
Munich Personal RePEc Archive

Capital Substitution in an Industrial

Revolution

Staley, Mark and Berg, Peter

University of Ontario Institute of Technology

30 June 2012

Online at https://mpra.ub.uni-muenchen.de/40530/

MPRA Paper No. 40530, posted 07 Aug 2012 11:47 UTC



Capital Substitution in an Industrial Revolution

Mark Staley∗and Peter Berg†

Faculty of Science, University of Ontario Institute of Technology

2000 Simcoe Street N., Oshawa, ON, L1H 7K4, Canada

June 30, 2012

Abstract

A unified growth model is presented in which productivity growth is driven

by learning-by-doing. We show that the growth rate of productivity is an

increasing function of the share of capital. It is assumed that the industrial

sector has a higher capital share than the agricultural sector and that the

ability to substitute one output for the other slowly rises over time. Two

distinct regimes of constant growth emerge, connected by a rapid transition

in which the growth rates of population and income increase by an order of

magnitude, indicative of simultaneous agricultural and industrial revolutions.
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1 Introduction

The preindustrial era was characterized by low rates of productivity growth, a heavy

reliance on the agricultural sector both as a source of food and as a source of raw

materials for industry, and low levels of fixed capital. Since the Industrial Revolution

the growth rate of total factor productivity has increased by an order of magnitude,

the relative size of the agricultural sector has shrunk considerably, and the economy

has become reliant on vast quantities of fixed capital in the form of machines and

infrastructure. This paper presents a unified growth model that ties together these

observations based on Wrigley’s thesis that a key enabler of the Industrial Revolution

was a shift in the source of raw materials from agriculture to industry (Wrigley, 1988,

2010). In the present model this shift is sufficient to trigger all of the other changes

we have come to associate with the transition to a modern economy.

Two mechanisms are employed to explain long-term changes in productivity: ex-

ogenous growth of knowledge, and endogenous learning-by-doing due to capital in-

vestment (Arrow, 1962). In a one-sector version of the model to be described in

the next section, the growth rate of total factor productivity is proportional to the

growth rate of knowledge, with the constant of proportionality an increasing func-

tion of the share of capital. If we accept that the capital share today is larger than

it was in past centuries, this mechanism provides a possible explanation for the

takeoff in productivity after the Industrial Revolution. The remaining task is to

explain why the capital share suddenly increased during the Industrial Revolution.

The approach taken here is to assume that there are two sectors, one having a high

capital share (industry) and the other having a low capital share (agriculture), and

to focus attention on the historical ability of firms to substitute the output of the

high capital-share sector for that of the low capital-share sector in the construction

of capital goods. The change in substitutability provides the link with Wrigley’s

thesis.

The model borrows from Hansen & Prescott (2002) in labeling the agricultural sec-

tor the “Malthus” sector, which has a low capital share and a heavy reliance on

land, and in labeling the industrial sector the “Solow” sector, which has a larger

capital share and no reliance on land. It is assumed that the two sectors are used
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at all times and produce two very different types of goods for two different markets.

Capital goods are built using the outputs of both sectors via a Constant Elasticity

of Substitution production function. Each of the two components of capital has its

own embodied productivity factor, which grows by exogenous increases in knowl-

edge and by learning-by-doing. Unlike in Hansen & Prescott, we assume that the

parameters driving productivity growth are identical in both sectors. The elasticity

of substitution (EoS) between the two outputs has a small initial value (less than

one), and slowly increases over time as people learn to substitute industrial output

for agricultural output in the production of capital goods. The rationale for assum-

ing a constantly increasing EoS is that it is always profitable for a firm to introduce

a new technique that expands the possibilities for substitution.

Preferences are modeled using a simple Cobb Douglas model of utility. Individuals

exhibit preferences for consumption, investment, and childbearing that are assumed

constant over time. These preferences translate into constant expenditure shares.

Real earnings are largely determined by the output of the Solow sector because the

consumer demand for Malthus output is assumed perfectly inelastic. Population

dynamics is “Malthusian” at all times, so increases in income or decreases in the

cost of Malthus output (food) lead to higher population growth rates.

The model makes the following predictions. When EoS is less than one, increases

in EoS do not have an appreciable effect on the economy. The economy grows at

a small rate that is independent of EoS. Once EoS surpasses the value of one, the

economy shifts to a new regime in which the growth rate is much higher and is

again approximately constant over time (independent of EoS). The explanation for

the sudden transition is as follows. When EoS is less than one, the Malthus sector,

with its low capital share and correspondingly low rate of productivity growth, acts

as a brake on the economy because for a given level of capital there is a minimum

required level of Malthus output. Hence, the learning-by-doing mechanism is never

able to live up to its full potential. Once EoS is greater than one, the binding

constraint of the Malthus sector is released. The output of the Solow sector can

then be used directly in the production of new capital goods (for both sectors) and

productivity growth accelerates. The passing of the EoS = 1 boundary marks the

onset of the Industrial Revolution.
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The demographic patterns produced by the model are broadly consistent with the

historical record. The growth rate of population before the Industrial Revolution is

very low because the economy is dominated by the Malthus sector. The growth rate

of earnings is also very low because the Solow sector is constrained by the output

of the Malthus sector. After the Industrial Revolution, the population growth rate

increases because the Malthus sector is boosted by the Solow sector via lower prices

for capital goods. Earnings also grow rapidly because the Solow sector grows faster

than the Malthus sector due to the difference in their capital shares. Although pop-

ulation growth continues to be Malthusian in the modern era, the rate of growth of

population reaches a constant value because the price of Malthus output increases in

tandem with income. This last property suggests a reinterpretation of the “Malthus

sector” as consisting of child-care services as well as agriculture.

The model presented in this paper is consistent with Wrigley’s thesis that the

Malthus sector acted as a material and energy constraint on the economy prior

to industrialization (Wrigley, 1988, 2010). For example, farm plows used iron com-

ponents from the preindustrial Solow sector (horseshoes, buckles, plowshares), but

relied on horses from the Malthus sector, and the productivity of horses did not

grow at modern rates. The preindustrial Solow sector contained things like iron

foundries that were built using iron components, but that also required working

capital derived from the Malthus sector such as wood for heat, and water or horses

for mechanical energy. The supply of wood represented a very serious constraint

since it depended on an exploitive activity that was almost preagricultural in na-

ture, with very little invested capital. After the Industrial Revolution, Malthus

output and Solow output became substitutes for the purposes of capital. Some of

the most famous inventions of the Industrial Revolution, such as Watt’s separate

condenser for the steam engine and Cort’s puddling process for iron production, had

the effect of lessening the dependence of industry on land-based production.

The model is also broadly consistent with the view of Crafts (1995), who has an-

alyzed the applicability of recent growth models to the Industrial Revolution. In

Crafts view, the most promising approach is to combine exogenous shocks (inven-

tions) with learning-by-doing effects (innovation). We have modeled increases in

the elasticity of substitution between land-based output and industrial output as an
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exogenous process, and have then allowed the mechanism of learning-by-doing to

follow through with its far-reaching effects on growth. The model is also consistent

with the theme of Allen’s study of the blast furnace industry, which showed that

capital investment was a key driver of productivity improvements through learning

effects (Allen, 1983).

As Lucas (2008) has pointed out, it is widely accepted amongst economists that

the process of industrialization is an ongoing intellectual achievement. One of the

defining characteristics of the Industrial Revolution is that it introduced a sharp

discontinuity in the rate of growth of human knowledge. If we accept the premise

that people were just as mentally capable 2,000 years ago as they are today, this

discontinuity represents a deep mystery. The goal of unified growth theory is to

develop a model that captures the dynamics of both the preindustrial economy

and the modern economy without invoking any special exogenous shocks to explain

the Industrial Revolution (Galor, 2011). The present model fits into that mold

because the dynamical equations and their parameters are unchanging over time,

yet a discontinuity emerges. The implication of this paper is that people have

been striving to substitute the products of their hands for the products of nature

for millennia, and this process finally reached a threshold of sustained capitalist

learning about two hundred years ago.

The plan of the paper is as follows. In the next section, we briefly introduce a simple

one-sector model designed to motivate the developments in this paper. Section 3

contains a description of the unified growth model. Section 4 contains the results of a

simulation exercise, showing that our model is broadly consistent with the historical

record of the Industrial Revolution. Section 5 analyses the asymptotic behavior of

the model in two regimes, EoS < 1 and EoS > 1, showing that the model exhibits

a rapid change in dynamics akin to a phase transition as EoS passes the value of

one. In Section 6, we interpret the model and discuss its limitations and possible

extensions. Finally, Section 7 concludes.
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2 Malthus to Solow via Arrow

Amongst the many changes to occur during the Industrial Revolution, the two most

relevant to the present discussion were the increase in the share of capital and

the large increase in the rate of growth of Total Factor Productivity (TFP). The

purpose of this section is to show that these two phenomena can be linked using

a variant of Arrow’s learning-by-doing model (Arrow, 1962). A simple toy model

will demonstrate that even a modest increase in the share of capital can lead to a

productivity takeoff.

The production function is given by

Y = AKαN1−α, 0 < α < 1, (1)

where Y is output, A is TFP, K is capital, and N is labour. For the purposes of

this exercise we will assume that labour is held fixed. The focus of our attention

will be on the relationship between A and K. Let us also assume that savings are

a fixed fraction s of output:

K̇ = sY − δK, (2)

where δ is the rate of depreciation of capital. Productivity grows exogenously at a

small rate g0 and also grows due to gross investment in capital. The latter effect is

inspired by Arrow’s learning-by-doing model. Since savings are a fixed fraction of

output we can state
d

dt
lnA = g0 + ξ

d

dt
lnY, (3)

where ξ is a parameter that captures the spillover effects of learning due to capital

investment.

We wish to study the steady-state growth path associated with this model. We

assume that all quantities grow exponentially at constant rates which we label {gx},

where {x} stands for whatever quantities are under consideration. Dividing both

sides of equation (2) by K we have gK = sY/K − δ. Since gK is assumed constant
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the capital/output ratio must be constant. Therefore, from (1) we find

gA = (1 − α)gK , (4)

and from equation (3) we see that

gA = g0 + ξgK . (5)

Combining (4) and (5), we obtain the following expression for the growth rate of

TFP

gA =
1 − α

1 − α − ξ
g0. (6)

Notice that gA is proportional to g0, with the constant of proportionality being

greater than 1 when ξ > 0. The learning-by-doing mechanism is acting as a lever

on the exogenous growth rate.1 Notice also that gA is monotonically increasing in α

(thereby linking the growth rate of TFP with the share of capital) and is essentially

unbounded.

The growth rate of wages is

gw =
1

1 − α − ξ
g0. (7)

Consider the following numerical example: g0 = 0.1% per annum, ξ = 0.55 and

α = 0.1, the latter corresponding to the share of capital in the Malthus sector of

Hansen & Prescott’s (2002) model. The resulting growth rate of wages is 0.29% per

annum. If we increase α to 0.4 (the capital share in the Solow sector of Hansen &

Prescott’s model) the growth rate of wages increases to 2% per annum.

We now proceed to describe the unified growth model, incorporating the above

learning mechanism in a two-sector framework.

1This model avoids the kind of “knife-edge” condition normally required in a purely endogenous
model.
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3 The Model

3.1 Production

Following Hansen & Prescott (2002), we define two sectors, a “Malthus” sector,

which produces YMt at time t, and a “Solow” sector, which produces YSt at time t.

The production functions are:

YMt = Kφ
MtN

µ
Mt, (8)

YSt = Kθ
StN

1−θ
St , (9)

where KMt and KSt are the quantities of capital employed in the Malthus sector and

Solow sector, respectively, and NMt and NSt are the quantities of labour employed

in the Malthus sector and Solow sector, respectively. It is assumed that φ < θ,

reflecting that the capital share in the Malthus sector is lower than the capital share

in the Solow sector. It is also assumed that φ+µ < 1, reflecting the hidden presence

of land in the Malthus sector, which is normalized to 1. There are no productivity

factors in the above production functions. Instead, productivity is embodied in

capital, as will be explained in the next subsection.

The production side of the economy solves the following optimization problem:

max {ptYMt − wMtNMt − rKtKMt − rLtLt} , Lt = 1, (10)

max {YSt − wStNSt − rKtKSt} , (11)

where wMt is the wage in the Malthus sector, wSt is the wage in the Solow sector, rKt

is the rent on capital, rLt is the rent on land, and pt is the price of goods produced

by the Malthus sector. The output of the Solow sector acts as numeraire.

We assume that capital is perfectly mobile so there is a unique rent on capital.

However, we distinguish two different wages wMt and wSt. The reason has to do

with our treatment of land. Our focus is on capital and labor, so consistent with

common practice in this field we assume that laborers in the Malthus sector own all

of the land that they use for production. Hence total earnings in the Malthus sector
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consists of wages plus rents. We also assume that land has no value, so labour will

freely migrate until the total income earned in the Malthus sector (wages plus land

rents) is equal to the wage earned in the Solow sector.2 Let us define total earnings

yt to be

yt = wMt +
rLt

NMt

= wSt. (12)

Competitive firms will then hire quantities of labour and capital such that

rKt =
∂YSt

∂KSt

=
∂YMt

∂KMt

pt, (13)

yt =
∂YSt

∂NSt

=
YMt − rKtKMt

NMt

pt, (14)

or, in terms of labour and capital quantities:

rKt = φ
Nµ

Mt

K1−φ
Mt

pt = θ
N1−θ

St

K1−θ
St

, (15)

yt = (1 − φ)
Kφ

Mt

N1−µ
Mt

pt = (1 − θ)
Kθ

St

N θ
St

. (16)

3.2 Capital

Capital goods are constructed using two types of material: XMt, which is directly

produced by the Malthus sector, and XSt, which is directly produced by the Solow

sector.3 That is, XMt is some portion of past output as produced according to

equation (8), and XSt is some portion of past output as produced according to

equation (9). The Malthus and Solow materials are combined to form total cap-

ital Kt = KMt + KSt via a Constant Elasticity of Substitution (CES) production

function:

Kt = [(1 − γ) (AMtXMt)
ρt + γ (AStXSt)

ρt ]
1

ρt , (17)

where AMt is the Malthus capital-augmenting productivity, ASt is the Solow capital-

augmenting productivity, γ is the share of the Solow sector in capital goods pro-

2This modeling choice avoids the need to iteratively solve for the price of land, as was necessary
in Hansen & Prescott (2002).

3Working capital can be thought of as a capital good having a high rate of depreciation.
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duction, and ρt is a monotonic increasing function of the Elasticity of Substitution

(EoS) σt:

ρt = 1 −
1

σt

. (18)

The parameter ρt lies between −∞ and 1, while σt lies between 0 and ∞. Note that

there is no overall productivity factor outside the square brackets in equation (17).

As will be shown later, this implies that if σt < 1 the growth-rate of productivity is

constrained by the slowest-growing productivity factor.4

We assume that the suppliers of capital minimize the cost of each unit of capital by

solving

min{pt xMt + xSt} , (19)

subject to the constraint

0 = 1 − Kt (XMt = xMt, XSt = xSt) , (20)

where Kt is given by (17). In a competitive economy, the price of capital qt is

equal to its marginal cost. Since the production function for capital is first-order

homogeneous, marginal cost equals average cost. Defining C∗
t to be the minimum

cost, x∗
Mt to be the optimal quantity of Malthus material and x∗

St to be the optimal

quantity of Solow material, we have

qt = C∗
t = pt x∗

Mt + x∗
St. (21)

The Lagrangian for this optimization problem is

L = ptxMt + xSt + λ(1 − Kt), (22)

4We can offer an energy interpretation of equation (17) inspired by Wrigley (1988, 2010). Cap-
ital goods are low-entropy systems that require energy in the form of work for their construction,
ongoing maintenance and operation. It is assumed that energy is embodied in AMtXMt and/or
AStXSt. Traditionally, capital goods may have been produced using Solow output (AStXSt) but
the energy was embodied in AMtXMt. During industrialization energy became embodied in AStXSt

as well, allowing substitution to take place. Historical examples include coal replacing wood as
a source of heat for the iron industry, and steam engines replacing water wheels and horses for
mechanical energy.
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and the first-order conditions for cost minimization are

∂L

∂XMt

= 0,
∂L

∂XSt

= 0, 1 −Kt = 0. (23)

The solution for qt, x∗
Mt and x∗

St is

qt =

{

(1 − γ)
1

1−ρ

(

pt

AMt

)−
ρ

1−ρ

+ γ
1

1−ρ

(

1

ASt

)−
ρ

1−ρ

}−
1−ρ

ρ

, (24)

x∗
Mt = q

1

1−ρ

t (1 − γ)
1

1−ρ

(

pt

AMt

)−
ρ

1−ρ 1

pt

, (25)

x∗
St = q

1

1−ρ

t γ
1

1−ρ

(

1

ASt

)−
ρ

1−ρ

. (26)

We will assume that capital completely depreciates at the end of each time step and

that a time step equals 35 years, consistent with Hansen & Prescott (2002). The

interest rate is then

i =

(

rKt

qt

− 1

)
1

35

− 1, (27)

where rKt is given by equation (15).

3.3 Preferences

Building on Hansen & Prescott (2002), we assume an overlapping generations model.

Each person lives for two periods of time, and the population includes a mix of

young people and old people. Young people work to earn an income, which they

use to purchase three things: manufactured goods from the Solow sector for their

own consumption, capital goods for investment purposes, and Malthus output (e.g.

food and child care) to support the raising of children. It is assumed that old

people receive enough Malthus output in childhood to sustain them for life. Hence

old people consume Solow goods only, which are paid for by the returns on their

investments. Land has no value, so each generation simply confiscates it upon their

entry into the Malthusian labour force.
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We assume the following utility function

ut = α log c1,t + β log c2,t+1 + (1 − α − β) log nt, (28)

where c1,t is consumption in the first period (the working period), c2,t+1 is consump-

tion in the second period, and nt is the number of children born to each worker at

the end of the time step (this is the new element not included in Hansen & Prescott’s

utility function). Children become part of the labor force in the next time step t+1.

Assuming that children require one unit of output from the Malthus sector, which

is sufficient to sustain them throughout life, the budget constraint is

yt = c1,t + qtkt+1 + ptnt, (29)

c2,t+1 = rt+1kt+1, (30)

where yt is the total income earned by young people in period 1 (wages and rent on

land), kt+1 is the invested capital (savings) for period 2, and qt and pt are the prices

of capital and Malthus output, respectively.

Maximizing utility, we have

c1,t = αyt, (31)

kt+1 = β
yt

qt

, (32)

nt = (1 − α − β)
yt

pt

. (33)

The first result says that young workers spend a fixed percentage of their earnings

on output from the Solow sector. The second result states that savings are a fixed

fraction of income. The third result describes Malthusian population dynamics: the

higher the earnings and the lower the price of output from the Malthus sector, the

more children.

The above results can be used to define real earnings. Consistent with our assump-

tion of Cobb-Douglas utility, we define the cost-of-living index as the geometric

average of the factor prices, with expenditure shares used as weights.5 Real earn-

5Clark (2005) uses a weighted geometric average in his construction of a cost-of-living index
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ings yRt are then defined as nominal earnings yt divided by the cost-of-living index:

yRt ≡
yt

qβ
t p1−α−β

t

. (34)

3.4 Productivity Growth

We now specify a dynamical process for the capital-augmenting productivity pa-

rameters AMt and ASt, and for the elasticity of substitution σt. Two processes are

assumed for AMt and ASt. First, productivity grows exogenously at some small

rate g0. Second, we assume that productivity also increases as a side effect of gross

capital investment (Arrow, 1962). The relative changes in AM t and AS t are thus

driven by two factors, the first related to exogenous growth and the second related

to total gross investment:

AM t+1

AM t

= eg0

(

X̃M t+1

X̃M t

)ξ

, (35)

AS t+1

AS t

= eg0

(

X̃S t+1

X̃S t

)ξ

, (36)

where ξ is a new parameter of O(1) that captures the spillover effects of learning,

and

X̃M t =
∑

ti≤t

XM ti, (37)

X̃S t =
∑

ti≤t

XS ti. (38)

covering the years 1209-1869. Allen (2001) uses both geometric and arithmetic averages to compute
inflation indices for several cities in Europe covering the years 1350 to 1750 and finds little difference
in their values.
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Here XM ti and XS ti are, respectively, the quantities of Malthus output and Solow

output used in the construction of capital at time ti:

XM ti =
βytiNtix

∗
m ti

qti

, (39)

XS ti =
βytiNtix

∗
s ti

qti

. (40)

Here we have made use of equation (32) and multiplied by x∗
m ti

and x∗
s ti

, which

are the Malthus and Solow components respectively of each unit of capital, and we

have also multiplied by Nti to obtain total quantities. The above model of learning

assumes that the efficiency of each component of capital grows in direct response to

its use. Note that the parameters driving productivity growth (g0, ξ) are identical

in both sectors.

The final key parameter to consider is σ (or ρ). Since 0 < σ < ∞, it is natural to

assume an exponential growth process:

σt = σ0e
gσt, (41)

where σ0 < 1 and gσ is a new growth parameter.

The rationale for assuming a constantly increasing σt is that it is always (tem-

porarily) profitable for a capital-producing firm to introduce a new technique that

expands the opportunities for substitution. To show this, it suffices to show that the

cost of capital is a declining function of ρt (recall that ρt is monotonic increasing in

σt). Application of the Envelope Theorem to the Lagrangian for cost minimization

(22) results in
∂C∗

∂ρ
=

∂L

∂ρ
= −λ

∂K

∂ρ
.

K is of the form of a generalized mean, which has the property that it is a monotonic

increasing function of ρ.6 And the Lagrange multiplier λ is equal to C∗
t , which is

6The proof is contained in Hardy et al., 1934, p. 26. See also La Grandville, 2009 (Appendix
of Chapter 4).
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positive.7 Hence
∂C∗

∂ρ
< 0.

Therefore, it is always profitable for a firm to introduce a new capital-goods pro-

duction technique that embeds a higher elasticity of substitution than is currently

prevailing.

3.5 The Equilibrium Path

The purpose of this section is to complete the set of equations required to find the

equilibrium prices and allocations at each time step, and to describe the changes in

the key variables over time. The initial conditions for the model are the quantities

of labour and capital at time zero: N0 and K0. During each time step t, the

economy optimally allocates labour and capital to the Malthus and Solow sectors.

One complication is that in solving for the equilibrium allocations, one must take

into account the optimal mix of materials required in the construction of capital

goods to be used in the next time step. The resulting equilibrium income earned by

young workers is the key determinant of the quantities of labour and capital in the

next time step (Nt+1 and Kt+1) via the preference equations (31) - (33). The end

result is that we can take the total quantities of labour and capital as ‘given’ at the

beginning of each time step.

The market-clearing conditions are

Nt = NMt + NSt, (42)

Kt = KMt + KSt, (43)

YMt = (1 − α − β)
yt

pt

Nt + β
yt

qt

Ntx
∗
Mt, (44)

YSt = αytNt + rKtKt + β
yt

qt

Ntx
∗
St. (45)

The first two conditions listed above simply equate total labour and capital with the

supply of those factors at the beginning of each time step. The last two conditions

7One can use the first-order conditions listed in equation (23) to show that λ = qt, which equals
C∗

t
, which in turn is positive assuming pt is positive.
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equate the supply and demand of final outputs. Equation (44) says that total

Malthus output is equal to the amount required to support children plus the amount

required in the construction of capital goods. Equation (45) says that total Solow

output is equal to total consumption by young workers plus total consumption by

old people (investment returns) plus the amount required for capital goods. We now

have sufficient conditions to determine the equilibrium solution at each time step.8

Finally, from equations (32) and (33) the quantities of labour and capital at time

t + 1 are

Nt+1 = (1 − α − β)
yt

pt

Nt, (46)

Kt+1 = β
yt

qt

Nt. (47)

The model is now fully specified.

4 Simulation

The system of equations to be solved is a set of recursive-algebraic equations, con-

sisting of two recursive equations, Eqs. (46) and (47), coupled to the algebraic con-

straints (15), (16) and (42)-(44). The productivity parameters evolve according to

equations (35) and (36) and σt grows according to (41).

4.1 Solution Method

We will now introduce two new variables so as to derive a solution algorithm. These

variables represent the fraction of population in the Solow sector

ηt =
Nst

Nt

(48)

8In fact we have one too many equations! However it can be shown that one of (44) or (45) is
redundant.
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and the fraction of capital in the Solow sector

κt =
Kst

Kt

. (49)

At the beginning of each time step, we know the values of AM t, AS t, Nt and Kt. In

order to determine those quantities at time t + 1 using (46) and (47), we need to

know yt, pt and qt. We note that yt can be obtained from ηt and κt using equation

(16). Hence, we need to solve the model equations for ηt, κt, pt and qt. The price

of capital qt can be expressed in terms of pt using Eq. (24). The price of Malthus

output pt can in turn be obtained from ηt and κt using Eq. (15) in the form

pt(κt, ηt) =
θN1−θ−µ

t

φKφ−θ
t

η1−θ
t (1 − κt)

1−φ

(1 − ηt)µκ1−θ
t

. (50)

We can also write κt in terms of ηt by dividing (15) by (16) to obtain

κt(ηt) =
E(ηt)

1 + E(ηt)
(51)

with E = (1−φ)θηt

φ(1−θ)(1−ηt)
. Hence, we have just one remaining unknown: ηt, which can

be obtained by solving the following equation, derived from Eqs. (8), (16) and (44):

G(ηt, pt, qt(pt), x
∗
Mt(pt, qt(pt))) =

1

pt

−
(1 − α − β)(1− φ)

pt(1 − ηt)
−

β(1 − φ)x∗
Mt

qt(1 − ηt)
= 0.

(52)

A nonlinear root search technique must be used to find ηt. In the above equation,

the quantity x∗
Mt can be expressed in terms of the other quantities, using Eq. (25).

The initial values K0, N0, AM0 and AS0 are arbitrary. The initial value of EoS is

0.01. We then let the system evolve according to the scheme described above.
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4.2 Results

For various, yet realistic, parameters values (φ, µ, θ, γ, α, β, ξ, gσ, σ0, g0), the nu-

merical results exhibit qualitatively the same dynamics. For the figures and results

listed below we have used the specific parameter values listed in Table 1 (to be

justified in Section 5.3). Figure 1 shows the assumed evolution of σt, starting at the

value of 0.01 and growing at the rate of 0.4% per year. As can be seen in Figure 2,

after an initial period of adjustment, population and real earnings grow slowly and

steadily until σ reaches the value of one. For σ > 1, population and real earnings

grow much faster but still roughly at a constant rate. This transition occurs within

a few time steps, equivalent to about 150 years.

The growth rates of population and real earnings are shown in Figure 3. The main

observation is that the growth rates appear to settle to constant values for σ < 1 and

for σ > 1. There is an order-of-magnitude increase in growth rates as the elasticity

of substitution surpasses one, which can be interpreted as an Industrial Revolution.

Numerically, we find the following approximate values before and after the Industrial

Revolution:

gbefore
N = 0.075% , gafter

N = 0.53%,

gbefore
yR = 0.3% , gafter

yR = 1.9%.

Here, we have used real earnings growth, based on (34)

gyR = gy − βgq − (1 − α − β)gp. (53)

Notice that the ratio of the real earnings growth rate to the population growth rate

is roughly the same in the two regimes.

The fractions of population and capital employed in the Solow sector are

ηbefore = 55% , ηafter = 71%

κbefore = 95% , κafter = 98%.
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Finally, using equation (27) the interest rate in the two regimes is

ibefore = 1.4% , iafter = 8.0%.

Suffice it to say that the “after” values listed above (corresponding to the period

after the Industrial Revolution) look reasonable, but some of the values before the

Industrial Revolution are somewhat surprising. We note that before the Industrial

Revolution the growth rate of real earnings is nonzero (but small), the fraction of

labour and capital devoted to the Solow sector is high, and the interest rate is low.

These observations will be addressed in the Discussion section.

This is only one specific example. A crucial result of our numerical study however is

that for any set of realistic parameter values we find an order of magnitude jump in

growth rates as σ exceeds one. Moreover, the growth rates are nearly independent of

σ for σ < 1 and σ > 1. These results are consistent with the view that the Industrial

Revolution was a sudden event when placed against the backdrop of recorded history.

Even though innovation occurred over many centuries, the growth rates remained

small (and nearly constant) until a crucial piece of innovation pushed σ passed one.

In this sense, one can think of the Industrial Revolution as a phase transition.

5 Analytical Derivation of Growth Limits

In the previous simulation exercise, it was observed that there are clearly two

regimes, corresponding to before the Industrial Revolution and after the Industrial

Revolution, and that the growth rates of population and earnings appear to con-

verge to constant values in each regime. In this section, we derive analytic formulas

for the asymptotic growth rates in the two regimes. In what follows, we assume

constant growth rates of yt, pt, Kt, Nt, qt, AMt and ASt, represented by

yt ∼ egyt (54)

etc., thereby introducing new symbols gy, gp, gK , gN , gq , gAM
and gAS

.

Substituting these exponential time dependencies into our equations, we can obtain
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several relations that are independent of σt, and hence valid in both regimes σ < 1

and σ > 1. Balancing terms in (46), we see that

gy = gp. (55)

The above result is consistent with a constant population growth rate gN (see equa-

tion (33)). From (16), this result implies that

φgK = (1 − µ)gN . (56)

The same equation also yields

gy = θ(gK − gN ). (57)

Substituting (56) into (57) leads to

gy =
θ

φ
(1 − µ − φ)gN , (58)

implying that the ratio of the growth rate of nominal earnings to the growth rate

of population is the same before and after the Industrial Revolution.

We can now derive an expression relating the growth rate of real earnings to the

growth rate of population as follows. From (47) we have

gK = gy + gN − gq. (59)

This, when combined with (57), implies that

gq = −
1 − θ

θ
gy. (60)

Substituting this result along with (55) into (53), we obtain

gyR =

(

α +
β

θ

)

gy. (61)
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Combining the above result with (58), we finally find

gyR =
(1 − µ − φ)(αθ + β)

φ
gN . (62)

Hence, the ratio of the growth rate of real earnings to the growth rate of population

is the same before and after the Industrial Revolution, consistent with the simulation

results presented in Section 4.2.

Given the relationship between the real earnings growth and population growth, we

can now concentrate our attention on deriving expressions for gN before and after

the Industrial Revolution. Combining (60) and (58), we have

gN = −
φ

(1 − µ − φ)(1 − θ)
gq . (63)

So the task now is to determine gq (which must be negative).

Pulling ASt out of the bracket in (24), we obtain

qt =
1

ASt

{

(1 − γ)
1

1−ρ

(

ptASt

AMt

)−
ρ

1−ρ

+ γ
1

1−ρ

}−
1−ρ

ρ

. (64)

Let us define psm := ptASt

AMt
. The simulation exercise revealed that in the case σ < 1

(ρ < 0), where the Malthusian sector dominates, psm is larger than one but small.

When σ is small, ρ is large and negative, in which case the first term containing

psm in the curly brackets dominates over the second term and we have

qt ∼
pt

AMt

. (65)

Hence to determine the asymptotic growth rates before the Industrial Revolution,

we need to determine the difference in growth rates between pt and AMt.

After the Industrial Revolution when σ > 1 (0 < ρ < 1), where the Solow sector

dominates, psm approaches infinity. In that case, the second term in the curly
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brackets dominates over the first and we have

qt ∼
1

ASt

. (66)

So to determine the growth rates after the Industrial Revolution, we need only

determine gAS
.

We will now analyze the two regimes, starting with the second.

5.1 The Industrial Revolution: σ > 1

We have the setting described by Eq. (66), namely

gq = −gAS
. (67)

We now need to utilize Eq. (36), rewritten as

35gAS
= 35g0 + ξln

[

1 +
yt+1Nt+1x

∗
St+1/qt+1

∑

ti≤t ytiNtix
∗
Sti

/qti

]

, (68)

where we have introduced the factor of 35 since a time step corresponds to 35 years

and we wish to express all growth rates in annualized terms. The trick now is to

write the sum as a geometric series, which the sum approaches asymptotically

∑

ti≤t

ytiNtix
∗
Sti

/qti →
∑

ti≤t

e
35(gy+gN+gx∗

S
−gq)ti =

1 − e(...)(t+1)

1 − e(...)
, (69)

where the dots represent gy + gN + gx∗

S
− gq. Note that the initialization constants

cancel in the above expression. The logarithm simplifies dramatically as t → ∞ and

Eq. (68) becomes

gAS
= g0 + ξ(gy + gN + gx∗

S
− gq). (70)

From (26) we find that
x∗

St

qt

∼ (AStqt)
ρ

1−ρ → 1 (71)
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since the assumption was that qt ∼ 1/ASt. Hence, there is no ρ dependency and

gq = gx∗

S
. Accordingly, (70) simplifies to

gAS
= g0 + ξ(gy + gN ). (72)

Starting with (63) and (67), in (72) we can express gAS
in terms of gN and substitute

(58) for gy , yielding

gafter
N =

g0

1−µ−φ

φ
[1 − θ(1 + ξ)] − ξ

. (73)

The above formula gives a population growth rate that matches numerical results

very well, given sufficient simulation time. Analytical expressions for all other

growth rates, e.g. gyR, follow immediately by successive substitution into the previ-

ous equations.

5.2 Before the Industrial Revolution: σ < 1

The same type of analysis can now be applied to the Malthusian case

qt ∼
pt

AMt

. (74)

Similarly, we end up with

gAM
= g0 + ξ(gy + gN − gp), (75)

leading to

gbefore
N =

g0

1−(1+ξ)θ
φ

(1 − µ − φ) + (1 − ξ)(1 − θ − µ) + (1 + ξ)(1 − µ) θ−φ

φ
− ξ

. (76)

Again, it matches numerical results very well when enough time is allowed for the

system to evolve for constant small σ.
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5.3 Calibration of Parameters and Consistency Checks

The analytical expressions for the growth rates of population, real earnings, etc.

derived above can be used to calibrate the parameters of the model to historical

data. The purpose of this section is to show how the parameter values listed in

Table 1 were arrived at. Those values were used in the simulation study described

in Section 4.2. We then describe some further consistency checks that were carried

out, comparing model predictions to historical data.

We started by setting ξ = 1, which means that a percentage increase in a component

of capital (either Malthus or Solow) leads to the same percentage increase in the

embodied productivity of that component. The share of capital in the Solow sector,

θ = 0.4, was taken from Hansen & Prescott (2002), as was the share of labor in the

Malthus sector, µ = 0.6. We chose β = 0.2, corresponding to a savings rate of 20%

which resembles the U.S. rate (Jones, 2002). We then chose α = 0.5 in order to

equate the growth rates of nominal earnings and real earnings (see equation (61)).

Next, we assumed the following population growth rates

gbefore
N = 0.05%,

gafter
N = 0.5%.

The first number is close to the rate of growth of world population between 0 and

1700 based on data from Maddison (2007).9 The figure of 0.5% is in the middle of

the range of values for industrialized countries during the twentieth century.10

We calibrated φ and g0 to the population growth rates listed above. To obtain φ,

we divided Eq. (73) by (76) and set the ratio equal to ten. The only parameter

appearing in this expression that had not already been determined above was φ.

Solving, we obtained φ = 0.04, which is less than the value of 0.1% used by Hansen

9A simple computation using Maddison data gives a growth rate of 0.058%. A similar exercise
using world population data from Kremer (1993) over the period -10,000 BCE (after the start of
the Holocene) to 1700 gives a growth rate of 0.043%.

10Based on Maddison data. At the high end of the range we have the “Western Offshoots” (U.S.
Canada, Australia and New Zealand) which had growth rates above 1% per annum during the
twentieth century. However those rates were heavily influenced by immigration. At the low end of
the range we have Germany and the U.K., each with growth rates of about 0.36% per annum.
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& Prescott (2002). This result will be explored in the Discussion section. We then

used equation (73) to calibrate g0 based on the assumption that gafter
N = 0.5%,

resulting in g0 = 0.004. We then set gσ = 0.004 as well.

Lastly, γ = 0.5 was chosen arbitrarily. This parameter does not appear in any of

the formulas for growth rates.

These choices of parameters led to gafter
yR = 1.8% per year, which is close to the values

for the U.S. and Europe during the twentieth century.11 Recall that according to

the simulation results, the growth rate of real earnings was 1.9% after the Industrial

Revolution, which is higher than the theoretical asymptotic value of 1.8%. The

reason for this difference is that the simulated growth rate overshoots somewhat

and then slowly converges to the value of 1.8% (see Figure 3).

As a consistency check for the preindustrial epoch, we compared the model-predicted

asymptotic growth rates of real earnings and prices: gbefore
yR = gp = 0.18% (recall

equations (55), (58) and (62)) to historical data. Figure 4 shows population, real

per-capita income and the price of food in terms of non-food items (a proxy for pt)

for England covering the years 1270 to 1870.12 The challenge in comparing theory

to data is that the English economy was not on a steady-state growth path during

the late middle ages. The population suffered a heavy blow in the second half of

the fourteenth century due to plague and famine, and did not fully recover until the

mid-seventeenth century. Nevertheless the cumulative growth rate between 1270

and 1700 was 0.034% per annum, close to the value of 0.05% assumed above. The

growth rates of real income and prices between 1270 and 1700 are 0.17% and 0.13%

per annum, respectively, close to the model prediction.13

11According to Maddison data, the growth rate of real per-capita income during the twentieth
century was 1.9% for the U.S. and 1.88% for Western Europe. Note that we are using real empirical
GDP per capita as a proxy for earnings.

12Population and income data is based on the latest figures from Broadberry et al. (2010), who
are in the process of constructing comprehensive estimates based on output measures. The food
prices represent the terms of trade between agriculture and industry, and are courtesy of R. Allen.
A price series published by O’Brien (1985) shows similar trends between 1500 and 1830, but does
not cover the period prior to 1500.

13The close agreement between model and data should of course be treated with extreme caution.
The point of the above exercise is merely to show that the model is consistent with this particular
set of data. Notice that the price series does not keep up with real income growth after after 1700,
a point to be addressed in the Discussion section below.
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It should be noted that in the simulation exercise the growth rates had not yet

reached their asymptotic limits before the Industrial Revolution. If we allow the

growth rates to converge to their theoretical values before the Industrial Revolution

(e.g. by setting σ0 to a smaller value), the growth rates overshoot quite a bit after

the Industrial Revolution (see Figure 5).

6 Discussion

The model presented above is consistent with the historical fact that between 1800

and 1900 the rates of growth of population and real earnings increased markedly in

the western hemisphere (Maddison, 2007). We now proceed to examine the more

detailed implications of the model and to identify its shortcomings.

First, it is worth pointing out a theoretical limitation of the model. It has been

assumed that individual preferences are not influenced by the kind of factors that

have been used (for example) in the unified growth models of Galor & Weil (2000)

and Galor & Moav (2002). Human capital does not enter into the model, and

there is no tradeoff between quantity of children and quality of children. Hence

our model cannot account for a decline in fertility after the Industrial Revolution.

Our fertility model is “Malthusian” at all times. Despite this restriction, the fertility

model provides a mechanism by which real earnings could rise after industrialization

without a corresponding explosion in population. The presence of two sectors allows

for the taming of population growth because the consumption of manufactured goods

coincides with a rise in the cost of childrearing. One of the contributions of this

study, therefore, is to suggest that growth-theorists might simplify their models of

the demographic transition by introducing a second sector. For example, one could

add a human capital element to the present two-sector model.

One of the predictions of the present model is that the rate of growth of real earnings

in the preindustrial era was positive. A benefit of using a two-sector model is that

it allows for this possibility even when population dynamics is Malthusian. This

seemingly contradictory result can be understood by noting from equation (55)

that gy = gp, which implies that earnings growth is zero when measured in units
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of Malthusian output, but real earnings (which includes a component of industrial

consumption) can still be rising. Hence, we can square the assumption of Malthusian

population dynamics, which has much empirical support (Clark, 2007, Ashraf &

Galor, 2008), with our intuition that real income must have been rising (albeit

slowly) prior to industrialization. A citizen of England circa 1750, who had access

to reading glasses and was able to travel by sailing ship to distant lands, was surely

richer than a hunter-gatherer living 100,000 years ago.

In Section 5.3 it was mentioned that the predicted growth rate of food prices starts to

diverge from historical data after 1700. The model might be salvaged by accounting

for food imports during the process of industrialization, or by assuming that the

percentage of childrearing costs going to food purchases was declining over time,

e.g. there was a growing service sector. We have already seen hint that such an

extension may be necessary because the calibrated value of φ (the share of capital

in the Malthus sector) is lower than the value used by Hansen & Prescott (2002).

Since the Malthus sector is tied to childrearing, this observation suggests the need

for a third labor-intensive sector tied to childrearing.

In Section 4.2 it was observed that the simulated fraction of total population em-

ployed in the Solow sector prior to the Industrial Revolution seemed high (55%).

Allen (2000) estimates that only 26% of the English population was employed out-

side of agriculture in 1500. However as Weisdorf (2006) has pointed out, during

the preindustrial era agricultural workers spent a large fraction of their time pro-

ducing non-agricultural goods such as clothing. Hence the empirical estimate of

26% may not completely reflect the extent of labor allocated to industry. Prior to

industrialization, farming communities were largely self-sufficient. It was only af-

ter industrialization that farmers devoted their entire working hours to agricultural

production and traded their produce for manufactured goods.

The predicted fraction of capital employed in the Solow sector before the Industrial

Revolution (95%) seems very high, so this constitutes a strong prediction. However,

if the share of capital (θ) was lower in the preindustrial era than it is today, the

model predicts that the fraction of capital employed in the preindustrial Solow sector

would also be lower. Given that an increasing share of capital is a key requirement

of our model, it might be fruitful to explicitly model that dynamics. Also, if α was
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lower (less income spent on manufactured goods), the fraction of capital employed

in the Solow sector would again be lower.

Section 4.2 also reported that the predicted interest rate rises from 1.4% to 8.0%

over the course of the Industrial Revolution. The direction of this prediction is

counterfactual (Clark, 2007) but is consistent with Hansen & Prescott (2002). A

small modification of the model suffices to reverse this result: the parameter β can

be made an increasing function of time (increasing savings rate). This modification

has no effect on the growth rates of Nt or yt but affects the path of real earnings.

The main characteristic of the model presented in this paper is that there are simul-

taneous sharp increases in the growth rates of population and real earnings when

EoS surpasses the value of one. This prediction is consistent with the accepted view

of historians that there were simultaneous agricultural and industrial revolutions in

England in the late eighteenth and early nineteenth centuries. The model predicts

an Industrial Revolution when EoS surpasses the value of one because the industrial

sector is released from the constraints of agriculture. This is the theme of Wrigley’s

narrative of industrialization (Wrigley, 1988, 2010), his archetypical example being

the replacement of horses with steam engines. What is less obvious from a histor-

ical point of view is how this event, EoS = 1, might have lead to an agricultural

revolution.

The model predicts that when EoS surpasses one, the capital goods used in the

Malthus sector (agriculture) are increasingly built out of Solow output. The best

way to test this prediction is to look for historical links between agricultural im-

provements and industry. Adam Smith observed that agriculture tended to flourish

in regions located near large towns and cities, and offered three possible explana-

tions for that link.14 First, he believed that towns spurred agricultural improve-

ment because the demand for food was higher near towns than elsewhere. Second,

he believed that towns and cities introduced good governance into the surrounding

country. Third, he believed that urban merchants invested their wealth into the

country because they saw opportunities that were not apparent to the country gen-

14Chapter IV, “How the Commerce of the Towns Contributed to the Improvement of the Coun-
try”, Smith (1776). Jacobs (1970) postulated that cities came before agriculture and that cities
have always been strong drivers of agricultural growth.
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tlemen. Smith did not detail the forms that these investment might have taken,

but one possibility is that urban capitalists were introducing capital goods into the

countryside.

One example where manufacturing had a positive impact on agriculture during

the eighteenth century was in the provisioning of plows (Brunt, 2003). Plowshares

made of iron had about twice the efficiency of the older wooden plowshares (Sieferle,

2001), and were supplied by blacksmiths working in the neighboring towns. Brunt

(1997) has conducted a cross-sectional study of wheat yields in the late eighteenth

century, looking to uncover significant drivers of productivity. He has found that

the two most significant improvement factors, both of which were forms of capital

investment, were the planting of turnips the use of seed drills. Turnips assisted in

the provisioning of humus to the soil, and can be thought of as a purely agricultural

innovation. Seed drills were a manufactured product that allowed for more efficient

weeding. Other factors of importance were also linked to industry: fertilizers such as

marl and lime, and the use of drainage pipes. Marl and lime had to be transported

from distant locations and so benefited from the development of the canal and

railway networks (Mathew, 1993). Regarding drainage pipes, Brunt notes that their

cost declined in the nineteenth century, leading to a large increase in use. This is

a good example of a reduction in the cost of Solow output (higher pt) leading to

higher levels of capital. Taking a longer point of view, agriculture experienced huge

increases in productivity in the twentieth century after the introduction of tractors,

pesticides and industrial fertilizers.

Finally we should note that the model presented in this paper includes some restric-

tive assumptions that could be loosened. For example, the exogenous growth rates

are assumed to be the same in the Malthus and Solow sectors. However there may

be good historical reasons to believe that innovation occurred faster for manufac-

tured goods than for agricultural goods. The workings of manufactured items might

well have been understood by our ancestors, but the inner workings of agricultural

goods such as horses were undoubtedly a complete mystery (physics came before

biology). The learning-by-doing spillover parameter could also be made higher in

the Solow sector than in the Malthus sector to reflect the tendency of industry to be

located in densely populated towns and cities. The growth of EoS could be made
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endogenous by linking it to capital investment.

7 Conclusion

This paper has described a unified growth model based on Wrigley’s thesis that a

key enabler of the Industrial Revolution was a shift in the source of raw materials

from agriculture to industry (Wrigley, 1988, 2010).

The main contributions of the paper are as follows. First, we have demonstrated

the benefit of working with two sectors in developing a unified demographic model.

Second, we have shown that Arrow’s learning-by-doing model allows one to link an

increase in the growth rate of productivity to an increase in the share of capital. Fi-

nally, we have proposed that the elasticity of substitution between industrial output

and agricultural output was slowly rising over history, and that once it reached the

critical value of one there were simultaneous agricultural and industrial revolutions.

The study has suggested several directions for future investigation. It would be

fruitful to extend the model to include human capital and to include a service sector

tied to childrearing in order to better capture the changing demographic patterns

after the Industrial Revolution. As well, changes in the elasticity of substitution

could be linked to investment decisions. Lastly, given the fact that the most im-

portant examples of substitution during the Industrial Revolution were related to

energy use and conversion, future empirical work should include an explicit energy

component.
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Parameter Value
g0 0.004
gσ 0.004
α 0.5
β 0.2 (Jones, 2002)
γ 0.5
µ 0.6 (Hansen & Prescott, 2002)
φ 0.04
σ0 0.01
θ 0.4 (Hansen & Prescott, 2002)
ξ 1.0

Table 1: Parameters used in the simulation exercise.
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Figure 1: The elasticity of substitution, σ, grows exponentially with time, starting at

σ0 = 0.01 and ending at σ ≫ 1. It surpasses the value of one at t = 1155 years.
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Figure 2: Population and real income as a function of time, normalized by their respective

values at t = 0. At t = 1155, equal to 33 time steps, σ passes one. Around this point in
time, we can clearly observe a transition in dynamics between the two growth regimes.
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Figure 3: Growth rates of population and real income versus time. After a rapid initial
adjustment (t < 200) when the full growth model is switched on at t = 0, the population

growth rate is nearly constant while the growth rate of real income converges from above to
a constant value. However, as σ approaches one and eventually passes through one, these
small growth rates change by an order of magnitude. This transition occurs within about

four to five generations, equivalent to 150 years.
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Figure 4: Population, real per-capita income and the relative price of food (a proxy for
pt) for England, 1270-1879. Population and income data is from Broadberry et al. (2010).

Food prices are in terms of non-food items (e.g. manufactured goods) and are courtesy of
Robert Allen (Oxford University; personal communication). All series are normalized to

the value of one in the year 1270.
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Figure 5: Growth rates of population and real income versus time when the rates are

allowed to reach their asymptotic values before the Industrial Revolution. The horizontal
lines correspond to the theoretical long-term growth rates based on equations (62) and (73).
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