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Abstract

We present and analyze a local interaction model where agents play
a bilateral prisoner’s dilemma game with their neighbors. Agents learn
about behavior through payoff-biased imitation of their interaction neigh-
bors (and possibly some agents beyond this set). We find that the [Eshel,
I., L. Samuelson and A. Shaked, 1998, Altruists, Egoists and Hooligans in
a Local Interaction Model, Am. Econ. Rev 88] result that polymorphic
states are stochastically stable in such a setting is not robust. In particular
whenever agents use information also of some agents beyond their inter-
action neighbors the unique stable outcome is one where everyone chooses
defection. Introducing a sufficiently strong conformist bias into the imi-
tation process we find that full cooperation always emerges. Conformism
is thus identified as a new mechanism that can stabilize cooperation.
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1 Introduction

Humans acquire much of their behavior through imitation, i.e. through copying
or mimicking the action of others. Imitation can be payoff-biased, meaning
that agents are more inclined to copy materially successful agents. This is the
case most frequently studied in the Economics literature.! But it can also be
conformist-biased, meaning that agents are more inclined to copy behavior that
is frequent (or "popular”) among the agents they observe.? Empirical evidence
in anthropology or biology shows that humans imitate displaying both a payoff-
bias and a conformist-bias.3

In this paper we study imitation learning in a local interaction environ-
ment where agents play a bilateral prisoner’s dilemma with their interaction
neighbors. We explicitly distinguish between the set of agents one interacts
with (interaction neighborhood) and the set of agents one possibly imitates (in-
formation neighborhood). We do this because we want to allow for the fact
that agents can be informed also about some agents beyond their interaction
neighborhood (e.g. their friend’s friends) and will use this information when
imitating an action. We first analyze the more standard case of payoff-biased
imitation in a circle network and find that whenever agents are allowed to hold
such information the unique stochastically stable state is one where everyone
chooses defection. The result from Eshel, Samuelson and Shaked (1998) that
some cooperation survives in a stochastically stable state thus breaks down as
soon as agents are allowed to use information about some agents beyond their
interaction neighbors. Introducing a sufficiently strong conformist bias into the
imitation process we find on the other hand that full cooperation always emerges
irrespective of whether agents hold information beyond their interaction neigh-
bors or not. Conformism is thus identified as an important and new mechanism
that can stabilize cooperation in a local interaction environment.

We also show that the result from Eshel, Samuelson and Shaked (1998) does
not extend to general networks irrespective of whether agents hold information
about others beyond their interaction neighbors or not. In particular we give
examples of asymmetric networks (where not all agents have the same number of
neighbors) for which the unique stochastically stable state under payoff-biased
imitation involves full defection. Conformism - on the other hand - stabilizes
cooperation also in these networks.

The paper that is most closely related to ours is the already mentioned
work by Eshel, Samuelson and Shaked (1998) who have analyzed cooperation
in a circle network where agents rely on payoff-biased imitation and use only
information about their interaction partners.? Previous literature has also ex-

1See Eshel, Samuelson and Shaked (1998), Basci (1999), Schlag (1998) or the textbooks
by Vega-Redondo (2000) or Fudenberg and Levine (1999).

2Ellison and Fudenberg (1993) or Cartwright (2007) study such processes.

3See Boyd and Richerson (2005), Henrich and Boyd (1998) or Cavalli-Sforza and Feldmann
(1981) among others.

4 Alos-Ferrer and Weidenholzer (2006) use differing interaction and information neighbor-
hoods to explain the emergence of the efficient convention in coordination games. See also
Galeotti et al. (2006).



plained cooperation in networks through other mechanisms. Marsili, Slana and
Vega-Redondo (2005) highlight the importance of the clustering degree for sus-
taining cooperation. Zimmermann, Eguiluz and San Miguel (2004) or Hanaki
et al. (2007) explain cooperation through exclusion of non-cooperators in a
dynamic network setting. The role of a conformist bias in imitation has been
examined by Ellison and Fudenberg (1993) to study the spread of an efficient
technology in a one person decision problem. Levine and Pesendorfer (2007)
explain cooperation through an imitation process in a set up where agents get
some information about the opponent’s strategy prior to interaction. Imitation
learning has been experimentally investigated by Apesteguia, Huck and Ochssler
(2007). Kirchkamp and Nagel (2007) study imitation learning in networks in an
experiment.

The paper is organized as follows. In section 2 the model is presented and
in section 3 it is analyzed. Section 4 shows that our results are robust. Section
5 concludes. The proofs are relegated to an appendix.

2 The Model

2.1 The Local Interaction Game

There are ¢ = 1,...n agents interacting in a 2 x 2 prisoner’s dilemma game
through a circle network. Interactions are not necessarily restricted to an agents
first order neighbors. Denote NZ-Z the set of agents agent ¢ interacts with or
the ”interaction neighborhood” of player i. Furthermore the set of agents i
interacts with (V) will in general not equal the set of agents i has information
about. Denote the latter set - the information neighborhood of agent i - by N} .5
Assume I > Z. Let it be a convention that NiZ does not contain the player ¢
herself while N/ does - i.e. while players do not interact with themselves they
have information about themselves. As an illustration consider the circle with
interaction radius Z = 1 and information radius I = 2 depicted below.

N
=2 —(i—1) —i—(i+1)—(i+2) — (i +3)..
SN—— SN——
NZ NZ

Note that the relation ”j is an element of N} (N7)” is symmetric, i.e. j € N/
(N7) & ie N/ (N7).

Individuals play a 2 x 2 prisoner’s dilemma with their interaction neighbors
NZ. The set of actions is given by A = {C, D} for all players. For each pair of
actions a;,a; € A the payoff m;(a;, a;) that player i earns when playing action

5When we say that i has information about j we mean that i is informed about j’s action
choice and payoff.



a; against an opponent who plays a; is given by the following matrix,

ai\aj C D
C a |b (1)
D c |d

We are interested in the case ¢ > a > d > b > 0 i.e. the case where matrix
(1) represents a Prisoner’s dilemma. Assume also that a > %’—C, i.e. that
cooperation (C) is efficient. The payoffs at time ¢ for player ¢ from playing
action a; are given by®

Hﬁ(af,aé) = Z ﬂ—i(a‘gaa;)' (2)
JENE
L kend ot —a ()
t(NI _ Zken]|
Denote IT*(N; (a)) = cardkENT el =a]
that choose action a and let it be a convention that IT*(N/(a)) = 0 if card{k €
Nllat =a} =0.

the average payoff of all agents in N/

2.2 Learning

At each point in time ¢ = 1,2,3.... the state of the system is given by the
action choices of all agents s(t) = (a!);_, . Denote S the state space. Agents
learn about optimal behavior through imitation. More precisely we assume
that at each point in time a (small) number r of agents is randomly selected
to revise their action choices. We consider two possible decision rules. First we
consider the rule typically used in the literature where agents rely on payoff-
biased imitation. Then we add a conformist-bias into the imitation process.

2.2.1 Payoff- biased Imitation

Under the basic process an agent (who is selected to revise her action choice)
compares the average payoff in her information neighborhood of the action she
is currently not choosing —a; and the action a; she is currently choosing. If and
only if

-1 (N/ (-a;)) = 17 (N (@) > 0 (3)

she changes her action. With small probability ¢ she reverses her choice. This
is the rule used for example by Eshel, Samuelson and Shaked (1998).7

6In equation (2) agents get the same payoff from all their interaction partners. One could
easily generalize to a situation where - as in the connections model from Jackson and Wolin-
sky (1996) - payoffs are discounted in proportion to the geodesic distance between the two
interaction partners.

7See also Schlag (1998). As the circle network is symmetric (i.e. all agents have the same
number of links) it is immaterial whether one uses per-link payoffs or total payoffs of each
agent to calculate the sum in the numerator of II*(N/ (a)).



2.2.2 Payoff- and Conformist- biased Imitation

The process with conformism takes into account the possibility that agents
might be more inclined to make more ”popular” choices. Decision rule (3) is
substituted by the following rule,

YN (2aq)) = 7NN (ai) > m(1 = 22,). (4)

m € RT is a finite conformity parameter and x_,, the share of all agents
that ¢ knows about that use a different action then herself, i.e. z_,, = (2I +
1)~tcard{j € N/|a; # a;}. Obviously m = 0 corresponds to the basic process.
If both actions are equally popular, i.e. if z_,, = 1/2 the agent is not biased
towards using either of them. If one of the actions is more popular on the other
hand the agent will be ceteris paribus more inclined to use that action.®

2.3 Techniques used in the Analysis

The learning process described in subsections 2.2 (under either decision rule)
gives rise to a finite Markov chain, for which the standard techniques apply.
Denote P°(s,s’) the transition probability for a transition from state s to s’
whenever ¢ = 0 and P¢(s, ') the transition probability of the perturbed Markov
process with strictly positive trembles. The evolutionary model is fully described
by the triple (S, P°(-), €). An absorbing set under P° is a minimal subset of states
which, once entered is never left. An absorbing state is a singleton absorbing
set, or in other words,

Definition 1 State s is absorbing < P%(s, s) = 1.

As trembles make transitions between any two states possible the perturbed
Markov process is irreducible and hence ergodic, i.e. it has a unique stationary
distribution denoted p. This distribution summarizes both the long-run behav-
ior of the process and the time-average of the sample path independently of the
initial conditions.® The limit invariant distribution p* = lim,_,q p€ exists and
its support {s € S| lim., o pu°*(s) > 0} is a union of some absorbing sets of
the unperturbed process. The limit invariant distribution singles out a stable
prediction of the unperturbed dynamics (¢ = 0) in the sense that for any & > 0
small enough the play approximates that described by p* in the long run. The
states in the support of pu* are called stochastically stable states.

Definition 2 State s is stochastically stable < p*(s) > 0.

Denote w the union of one or more absorbing sets and ) the set of all
absorbing sets. Define X (w,w’) the minimal number of mutations (simultaneous
trembles) necessary to reach w’ from w.'® The stochastic potential 1(s) of a

8See Ellison and Fudenberg (1993) or Cartwright (2007).

9See Karlin and Taylor (1975) or Tijms (2003) for textbooks on stochastic processes or
Young (1993,1998) and Ellison (2000) for applications of these techniques to economics.

107t is important to note that these transitions need not be direct (i.e. they can pass through
another absorbing set).



state s € Q is defined as the sum of minimal mutations necessary to induce a
(possibly indirect) transition to s from any alternative state s’ € Q, i.e. 9(s) =

Yoo X(ss).

Result (Young 1993) State s* is stochastically stable if it has minimal stochas-
tic potential, i.e. if s* € argmingeq ¥(s).

The intuition behind Young’s result is simple. In the long run the process will
spend most of the time in one of its absorbing states. The stochastic potential
of any state s is a measure of how easy it is to jump from the basin of attraction
of other absorbing states to the basin of attraction of state s by perturbing the
process a little.

3 Analysis

Throughout the analysis we assume that I is small relative to the number of
players n. In particular we will assume that I < "T_2 ensuring that for any
agent at least one other agent can be found such that their information neigh-
borhoods are disjoint.!! Let us first take a brief look at the absorbing states.
It should be clear that monomorphic states where all agents choose the same
action are always absorbing. But also polymorphic states where some agents
cooperate and some defect can be absorbing under certain conditions. The

following proposition can be stated.

Proposition 1 The monomorphic states where a; = a,Vi € G are always ab-
sorbing. Furthermore there exists a(m, Z,I) > 0 such that a set of poly-
morphic states containing strings of cooperators separated by strings of
defectors is absorbing whenever a > a(-).

Proof. Appendix. m

The exact composition of the set of polymorphic absorbing states depends
on the coefficient for conformism m as well as the information radius I and
the interaction radius Z. In the following we will denote s* the state where all
agents play action a and w®P the set of polymorphic absorbing states.

3.1 Payoff- biased Imitation
3.1.1 Casel>Z

We start with a situation where I > Z, i.e. with a situation where agents hold
some information about other agents beyond their interaction neighborhood.
Agents can have this information for example because their friends tell them
about their friends or because in a physical neighborhood they observe the
actions and payoff of all the neighbors on their street while they only interact

11'We want to focus on both local interaction and local information. Without local interac-
tion of course network analysis is pointless.



with some. One can think of many more examples. We will show that if agents
rely on payoff-biased imitation only the unique outcome in these situations is
full defection. As an illustration consider the network depicted in Figure 1
where I = 2 and Z = 1. Then from the absorbing state s¢ where everyone
cooperates one tremble by any player can induce a transition to the state s”
with full defection. To see this assume that starting from the fully cooperative
state (s¢) player 2 trembles and switches to action D. Consider the decision
of player 4. This player will imitate player 2 as the average defector payoff in
his information neighborhood IT*(N{ (D)) = 2¢ exceeds the average cooperator
payoff IT'(N}(C)) among his information neighbors (Figure 1).

Information
Neighborhood

Player 4

Information
Neighborhood
Player 6

Figure 1. Figure 2.

What happens if next player 6 is drawn to revise his action choice ? Note that
N = {4,5,6,7,8}. Consequently IT*(N{ (D)) = 2¢ > II*(N{(C)) and player 6
will switch to defection. Assume that next player 8 then player 10,12 etc... are
drawn to revise their action choices. All of these will switch to defection and
finally the remaining cooperating players will be surrounded by defectors that
interact only with cooperators (Figure 2). Consequently II*(N/(D)) > 2b =
IT*(NF(C)),Vi € G and the remaining cooperators will also want to switch to
defection. We end up in a state of full defection. Such a transition after one
tremble is always possible because of the fact that players have information
about others beyond their interaction neighbors. This allows the deficient ac-
tion to spread ”across long distances”, ensuring that cooperators always interact
with more defectors than the defectors themselves during the transition. On the
other hand it is clear that for a transition from s to a state characterized by
some or full cooperation more than one tremble is needed as a single cooperator
surrounded by defectors will have the minimum possible payoff and the cooper-
ative action will never be imitated in this case. This sort of reasoning underlies
the fact that the unique stochastically stable state is s, as is shown in the next
proposition.

Proposition 2 If I > Z the unique stochastically stable state is s”.

Proof. Appendix. ®
The fact that agents are informed also about the actions and payoffs of rel-

atively distant agents allows the deficient action to spread across long distances
thereby destroying any possible clique of cooperators. Holding even slightly



more information than just one’s interaction neighbors is detrimental to coop-
eration. The reason is that this allows defection to spread across long distances
thereby concealing the fact that joint defection is worse for a group of agents
than joint cooperation. Next we will consider the case previously examined by
Eshel, Samuelson and Shaked (1998) where there is less information, as now we
will assume that agents are only informed about the agents they interact with.

3.1.2 Casel=7

The case I = Z reflects situations where agents’ information is restricted to their
interaction partners. Examples for these situations will be found in anonymous
interactions, like for example the interaction between buyers and sellers in a
supply chain. In these cases a transition from s to s” is not always possible
after one action tremble. As an illustration consider the network depicted in
Figure 3 and assume that I = Z = 1. Let player 2 tremble and switch to action
D. Her action will be imitated by one of her interaction partners, i.e. either
player 1 or 3, as NJ = {1,2,3}.12 N{ is depicted in Figure 3.

2
1 Information

Neighborhood
Player 2

~,  Information
“. Neighborhoof
“Player 3

Infgrmation ¥;
Nelghborhood
Playger n F

9,
Figure 3. Figure 4.

Say for example that player 1 imitates the deficient action. Now both players 1
and 2 will interact with one defector and one cooperator each. As Nf U NJ =
{n, 1,2, 3}, the only players that might adopt the deficient action now are players
n and 3. But their information neighborhoods also contain a cooperator who
interacts only with other cooperators. The average payoff of cooperating agents
in these information neighborhoods is given by II*(N!(C)) = TI}(Ni(C)) =
3atb The average payoff of defectors is given by II*(N(D)) = II*(N4 (D)) =
¢ + d. Defection will spread if and only if a < w. If this is the case a
transition to s” can be induced via one tremble. If not no more actions will be
imitated at this point and defection cannot spread through the whole graph.
What happens with the reverse transition from s” to s¢ ? Of course one
action tremble will not suffice to induce such a transition as a single cooperator
will never be imitated. Assume thus that players 2 and 3 simultaneously make
a mistake and switch to action C. Player 4 will imitate whenever II*(Nf(C)) >
II*(NF(D)). If this is the case the cooperative action can spread through the
graph until two defectors are left. These defectors will never want to imitate
the cooperative action. Cooperation can survive in a polymorphic stochastically

12Remember that the relation j € NiI is symmetric.



stable state whenever the payoff to joint cooperation is "high enough”. We can
state the following proposition.

Proposition 3 If I = Z, there exists @ > 0 such that if the game payoffs
satisfy a > @ state s is stochastically stable = s € w°P. If a < a the
unique stochastically stable state is sP.

Proof. Appendix. m

Less information does actually help cooperation. The reason is that defec-
tion now can only spread locally, forcing defectors to interact with each other.

This reduces the average payoff of defectors revealing the social benefit of coop-

eration. Proposition 3 essentially generalizes the result from Eshel, Samuelson

and Shaked (1998).13

3.2 Payoff- biased and Conformist- biased Imitation
3.2.1 Casel>Z

In this section we assume that agents display a conformist bias, i.e. that they
are more inclined to imitate more popular actions. We show that if imitation is
payoff-biased and (sufficiently) conformist-biased the unique stochastically sta-
ble state involves full cooperation. To illustrate the logic of our result consider
the example from Figure 5 where I = 2 and Z = 1. Again consider first tran-
sitions from s to s” and assume that only player 3 trembles and switches to
action D. Player 1 will now imitate player 3 if and only if the payoff advantage
of defection is high enough to make up for the "unpopularity” of this action.

n

Information neighberhood '
Player 1 (I=2) o

Figure 5.

It is shown in the appendix that a necessary condition for action D to spread
through the whole graph after just one tremble is m < (QIH)[QIégc_]‘;}JFZ(a*b)].
What happens if agents display a larger degree of conformism ? Then one needs
(at least) a second tremble in agent 1’s information neighborhood for him to
imitate. Assume player 1 is willing to imitate action D after both players 3 and

n — 1 have trembled to action D. Can the deficient action leave N{ ? Consider

13They consider the cases where [ = Z = 1 and I = Z = 2. Another difference is that in
their model all agents revise their strategy each period (i.e. » = n). They claim though that
their results are robust to a situation in which » < n and indeed we show that this is the case.



the decision of player 4. His information neighborhood is given by N! , =
{2,3,4,5,6}. Players 4,5 and 6 are cooperators. As one defector is not enough
to induce imitation, both 2 and 3 have to play defect for defection to spread
through the operation of the unperturbed dynamics alone. But then we have a
string of interacting defectors ...1 —2 — 3 —4.... A small amount of conformism
can thus be enough to force transitions to be in which defectors interact mainly
among each other. This reduces the payoff advantage of defectors compared to
cooperators, revealing the social benefit of cooperation.

Let us consider now the reverse transition from s” to s. As always tran-
sitions after one tremble are not possible as single cooperators will never be
imitated. Depending on the degree of conformism more or less simultaneous
trembles are needed in a given information neighborhood to induce a transi-
tion. Note though that there is a feedback effect, as more trembles of connected
cooperators increase the payoff advantage of cooperation over defection. This
in turn reduces the need for cooperation to be ”popular” in order to spread.
Higher degrees of conformism thus favor cooperative outcomes. We can state
the following proposition.

Proposition 4 Assume I > Z and that agents display a conformist bias. There
exist m(Z,I) > 0 and m(Z,I) > 0 s.th. if m >mm(-) the unique stochas-
tically stable state is s©. If m < m(-) Proposition 2 applies. Furthermore
m(-) and m(-) are strictly decreasing in I and increasing in Z.

Proof. Appendix. m

Conformism can stabilize cooperation as we have seen in Proposition 4. Fur-
thermore if imitation is conformist-biased more information (larger I) actually
helps cooperation. The intuition is as follows. Conformism is helpful to sustain
cooperation because it requires the formation of strings of cooperators or de-
fectors during any transition between absorbing states. But then - given that
these strings exist - more information is helpful to achieve cooperation because
it enables agents to "look deeper” into the strings. This increases the number
of cooperators interacting with cooperators and of defectors interacting with
defectors in any particular agents sample and makes more evident the higher
payoff that cooperation yields to a community.

3.2.2 Casel =7

The case I = Z confirms the results from the case where I > Z. Again con-
formism is helpful to sustain cooperation as the following proposition shows.

Proposition 5 Assume I = Z and that agents display a conformist bias. There
exist m(Z) >0 and m(Z) > 0 s.th. if m > mm(-) the unique stochastically
stable state is sC.If m < m(-) Proposition 3 applies.

Proof. Appendix. =
The intuition is similar to before. Conformism forces cooperators and de-
fectors to interact with others that choose the same action during any given

10



transition. This reveals the benefit of cooperation and stabilizes cooperative
outcomes.

4 Robustness

In this section we would like to point out another dimension in which the Eshel,
Samuelson and Shaked (1998) result is not robust, but where imitation with
a conformist bias yields cooperative outcomes in the long run. In particular
we want to discuss some asymmetric networks (where not all players have the
same number of nodes) and show that while with decision rule (3) stochastically
stable outcomes yield defection, cooperation is obtained with decision rule (4).
Consider first the interconnected star network depicted in Figure 6.

Figure 6. Figure 7.

In this network there are two types of agents - some ”centers” with a very high
degree (like agent 1 and 2) and some in the periphery with only one first-order
neighbor. Assume I = Z = 1 as in the original model from Eshel, Samuelson
and Shaked (1998). A transition from s¢ to s” can occur via one tremble by one
of the centers, infecting first all the centers and then the agents in the periph-
ery. Also a transition from a polymorphic state where in one star cooperation
prevails and in others defection to the state s” can occur after one such tremble
irrespective of the payoff parameters. (Of course such a polymorphic state will
only be absorbing under some parameter constellations.) On the other hand
the reverse transitions need more than one tremble. Consequently with decision
rule (3) the unique stochastically stable state will be one of full defection. What
happens under decision rule (4) ? If the conformist bias is strong enough agents
in the periphery will always conform to what the center does (their unique
neighbor). A single action tremble by the center can infect any star. As soon
as enough stars are infected the cooperative action will - starting from s” - be
able to spread to the whole network because the centers of other stars will want
to switch to cooperation. On the other hand to induce a transition from s to
sP whenever the conformist bias is high all centers have to simultaneously make
a mistake. That is why also in this network a high degree of conformism favors
cooperative outcomes.

Of course the interconnected star is a network with extreme asymmetries in
degree and maybe cooperation obtains even under (3) as long as the asymmetry

11



is not too extreme. Consider thus the crystal network depicted in Figure 7. In
this network there is an agent ¢ with degree d (in Figure 7 d = 6) whose first-
order neighbors have degree d — 1, whose second-order neighbors have degree
d — 2 and so on until some minimal degree. Again for this network the unique
stochastically stable state (with I = Z = 1) is one where everyone chooses de-
fection. Defection can spread after a tremble by player ¢, infecting one player
j € N}, then one player k € le N\N} and so on.'* Again decision rule (4)
in this example leads to cooperation (whenever m is "large enough”), because
conformism forces actions to spread locally thereby revealing the benefit of co-
operation.

5 Conclusions

We have presented a model where agents interact in a prisoner’s dilemma

through a local interaction structure. Agents learn about optimal actions through
imitation. The set of agents they possibly imitate (their information neighbor-

hood) can differ from the set of agents they interact with (their interaction

neighborhood). If agents rely on payoff biased imitation alone, choosing the ac-

tion (cooperation or defection) that has yielded the higher payoff in the previous

period we find the following results.

e If the information radius of agents exceeds their interaction radius the
unique stochastically stable outcome is full defection. Only if informa-
tion radius and interaction radius are the same some cooperation can be
obtained in a stochastically stable state. In this sense more information
hurts cooperation.

We then introduce a conformist bias into imitation, assuming that agents
are more likely to adopt more ”popular” actions and find the following.

e If the conformist bias is large enough all stochastically stable outcomes
involve cooperation.

e If there is a conformist bias more information helps cooperation.

The intuition is as follows. Because joint cooperation is beneficial for a
community but not individually optimal, strings of cooperators are better off
than strings of defectors whereas single defectors are always better off than
single cooperators. But then a larger information radius hurts in the standard
case because it allows imitation across ”long distances”. This works against
the formation of strings. Intuitively what conformism does is that it forces
actions to spread "locally” thereby revealing the benefit of cooperation. A
larger information radius helps in this case because it allows agents to ”look
deeper” into strings of cooperators and defectors.

14Note that this continues to be true if one uses per-link payoffs instead of total payoffs of
each agent to calculate II*(N/ (a)).
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Note that conformism alone cannot stabilize cooperation. It is the interac-
tion of both conformist-biased and payoff-biased imitation that leads to cooper-
ative outcomes. The model can thus provide a rationale for why humans seem
to engage in both conformist-biased and payoff-biased imitation.'® If one thinks
of the network as a group of agents in a group-selection type environment, the
success of conformism in sustaining cooperation can constitute an explanation
for why people often display a conformist bias and why this bias is often directed
towards agents they feel ”close” to.
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Appendix - Proofs

s—trees

For some of the proofs we will rely on the graph-theoretic techniques devel-

oped by Freidlin and Wentzell (1984).'¢ They can be summarized as follows.

For

any state s an s—tree is a directed graph on the set of absorbing states

Q, whose root is s and such that there is a unique directed path joining any

16

See also Young (1993, 1998).
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other s’ € Q to s. For each arrow s’ — s’ in any given s—tree the ”cost” of the
arrow is defined as the minimum number of simultaneous trembles necessary to
reach s” from s’.The cost of the tree is obtained by adding up the costs of all
its arrows and the stochastic potential of a state s is defined as the minimum
cost across all s—trees.

Notation

Denote prD the set of polymorphic absorbing states with p strings of coop-
erators and defectors (note that in any polymorphic absorbing state there has
to be an equal number of strings of cooperators and defectors). Furthermore
denote J(s) € N (6(s) € N) the length of the longest cooperator (defector) string
in state s and y(s) € N (4(s) € N) the length of the shortest such string.

Proof of Proposition 1:

Proof. It is clear that given our assumptions the two monomorphic states are
always absorbing.!”

(i) Consider polymorphic states (consisting of strings of cooperators sepa-
rated by strings of defectors). Let us start with the case m = 0. Irrespective
of the payoff parameters and the parameter I, there have to be at least Z + 2
cooperators in the largest string of any absorbing state, i.e. 7(s) > Z + 2. If
this is not the case the inequality IT*(N!(D)) > II*(N!(C)) will always hold
for the last cooperator (denote ¢) in any string and she will want to switch to
defection. Now we will derive threshold levels ay(m, Z,I) and as(m, Z,I) for
the payoff parameters that determine under which conditions polymorphic ab-
sorbing states exist. For the cooperator ¢ at the edge of a cooperator string the
following holds.

(N} ()
_ T Z-Dp+ (2181 (a=b) + (Z+Da+ (Z+1— )11 (b—a)
I+1
and
(N} (D))
_ T ZHDd+ (Z41=d) 1 (c—d)+ (Z—De+ (Z—1—6))11(d—0)
I

where «; is the length of the string containing ¢, d; is the length of the string
containing i’ s defecting neighbor j and 14 is the indicator function taking the
value 1 if the preceding expression is positive and zero otherwise. Analogous
expressions can be determined for the defecto jr at the edge of the defector
string. Then in order for a state to be absorbing IT*(N/(C)) > ITY(N} (D)) and
IT(N/ (C)) < IT'(N/ (D)) have to hold for all strings. These inequalities define
for any given length of a string two threshold level @;(m, Z,I) and as(m, Z, I)
ensuring that neither the cooperator ¢ nor the defector j have incentives to
change their actions. (It should be clear that if these agents don’t have incentives
to change the agents at the interior of a string don’t have either).

17Note that we have assumed that II*(Nf(a)) = 0 if card{k € N/|al = a} = 0. The
intuition simply is that no actions can be imitated that are not present in the population.

15

b



If v;,8; > Z + I and furthermore I = Z then II*(N/(C)) > IT*(N/ (D)) can

be rewritten as

Z{mz+1%+2zmz+n—42—nz4
2 2

z(z+n{ﬂz+”c+@ZUﬂ7(2DZ4

2
or equivalently

. c—d+ZBd+c—b)
- 37

Note that a1 € (d, ¢). Also IT'(N/(C)) < II'(N/ (D)) can be rewritten as

= 61(0, Z, Z)

o ZBdte—b) b
= 37 — 1

=:2(0, 7, 7).

Whenever a € [a1(-),a2(-)] these states will be absorbing. If ¢ < @; no poly-
morphic states can be absorbing, as agents at the end of a cooperative string
will always want to switch to defection. What happens if a > max{a;,az} ?
Then the defector at the end of the defector-string will want to switch to coop-
eration. The length of a cooperator string will increase and that of the defector
string decrease. Whenever there are Z + 1 defectors left the payoff for defection
will exceed that for cooperation in this neighborhood and consequently no more
defectors will want to switch to cooperation.

(ii) In general @;(-) and az(-) depend of course on I and Z. The higher I, Z
the longer strings need to be and the larger will be the difference in length
between cooperator and defector strings. Whenever I and Z are small enough
though relative to n polymorphic absorbing states exist.

(ii) If m > 0 all polymorphic states with cooperator and defector strings
larger than I 4+ 1 that were absorbing for m = 0 are still absorbing. The
reason is that for these strings cooperation (defection) is more popular in the
information neighborhoods of all cooperators (defectors), i.e. -, < %,Vi eq.
Furthermore as 0 @1(-)/0m < 0 whenever 7(s),d(s) > I + 1 additional such
states can be absorbing. For states with strings shorter than I+ 1 the threshold
value a rises and thus some such states that were absorbing under the basic
process may fail to be so whenever m > 0.

Proof of Proposition 2: m
Proof. Transitions from s to s” can occur via one action tremble, i.e.
X (s%,sP) = 1. To see this assume cooperator i trembles and chooses D. Then
II4(-) = 2Zc. Consider agents j € { NN\ NZ}.2® This set is non-empty as I > Z.
As TI"(NJ(D)) = 2Zc > IT'(N/(C)), these agents j will want to switch to action
D. Next consider agents k € {N]N\N7N\N/}. Again II"(N/ (D)) > IT'(N/(C))
and agents k will switch to action D. In this way transitions can occur dur-
ing which D—players always interact with less D—players than C'—players do,

D

18\N1-Z denotes the complement of the set NiZ.
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ensuring that Vi € G the inequality II*(N/ (D)) > II*(N}(C)) always holds
during the transition. The transition s” — s¢ on the other hand needs at
least two simultaneous trembles as a single cooperator will never be imitated,
ie. X(sP,s) > 2. But then also X(s,w”) > X(s,w?),Vs € w§” and conse-
quently ¥(s¢) > 1 (sP).

Next we will show that 1(sP) < 1(s),Vs € w“P. Consider first states s €
w§P and assume wlg 7(s) is impair. Assume that at time ¢ the "median”
cooperator in the cooperator string v(s) trembles and switches to D. If the
deficient action then infects always the next node at distance Z + 1 from the
node last infected the whole cooperator string can be infected, i.e. X(s,s?) = 1.
To see this note first that initially defection can spread within the cooperator
string as the unique defector that the cooperators in question observe has payoff
2Zc. After some time 7 the edge of the string will be reached (it is of course
possible that 7 = 0). Note next that - for s to be absorbing - at time t—1 (before
the mutation) the inequality II*~1(N/(D)) > II*~}(N}(C)) has to hold for the
defector k at the edge of the defector string and the inequality II'~1(N/ (D)) <
II*=1(N/(C)) for the cooperator h at the edge of the cooperator string. But
at time ¢ + 7 we have that II'*"(N/(D)) > II'"Y(N[(D)) > TI* "1 (N[ (C)) >
[I**+7 (N1 (C)). Consequently the cooperator h will want to switch to defection
and consequently also the remaining cooperators. On the other hand of course
X(sP,5) > 1 as a single cooperator will never be imitated. Now starting from
a minimal s—tree we can simply redirect the arrow s — s, as the transitions
with least resistance are direct. This yields an s”—tree with ¥(s”) < 9(s). Of

course it follows from the same argument that a transition from a state s’ € w§?

to some state s € w{'? can occur after one tremble only and we can show that
Vs € w§P,3s € wfP s.t. Y(s) < Y(s') (again redirecting the arrow s — s').
Replicating this argument one can show that Vs/ € ijD ,j>2,3s97 1 € ij-’LDl
s.t. (si71) < 4(s?). It then follows that ¥(s”) < (s),Vs € w®? and thus
that s is the unique stochastically stable state. m

Proof of Proposition 3:

Proof. (i) First note that whenever a < @ := minges a1(0, I, Z|5(s),v(s)) the
only absorbing states are the monomorphic states s and s¢. Furthermore in
this case a transition from s¢ to s can occur after one action tremble only, i.e.
X (59, sP) = 1. For the reverse transition though one tremble does not suffice,
as a single cooperator is never imitated. Consequently the unique stochastically
stable state is s”.

(ii) Next consider the case where a > @, in which polymorphic absorbing
states do exist. We will first show that s¢ is not stochastically stable under
this conditions, in particular we will show that there exists a state s’ € wP s.t.
P(s") < (s9). Consider the state s € w{'P that is obtained from s via one
single tremble by an agent to defection, i.e. where X (s,s) = 1. Such a state
of course always exists as an initial tremble by any defector will be imitated
by at least one other defector (possibly more) and the unperturbed process will
converge to a polymorphic absorbing state. Now take a minimal s —tree and
add the arrow s¢ — s. Then consider the old path from s to s¢. For some
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s’ on this path two trembles will be needed to reach the next state (as two
neighboring defectors will never want to switch to cooperation). Cutting the
arrow that leads away from this state s yields an s'—tree with 1(s") < ¥(s%).

Now we will show that s” cannot be stochastically stable. Consider transi-
tions from s¢ to s”. The minimal number of trembles needed for this transition
is proportional to [,Y({}i}lz)J as all cooperator strings of size y(-) have to be

broken. On the other hand the number of trembles needed to reach s¢ from
sP does not increase with the number of players n.(Note that for a transition
from sP to s© first a fixed number of cooperators have to tremble to start off
the transition and then a fixed number of remaining defectors have to tremble
to reach s¢). Now take a minimal s” —tree and consider the path from s¢ to
sP . Starting from s? redirect arrows until at some state s a cost of X (s”,s)
is saved (compared to the old path). Add the arrow s” — s. This arrow will
have a cost strictly smaller than X (s, s%). Consequently we have constructed
an s—tree with 1(s) < 1(s”) where s € w“P. m
Proof of Proposition 4:

Proof. (i) Consider first transitions from s to sP. Assume one player in N/
trembles and chooses D. Then II(N}(D))— II(N(C)) = 2Z0—w =

w. Player ¢ will want to imitate action D according to decision

2[Z(c—a)I+Z(a—b) > m(l

rule (4) whenever - Zﬁ) or equivalently whenever

m < (21+1)[21é§i_1(;)]+z(a_b)] =: m. Clearly g—% > 0 and

om  (4I(I+1)—-1)[(2IZ(a—c) — Z(a — b)]

a1 PRI—1)? <0

Consequently m is strictly decreasing in I — Z. Now whenever m < m a tran-
sition from s¢ to sP can occur after a single action tremble whereas for the
reverse transition at least two trembles are necessary and thus the analysis from
Proposition 2 applies.

(ii) Consider again transitions from s to s” and assume that kp <
players in N/ tremble simultaneously and choose D. The following inequalities

hold: TI(N/ (D)) < 2Zc and TI(N} (C)) > 2ZnpbtH=2mpl270 i) equality

if kp = 1. Consequently II(N/ (D))— II(N{(C)) < 2Z(I+1_KDI)_E_CI__(Q;QZHD((L_I)).

A necessary condition for a transition after xkp trembles in N/ to be possible
2Z(I+1—kp)(c—a)—2Zkp(a—b)
e e > m(l - 25785

I+1
2

(for 4 to imitate action D) is
equivalently

) or

2I+1)[2Z(I+1—kp)(c—a) —2Zkp(a — )]
(I+1—I€D)(2I+1—2I€D) '

(5)

Denote this threshold m?” (xp). Next consider the reverse transition from s” to
s¢. Assume that ko < % players tremble simultaneously in N/ and choose
C. The following inequalities hold: II(N}(C)) < 2[Z(”C_2);]a+2(22_1)b and

KC
(NI(D)) > 2(2Z_”CHEggii:Z‘gg_Q(zZ_1)]d. Consequently a necessary condi-

tion is
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2[Z(rc—2)+1]a+2(2Z—1)b K
27 ko

22Z-1)et 220141 —ro)—2(22—1)ja | > (1 —2 )

( o 2 [22(1+172g) ] ) 2I+1

or equivalently

I+ 1)2Z(I 4+ 1—ke)[2[Z(ke — 2) + 1]a+2(2Z — 1)}]

—Zkc[22Z = 1)e+ 2Z(1 + 1 — ko) —2(2Z - 1)] d]

(21 +1—2ke)Z2(I + 1 — k¢ )k

m <

(6)

Denote this threshold by m® (k¢ ).

(iii) Now substitute  for xp in (5) and for k¢ in (6) and consider the contin-
uous extension (to x € R*) of the functions m“ (k) and MmP” (k). Both Mm% (k)
and mP (k) are strictly increasing in , as can be easily verified. Furthermore
mP(0) > 0, m9(0) < 0 and |9 (k)/0k| > |0mP (k)/0k| > 0,Vk € R . We
are interested in the point x* where m“ (k) and mP(k + 1) intersect, i.e. x*
s.th. m%(k*) = mP(k* + 1). This intersection defines the level of conformism
such that always one mutation more is required to start off a transition from s¢
to s than for the reverse transition. Of course eventually we have to focus on
k € N. Denote m = mP”([x*]) where [£*] denotes the smallest integer larger
than x*.Then whenever m(Z5L) > m > m strictly less simultaneous mutations
are needed to start off a transition from s” to s¢ than to start off the reverse
transition.'® But if m > T?L(%) either less or equally many mutations are
needed to start off either transition. But it is easy to see that in the latter
case (where m is huge) the cooperative state can be reached easier from the
polymorphic states.

(iv) Now we will show that whenever m > 7 only s¢ is stochastically stable.
We have already seen that X(s”,s¢) < X(s¢,s”) whenever m > m. What
about polymorphic states 7 We have seen in the proof of Proposition 1 that
all such states have an equal number of strings of cooperators and defectors.
Furthermore cooperator-strings are at least as long as defector-strings. But
then of course even if additional mutations are needed for all agents in the circle
to imitate the mutant less such mutations will be needed for a transition from
s to s¢ then from s to s”. Consequently X (s,s%) < X(s,s”),Vs € w®P will
always hold. Furthermore it should be clear that X(s,s%) < X(s,s),Vs €
wCP . Consequently it follows that whenever m > m the state s¢ has mimimal
stochastic potential.

(v) Finally we will show that m is strictly decreasing in I. It is clear that

om D(

. . * A~ . . . . . .
sign [S7] = sign [%LI} as mP (k) is increasing in k. The latter derivative can

be computed using the implicit function theorem as

or* (S — mP)/or -
oI~ o(mC — mP)[or,,_,.

C(k~) = mP(k~ — 1) and m"*v =
D' need strictly less

19In fact one could also define x~ such that m
mP(|k~|). Of course K~ < k*. Whenever m < m™®" transitions to s
simultaneous mutations than the reverse transitions.
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It is clear that the denominator of this expression is strictly positive. Further-
more we have seen that OmP” /I < 0 and we have

om®  (c—d)(2Z —1) -
ol Z(I+1-k) '

. . s . om
Consequently the numerator of (7) is strictly positive and it follows that <7# < 0
|

Proof of Proposition 5:
Proof. The proof follows from the proof of Proposition 4 by substituting I = Z
into the relevant conditions. Now m?” (kp) is given by

D (1) — 2I(2I + 1)[e(kp — 1) —a+ (¢ — a)I + bk p]
br= (21 +1—2kp)(I+1—kp)

a(I(ko—2)+1)+b(2I-1)

mC (ko) =11 A(I(I=1—re)41)+e@I-1) | -
I+1—kco
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