      11 2 12 2(1 )a p a p   11(a 12 2)a   and 1EU ( D, 2( p  

2 2 2,1 ))p    21 2 2 22 2 2( ) (1 )a p a p      21 2 22 2 21(1 ) (a p a p a     22 2)a  , 

we then get 2 11 21 21 22 12 11( ) ( )a a a a a a        by letting 1(EU C, 2 2( ,1p   2p  

2 )) 1EU ( D, 2( p 2 2 2,1 ))p     and sending 2p  to 1. Similarly, assume that 

player 1 randomizes between C and D, that is, she chooses C with probability 1p  

and D with probability 11 p  with 10 1p  . We incorporate endogenous matching 

                                                        
24 See, Foster and Young (1990), Weibull (1995), Cabrales (2000), and among others. 

Player 1

C 11a , 11b  
12a , 12b  

D 21a , 21b  22a , 22b  
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here by adding 1  to 1p  while adding 1  to 11 p , thereby implying a new 

weighting form 1 1 1 1( ,1 )p p    . Thus, player 2 exhibits the following generalized 

expected payoffs, i.e., 2 (EU C, 1 1 1 1( ,1 ))p p    11 1 1 21 1 1( ) (1 )b p b p       

 11 1 21 1(1 )b p b p  11(b 21 1)b   and 2EU ( D, 1( p 1 1 1,1 ))p    12 1 1( )b p   

22 1 1(1 )b p     12 1 22 1 12(1 ) (b p b p b     22 1)b  , we then get 1
  11 12( )b b   

12 22 21 111 ( )b b b b   by letting 2 (EU C, 1 1( ,1p   1p 1)) 2EU ( D, 1( p 1, 1  

1 1))p   and sending 1p  to 1. Consequently, we obtain the Pareto optimal 

endogenous matching rule  1 1 2 2( , ), ( , )         with 1
  11 12

12 22 21 11

b b

b b b b


    and 2

   

11 21 21 22 12 11( ) ( )a a a a a a    . And also, (C, C) can be regarded as the induced 

Pareto optimal game equilibrium in the current game situation. 

EXAMPLE 3—Symmetric Coordination Game. 

Player 2 

I          II 

   

        

     

Fig.3: Symmetric Coordination Game 

We suppose that a d , b c , a d b c    and b a  in Fig.3. Rather, Fig.3 

reveals a classical symmetric coordination game with the pure strategy space {I, II}. 

There are three strictly Nash equilibria in the game, i.e., two pure-strategy Nash 

equilibra, denoted (I, I) and (II, II), and one mixed-strategy Nash equilibrium 

ˆ ˆ ˆ ˆ(( ,1 ), ( ,1 ))p p p p   with ˆ b c
a c b d

p 
   . Notice that we suppose that a d b c   , 

which implies that equilibrium (I, I) strictly risk dominates (see, Harsanyi and Selten, 

1988) equilibrium (II, II). Nonetheless, equilibrium (II, II) strictly Pareto (or payoff) 

dominates equilibrium (I, I) since it is assumed that b a . Then we are faced with 

one of the most important issues in non-cooperative game theory, i.e., 

Player 1

I a , a  c , d  

II d , c  b ,b  
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multiple-equilibrium problem. Indeed, players in this type of coordination game 

situations have to face the tradeoff between risk and payoff before making strategy 

choice, which also broadly exists in other economic contexts. As usual, some of the 

literatures
25

 prefer risk-dominant equilibrium while some others
26

 prefer Pareto- 

dominant equilibrium. Obviously, the present paper prefers Pareto dominant 

equilibrium from the viewpoint of economic welfare and our endogenous matching 

rule will definitely support our preference. Noting that the computation algorithm is 

just the same as that of Example 1 and Example 2, we omit it. It follows from 

symmetry that the Pareto optimal endogenous matching can be given by 

 ( , ), ( , )         with ( ) ( )c b b d a c       . And also, we call the Pareto 

dominant equilibrium (II, II) induced game equilibrium in the current sense. 

EXAMPLE 4—Asymmetric Coordination Game. 

Player 2 

L          R 

   

        

     

Fig.4: Asymmetric Coordination Game 

In Fig.4, 11 21a a , 22 12a a , 11 12b b , 22 21b b , 11 21 11 12( )( )a a b b   22(a   

12 22 21)( )a b b , 22 11a a  and 22 11b b , thus we get that equilibrium (T, L) strictly risk 

dominates (B, R) while (B, R) strictly Pareto dominates (T, L). Accordingly, similar to 

the above examples, the Pareto optimal endogenous matching reads as follows, i.e., 

 1 1 2 2( , ), ( , )         with 1
  21 22

22 12 11 21

b b

b b b b


    and 2

  12 22

22 21 11 12

a a

a a a a


   . Then, (B, R) can 

be seen as an induced game equilibrium in the present case. 

 

3. FORMULATION 

                                                        
25 See, Carlsson and van Damme (1993), Young (1993), Kandori et al. (1993), Matsui and Matsuyama (1995) and 

among others. 
26 See, Harsanyi and Selten (1988), Aumann and Sorin (1989), Matsui (1991), Anderlini (1999). 

Player 1

T 11a , 11b  
12a , 12b  

B 21a , 21b  22a , 22b  
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3.1. Set-up and Assumptions 

Let 
1 2I I

A   be the payoff matrix for row-players and 
1 2I I

B   be the payoff matrix 

for column-players with 
1 2I I

A  , 
1 2I I

B   1 2I I , and 1I , 2I 1 . Here, and throughout 

the current paper, we study the replicator dynamics of 1 2I I  normal form games 

between two groups of populations. Put 
1 1

1 1
( ) ( )

I i

i
M t M t

  , where 1 ( )i
M t  denotes 

the number of strategy- 1i  players at period t . Similarly, let 
2 2

2 1
( ) ( )

I i

i
N t N t

  , 

where 2 ( )i
N t  denotes the number of strategy- 2i  players at period t .  

We let 1 1( ) ( ) ( )
i i

X t M t M t , 2 2( ) ( ) ( )
i i

Y t N t N t  denote the frequencies of 

strategies 1i  and 2i , respectively, with 1 11,2,...,i I  and 2 21,2,...,i I . Therefore, 

the average payoffs of strategy 1i  and strategy 2i  are given by  1, ( )u i Y t   

1
( )T

ie AY t  and  
22 , ( ) ( )T T

iu i X t e B X t , respectively, with the superscript “ T ” 

denoting transpose, and  11( ) ( ),..., ( ),i
X t X t X t 1..., ( )

T
I

X t , ( )Y t   21( ),..., ( ),
i

Y t Y t  

2..., ( )
T

I
Y t , and also 

1
(0,...,1,...,0)T

ie  , 
2

(0,...,1,...,0)T

ie  , where the 1i -th entry 

and 2i -entry are ones, respectively, for 1 11,2,...,i I  and 2 21,2,...,i I . 

Specifically, in the current paper, we employ the following endogenous matching 

by incorporating two vectors, i.e.,  1 1 11,..., ,...,
T

i I I       and 21( ,...,
i      

2 2,..., )
I IT    with 

1 1

1 1
0

I i

i



  and 

2 2

2 1
0

I i

i



   into the present model. Now, 

the generalized average payoffs of strategies 1i  and 2i  are rewritten as  1, ( )u i Y t  

    
1 1 1

( ) ( )T T T

i i ie A Y t e AY t e A      and    
22 , ( ) ( )T T

iu i X t e B X t   
2

T

ie  

2
( )T T T

iB X t e B   , respectively, for 1 11,2,...,i I  and 2 21,2,...,i I . In other words, 

 1, ( )u i Y t    and  2 , ( )u i X t   can be seen as 
1

T

ie A -perturbation and 
2

T T

ie B  - 

perturbation of  1, ( )u i Y t  and  2 , ( )u i X t , respectively. Moreover, as is discussed 

thoroughly below, both of the above payoff-perturbations are actually endogenously 
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determined, that is, the present paper analyzes the case of endogenous matching. We 

emphasize here again that the two vectors remaining to be determined are named as 

endogenous matching not because they themselves represent a matching pattern but 

just because they are the key or essential factors that induce new matching pattern. In 

other words, we only care about what induce new matching pattern from existing 

matching pattern because existing matching is given and new matching pattern is also 

given following from the Pareto optimal standard. Therefore, we without great loss of 

generality name the two vectors, to be determined, as the endogenous matching is for 

the sake of convenience and also with the purpose of capturing the essence of the 

problem facing us. To sum up, we argue that, in the present case and in some sense, 

what the present state is will not be important, what the goal will be is also not 

important, the only important matter we care about is what we need to lead us from 

the present state to our goal. Here, the endogenous matching defined by the two 

vectors meets our need. 

We now denote by  ( ) ( ), ,
i i

W W 

   ( )

0 ( )

i

i

W

t
t



  
 ( ),

i
W   the filtered 

probability space with ( )
i

W    ( )

0 ( )

i

i

W

t
t



  
  the ( )

i
W 

 augmented filtration 

generated by d  dimensional standard Brownian motion  ( ),0 ( )
i i

W t t     

with ( )
i

W 

  ( )

( )

i

i

W 

 
 ,    ( )

i
W 

  and ( )
i   a stopping time, to be endogenously 

determined. Moreover, we define  ,
i i

N dt dz     1 1,
i i

N dt dz  ,...,  ,
T

i i

n n
N dt dz 

 
  

         1 1 1 1, ,..., ,
T

i i i i i i i i

n n n nN dt dz dz dt N dt dz dz dt       

   
   , in which  

1

n
i

l
l

N





 

 

are independent Poisson random measures with Lévy measures 
i

l




  coming from 

n  independent (1-dimensional) Lévy processes 1 ( )
i

t   
0

1 1 1
0

,
t i i i

z N ds dz     , …, 

( )
i

n t


   

00
,

t i i i

n n n
z N ds dz  

      with 0     0 , and then the corresponding 

stochastic basis is given by  ( ) ( ), ,
i i

N N 

    ( )

0 ( )

i

i

N

t
t



  

 ( ),
i

N   with ( )
i

N    

 ( )

0 ( )

i

i

N

t
t



  

  the ( )
i

N 

 augmented filtration and ( )
i

N   ( )

( )

i

i

N 

 

 ,   ( )
i

N 

 
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and ( )
i   a stopping time, to be endogenously determined. Thus, we are provided 

with a new stochastic basis  , ,
i i     

0 ( )
i

i

t
t



  
 ,

i , where 
i  ( )

i
W 

   

( )
i

N 

 
, 

i  ( )
i

W 

  ( )
i

N  , 
i

t

  ( )
i

W

t



  ( )
i

N

t

 , 
i  ( )

i
W   ( )

i
N   and 

i   
0 ( )

i

i

t
t



  
  denotes the corresponding filtration satisfying the well-known 

“usual conditions”. Here, and throughout the current paper, 
i  is used to denote the 

expectation operator with respect to (w. r. t.) the probability law 
i  for 

 1,2,...,i I   and for 1,2  . Naturally, we have stochastic basis  , ,    

 
0 ( )t t





  
 ,   with   I i

i
 


  ,   I i

i

 


  , 

t

  I i

i t
 


  ,    

I i

i
 


  , ( )   ( )

I i

i

 


   ( )

I i

i

 


   if 1  , and ( )   ( )

I i

i

 


    

( )
I i

i

 


    if 2   with    ,    

0 ( )t t




  
  denoting the corresponding 

filtration satisfying the usual conditions, and   is used to denote the expectation 

operator w. r. t. the probability law   for 1, 2  . Furthermore, we are led to the 

following probability space  , ,   
0 ( )

,
t t   
   with 2

1


    , 2

1


   , 

2

1t t


   , 2

1


   , 2

1( ) ( )
     with  ,  

0 ( )t t   
   

denoting the corresponding filtration satisfying the usual conditions, and   is used 

to denote the expectation operator w. r. t. the probability law  . 

We now define the canonical Lebesgue measure   on measure space  ,  

 B  with    0, ,   (0, )  and  B  the Borel sigma-algebra, 

and also the corresponding regular properties about Lebesgue measure are supposed 

to be fulfilled. Thus, we can define the following product measure spaces 

 i
   ,

i
  B  and  

   , 
  B  with corresponding product 

measures   i  and    , respectively, for  1,2,...,i I   and for 

1, 2  . 
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Now, based upon the probability space  , ,
i i   i ,

i  for 1,2  , and 

following Fudenberg and Harris (1992), Cabrales (2000), Imhof (2005), Benaïm et al 

(2008), Hofbauer and Imhof (2009), the stochastic replicator dynamics
27

 of the two 

groups of populations can be respectively given as follows, 

   
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
0

1 11 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT

i i k k i l l l l

k l

dM t M t e AY t dt t dW t t z N dt dz 
 

 
   

 
   , 

   
2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
0

2 21 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT T

i i k k i l l l l

k l

dN t N t e B X t dt t dW t t z N dt dz 
 

 
   

 
     

where 1 ( )i
M t  is  1i

  B adapted, 2 ( )i
N t  is  2i

  B adapted, ( )Y t  is 

 2

  B adapted, ( )X t  is  1

  B adapted, 
1 1

( )
i k

t  and  1

1 1 1
, i

i l l
t z  are 

 1i

  B progressively measurable, and 
2 2

( )
i k

t  and  2

2 2 2
, i

i l l
t z  are 2i  B  

   progressively measurable, for  1 11,2,...,i I ,  2 21,2,...,i I ,  1 1,2,k   

1...,d ,  2 21,2,...,k d ,  1 11,2,...,l n  and  2 21,2,...,l n . Thus, based upon the 

above SDEs, we get the following proposition, 

PROPOSITION 1: The Lyapunov exponents of the above SDEs are, 

 11

1 1 11

21
2 10

1 1
lim log ( ) lim ( ) ( )

t di T

i i kkt t
M t e AY s s

t t


 
    

      1 1 1 1 1

1 1 1 1 1 1 1 11 0
1

log 1 , ,
n i i i i

i l l i l l l ll
s z s z dz ds  


       a.s. 

And, 

 22

2 2 22

21
2 10

1 1
lim log ( ) lim ( ) ( )

t di T T

i i kkt t
N t e B X s s

t t


 
      

      2 2 2 2 2

2 2 2 2 2 2 2 22 0
1

log 1 , ,
n i i i i

i l l i l l l ll
s z s z dz ds  


         a.s. 

respectively, for 1 (0) 0i
M  , 2 (0) 0i

N   and  1 11,2,...,i I ,  2 21,2,...,i I . 

Hence, the above SDEs are almost surely exponentially stable if and only if, 

 1

1 1 11

21
2 10

1
lim ( ) ( )

t dT

i i kkt
e AY s s

t



   

                                                        
27 Throughout, the stochastic replicator dynamics will help us to construct adaptive learning processes for the 

players following the argument of Gale et al. (1995), Binmore et al. (1995), Börgers and Sarin (1997), and 

Cabrales (2000). Thus, we will take indifference between the stochastic replicator dynamics and the adaptive 

learning processes. 



 

 19

      1 1 1 1 1

1 1 1 1 1 1 1 11 0
1

log 1 , , 0
n i i i i

i l l i l l l ll
s z s z dz ds  


       . 

And, 

 2

2 2 22

21
2 10

1
lim ( ) ( )

t dT T

i i kkt
e B X s s

t



     

      2 2 2 2 2

2 2 2 2 2 2 2 22 0
1

log 1 , , 0
n i i i i

i l l i l l l ll
s z s z dz ds  


         . 

respectively, for  1 11,2,...,i I  and  2 21,2,...,i I . 

PROOF: See Appendix A. ▌ 

So, we directly provide the following assumption, 

ASSUMPTION 1: Here, and throughout the current paper, we suppose that, 

 1

1 1 11

21
2 10

1
lim ( ) ( )

t dT

i i kkt
e AY s s

t



   

      1 1 1 1 1

1 1 1 1 1 1 1 11 0
1

log 1 , , 0
n i i i i

i l l i l l l ll
s z s z dz ds  


       . 

And, 

 2

2 2 22

21
2 10

1
lim ( ) ( )

t dT T

i i kkt
e B X s s

t



     

      2 2 2 2 2

2 2 2 2 2 2 2 22 0
1

log 1 , , 0
n i i i i

i l l i l l l ll
s z s z dz ds  


         . 

always hold. 

Now, based upon Proposition 1 and Assumption 1, we, without loss of generality, 

introduce the following technical assumption, 

ASSUMPTION 2: Throughout the current paper, both ( )M t  and ( )N t , sufficie- 

ntly large, are assumed to be finite constants. 

REMARK 3.1: Some of existing literatures (see, Nowak et al., 2004; Imhof and 

Nowak, 2006, and among others) have confirmed that Assumption 2 has very 

important implications. That is to say, on the one hand, Assumption 2 is used to make 

things much easier from the viewpoint of pure mathematics; and also, Assumption 2 is 

indeed without loss of any generality in the sense of economic and biological 

intuitions on the other hand (see, Fudenberg and Levine, 1993; Young, 1993; Binmore 

et al., 1995; Binmore and Samuelson, 1997). 

Notice from Assumption 2 that the sizes of the two populations are finite 

constants, based on Itô’s rule one can easily find, 
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   
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
0

1 11 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT

i i k k i l l l l

k l

dX t X t e AY t dt t dW t t z N dt dz 
 

 
   

 
    

   1 1 1 1 1 1 1

11
0

( ) ( ) ( ) ( ) , ,
n

i i i i i i iT

i
X t e AY t dt t dW t t z N dt dz       , 

   
2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
0

2 21 1

( ) ( ) ( ) ( ) ( ) , ,
d n

i i i i i iT T

i i k k i l l l l

k l

dY t Y t e B X t dt t dW t t z N dt dz 
 

 
   

 
          

   2 2 2 2 2 2 2

22
0

( ) ( ) ( ) ( ) , ,
n

i i i i i i iT T

i
Y t e B X t dt t dW t t z N dt dz        ,   (1) 

subject to 1 (0) (0,...,0)i T
W   1i  a.s., 2 (0) (0,...,0)i T

W   2i  a.s., (0)X   

 1
X (0), 1 1..., (0),..., (0)

T
i I

X X   1 11,..., ,...,
T

i I
x x x  0x   1  a.s., (0)Y   1

Y  

(0), 2 2..., (0),..., (0)
T

i I
Y Y   2 21,..., ,...,

T
i I

y y y  0y   2  a.s., 1 ( )i
X t  is assumed 

to be  1i

  B adapted, and 2 ( )i
Y t  is assumed to be  2i

  B adapted, 

for   1i  11,2,..., I  and  2i  21,2,..., I . Moreover, with a little abuse of notations, 

we put 1 (0)i  
11(0),
i


1 1

..., (0),...,
i k

 
1 1

(0)
T

i d  
11,i 1 1

..., ,...,
i k

 
1 1

T

i d  1i , 

 1 10,i i
z    1

11 10, i

i
z  1

1 1 1
,..., 0, ,...,i

i l l
z  1

1 1 1
0,

T
i

i n n
z    1

11 1

i

i
z  1

1 1 1
,..., ,...,i

i l l
z

 1

1 1 1

T
i

i n n
z   1 1i i

z , 2 (0)i  
21(0),
i


2 2

..., (0),...,
i k

 
2 2

(0)
T

i d  
21,i 2 2

..., ,...,
i k

  


2 2

T

i d  2i , and  2 20,i i
z     2

21 10, i

i
z  ,...,  2

2 2 2
0, i

i l l
z  ,...,   2

2 2 2
0,

T
i

i n n
z    

  2

21 1

i

i
z ,...,  2

2 2 2

i

i l l
z ,...,  2

2 2 2

T
i

i n n
z   2 2i i

z , for  1i  11,2,..., I  and 

 2i  1,2, 2..., I . Moreover, we have, 

       
1 1

0

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ), ,
I n

dX t f X t dt g X t dW t h X t z N dt dz     , 

       
2 2

0

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ), ,
I n

dY t f Y t dt g Y t dW t h Y t z N dt dz     ,      (2) 

with ( )X t   1 11( ),..., ( ),..., ( )
T

i I
X t X t X t  and ( )Y t   2 21( ),..., ( ),..., ( )

T
i I

Y t Y t Y t . 

Next, we are in the position to introduce some necessary assumptions, 

ASSUMPTION 3: The initial conditions 1 (0)i
X  1ix 0 , 2 (0)i

Y  2iy 0 , 

(0)X  x 0  and (0)Y  y 0  are all supposed to be deterministic and bounded 
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for  1i  1, 2, 1..., I  and  2i  1,2, 2..., I . Furthermore, 1 0
i   1i  a.s., 2 0

i   

2i  a.s.,  1

1 1 1
, i

i l l
t z  1

1
1

i

l     1i  a.e., and  2

2 2 2
, i

i l l
t z  2

2
1

i

l     2i   

a.e., for  1

1

i

l 0 , 2

2

i

l 0  and for  1i  1, 2, 1..., I ; 2i  1,2, 2..., I ; 1l  1,2, ..., 1n  

and 2l  1,2, ..., 2n . 

ASSUMPTION 4: The following linear growth and local Lipschitz continuity 

conditions are fulfilled, respectively,, 

         1 1

1 1 1
0

1

22 2 21 1 1 1 1 1 1

22 2 2
1

, 1
I n

l l l

l

f x g x h x z dz C x


    , 

         2 2

2 2 2
0

2

22 2 22 2 2 2 2 2 2

22 2 2
1

, 1
I n

l l l

l

f y g y h y z dz C y


    , 

for some constants 1
C , 2

C   . And, 

       2 2
1 1 1 1

2 2
f x f x g x g x    
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, ,
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l l

l l R
l

h x z h x z dz L x x
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 
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l l

l l R
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h y z h y z dz L y y

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 

, 

for any given constants  
1

R , 
2

R 0  with, 1

2 2
x x R 

, 2

2 2
y y R 

, and 

constants 1

1

R
L , 2

2

R
L    that depend only on  

1
R  and 

2
R , respectively, for all x , 

x
  1I

  and y , y
  2I

  with  11( ) 1,l
h x z ,  11( ) 1,

l
h x z


 representing the 1l -th 

columns of matrixes  1 1,h x z ,  1 1,h x z


, respectively, and  22( ) 2,l
h y z , 

 22( ) 2,
l

h y z


 denoting the 2l -th columns of matrixes  2 2,h y z ,  2 2,h y z


, 

respectively, for  1l  1,2, ..., 1n  and 2l  1,2, ..., 2n . 

REMARK 3.2: (i) Provided Assumption 4, the existence and uniqueness of strong 

solutions of the Lévy SDEs given in (2) are ensured, respectively. 
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(ii) Assumption 4 is indeed weak in the following sense, local Lipschitz 

continuity conditions can be naturally satisfied for any 1
C  functions or 

correspondences thanks to the Mean Value Theorem. 

(iii) Here, and throughout the current paper, | |  is used to denote absolute value, 

2|| ||  is used to represent both Euclidean vector norm and the Frobenius (or trace) 

matrix norm, and     is used to denote the scalar product. 

 

3.2. Stochastic Differential Cooperative Game on Time 

Now, as in the model of Nowak et al (2004), and Imhof and Nowak (2006), we 

define the following generalized expected discounted fitness functions
28

, 

      1 1 1

1 1

2

( , ), ( ) exp 1 ( )
i i i T

i s y if t Y t t w w e A Y t        
  , 

      2 2 2

2 2

1

( , ), ( ) exp 1 ( )
i i i T T

i s x if t X t t w w e B X t        
      . 

with 1i , 2i  0,1  (  1i  1, 2, 1..., I ; 2i  1,2, 2..., I ) denoting the discounted 

factors, 1iw , 2iw  0,1  (  1i  1, 2, 1..., I ; 2i  1,2, 2..., I ) the parameters that 

measure the contributions of the matrix payoffs of the game to the fitness of the 

corresponding strategies, and 2

( , )s y , 1

( , )s x  representing the expectation operators w. 

r. t. the complete probability law 2 , 1  with depending on initial conditions ( , )s y  

     20,1
I

 and ( , )s x      10,1
I

, respectively. Thus, the problem, after 

technically modifying the above generalized expected discounted fitness functions, 

facing us can be expressed as follows,
29

 

                                                        
28 Indeed, we are not necessary restricted to this type of specification of fitness functions, that is, one can employ 

much more general form of fitness functions. So, we employ this form of fitness functions is just for the sake of 

simplicity and tractability in determining the optimal stopping rule defined in the following Problem 1. Moreover, 

employing this kind of fitness functions is without loss of generality and will provide us with a suitable example to 

introduce the modeling-idea of the paper and to help the reader intuitively capture the logic implied by the 

formulation. Generally speaking, much more general form of objective function will prevent us from finding out 

the “smooth fit” conditions and hence determining the boundary explicitly in a given stochastic optimal-stopping 

problem from the viewpoint of mathematical technique, and so we leave this branching of exploration to future 

research. 
29 In a certain sense, Problem 1 defines a stochastic differential cooperative game on time, which hence could be 

regarded as a natural correspondence to the traditional Dynkin games. 
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PROBLEM 1 (Stochastic Differential Cooperative Game on Time)
30

: We need to 

demonstrate that there exist two vectors of  stopping times ( )    

 1 11 ( ),..., ( ),..., ( )
T

i I       and ( )    2 21 ( ),..., ( ),..., ( )
T

i I         with 

   such that, 

  1 1

1
( ), ( )i i

i
f Y      

                                                        
30 It should be emphasized here that we usually view game equilibrium in evolutionary game theory not from the 

viewpoint of individual choice since we have dropped the hyper-rational hypothesis widely used in classical non- 

cooperative game theory but directly from the viewpoint of strategies themselves, which can be analogically 

compared to different genes or cultures, following the standard biological evolution theory that strategies will have 

much more opportunities to survive in competition if they have much higher fitness or one strategy finally survives 

in posteriori just because it exhibits much higher fitness than any other competitive strategies in priori. In other 

words, if we employ the classical as if methodology, we directly argue that those strategies are regarded as 

successful in posteriori just because they are much more “rational” than any other unsuccessful strategies and they 

have been always maximizing their fitness in priori. So, the optimization problem defined in Problem 1 

corresponds to the strategies but not directly to the individuals, who indeed follow adaptive learning mechanism in 

the current case, although we can apply the definition to both without bringing out troubles because the fitness 

defined in Problem 1 has an equivalent relationship with the payoffs of the individuals when they only employ 

pure strategies. As matter of fact, there exists certain subtle action-and-reaction or determination-and- 

redetermination relationship between “rational” strategies and naive individuals, that is, on the one hand, one 

strategy can be seen as a successful strategy or “smart” strategy just because as if this strategy has successfully 

attracted much more individuals in the population to use it in games, while on the other hand, more and more 

individuals will actually employ those “smart” strategies through imitation and learning since they find that these 

strategies provide them with much higher payoffs. Thus, those individuals have used those unsuccessful strategies 

will be finally replaced by new-born generations of the remaining individuals given the number of the population 

is a constant in the present model. So, in the limit, if it exists, of the successful adaptive learning processes, the 

population will consists of those lucky individuals equipped with successful genes which are represented by 

successful strategies. Then, one can easily find that the limit, if it exists, of the successful adaptive learning 

processes and those successful strategies will appear at the same time from the viewpoint of posteriori. Moreover, 

noting that we have put as if assumption on those strategies. Therefore, we conclude that the limit of the successful 

learning processes of those lucky individuals just forms the solution of the fitness-optimization problems of those 

smart strategies. In other words, the successful adaptive learning processes will definitely converge to the rational 

solution of the fitness-optimization problems of these smart strategies. Correspondingly, the limit of the 

unsuccessful adaptive learning processes of those replaced individuals just forms the solution of those problems of 

those unsuccessful strategies, and these problems are, as if , not always fitness-optimization problems, or these 

strategies always made mistakes in attracting the individuals from the viewpoint of posteriori. And in the current 

model, these replicator dynamics defined in (2) will be employed as the adaptive learning processes of the 

individuals while Problem 1 corresponds to the as if fitness-optimization problems of the strategies. Rather, in 

Theorem 2 of the following section 4, we have proved that the learning processes will uniformly and robustly 

converge to the solution of the fitness-optimization problems under certain weak conditions. Nonetheless, up to the 

present step, the above story has not been completed. Noting that the fitness-optimization problems are defined for 

the strategies, thus the corresponding control variables naturally will not be these strategies themselves any more. 

And the present paper shows that stopping times or stopping rules will be suitable and useful control variables by 

noticing the following important fact, i.e., these fitness functions of the strategies directly and heavily depend on 

the learning processes or replicator dynamics of the players. Accordingly, the essence of Problem 1 can be 

expressed as follows, that is, searching for optimal stopping rules for the learning processes of the players 

according to the interest of these strategies, and also the essence of the competition between the two heterogeneous 

groups of populations is the competition between two kinds of learning processes, and finally the essence of the 

competition between the two kinds of learning processes will be valued and characterized by the competition 

between the column strategies and row strategies, the coordination among the column strategies and the 

coordination among the row strategies, in the original normal-form games. And in Theorem 2 of the following 

section 4, we have proved that the learning processes will uniformly converge to the optimal stopping rules 

determined by Problem 1 by essentially used the well-known Girsanov Theorem. We will emphasize in the 

following section again that the robust convergence from the learning processes to the rational solutions no longer 

depends on the requirement that errors, noises or stochastic disturbances approach zero, instead, the errors, noises 

or stochastic disturbances will always exist except that they are controlled in certain region following the 

martingale property. 
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     1 1 1 1 1

1
1

( , )
( )

sup exp ( ) 1 ( )
i

i i i i iT

s y i
w w e A Y

 
     



        
  , 

     1 1 1 1 1

1( , ) exp ( ) 1 ( )i i i i iT

s y i
w w e A Y              

  . 

And simultaneously, 

  2 2

2
( ), ( )i i

i
f X        

     2 2 2 2 2

2
2

( , )
( )

sup exp ( ) 1 ( )
i

i i i i iT T

s x i
w w e B X

 
     



        

       , 

     2 2 2 2 2

2( , ) exp ( ) 1 ( )i i i i iT T

s x i
w w e B X              

       . 

with 1 1( ) ( )i k      (  1 1i k , 1i , 1k  1, 2, 1..., I )  a.s., 2 2( ) ( )i k       

( 2 2i k , 2i , 2k  1, 2,
2..., I )  a.s., 

( , )s y
  and 

( , )s x
 stand for the expectation 

operators depending on initial conditions or information ( , )s y  and ( , )s x , 

respectively. 

   REMARK 3.3: (i) Indeed, 1iw , 2iw  0,1  ( 1i  1, 2, 1..., I ; 2i  1,2, 2..., I ) can 

be regarded as objective parameters that measure the intensity of evolutionary 

selection (see, Ohtsuki et al., 2007), and also, this specification reflects the idea that, 

in reality, individuals or players inclined to use different strategies may feel different 

levels of importance of the corresponding game payoff to their fitness, thereby 

determining different degrees of participation which in turn will greatly affect the 

strategy choice of the players.  

(ii) In order to capture the idea behind Problem 1 intuitively, we give the 

following slightly modified expression of Problem 1, 

On the one hand, for strategy 1i , we call the stopping rule 1 ( )
i   is 

individually rational if and only if, 

     1 1 1

1 1
1 ( )

( ) inf 0; ( ) , arg sup ( ), ( )
i

i i i

i it Y t y x f Y
 

        



     
  

for  1i  1, 2, 1..., I . Moreover, we argue that the vector of stopping rules ( )    

 1 11 ( ),..., ( ),..., ( )
T

i I       defines a stable equilibrium if and only if, 
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     1 1

1 1
inf 0; ( ) , ( ) ( ) inf 0; ( ) ,i k

i k
t Y t y x t Y t y x                 

for  1 1i k , 1i , 1k  1, 2, 1..., I . That is,    
1 1

, ,
i k

y x y x        ,y x    y
  for 

 1 1i k , 1i , 1k  1, 2, 1..., I . To conclude, “individually rational” requires there exists a 

boundary that defines a stopping rule for each strategy, and meanwhile “stable 

equilibrium” requires that these boundaries should be equal to each other from the 

viewpoint of group-level or collective behavior.  

On the other hand, for strategy 2i , we call the stopping rule 2 ( )
i   is 

individually rational if and only if, 

     2 2 2

2 2
2 ( )

( ) inf 0; ( ) , arg sup ( ), ( )
i

i i i

i it X t x y f X
 

        



     

    

for  2i  1, 2, 2..., I . Furthermore, we name the vector of stopping rules ( )    

 2 21 ( ),..., ( ),..., ( )
T

i I          a stable equilibrium if and only if, 

     2 2

2 2
inf 0; ( ) , ( ) ( ) inf 0; ( ) ,i k

i k
t X t x y t X t x y                 

for  2 2i k , 2i , 2k  1, 2, 2..., I . That is,    
2 2

, ,
i k

x y x y       ,x y  
x
  for 

 2 2i k , 2i , 2k  1, 2, 2..., I . To sum up, “individually rational” requirement is 

equivalent to the existence of one boundary for each strategy while “stable 

equilibrium” implying that these boundaries should take the same value, otherwise, 

conflict always exists and any given equilibrium consists of stopping rules will not be 

stable. 

(iii) Rather, the game defined in Problem 1 can be regarded as consisting of three 

sub-games, i.e., the sub-game between the two groups of populations, the sub-game in 

column group and the sub-game in row group. The sub-game between the two groups 

of populations reflects the idea of Nash equilibrium or best-response correspondence, 

i.e., determining y
  given x

  and vice versa. However, for the sub-games in each 

group, the key issue is about coordination such that the stable equilibrium will be 

finally achieved. To summarize, for each decentralized and rational individual and in 

the group level, the corresponding Nash equilibrium or best-response strategy y
  
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(given x
 ) (or x

  for any given y
 ) need not be unique. However, there always 

exist only one population distribution y
  (given x

 ) and only one population 

distribution x
  (given y

 ) for each group, respectively, in each period. Accordingly, 

the in-group bargaining and coordination will finally lead us to the unique stable 

equilibrium denoted     , , ,x y y x      . 

(iv) In other words, the algorithm of Problem 1 actually implies a non- 

cooperative game sub-problem first and then a cooperative game sub-problem, that is, 

the Nash equilibrium     
1 2

, , ,
i i

x y y x       for  1i  1, 2, 1..., I  and  2i  1, 2,  

2..., I , which may be not unique in theory, will be determined by the non-cooperative 

game between the two heterogeneous groups of populations thanks to the best- 

response strategy, and finally the unique stable equilibrium   , ,x y    ,y x     

will be derived via the cooperative game in each of the two groups. Noting that people 

live in a structured society and the game problem facing us in reality is rare a pure 

non-cooperative game problem or a pure cooperative game problem, for instance and 

relatively speaking, the game problem between two countries will be usually 

interpreted as a non-cooperative game problem while the game problem in each 

country will be thus interpreted as a cooperative game problem, we argue that 

Problem 1 supplies a good approximation to reality. To be much more exact and much 

deeper, there exist many social equilibria facing us need be established by employing 

both non-cooperative game theory and cooperative game theory, for instance, in the 

field of international trade and for any two given democratic trading countries denoted 

  and  , both country   and country   consist of two departments, i.e., export 

department and import department, thus, given the possible optimal strategy of 

country  , export department of country   will have a best- response strategy 

denoted    according to its interest consideration, and also import department of 

country   will have a best-response strategy denoted  , and vice versa. Then we 
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obtain the following four possible or potential Nash equilibria, i.e., ( , )   , 

( , ) 
 , ( , )  

  and ( , )    from the above between-country non- cooperative 

game. Obviously, the Nash equilibria are not necessary to be unique from the 

viewpoint of pure game theory. However, there always exists unique equilibrium in 

reality, that is, only one foreign-policy equilibrium will be established and enforced. 

Then, we turn to the in-country cooperative game and this is naturally related to the 

bargaining and coordination problem. Finally, we will get the unique stable foreign- 

policy equilibrium denoted ( , )  , in which   and   should be the Nash 

bargaining solutions (see, Nash, 1950) or Shapley Values (see, Shapley, 1953) of 

export department and import department of country   and country  , 

respectively. 

(v) It follows from Problem 1 that,  

  1 1

1
( ), ( )i i

i
f Y      

     1 1 1 1 1

1
1 ( )

sup exp ( ) 1 ( )
i

i i i i iT

i sw w e A Y
 

     


        
   , 

And simultaneously, 

  2 2

2
( ), ( )i i

i
f X        

     2 2 2 2 2

2
2 ( )

sup exp ( ) 1 ( )
i

i i i i iT T

i sw w e B X
 

     


        

         

for  1i  11,2,..., I  and  2i  1,2, 2..., I . And this implies that we have proposed 

complete-information and symmetric-information assumption in Problem 1. 

Alternatively, if we are given another two filtrations denoted  
0 ( )t t   

   and 

 
0 ( )

t
t   

    with 
t t t
      for 0 ( )t     , Problem 1 can be extended 

to include incomplete information, for example, we consider the following 

optimization problem, 

  1 1

1
( ), ( )i i

i
f Y      
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     1 1 1 1 1

1
1 ( )

sup exp ( ) 1 ( )
i

i i i i iT

i sw w e A Y
 

     


        
   , 

And simultaneously, 

  2 2

2
( ), ( )i i

i
f X        

     2 2 2 2 2

2
2 ( )

sup exp ( ) 1 ( )
i

i i i i iT T

i sw w e B X
 

     


        

         

for  1i  11,2,..., I  and  2i  1,2, 2..., I . And also, the case of asymmetric 

information can be easily constructed, for instance, we now consider the following 

optimization problem, 

  1 1

1
( ), ( )i i

i
f Y      

     1 1 1 1 1

1
1 ( )

sup exp ( ) 1 ( )
i

i i i i iT

i sw w e A Y
 

     


        
   , 

And simultaneously, 

  2 2

2
( ), ( )i i

i
f X        

     2 2 2 2 2

2
2 ( )

sup exp ( ) 1 ( )
i

i i i i iT T

i sw w e B X
 

     


        

         

for  1i  11,2,..., I  and  2i  1,2, 2..., I . Moreover, we can set problems implying 

that there exists asymmetric information in each group, for example, 1k  1, 2,  

1..., I , we now consider the following case, 

  1 1

1
( ), ( )i i

i
f Y      

     1 1 1 1 1

1
1 ( )

sup exp ( ) 1 ( )
i

i i i i iT

i sw w e A Y
 

     


        
    

for  1i  11, 2,..., k . And, 

  1 1

1
( ), ( )i i

i
f Y      

     1 1 1 1 1

1
1 ( )

sup exp ( ) 1 ( )
i

i i i i iT

i sw w e A Y
 

     


        
    



 

 29

for  1i  1 1 1, 1,...,k k I . That is to say, filtration  
0 ( )t t   

   implies incomplete 

information while filtration  
0 ( )

t
t   

    implies private information or inside 

information. All in all, Problem 1 can be naturally extended to study much more cases 

appear in society by employing more complicated mathematical techniques. 

DEFINITION 1 (Pareto Optimal Endogenous Matching and Induced Nash 

Equilibrium): The solution, if it exists, to Problem 1 defines a game equilibrium, 

denoted   1 11( , ) ( , ),..., ( , ),..., ( , ) ,
T

i I
x y x y x y x y           1( , ) ( , ),y x y x     

 2 2..., ( , ),..., ( , )
T

i I
y x y x      with 

1 1

1

( , ) 1
I i

i
x y     and 

2 2

2

( , ) 1
I i

i
y x     , ind- 

uced by stochastic group evolution and rational individual choice corresponding to the 

very general normal form game situations. Suppose that we are provided with a Pareto 

optimal Nash equilibrium  1 11ˆ ˆ ˆ ˆ( ,..., ,..., ) ,i I T
x x x x 2 21ˆ ˆ ˆ ˆ( ,..., ,..., )i I T

y y y y  with 

1 1

1

ˆ 1
I i

i
x   and 

2 2

2

ˆ 1
I i

i
y   in the original normal form game, then we arrive at the 

Pareto optimal endogenous matching by solving the following equations, i.e., 

ˆ( , )x y x    and ˆ( , )y x y   , and we denote the corresponding Pareto optimal 

endogenous matching by ( , )   . Moreover, we call the Pareto optimal Nash 

equilibrium ˆ ˆ( , )x y  induced Nash equilibrium in the current game situations and in 

some sense. 

REMARK 3.4: (i) Here, and throughout the current paper, we study the game 

equilibrium by employing evolutionary game theory under uncertainty, which implies 

that the game equilibrium is characterized from the viewpoint of group level, thereby 

leading to a case where classical optimal control theory is not suitable for rational 

individual choice while stochastic optimal stopping theory is powerful and hence 

plays a crucial role in proving and characterizing the existence of the induced game 

equilibrium, and hence the Pareto optimal endogenous matching.  

(ii) Specifically, it is worth noting that there exists intrinsic relationship between 

the endogenous matching and the broadly applied random matching (see, Ellison, 

1994; and Weibull, 1995, for instance). Notice that the present endogenous matching 
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could be naturally viewed as certain perturbation of the perfect world with well-mixed 

population to some extent and in some sense, random matching indeed represents a 

special case of the endogenous matching studied in the paper. In other words, if we 

suppose that individuals or players play the game in a perfect world rather than a 

structured society, random-matching hypothesis is quite appropriate and also random 

matching itself would be regarded as endogenously determined, i.e., determined by 

the corresponding game environment. Generally speaking and to the best of our 

knowledge, random matching is just employed as an exogenous matching mechanism 

which does not imply any welfare standard or will be implied by any welfare standard 

in existing studies (see, Ellison, 1994; and Weibull, 1995, and among others). 

Nevertheless, as an extreme case of the endogenous matching studied here, random 

matching itself indeed yields economic-welfare implications. For example, if we get 

that 0lim ˆ( , )x y x    and 0
ˆlim ( , )y x y  

   , we can definitely call the 

corresponding random matching asymptotically Pareto efficient (or Pareto optimal). 

As is well known, people live in a structured society and thus random matching only 

works as certain limit of the endogenous matching. And random matching will be 

supplied with much richer economic intuitions and implications as long as it is studied 

in a way intimately related to the present endogenous matching. All in all, game rule 

is implied by the society structure
31

 in some sense and the society structure rather 

implies certain economic-welfare implication, so our study of endogenous matching 

deepens the present study of matching theory. 

(iii) Intuitively, we name the matching mechanism here endogenous matching 

just because it is determined by other parameters of the model, say, the payoff 

structures, the discount factors, the parameters that measure the contribution of the 

payoffs to the fitness, and also the stochastic volatility. In other words, endogenous 

matching can be written as a function of the above parameters, and, if motivated, we 

can even take comparative static analyses after complicated computations. 

 

                                                        
31 It should include both spatial structure and division structure of any given mature market. 



 

 31

3.3. Existence of Pareto Optimal Endogenous Matching 

We now define  ( ) , ( )Z t s t X t   for  t    with (0)Z  ( , )s x     

  10,1
I

, and  ( ) , ( )Z t s t Y t  for  t    with (0)Z  ( , )s y      20,1
I

. 

And also we let ( , )f s x   1 1 1
( , ),..., ( , ),..., ( , )i I

T
f f f

x x x
s x s x s x

  

  

  
,  

1 1 1

1 1

1( ) ,
l l l

x x z  ...  

   1 1 1 1

1 1 1 1 1 1
, ,...,

T
i i I I

i l l I l l
x z x z  , ( , )f s y   1 2 2

( , ),..., ( , ),..., ( , )i I

T
f f f

y y y
s y s y s y

  

  
 and 

2l
  

( )y       2 2 2 2

2 2 2 2 2 2 2 2

1 1

1 ,..., ,...,
T

i i I I

l l i l l I l l
y z y z y z     . Then the characteristic operators 

of ( )Z t  and ( )Z t  can be respectively given by, 

     
1 1

1 1 1 1

1 1 1

1 1

2
2

2
1 1

1
( , ) ( , ) ( , ) ( , )

2 ( )

I I
T

i i i iT

i i i
i i

f f f
f s x s x x e Ay s x x s x

s x x
 

 

  
  
   
    

    
1 1

1 1

1 1 1 1
0

1 11 1

, ( ) ( , ) ( , ), ( )
I n

k k

l l l l

k l

f s x x f s x f s x x dz  
 

         , 

 f   1 12 I
C

 . 

And, 

     
2 2

2 2 2 2

2 2 2

2 2

2
2

2
1 1

1
( , ) ( , ) ( , ) ( , )

2 ( )

I I
T

i i i iT T

i i i
i i

f f f
f s y s y y e B x s y y s y

s y y
 

 

  
  
       

    
2 2

2 2

2 2 2 2
0

2 21 1

, ( ) ( , ) ( , ), ( )
I n

k k

l l l l

k l

f s y y f s y f s y y dz  
 

        , 

 f   2 12 I
C

 . 

Furthermore, we let 
1 1

1

1

11

I i

i
x 


 , then 1

11I
x    with 10 1   by noting 

that 
1 1

1 1

I i

i
x

 1 . Let 
1 1

1

2

21

I i

i
x 


 , then we get 1 1

1 2

I
x      with 2 10 1    . 

Inductively, let 
1 1 1

11

( 2)

21

I I i

Ii
x  


 , then we have 1 1( 3)3 I I

x x
  

1 13 2I I    with 

0 
1 2I  

1 3I   ...  1 1  ; let 
1 1 1

11

( 1)

11

I I i

Ii
x  


 , i.e., 1

x
1 1I  , then we get 2

x   

1 1( 2)I I
x

  
1 2I  1 1I   with 0 

1 1I  
1 2I  

1 3I   ...  1 1  . And without loss of 

any generality, we put 0 1  . Then we obtain, 
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     
1

2 2 2 2 1 2 1 1 1 1 1 2

1

1

2 1 2 2 2 1

3

, ( )
I

T T T T

i i i i I i i I i I i i

i

u i x e B x b b x b b e B        


          . 

Similarly, notice that 
2 2

2 1

I i

i
y

 1  and let 
2 2

2

1

11

I i

i
y 


  , then we have 2I

y   

11    with 0  1 1 . Let 
2 2

2

2

21

I i

i
y 


  , then we see that 2 1

1 2

I
y       with 0   

2 1 1    . Inductively, let 
2 2 2

22

( 2)

21

I I i

Ii
y  


  , then we have 2 2( 3)3 I I

y y
  

2 3I
 
  

2 2I
    with 0 

2 2I
 
 

2 3I
 
  ...  1 1  ; let 

2 2 2

22

( 1)

11

I I i

Ii
y  


  , i.e., 1

y
2 1I

   , 

then it follows that 2
y  2 2( 2)I I

y
  

2 2I
 


2 1I
    with 0 

2 1I
  

2 2I
 
 

2 3I
 
  ...   

1 1 . And we, without loss of any generality, put 0 1  . Then we get, 

     
2

1 1 1 1 2 1 2 2 2 2 2 1

2

1

1 1 2 2 2 1

3

, ( )
I

T T

i i i i I i i I i I i i

i

u i y e A y a a y a a e A        


             . 

Therefore, the discounted fitness functions in Problem 1 can be rewritten as, 

   1

1

1, exp i

i
f s y s   

         
2

1 1

1 1 1 2 1 2 2 2 2 2 1

2

1

1 2 2 2 1

3

1
I

i i T

i i i I i i I i I i i

i

w w a a y a a e A      


            
   

    , 

                                                    1i  1, 2, 1..., I . 

   2

2

1, exp i

i
f s x s    

         
1

2 2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

1
I

i i T T

i i i I i i I i I i i

i

w w b b x b b e B      


            
   

   , 

                                                 2i  1, 2, 2..., I . (3) 

with 0 
2 1I

  
2 2I

 
 

2 3I
 
  ...  1 0 1   and 0 

1 1I
  

1 2I
  

1 3I
   ...  1   

0 1 . And inspection of the fitness functions given in (3) reveals that one can just 

define  1( ) , ( )Z t s t X t   for  t    with (0)Z   1,s x     0,1 , and 

 1( ) , ( )Z t s t Y t  for  t    with (0)Z   1,s y     0,1 . And hence the 

corresponding characteristic operators of ( )Z t  and ( )Z t  are respectively given by, 
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       1 1 1 1

1 1
, , ,Tf f

f s x s x x e Ay s x
s x

 
 
 

       
2

2
1 1 1 1

1 2

1
,

2 ( )

T f
x s x

x
  





 

           
1

1
1 1 1 1 1 1

0
1

1 1 1 1 1 1 1 1 1

1 1

1

, , ,
n

f

l l l l l lx
l

f s x x z f s x x z s x dz  




   



  , 

 f   2 2
C  . 

And, 

       1 1 1 1

1 1
, , ,T Tf f

f s y s y y e B x s y
s y

 
 
 

      
2

2
1 1 1 1

1 2

1
,

2 ( )

T f
y s y

y
  




   

           
2

1
2 2 2 2 2 2

0
2

1 1 1 1 1 1 1 1 1

1 1

1

, , ,
n

f

l l l l l ly
l

f s y y z f s y y z s y dz  




       

 f   2 2
C  . 

Therefore, based upon the above assumptions and specifications, the following 

theorem is derived, 

THEOREM 1: There exists a unique solution to Problem 1 under very weak 

conditions, and accordingly the existence of the Pareto optimal endogenous matching 

is confirmed provided that we are given a Pareto optimal Nash equilibrium  ˆ ˆ,x y , 

which is given in Definition 1. 

PROOF: See Appendix B. ▌ 

REMARK 3.5: (i) It is especially worth noting that Theorem 1 not only shows the 

existence of the Pareto optimal endogenous matching and induced Nash equilibrium 

given by Definition 1 but also provides us with the explicit time length needed so that 

the Pareto optimal endogenous matching and also the induced Nash equilibrium can 

be achieved by decentralized players. Moreover, it is also worth emphasizing that our 

conclusion holds true for any Pareto optimal strategy combination of very general 

normal form games although we have only considered Pareto optimal Nash 

equilibrium in Theorem 1. For instance, (cooperation, cooperation) is a Pareto optimal 

strategy combination in PD games although it is generally not a Nash equilibrium at 

all. Obviously, our endogenous matching rule can lead us to cooperation in PD games. 

(ii) Furthermore, it follows from proving the existence of the Pareto optimal 
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endogenous matching that we have provided an algorithm for computing equilibria in 

asymmetric normal-form games with countable many strategies and players. Actually, 

we just need to solve a group of linear equations. 

 

4. STABILITY 

In what follows, we are encouraged to show the stability of the Pareto optimal 

endogenous matching. And we do so by first giving the following definition, 

DEFINITION 2 (Unit Simplex of Evolutionary Dynamics): Here, and throughout 

the present paper, we put  22 2

2 1
; 1

II i

i
y y 

     and  11 1

1 1
; 1

II i

i
x x 

      

as the unit simplexes of the evolutionary dynamics defined in (2). Moreover, we let  

 int   and  int   denote the interiors of   and  , respectively. 

 

4.1. Convergence of Induced Game Equilibrium 

In the present section, we consider the convergence of the induced Nash 

equilibrium, denoted ˆ( , )x y x     and ˆ( , )y x y    . It follows from (1) 

that, 

   1 1 1 1 1 1 1 1

11
0

( ) ( ) ( ) ( ) ( ) , ,
n

i i i i i i i iT

i
dX t X t e AY t dt t dW t t z N dt dz        , 

   2 2 2 2 2 2 2 2

22
0

( ) ( ) ( ) ( ) ( ) , ,
n

i i i i i i i iT T

i
dY t Y t e B X t dt t dW t t z N dt dz         .   (1’) 

for  1 11,2,...,i I  and 2 21,2,...,i I . Now, we need the following assumptions, 

ASSUMPTION 5: Suppose that there exist processes    1 1 1 1

1 1, , ,...,i i i i
t z t z   

   1 1 1 1 1

1 1 1 1
, ,..., ,

T
i i i i n

l l n n
t z t z    with  1 1

1 1
, 1i i

l l
t z   and 1 1( )i d

t   that are 1i   

predictable such that for any 0T  , 

•      
1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
0

1 1

( ) ( ) , , ( )
n

i i i i i i i T

i l l l l l l i

l

t t t z t z dz e AY t   


   ,   1i  a.e. 

• 1
2

20
( )

T
i

t dt   , 1i  a.s. 
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•       
1

1 1 1 1 1 1

1 1 1 1
0

1

2

0 2
1

log 1 , ,
n

T
i i i i i i

l l l l

l

t z t z dz dt


         , 1i  a.s. 

for a.a.   1( , ) 0,
i

t T   , and for  1 11,2,...,i I . 

ASSUMPTION 6: It is assumed that there exist processes  2 2,i i
t z   

  2 2

1 1, ,...,i i
t z    2 2 2 2 2

2 2 2 2
, ,..., ,

T
i i i i n

l l n n
t z t z      with  2 2

2 2
, 1i i

l l
t z   and 2 2( )i d

t    

that are 2i  predictable such that for any 0T  , 

•      
2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
0

2 1

( ) ( ) , , ( )
n

i i i i i i i T T

i l l l l l l i

l

t t t z t z dz e B X t   


     ,   2i  a.e. 

• 2
2

0 2
( )

T
i

t dt    , 2i  a.s. 

•       
2

2 2 2 2 2 2

2 2 2 2
0

2

2

0 2
1

log 1 , ,
n

T
i i i i i i

l l l l

l

t z t z dz dt


           , 2i  a.s. 

for a.a.   2( , ) 0,
i

t T   , and for  2 21, 2,...,i I . 

Now, letting, 

      
1

1 1 1 1 1 1 1

1 1 1 1 1 1
0

1

0
1

( ) exp log 1 , ,
n

t
i i i i i i i

l l l l l l

l

t s z s z dz ds


       
   

        1 1 1
2

20 0
( ) ( ) ( )

t t
i i i

s dW s s ds     

            
1

1 1 1 1

1 1 1 1
0

1

0
1

log 1 , ,
n

t
i i i i

l l l l

l

s z N ds dz


  


   , 

And, 

      
2

2 2 2 2 2 2 2

2 2 2 2 2 2
0

2

0
1

( ) exp log 1 , ,
n

t
i i i i i i i

l l l l l l

l

t s z s z dz ds


       
     

        2 2 2
2

0 0 2
( ) ( ) ( )

t t
i i i

s dW s s ds      

                
2

2 2 2 2

2 2 2 2
0

2

0
1

log 1 , ,
n

t
i i i i

l l l l

l

s z N ds dz


  


    , 

And then we define new measures 1i  and 2i  on 1i

T  and 2i

T , respectively, by, 

1 1 1( ) ( , ) ( )i i i
d T d     , 
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2 2 2( ) ( , ) ( )i i i
d T d     , 

i.e., 1 ( , )i
T  and 2 ( , )i

T  are the well-known Radon-Nikodym derivatives. By 

Assumption 5 and 6, 1 ( , )i
T  and 2 ( , )i

T  satisfy the following Novikov 

conditions, respectively, 

  1

1 1 1 1

1 1
0

1

2
1
2 20 0

1

exp ( ) 1 ,
n

T T
i i i i

l l

l

t dt t z


 
  

 
    

       1 1 1 1 1 1

1 1 1 1 1 1
log 1 , ,i i i i i i

l l l l l l
t z t z dz dt     

, 

And, 

  2

2 2 2 2

2 2
0

2

2
1
2 0 2 0

1

exp ( ) 1 ,
n

T T
i i i i

l l

l

t dt t z


 
  

 
     

       2 2 2 2 2 2

2 2 2 2 2 2
log 1 , ,i i i i i i

l l l l l l
t z t z dz dt     

  . 

Thus, according to the well-known Girsanov Theorem for Lévy processes, 1i  and 

2i  are new probability measures on 1i

T  and 2i

T , respectively, and 1 ( )i
X t , 

2 ( )i
Y t  will be martingales w. r. t. the probability laws 1i  and 2i , respectively. We 

will denote by 1

1i

i


 , 2

2i

i


  the expectation operators w. r. t. the probability laws 1i  

and 2i , respectively, for  1i  1, 2, 1..., I  and 2i  1,2, 2..., I . Moreover, we let 

1 2     with 1  1 1

1 1

I i

i    and 2 2

2

2

1

I i

i    . And now we are given a 

stochastic basis  , ,    
0t t T 

 ,  with   representing the corresponding 

expectation operator. Define, 

       1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11

, , ,i

i i i i i i i i

l l l l l l ll
N ds dz s z dz ds N ds dz 


  , 

1 1 1

1
( ) ( ) ( )i

i i i
dW s s ds dW s 


 . 

And, 

       2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 22

, , ,i

i i i i i i i i

l l l l l l ll
N ds dz s z dz ds N ds dz 


   , 

2 2 2

2
( ) ( ) ( )i

i i i
dW s s ds dW s 


 . 
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for 1i  1, 2, 1..., I ; 2i  1,2, 2..., I ; 1l  1,2, ..., 1n  and 2l  1,2, ..., 2n . Thus, with 

these new compensated Poisson random measures and Brownian motions, (1’) can be 

rewritten as follows, 

   1 1 1 1 1 1 1 1

1 11
0

( ) ( ) ( ) ( ) , ,i in

i i i i i i i i
dX t X t t dW t t z N dt dz      

 , 

   2 2 2 2 2 2 2 2

2 22
0

( ) ( ) ( ) ( ) , ,i in

i i i i i i i i
dY t Y t t dW t t z N dt dz      

 .            (1’’) 

for  1 11,2,...,i I  and 2 21,2,...,i I . Now, we slightly modify Problem 1 given in 

section 3 and give, 

PROBLEM 2 (Stochastic Differential Cooperative Game on Time): To solve 

Problem 1 subject to the new stochastic differential dynamics given by (1’’). 

Hence, employing the similar proof of Theorem 1, we derive, 

COROLLARY 1: There exists a unique solution to Problem 2 under very weak 

conditions, and accordingly the existence of the Pareto optimal endogenous matching 

is confirmed provided that we are given a Pareto optimal Nash equilibrium  ˆ ˆ,x y , 

and we still denote it by ˆ( , )x y x     and ( , )y x    ŷ   as are given in 

Definition 1. 

Therefore, based upon the above assumptions and constructions, we derive the 

following theorem, 

THEOREM 2: Provided Corollary 1 and for  ˆ( , )x y x     and ( , )y x      

ŷ  . Then we always get that both ( )X t  and ( )Y t  converge in 
1( )L   with 

their limits belonging to the space 
1( )L  , and particularly, we arrive at, 

(i) ( )X t  uniformly converges to ( , )x y  
  a.s., or equivalently, 

2
lim ( ) ( , ) 0
t

t t

X t x y  


 




       
  . 

for    . 

(ii) ( )Y t  uniformly converges to ( , )y x      a.s., or equivalently, 
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2
lim ( ) ( , ) 0
t

t t

Y t y x  


 




       
  . 

for    . 

PROOF: See Appendix C. ▌ 

REMARK 4.1: (i) It is especially worth emphasizing that Theorem 2 holds for any 

ˆ( , )x y x     and any ˆ( , )y x y     no matter  ˆ ˆ,x y  is a completely 

mixed-strategy equilibrium, a non-completely mixed-strategy equilibrium or a pure- 

strategy equilibrium in the original normal-form games. However, for ˆ( , )x y x    

 int   and  ˆ( , ) inty x y     , we usually need to prove that there exists a 

unique invariant probability measure on  int   and  int  , respectively. For more 

details, one can refer to Theorem 2.1 of Imhof (2005), Theorem 3.1 of Benaïm et al. 

(2008) and Theorem 5 of Schreiber et al (2011). Moreover, it follows from Theorem 1 

that  ˆ ˆ,x y  need not be a Nash equilibrium, for instance, (cooperation, cooperation) 

in PD games, and even not an evolutionary stable strategy (ESS) of the original game 

thanks to the specification of Problem 1. Noting that Theorem 2.1 of Imhof (2005) 

only holds for interior ESS and Theorem 3.1 of Benaïm et al. (2008) only holds for 

the attractor of the corresponding replicator dynamics, we argue that the method 

employed in demonstrating Theorem 2 has enriched existing literatures. 

(ii) As is well known, mixed equilibria are usually interpreted as the limits of 

some learning process arising from fictitious play with randomly perturbed payoffs in 

the manner of Harsanyi’s (1973) purification theorem (e.g., Fudenberg and Kreps, 

1993; Benaïm and Hirsch, 1999; Ellison and Fudenberg, 2000, and among others). 

Nonetheless, there exist some problems that prevent the convergence of learning 

mechanisms to a mixed-strategy Nash equilibrium (see, Jordan, 1993). Moreover, 

Benaïm and Hirsch’s (1999) study shows that there are robust parameter values giving 

probability zero of convergence for Jordan’s 3×2 matching game. Obviously, our 

results, which essentially based upon the specification of Problem 1 and the 

martingale property of the corresponding replicator dynamics, applied to much 
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broader cases. Last but not least, our conclusion in Theorem 2 proved the convergence 

of game equilibrium in the sense of uniform topology, which is much stronger than 

that of existing literatures. 

(iii) One may notice that we take the limits in Theorem 2 just by sending the time 

to infinity but not through letting the diffusion terms or the jumps terms in replicator 

dynamics or the adaptive learning processes approach zero, instead, noises, errors or 

stochastic disturbances of the replicator dynamics always exist except that they are 

reasonably controlled in certain region according to the martingale property. 

 

4.2. Stable Endogenous Matching 

It follows from (1) that, 

     
1 1

0

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,
I n

dX t X t F Y t dt X t G t dW t X t H t z N dt dz         (4) 

     
2 2

0

2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,
I n

dY t Y t F X t dt Y t G t dW t Y t H t z N dt dz        (5) 

where   denotes the Hadamard product. Now, we introduce the following Lévy 

SDEs, 

     
1 1

0

1 1 1 1 1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,
I n

dX t X t F Y t dt X t G t dW t X t H t z N dt dz         (6) 

     
2 2

0

2 2 2 2 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,
I n

dY t Y t F X t dt Y t G t dW t Y t H t z N dt dz        (7) 

where we have used the following assumption, 

ASSUMPTION 7: For any 
1 0  , 

2 0  , we suppose that, 

2

1 1 1 1

2 2

ˆˆsup ( ) ( ) sup ( ) ( )
I ty

F y F y G t G t


  


   
1 1 1

0

1 1 1 1 1

2
( , )

ˆsup , ,
I n

t z

H t z H t z 
 

  
 

, 

And, 

1

2 2 2 2

2 2

ˆˆsup ( ) ( ) sup ( ) ( )
I tx

F x F x G t G t


  


   
2 2 2

0

2 2 2 2 2

2
( , )

ˆsup , ,
I n

t z

H t z H t z 
 

  
 

. 

In other words, we call (6), (7) 1   and 2  perturbations of (4) and (5), 

respectively. Moreover, we give, 

ASSUMPTION 8: We suppose that there exist constants 
1

K , 
2

K    and 
1

K̂ , 

2
K̂    such that, 
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 
12 1 1

0

22 2
1 1 1 1 1

2 2 2
( , )

sup ( ) sup ( ) sup ,
I I nty t z

F y G t H t z K
   

  
  

, 

 
21 2 2

0

22 2
2 2 2 2 2

2 2 2
( , )

sup ( ) sup ( ) sup ,
I I ntx t z

F x G t H t z K
   

  
  

, 

And also, 

   
1 1

1 1 1 1
00

1

1 1 1 1 1

1

ˆ
I n

I n

l l

l

dz dz K 


  
 , 

   
2 2

2 2 2 2
00

2

2 2 2 2 2

1

ˆ
I n

I n

l l

l

dz dz K 


  
 . 

ASSUMPTION 9: To ensure that the replicator dynamics given in (2) remain on 

  and  , i.e.,   and   are invariant, respectively, we assume that for each 

x , the drift vector 
1( )f x , the diffusion terms 11( ) ( )k

g x  ( 1 1 11,2,...,k I d ) and the 

jump terms  11( ) 1,l
h x z  ( 1 1 11,2,...,l I n ) are elements of the tangent space T   

 11 1

1 1
; 0

II i

i
r r


   of  , and also for each y , the drift vector 

2 ( )f y , the 

diffusion terms 22( ) ( )k
g y  ( 2 2 21,2,...,k I d ) and the jump terms  22( ) 2,l

h y z  

( 2 2 21,2,...,l I n ) are elements of the tangent space T   22 2

2 1
; 0

II i

i
r r


    of 

 . 

Then, the following proposition is established, 

PROPOSITION 2: Based upon the above constructions and assumptions, suppose 

ˆ(0) (0)X X  and ˆ(0) (0)Y Y , then we have, 

(i) 
2

1

20

ˆlim sup ( ) ( ) 0
T t T

X t X t
  

    
  as 

1 0  . 

(ii) 
2

2

20

ˆlim sup ( ) ( ) 0
T t T

Y t Y t
  

    
  as 

2 0  . 

PROOF: See Appendix D. ▌ 

REMARK 4.2: It should be pointed out here that in the proof of Proposition 2, we 

have implicitly used the following facts or assumptions, i.e., the speed of   
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approaching zero is much faster than that of time T  approaching infinity and also 

0 0 . Moreover, we can get the same conclusion by taking the limit as 0   

first and then as T  . 

Provided the above preparations, the following stability theorem of Pareto- 

optimality endogenous matching can be established, 

THEOREM 3 (Stable Endogenous Matching): No matter the corresponding 

Pareto optimal Nash equilibrium is a completely mixed strategy Nash equilibrium, a 

non-completely mixed strategy Nash equilibrium, or just a pure strategy Nash 

equilibrium, there always exists stable endogenous matching that is Pareto optimal 

based upon Theorem 2 and Proposition 2. 

PROOF: We take ˆ ( )X t  for example. And indeed, to prove the theorem, one only 

need to notice the following facts, i.e., for 2p   and p , 

   
2 2

ˆ ˆ( ) , ( ) ( ) ( ) ,
p p

X t x y X t X t X t x y          

  1

2 2

ˆ2 ( ) ( ) ( ) ,
p p

p
X t X t X t x y        

And also, most importantly, proving the stability of the Pareto optimal endogenous 

matching    is equivalent to prove the stability of  ,x y     by noting that there 

exists a one-to-one correspondence between  ,x x y      and   . Then, 

combining Proposition 2 with Theorem 2 will easily confirm Theorem 3. The details 

are left to the interested reader. ▌ 

REMARK 4.3: Theorem 3 combines with Theorem 1 actually supplies us a 

standard of stability much stronger than that of existing literatures. For example, 

classical non-cooperative game theory builds the strategic stability of equilibria on the 

basis of rational assumption, no matter it is common knowledge, forward induction or 

backward induction (see, Kohlberg and Mertens, 1986; and van Damme, 1987, and 

among others). On the other hand, evolutionary game theory builds up its stability of 

equilibria upon the concepts of evolutionary stable strategy (ESS) (e.g., Maynard 

Smith, 1982; Axelrod, 1984; Fudenberg and Maskin, 1990; Samuelson and Zhang, 
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1992; Weibull (1995) and references therein) or stochastically stable equilibrium (e.g., 

Foster and Young, 1990; Young and Foster, 1991; Fudenberg and Harris, 1992; and 

Young, 1993, and among others). In the current study, Theorem 1 follows the classical 

individually-rational assumption, i.e., expected payoffs or fitness functions are 

maximized, and also Theorem 3 confirms stability of the endogenous matching from 

the view of point of evolutionary interpretation, i.e., the continuous time Markov 

process arising from the replicator dynamics will stably converge to the Pareto 

optimal equilibrium in the sense of uniform topology and so we argue that the 

endogenous matching is stable because there exists a one-to-one correspondence 

between the game equilibrium and the matching. Noting that individual choice usually 

bases on rational decision while group of populations as a whole follows stochastic 

evolution, we emphasize again that Theorem 1 and Theorem 3 indeed provide us with 

a complete characterization of the stability of the Pareto optimal endogenous 

matching. To summarize, the present paper introduces the following stronger 

definition of stability, that is, we call a given equilibrium or matching stable if and 

only if it is both individually rational and it satisfies group-level stochastic 

evolutionary stability. 

 

5. CONCLUSION 

What’s the directing philosophy insisted by the present exploration? Rather, 

throughout the present paper, we insist and emphasize the following philosophy, i.e., 

relatively speaking, both what the present state is and what the goal will be are not  

at all important, the only thing that does matter is what we will need to lead us from 

the present state to the goal. Indeed, in the present framework and given the problem 

facing us, the Pareto optimal endogenous matching defined and derived by us just 

plays the key and essential role in leading us from any given present state to our given 

goal. We therefore argue that the definition of endogenous matching employed by the 

paper is not only for the sake of convenience of expression but also reflecting the 

above practical philosophy. 
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In the present paper, we are encouraged to study the asymmetric normal-form 

games between two heterogeneous groups of populations by incorporating stochastic 

optimal stopping theory into the stochastic replicator dynamics for the first time, 

thereby defining a stochastic differential cooperative game on time. It is demonstrated 

that optimal stopping theory will play a crucial role in studying the endogenous 

matching from the viewpoint of evolutionary game theory. Existence of Pareto 

optimal endogenous matching has been proved and also the corresponding stability is 

confirmed by employing two important standards: individually-rational standard and 

stochastic evolutionary stable standard. 

Finally, the current paper can be naturally extended in the following ways, first, 

asymmetric information can be introduced into the present model to capture much 

more economic implications; second, stochastic differential cooperative game can be 

explored based upon the present framework; third, specific mechanism, say, 

reputation mechanism or searching mechanism, can be incorporated into the model to 

support any other pattern of endogenous matching; forth, our approach can be easily 

extended to include multiple priors (see, Riedel, 2009, for instance) and also to 

explore the evolutionary equilibria on graphs (see, Ohtsuki et al., 2007, and among 

others). 

 

APPENDIX 

A. Proof of Proposition 1 

We take 1 ( )i
M t  for example. For any 1 (0) 0i

M  , we, by applying Itô’s rule to 

1 ( )i
M t , arrive at, 

 11 1

1 1 11

21
2 10

log ( ) log (0) ( ) ( )
t di i T

i i kk
M t M e AY s s


     

      1 1 1 1 1

1 1 1 1 1 1 1 11 0
1

log 1 , ,
n i i i i

i l l i l l l ll
s z s z dz ds  


       

    1 11 1 1 1

1 1 1 1 1 1 1 11 10
1 10 0

( ) ( ) log 1 , ,
t td ni i i i

i k k i l l l lk l
s dW s s z N ds dz 

 
       (A.1) 

Applying the classical Large Number Theorem of martingales reveals that, 
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1 1

1 1 11 10

1
lim ( ) ( ) 0

t d i

i k kkt
s dW s

t



  a.s. 

And, 

    1 1 1 1

1 1 1 1 110
10

1
lim log 1 , , 0

t n i i i

i l l l llt
s z N ds dz

t



     a.s. 

Dividing both sides of (A.1) by t  and then letting t   we hence obtain the 

desired assertion in Proposition 1. ▌ 

 

B. Proof of Theorem 1 

STEP 1: For strategy 1i ,  1 11,2,...,i I . Notice that, 

   1 1

1

1, expi i

i
f s y s     

   
2

1 1

1 1 1 2 1 2 2 2 2 2 1

2

1

1 2 2 2 1

3

1
I

i i T

i i i I i i I i I i i

i

w w a a y a a e A      


            
   

     

     1 1

1 1

1

1 1 2exp 0i iT T

i i
y e B x s w a a     

   1 1

1 1

1

1 1 2

i iT T

i i
e B x w a a y    

   
2

1 1 1 1

1 2 1 2 2 2 2 2 1

2

2 2 1

3

1
I

i i i i T

i I i i I i I i i

i

w w a a e A        


 
      

 
    . 

 

Case 1.1: 
   

   

2

1 1 1 1

1 2 1 2 2 2 2 2 1

2

1

1 1

2 2 1

3

1 2 1

1 0

sgn sgn

I
i i i i T

i I i i I i I i i

i

iT T

i i

w w a a e A

e B x a a

     



   


  
       

 
   

   


 

Then, 

 
1

1, 0
i

f s y   

   
   

21 1 1 1

1 2 1 2 2 2 2 2 12

1 1

1 1

2 2 131

1 1 2

1
Ii i i i T

i I i i I i I i ii

i iT T

i i

w w a a e A
y

e B x w a a

     



   
       

 

   


. 

Hence, we have, 

 
   

   

21 1 1 1

1 2 1 2 2 2 2 2 121

1 1

1 1

2 2 131 1

1 1 2

1
, ;

Ii i i i T

i I i i I i I i iii

i iT T

i i

w w a a e A
U s y y

e B x w a a

     



   
          

   

   


.  
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(B.1) 

And it is natural to guess that the continuation region 1iD  has the following form, 

    1

1 1

1 1 1 1, ;0i

i i
D y s y y y

    . 

where, 

   
   

21 1 1 1

1 2 1 2 2 2 2 2 12

1 1 1

1 1

2 2 131

1 1 2

1
Ii i i i T

i I i i I i I i ii

i i iT T

i i

w w a a e A
y

e B x w a a

     



   
      

 

   


.    (B.2) 

Notice that the generator of ( )Z t  is given by, 

       1 1 1

1

2
2

1 1 1 1 1

1 1 1 2

1
,

2 ( )

Ti i iT T

i
s y y e B x y

s y y

  
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  
  
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1
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i
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l
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    




     

for  
1

1,
i

s y   2 2
C  . If we try a function 

1i
  of the following form, 

    
1

1

1

1 1, exp
i

i

i
s y s y


    for some constant 1i  . 

We then get, 
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where, 

       1 1 1 1 1

1

1 1

1

1
1

2

T
i i i i iT T

ih e B x             

     
12

1

2 2 2 2 2 2
0

2

1 1 1 1

1 1

1

1 1
in

i

l l l l l l

l

z z dz


   


        
   . 

Note that, 

1

1 1(1)
iT T

i
h e B x    and  1

11

lim
i

i

i
h





  . 



 

 46

Therefore, if we assume that, 

1

1

iT T
e B x  ,                                                  (B.3) 

Then we find that there exists 1 1
i   such that, 

 1

1
0i

i
h   .                                                  (B.4) 

with this value of 1i  we put, 
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for some constant 1 0
i

C  , to be determined. We, without loss of any generality, 

guess that the value function is 1
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1
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iy y
  and this leads us to the following 

“high contact” conditions, 
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Combining the above equations shows that, 
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And this gives, 
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 

1

1 11

1

1

1

1 2

1
1

i

i

i ii

i

i

w a a
C

y




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Hence, by (B.4), (B.5) and (B.6), we can define, 
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And then we are in the position to prove that, 
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in which  
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which holds by (B.2). Secondly, to prove, 
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Then with our chosen values of 1iC  and 1i , we see that    1 1
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Case 1.2: 
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It is easy to see that the proof is quite similar to that of case 1.1, so we take it omitted. 

 

STEP 2: For strategy 2i ,  2 21,2,...,i I . Notice that, 
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Hence, 
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(B.7) 

So it is natural to guess that the continuation region 2iD  has the following form, 
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Notice that the generator of ( )Z t  is given by, 
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Noting that, 
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Consequently, if we suppose that, 
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Thus, it is easily seen that there exists 2 1i   such that, 
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with this value of 2i  we put, 
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  we get the following equation, 

     
12

2 2 2

2 2 2 2 2 1 2 1 1 1 1 1 2

1

1 1

1 2 2 2 1

3

1
i I

i i i T T

i i i i i I i i I i I i i

i

C x w w b b x b b e B


    
   



 
        

 


    ,  

(B.11) 

If we require that 
2i

  is differentiable at 
2

1 1

i
x x

  we get the additional equation, 

   
2

2 2 2

2 2 2

1
1

1 2

i

i i i

i i iC x w b b



  

   .                                  (B.12) 

So, combining equation (B.11) and equation (B.12) yields, 

 
 

   
 

2
12 22

2 2 2 2 1 2 1 1 1 1 1 22 1

2
2

2 2
2 2

2

11
1 2 2 2 13

1
1

1 2

1
i

i

Ii i T Ti
i i i i I i i I i I i ii i

i
i i

i i
i

w w b b x b b e BC x

w b bC x





   




   



        







   

 

    
  

   

12 2 2

2 1 2 1 1 1 1 1 21

2 2 2

2 2

2 2 131

1 2

1

1

Ii i i T T

i I i i I i I i ii

i i i

i i

w w b b e B
x

w b b

    



   
       

 

   

 
.   (B.13) 

And this produces, 

 
 

2

2 22

2

2

2

1 2

1
1

i

i

i ii

i

i

w b b
C

x






 




.                                           (B.14) 

Then, by applying equation (B.10), equation (B.13) and equation (B.14), we are in the 

position to prove that      
2

2 2

2

1 1, exp
i

i i

i
f s x s C x


  

    is a supermeanvalued 

majorant of  
2

1,
i

f s x . Firstly, noting that, 

   2 2

2

1, expi i

i
f s x s       
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   
1

2 2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

1
I

i i T T

i i i I i i I i I i i

i

w w b b x b b e B      


            
   

    

     2 2

2 2

1

1 1 2exp 0i iT

i i
x e Ay s w b b     , 

2

1 1

ix x
   

   2 2

2 2

1

1 1 2

i iT

i i
e Ay w b b x     

   
1

2 2 2 2

2 1 2 1 1 1 1 1 2

1

2 2 1

3

1
I

i i i i T T

i I i i I i I i i

i

w w b b e B        


 
      

 
    , 

2

1 1

ix x
   

   
   

12 2 2 2

2 1 2 1 1 1 1 1 21

2 2

2 2

2 2 131

1 1 2

1
Ii i i i T T

i I i i I i I i ii

i iT

i i

w w b b e B
x

e Ay w b b

     



   
       

 

   

 
, 

for 
2

1 1

ix x
   

   
   

12 2 2 2

2 1 2 1 1 1 1 1 21

2 2 2

2 2

2 2 131

1 1 2

1
Ii i i i T T

i I i i I i I i ii

i i iT

i i

w w b b e B
x

e Ay w b b

     



   
       

 

   

 
 

which holds by (B.8). Secondly, to show that, 

     
12

2 2 2

2 2 2 1 2 1 1 1 1 1 2

1

1 1

1 2 2 2 1

3

1
i I

i i i T T

i i i I i i I i I i i

i

C x w w b b x b b e B


      


 
        

 


    , 

                                                  for 
2

1 10 ix x
   . 

Define 

 2 1i
x   

2

2 21 1
i

i i
C x w


 

    

   
1

2

2 2 2 1 2 1 1 1 1 1 2

1

1

1 2 2 2 1

3

I
i T T

i i i I i i I i I i i

i

w b b x b b e B      


 
      

 
  . 

Then with our chosen values of 2iC  and 2i , we see that    2 2

2 2

1 1 0i i

i ix x     . 

Furthermore, noting that     
2

2 2 2 2
2

1 11
i

i i i i
x C x


  

  
    , and hence  2 1 0i

x    

holds for 
2

1 10 ix x
    given 2 1

i   in (B.10), that is,  2 1 0i
x   follows for 

2

1 10 ix x
   . And hence the desired result is established. 
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Case 2.2: 
   

   

1

2 2 2 2

2 1 2 1 1 1 1 1 2

1

2

2 2

2 2 1

3

1 1 2

1 0

sgn sgn

I
i i i i T T

i I i i I i I i i

i

iT

i i

w w b b e B

e Ay b b

     



   


  
       

 
   

   


 

Similar to case 1.2 and we take the proof of case 2.2, which is quite similar to that of 

case 2.1, omitted. 

 

STEP 3: The existence of the Pareto optimal endogenous matching. 

It follows from the requirements of Problem 1 that 1 1

1 2 ...y y
   

1

1 ...iy
 

1

1

Iy
  

with 
1

1

iy
  defined in (B.5). Let 

1 1

1 1

i ky y
   ( 1 1i k  , 1 1 1, 1, 2,...,i k I ), then one can 

easily see that, 

1 1 2 1 1 2 1 1 2 2 1 1,23 2 ,34 3 , 1, 1...
i k I i k I i k I I i k

            . 

where, 

 
  

 
  
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 

            
   

 
 . 

1 1i k  , 1 1 1, 1, 2,...,i k I ; 2 22,3,..., 1j I  . 

Accordingly, we have, 

2 2

2 2

1 1 1 1 1 1 2 2
1 2

12,23 12,34 12, 1,

23,23 23,34 23, 1,

1, ,23 1, ,34 1, , 1,
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I I I I I I I I
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 
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


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 

1 1
1

12

23

1,
( 1) 1

I I
I

  

 
  
 
 
  


. 

which implies that, 

    .                                                    (B.15) 

where “ ” denotes Moore-Penrose generalized inverse. 

Similarly, we obtain 1 1

1 2 ...x x
   

2

1 ...ix
 

2

1

Ix
  with 

2

1

ix
  defined in (B.13) 

according to Problem 1. Now, let 
2 2

1 1

i kx x
   ( 2 2i k  , 2 2 2, 1, 2,...,i k I ), then we get, 
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2 2 1 2 2 1 2 2 1 1 2 2,23 2 ,34 3 , 1, 1...i k I i k I i k I I i k             . 

where, 
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. 

2 2i k  , 2 2 2, 1, 2,...,i k I ; 1 12,3,..., 1j I  . 

Consequently, we obtain, 

1 1

1 1

2 2 2 2 2 2 1 1
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12,23 12,34 12, 1,

23,23 23,34 23, 1,
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. 

which leads us to the following equation, 

     .                                                    (B.16) 

where “ ” stands for the Moore-Penrose generalized inverse. 

Consequently, by (B.16) and (B.15) we get 
2

2 1

2I
y y 

  , 
2

3

3Iy 
    

2 2I
 
  , … , 2I

y
  1 1   and 

1

2 1

2I
x x 

  , 
1 1

3

3 2I I
x  

   , … , 1Ix
  1 1  with 

1 1 1

1 2y y y
    

1 1

1 1... ...i Iy y
     and 1 1 1

1 2x x x
   

2 2

1 1... ...i Ix x
     . So, we 

obtain the corresponding game equilibrium, denoted by 

  1 11( , ) ( , ),..., ( , ),..., ( , ) ,
T

i I
x y x y x y x y           

  2 21( , ) ( , ),..., ( , ),..., ( , )
T

i I
y x y x y x y x              

with 
1 1

1

( , ) 1
I i

i
x y     and 

2 2

2

( , ) 1
I i

i
y x     , but noting that this game 

equilibrium may be not the Pareto optimal equilibrium of the original normal form 

games thanks to the stochastic factors, and this is why we need to choose appropriate 

values of   and   such that the original Pareto optimal Nash equilibrium  ˆ ˆ,x y  

will be absolutely chosen by the players. 
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To summarize, we get the following theorem, 

THEOREM 1’: If we are provided that the following inequalities hold, that is, 

1

1

iT Te B x   in (B.3) and 2

1

iTe Ay    in (B.9), then Problem 1 is solved as long as 

we have      in (B.15) and       in (B.16). That is, the existence of the 

Pareto optimal endogenous matching is confirmed just via putting ˆ( , )x y x    and 

ˆ( , )y x y   , in which  ˆ ˆ,x y  is the given Pareto optimal Nash equilibrium in the 

corresponding normal form games. 

Therefore, Theorem 1 is established thanks to Theorem 1’. ▌ 

 

C. Proof of Theorem 2 

The technique used here is developed by Dai (2012). 

By the Doob’s Martingale Inequality, 

1 1

1 1 1

1 1 1
0

1 (0)
sup ( ) ( )

i i
i i i

i i i
t T

X x
X t X T

 

               , 1 0i  , 0T  .  (C.1) 

Without loss of any generality, we put 1 12i k   for 1k  , then we get, 

1 1 1

1
0

1
sup ( ) 2

2

i k i

k
t T

X t x
 

   
 

 , 1k  , 0T  . 

By using the well-known Borel-Cantelli Lemma, we arrive at, 

1 1

1
0

sup ( ) 2 . . 0
i k

t T

X t i m k
 

   
 

 . 

where 1. .i m k  stands for “infinitely many 1k ”. So for a.a.  , there exists 1
ˆ ( )k   

such that, 

1 1

0

sup ( ) 2
i k

t T

X t
 

 , a.s. for 1 1
ˆ ( )k k  , 0T  . 

i.e., 

1 1

0

lim sup ( ) 2
i k

T t T

X t
  

 , a.s. for 1 1
ˆ ( )k k  .                             

Consequently, 1 1( ) ( , )i i
X t X t   is uniformly bounded for  0,t T , 0T   and 
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for a.a.  . Hence, it is ensured that 1 1( ) ( , )i i
X t X t   converges a.s. and the 

corresponding limit belongs to 1( )L   thanks to the Doob’s Martingale Convergence 

Theorem. Moreover, by applying the Kolmogorov’s Inequality, we arrive at, 

1 1 1

1 2
0

1
sup ( ) var ( )

( )

i i i

i
t T

X t X T
 

           , 10 i     , 0T  . 

It follows from (C.1) that, 

1

1

1 12

1
var ( )

( )

i
i

i i

x
X T        1 1 1var ( )i i i

X T x     , 0T  .       (C.2) 

Noting that, 

1 1 1
2

2var ( ) ( ) ( )i i i
X T X T x          , 0T  . 

We get by (C.2), 

 1 1 1 1
2

( )i i i i
X T x x         , 10 i     , 0T  . 

which yields, 

 1 1 1 1
2

0

sup ( )
i i i i

T

X T x x


         . 

Accordingly, 1 1( ) ( , )i i
X t X t   converges in 1( )L   by using the Doob’s Martingale 

Convergence Theorem again. 

Furthermore, it is easily seen that 1 1( ) ( , )i i
X t x y   , in which 1 ( , )i

x y    is 

given by Corollary 1, is also an 
t
 martingale w. r. t.  . Thus, applying the 

Doob’s Martingale Inequality again implies that, 

1

1 1 1 1

1

1

0 1

sup ( ) ( , ) ( ) ( , )
i

i i i i

i
t T

I
X t x y X T x y

I

 


  

 

          
  , 1i   , 0T   

(C.3) 

Provided  2 1 1( ) inf 0; ( ) ( , )i i i
t X t x y        (  1 11,2,...,i I  and  2 1, 2,i   

2..., I ) determined by Corollary 1, we see that there exists 1 0
i   such that the 

martingale inequality in (C.3) holds for    1 2 2 1

1
( ) 0; ( )i

i i i i
B


               

for 1 11,2,...,i I  and  2 1, 2,i  2..., I  by using Doob’s Optional Sampling Theorem. 
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Thus, 1 1( ) ( , )i i
X x y    is uniformly bounded on the compact set  1 2

1
( )i

i i
B


   

by applying the Heine-Borel Theorem, Weierstrass Theorem and Triangle Inequality. 

Therefore, we, without loss of generality, set up 01 2
ki   for 0k   and employ 

the continuity of martingale w. r. t. time t  for any given   so that for 

 1 1 2
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( )i

i i i

k
T B


    , based upon the well-known Lebesgue Dominated Convergence 

Theorem, we are led to, 
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
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  

 
         

 
   

almost surely. And this implies that, 

1

1 1

1
0

0
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i
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i
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k t T

X t x y
I

 

  

 
    

 
 , a.s. 

Letting 1

12
i k

I  , k  , we get, 

1 1

1
0

0
0

limsup sup ( ) ( , ) 2 1
i

k

i i k

k t T

X t x y   

  

 
    

 
 , a.s., k   

It follows from the well-known Fatou’s Lemma that, 

1 1

20 ( )

sup ( ) ( , ) 2 1
i

i i k

t

X t x y
 




  

 

 
   

 
 , a.s.,  k   

Then, applying the Borel-Cantelli Lemma again implies that, 

1 1

20 ( )

sup ( ) ( , ) 2 . . 1
i

i i k

t

X t x y i m k
 




  

 

 
   

 
  

in which . .i m k  stands for “infinitely many k ”. So for a.a.  , there exists 

( )k    such that, 

1 1

20 ( )

sup ( ) ( , ) 2
i

i i k

t

X t x y
 




  

 
 


 for ( )k k    

That is, 

1

1 1

20 ( ) 1

sup ( ) ( , )
i

i
i i

t

X t x y
I 




 

 
 


,  a.s. 

for 1 11,2,...,i I  and  2 1, 2,i  2..., I . Now, we define the supremum norm x

  
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1

1

max
i

i
x  equipped with uniform topology. Thus, one may easily obtain, 

2
2

0 ( )

sup ( ) ( , )
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t

X t x y
 




 
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
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t

I X t x y
 




 


 

 
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 


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ˆ ˆ

1
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i i

t

I X t x y
 




 

 
 


 

1

1

ˆ
ˆ

1

1

i
i

I
I

   ,  a.s. 

Notice the arbitrariness of 1î , we get,  

2
2

2( ) 0 ( )

lim sup ( ) ( , ) 0
i

i
t

X t x y
   


 

 

  
 

 
,  a.s. 

That is to say, 

2
1 0

1
( ) ( , ) 0

k t t t

X t x y
k


  

 

   

        
  . 

Equivalently, for k  , we arrive at, 

2
0

1
( ) ( , ) 0

t t t

X t x y
k


 

 

  

        
  . 

i.e., for 0  , 

2
lim ( ) ( , ) 0
t

t t

X t x y  


 




       
  . 

which gives the desired assertion in (i). Notice that the proof of (ii) will be quite 

similar to that of (i), we will take it omitted. And hence we have completed the whole 

proof. ▌ 

 

D. Proof of Proposition 2 

Provided the SDEs defined in (4) and (6), and it follows from Assumption 9 that for 

 2 p   , 0T  , we have, 

1 1

2 20 0

ˆsup ( ) sup ( ) 1
pp

t T t T

X t X t
   

          
  ,                            (D.1) 
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where, 

     
1 1

0

1 1 1 1 1 1 1

0 0 0
( ) (0) ( ) ( ) ( ) ( ) ( ) ( ) , ,

I n

t t t

X t X X s F Y s ds X s G s dW s X s H s z N ds dz           

     
1 1

0

1 1 1 1 1 1 1

0 0 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (0) ( ) ( ) ( ) ( ) ( ) ( ) , ,
I n

t t t

X t X X s F Y s ds X s G s dW s X s H s z N ds dz           

Here, and throughout the current proof, we suppose that ˆ(0) (0)X X . Moreover, 

suppose that 
2 2

ˆ( ) ( )X t X t E   for t    and E   . Indeed, one just need 

to let E 1 . In what follows, we first define the following stopping times, 

 
2

inf 0; ( )
E

t X t E   ,  
2

ˆˆ inf 0; ( )
E

t X t E   , 0 ˆ
E E E

    

By the Young Inequality (see, Higham et al., 2003) and for any 0S  , 

2
1

20

ˆsup ( ) ( )
t T

X t X t
 

   
  

   
2 2

1 1

ˆ ˆ, ,
2 20 0

ˆ ˆsup ( ) ( ) sup ( ) ( )
E E E ET T T or T

t T t T

X t X t X t X t       
   

            
   

     0

2
1 0 0 1

2 20 0

2ˆ ˆsup sup ( ) ( )
E

p

E E T
t T t T

S
X t X t X t X t

p
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   

              
   

 2
2

2
1

1
ˆ,

p

p

E E
T or T

S
 




   ,                                       (D.2) 

It follows from (D.1) that, 

   
 

1 1 12

2
0

1 1
sup ( )

E

p

pE

E T p p p
t T

X
T X t

E E E



  

 

 
         

 
    

Similarly,  1 ˆ 1 p

E T E   . So, 

     1 1 1 2
ˆ ˆ,E E E E p

T or T T T
E

            . 

Moreover, we obtain by (D.1), 

 1 1 1

22 20 0

ˆ ˆsup ( ) ( ) 2 sup ( ) ( ) 2
p ppp p

t T t T

X t X t X t X t

   

            
  . 

Hence, (D.2) becomes, 

2
1
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X t X t
 

   
     2

2

1
2

1 0 0

20

2 2( 2)ˆsup
p

p

E E
pt T

S p
X t X t

p pS E
 





 

        
  (D.3) 
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By the Cauchy-Bunyakovsky-Schwarz Inequality, we get, 

    2
0 0

2

ˆ
E E

X t X t     

   
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     

Taking expectations on both sides, and using Itô’s Isometry and the stochastic Fubini 

Theorem, we have for any T  , 
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where we have used Assumption 7 and 8. Hence, applying Gronwall’s Inequality (see, 

Higham et al., 2003) implies that, 

      2 2
1 0 0 1 1 1 1

20

ˆ ˆ ˆsup 4 ( 1) exp 4 ( 1)E E
t

X t X t T T K T K K


  
 

                 
  

Inserting this into (D.3) leads us to, 

2
1

20

ˆsup ( ) ( )
t T

X t X t
 

   
  

   2
2

1
2

1 1 1 1 2 2( 2)ˆ ˆ4 ( 1) exp 4 ( 1)
p

p

p

S p
T T K T K K

p pS E




               

Hence, for 0  , we can shoose S  and E  such that, 

12

3

p
S

p



  and 
2

2

2( 2)

3p p

p

pS E





  

And for any given 0T  , we put 1  such that, 

  2
1 1 1 1ˆ ˆ4 ( 1) exp 4 ( 1)

3
T T K T K K

            

Thus, for 0  , we obtain, 

2
1

20

ˆsup ( ) ( )
3 3 3t T

X t X t
   

 

       
 . 

Notice the arbitrariness of  , and employ the well-known Levi Lemma gives the 

desired result in (i). One can easily check that the proof of (ii) is quite similar to that 
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of (i), so we omit it. And this completes the whole proof. ▌ 
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