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Learning backward induction: a neural network agent approach

Leonidas Spiliopoulos

Abstract

This paper addresses the question of whether neural networks (NNs), a realistic cognitive model of human information

processing, can learn to backward induce in a two-stage game with a unique subgame-perfect Nash equilibrium.

The NNs were found to predict the Nash equilibrium approximately 70% of the time in new games. Similarly to

humans, the neural network agents are also found to suffer from subgame and truncation inconsistency, supporting

the contention that they are appropriate models of general learning in humans. The agents were found to behave in a

bounded rational manner as a result of the endogenous emergence of decision heuristics. In particular a very simple

heuristic socialmax, that chooses the cell with the highest social payoff explains their behavior approximately 60%

of the time, whereas the ownmax heuristic that simply chooses the cell with the maximum payoff for that agent fares

worse explaining behavior roughly 38%, albeit still significantly better than chance. These two heuristics were found

to be ecologically valid for the backward induction problem as they predicted the Nash equilibrium in 67% and 50%

of the games respectively. Compared to various standard classification algorithms, the NNs were found to be only

slightly more accurate than standard discriminant analyses. However, the latter do not model the dynamic learning

process and have an ad hoc postulated functional form. In contrast, a NN agent’s behavior evolves with experience

and is capable of taking on any functional form according to the universal approximation theorem.

Key words: Agent based computational economics; Backward induction; Learning models; Behavioral game theory;

Simulations; Complex adaptive systems; Artificial intelligence; Neural networks

1. Introduction

This paper investigates the potential of neural networks to learn the sophisticated concept of backward induction.

This is of particular interest as failures of backward induction reasoning in humans have been documented in many

papers e.g. Binmore et al. (2002) and Johnson et al. (2002). Neural networks in conjunction with a backpropagation

learning algorithm were chosen to model the learning agents as they are considered to be the most biologically plau-

sible cognitive model of parallel information processing, approximating real neuronal adaptation in the human mind

(Robinson, 2000; Zipser & Andersen, 1988; Mazzoni et al., 1991; Kettner et al., 1993; Lehky & Sejnowski, 1988;

Dror & Gallogly, 1999).

The universal approximation theorem (Hornik, 1991; Cybenko, 1989; Funahashi, 1989) states that given a large

enough finite number of neurons a single layer neural network (NN) is a universal function approximator i.e. it will be

able to approximate any function, with any desired level of accuracy. Modeling agents as neural networks evades the

problem of ad hoc specification of the exact functional form of the learning model. Instead, they evolve endogenously

according to the backpropagation algorithm that adjusts the neural networks’ parameters in the direction of error

minimization starting from an initial non-informative random state. However, as the backpropagation algorithm is a

gradient descent approach it is possible for it to become mired in a local rather than global optimum, so that the NN

agents will likely eventually learn to behave in a bounded-rational manner as is observed in human behavior.

The closest paper to this line of research is Sgroi & Zizzo (2007) who employed neural networks in an effort to

examine whether they can learn to play the Nash equilibrium in 3×3 strategy games with a unique pure strategy Nash



Table 1: Game matrix
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equilibrium, and to observe how closely correlated these agents’ behavior was to humans’. Spiliopoulos (2009) has

extended their work by examining neural network agents learning to play all possible strategic types of 3×3 games.

Another paper (Cho & Sargent, 1996) incorporating neural networks in game theory uses perceptrons, or simple NNs,

as a way of modeling bounded rational behavior in repeated situations, such as a repeated prisoner’s dilemma.1

2. Methodology

2.1. Game sampling

The class of games studied in this paper involve two players and two stages, each with a 2× 2 action space and

a unique subgame-perfect Nash Equilibrium, as shown in Table 1. Each payoff is drawn randomly from a uniform

distribution with support from 0 to 100. For each stage s, Player 1 has available actions up and down, denoted by

us and ds and Player 2 actions left, ls, and right, rs. If in the first stage the players choose d1 and r1 then the game

proceeds to the second stage.

2.2. Introduction to neural networks

A detailed technical diagram of the topology of the feedforward neural networks employed in this study is given

in Figure 1. The first layer (leftmost in the diagram) is the input layer and each input neuron is denoted by pr where

r = 1, ...,R, and each pr neuron inputs the payoff for a specific player for each cell of the game. The second layer2,

referred to as the hidden layer, consists of S neurons, each of which is connected to all the input neurons, resulting in a

total of R ·S connections between the first and second layers. Each connection is associated with a weight, w
2,1
s,r , with

s,r denoting a connection from the rth neuron to the sth neuron and where the superscript 2,1 represents that these

weights are between the first and second layers of the NN. The activation of each neuron in the second layer, i2s , is the

summation of the product of the inputs and their corresponding weights plus a constant or bias, b2
s i.e. for each of S

neurons in the second or hidden layer:

i2s = b2
s +

R

∑
r=1

w2,1
r,s · pr (1)

These inputs are now passed through a non-linear function, f1(is) = 2 · (1 + e−2i2s )−1 − 1 , in this particular case the

hyperbolic tangent sigmoid (or tansig) function, which maps values from −∞ to +∞ to the interval (−1,1). The

resulting outputs, as, are passed to the the final or output layer which is comprised of T neurons. Each neuron in

the output layer is associated with a single cell in the payoff matrix and the output value represents the strength with

which the NN associates that cell with the Nash equilibrium. Again each neuron in the output layer is connected

to every neuron in the second layer with connection weights, w
3,2
s,t . The input to each t neuron is the summation of

product of the outputs, as, and the corresponding weights, w
3,2
s,t plus a bias b3

t :

1They show that even the simplest NN, a single perceptron, is capable of implementing trigger strategies in a repeated prisoner’s dilemma

game and of supporting all subgame perfect payoffs. They also prove that only a slightly more complicated network is capable of supporting all

equilibrium payoffs in a general 2×2 game.
2For simplicity, the network presented has only one hidden layer however some of the NNs in this paper will employ more than one hidden

layer, each with identical structural and functional properties.
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Figure 1: Detailed structure and topology of feedforward neural networks
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These inputs are transformed by the transfer function of the output layer neurons which in this case is simply a

linear function f2, such that the final outputs of the NN are defined by yt = f2(i
3
t ) = i3t .

In processing the data, information flows forwards through the neural network, from left to right in the diagram,

whereas by contrast the standard learning mechanism of a NN implicitly uses a backward flowing system, as exem-

plified by its name, the backpropagation rule. After making a decision the NN compares the values of the neurons at

the output layer to the desired values and makes adjustments to all the connection weights in such a way that would

reduce the error of the NN. The backpropagation learning rule uses the chain rule to assign the contribution of each

neuron to the observed error, from which it is then possible to extract the necessary information regarding how to

change each connection weight in order to reduce the overall error. Each connection weight is changed according to

a gradient descent method with the intent that the network successively approaches a state where the error function

attains a minimum. However, this algorithm is not immune to the possibility of settling on a local rather than global

minimum. A detailed mathematical presentation of the backpropagation algorithm is given in Appendix A.

2.3. Simulations, models and heuristics

Four different agent simulations were run using standard feedforward neural networks of different topologies,

denoted by νl where l is the number of hidden layers. For each simulation, ten different networks of the same topology

were trained with different initial weights, emulating players with different initial, random weights. This will allow

the examination of how important prior knowledge may be to the learning process and whether different types of

players emerge in the simulation. Although the number of hidden layers of the NNs is varied across simulations, the
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number of neurons in each hidden layer is always ten.3 The input layers of the NNs consist of 14 neurons, with each

neuron entering each player’s payoffs from each cell in the game matrices. The output layer consisted of 7 linear

transfer function neurons each one representing a cell in the payoff matrices and the desired output was simply a

7-tuple vector with values of one for the cells which were the NE and zero otherwise.4 The final payoff cell chosen

by a network was assumed to be the one whose corresponding output neuron had the maximum value compared to

the rest.

All the NN agents learned via a batch backpropagation algorithm incorporating an adaptive learning rate param-

eter . One generation of learning, or batch, consisted of the presentation of 1000 different games, and the training

process was terminated when the cross-validation MSE of the network’s output did not improve for 100 consecutive

generations. Cross validation was employed as an early stopping procedure to avoid overfitting and provide an upper

bound for neural network performance. All testing was done on sets of 2500 out of sample games in order to test the

networks’ ability to generalize.

To provide benchmarks against which to compare the NNs generalizing ability, six other standard classification

algorithms will be estimated from the data and the performance of two simple heuristics will also be investigated. The

classification algorithms are the linear, quadratic, logistic and canonical linear discriminant analyses (DA), nearest

neighbor, and a classification tree, all of which were implemented in Stata 10 except for the latter which was estimated

in Matlab.

Two simple heuristics that make unique predictions for the whole set of games are simply choosing the cell with

the maximum own payoff ownmax, and a heuristic that picks the cell with the maximum social payoff, socialmax.

2.4. Performance testing

The networks’ performances were documented for four different test sets as presented in Table 2. The complete

test set is comprised of new games of exactly the same structure as the ones presented during the training session.

Three other test sets that will be used are inspired by Harsanyi & Selten (1988) and their proof that subgame perfec-

tion in finite games with perfect information is equivalent to compliance with three principles, rationality, subgame

consistency and truncation consistency. Subgame consistency states that a player’s behavior in a subgame does not

depend on the position of the subgame within the encompassing game. Truncation consistency occurs if replacing a

subgame with its equilibrium payoff does not alter players’ behavior anywhere else in the game.

The truncated set was created by keeping the first stage of the games in the complete set as is, but replacing one

of the cells in the second stage with the Nash equilibrium of that stage, whilst setting all other payoffs to zero. The

truncated/last stage set simply moved all the non-zero payoffs from the truncated set games to the final stage of the

game, whilst all payoffs in the first stage were set to zero. The last stage dataset is created by taking the second stage

of the complete test set games and setting all payoffs in the first stage equal to zero, thereby testing whether the NN

agents learned to solve for the Nash equilibrium of the second stage game, a necessary subgoal to successfully apply

backward induction.

3. Results

3.1. Comparison of NN topologies

Table 2 highlights some of the main results from the analyses of the various neural network agents, where the

data is derived from by the performance of the ten trained neural networks in each simulation. This aggregation is

justified by the finding in Section 3.5 that the NNs behave very similarly after training implying little impact of the

initial weights.

Comparing the results between the various neural network topologies the success rate on the training set was high

ranging from 80-90%. Also, there do not exist significant differences in the mean performance on all the test sets,

as they range from 74% for the ν1 and ν2 networks to 70% for ν5. As the number of layers used in the feedforward

networks increases performance on the training set also increases as expected, however performance on the tests sets

3Simulations of neural networks with more neurons were at best not found to significantly improve performance, and often degraded perfor-

mance due to overfitting.
4Note that this is a stricter prediction criterion than asking the neural network to simply play the NE strategy.
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Table 2: Neural network performance at predicting NE

Out of sample test sets

Training set Complete Truncated Truncated/last stage Last stage Mean of test sets

Feedforward ν1 80 71 76 73 74 74

Feedforward ν2 87 72 77 72 75 74

Feedforward ν3 88 74 71 73 75 73

Feedforward ν5 90 73 67 69 71 70

Linear DA 74 72 73 71 72 72

Quadratic DA 72 78 56 71 76 70

Logistic DA 74 73 70 74 75 73

Nearest neighbor 60 54 48 57 56 54

Canonical LDA 74 72 73 71 72 72

Classification tree 85 56 68 32 35 48

socialmax - 61 70 70 66 67

ownmax - 40 54 54 51 50

is decreasing. This implies that using more than one hidden layer is not necessary and only leads to overfitting to the

training sample. Given the close performance of all the neural networks in conjunction with the fact that the ν1 agents

have significantly fewer parameters, all discussion henceforth will refer only to this network topology for the sake of

brevity.

3.2. Comparison of NNs to standard classification algorithms and heuristics

Comparison of the ν1 agents’ performance and the standard classification algorithms reveals that the NNs were

the most successful in the out of sample test sets, as would be expected given their flexibility. Upon closer inspec-

tion however, four of the classification algorithms had near identical performance, the linear, quadratic, logistic and

canonical discriminant analyses. The most intriguing result is that the linear DA performed very well compared to

the other discriminant analyses, demonstrating that non-linearity was not important. The worst performers were the

classification tree and the nearest neighbor algorithm, whose performance was significantly lower than that of the

other models.

Focusing attention on the two simple heuristics, the results are particularly impressive given their simplicity.

Most striking is the performance of the socialmax heuristic which correctly performs predicts the Nash equilibrium

in 67% of all the test set games, compared to 74% for the sophisticated ν1 neural networks. The greedy ownmax

heuristic which completely ignored opponents’ payoffs still performed relatively well given its simplicity and low

information requirements, with a mean test set performance of 50%. These results imply that the socialmax heuristic

is ecologically valid for this type of problem. The intuition behind its excellent performance is that the higher the

payoff of an action the more likely it is to be the Nash equilibrium action for a player, therefore choosing the cell with

maximum social payoffs very often coincides with the Nash equilibrium. This result agrees with the conclusions of

research on fast and frugal heuristics (Gigerenzer, 2000; Gigerenzer & Selten, 2001), specifically that ecologically

valid heuristics can perform as well or even better than significantly more sophisticated models of behavior.

Although the success of the socialmax heuristic in predicting the NE is high, this does not necessarily imply that

this heuristic is a good approximator of the NNs’ behavior. The two lower time series in Figure 2 graph the percentage

of games for which the NN agents and the two heuristics make the same predictions as a function of the elapsed

generations of learning experience of the agents. The socialmax heuristic is a much more accurate approximator of

the NN agents play as it correctly predicts their behavior at a limiting value of 60%, compared to just under 40% for

the ownmax heuristic.

This result is of great importance because if it had arisen in an experimental study, then it would be tempting

to attribute altruistic behavior to the players as they seem to care not only about their own payoffs but also those of

their opponents. This conclusion however would be erroneous as there exist no altruistic incentives in the learning

mechanism of the neural networks employed in this study. This highlights the danger of attributing specific types of
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Figure 2: Agreement between NN behavior and various other times series

0 500 1000 1500 2000 2500
10

20

30

40

50

60

70

80

Number of elapsed generations

%
 a

g
re

em
en

t

 

 

% agreement between NNs and Nash equilibrium

% agreement between NNs and ownmax heuristic

% agreement between NNs and socialmax heuristic 

behavior to experimental subjects only on the basis of their observable actions. In this case, it is the ecological validity

of the socialmax heuristic which induces it to endogenously emerge in the NN agents’ behavior. The possibility that

the ecological validity of certain types of behavior have been misattributed to built-in incentives or motives of agents

has not been addressed adequately in the literature, and is a distinction that deserves further attention.

Finally, it should be noted that a significant methodological advantage of modeling agents as neural networks

instead of the classification algorithms or heuristics, is that they explicitly model the learning process increasing their

plausibility and realism, whereas the latter remain silent with regards the dynamic learning process.

3.3. Detailed analysis of ν1 agents’ performance

The ν1 agents predict the Nash equilibrium for 71% of the games in the complete test set. The evolution of the

agents’ mean performance on all the test sets is shown in Figure 2. Learning at the beginning of the training phase is

initially very fast but progressively slows down as the NNs’ experience increases, culminating in a final performance

above 70%. The performance for the truncated game set rises to 76%, as a result of directly providing the Nash

equilibrium of the second stage. This implies that the NNs have not perfectly learned to solve for the second stage

NE, otherwise there should be no discernible change in performance. This is further validated by the performance on

the last stage test set which directly examines the degree to which the NNs are capable of solving for the NE of the

second stage. The performance of 74% on this test set although quite good confirms that the NNs have not managed

to perfectly learn the importance of backward induction.

Finally, it is interesting to note that the NNs performed almost equally well both on the complete test set and

the last stage test set. Hence, the decision rules that have endogenously emerged in the NNs are equally capable of

predicting the NE both in games with a single stage not requiring backward induction, as well as two-stage games

requiring it, as long as the games exhibit a unique pure strategy Nash equilibrium.

3.4. Subgame and truncation consistency

Experimental tests of subgame and truncated consistency in Binmore et al. (2002) reveal that human subjects

often violate these principles. Subgame consistency is tested in this paper by comparing the agents’ behavior in
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Table 3: Compliance with notions of subgame and truncation consistency as % of NN agents’ actions

Subgame Truncation

Feedforward ν1 69.24 76.84

Table 4: Percentage agreement between different ν1 NN agents

Complete Truncated Truncated/last stage Last stage

Average 86.76 89.53 85.96 87.15

Minimum 83.2 84.72 71.08 75.76

Maximum 90.64 95.28 92.96 93.36

the truncated and truncated/last stage test sets. As documented in Table 3, the NNs’ behavior is compatible with

subgame consistency only 69% of the time, indicating that similarly to humans these agents also violate this principle.

Truncation inconsistency was also found as comparing the complete set with the truncated test set led the NN agents

to change their behavior in roughly 23% of the games.

It should be noted that by construct the socialmax and ownmax heuristics do not suffer from subgame inconsis-

tency, however they are vulnerable to truncation inconsistency. Therefore despite the appeal of the socialmax heuristic

as exhibited by its ability to approximate the NNs quite well, it does not capture the truncation inconsistency that is

found both in humans and the NN agents.

In conclusion, the evidence supports that the NN agents exhibit the same inconsistencies that experimental subjects

do, increasing their credibility as realistic learning models of human behavior.

3.5. Agent heterogeneity

The ten NN agents were trained starting from different initial values, therefore an examination into the heterogene-

ity of their behavior after training is warranted. One possibility is that each NN may have evolved into a different type

of player as a result of these different initial conditions. However the longer the training phase the less should be the

dependence upon the initial conditions, unless the NNs have converged on significantly different local minima. Table

4 shows the percentage agreement of all possible pairwise comparison between the ten NNs for each of the test sets.

For all the test sets the average agreement is high, ranging from 85.96% to 89.53%, and the maximum and minimum

values of agreement are quite tightly distributed around this mean. In conclusion, the NN agents have evolved very

similarly despite different initial conditions and show relatively little between-agents heterogeneity.

4. Conclusion

This paper has shown that applying backward induction to solve for the subgame perfect NE in two-stage games

is not trivial even for the processing capabilities of a neural network. Although perfect performance is theoretically

possible the NNs were found to behave in a bounded rational way in agreement with documented human behavior,

likely the result of the gradient descent backpropagation method settling in a local rather than global optimum. Despite

this, the neural networks performed quite well predicting the Nash equilibrium of new games roughly 71% of the time.

Also, the NNs and experimental subjects both exhibited the same violations of backward induction, namely that of

truncation and subgame consistency.

The evolved behavior of the NNs appears to have great portability and robustness as it is capable of predicting

equally well in environments where backward induction is not necessary i.e. single stage games, as long as the games

have a unique pure strategy Nash equilibrium.

The socialmax heuristic that predicted the Nash equilibrium as the cell with the highest social payoff was found to

be ecologically valid for games with a single pure strategy Nash equilibrium, as it was correct in 67% of all test games.

This heuristic also explained the behavior of the NN agents quite well as it made the same prediction approximately

60% of the time.

The NN agents were found to perform slightly better than other classification techniques such as linear discrimi-

nant analysis in recognizing the Nash equilibrium. However, the former are preferable on two grounds. Firstly, they
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model the complete dynamic learning process using a plausible cognitive model of information processing of the

human mind. Secondly, the exact functional form of the agents’ behavior emerges endogenously as a consequence of

the learning procedure rather than being postulated ad hoc.

Concluding, the neural network agents were proven to be valuable learning models as their behavior was qualita-

tively very similar to human behavior, whilst also being more biologically plausible than other models.
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A. Technical presentation of the NN backpropagation algorithm

Knowledge is stored in NNs by the weights and biases of all the neurons, which is why it is referred to as distributed

knowledge since it is not localized in any specific region of the NN structure. Hence, learning in a NN is accomplished

through the updating of the weights and biases after presentation of each set of inputs, in this case each game’s payoff

matrix. In supervised learning, for each game g and each set of inputs, P = {p1,g, ..., pR,g}, there exists a set of ideal

outputs, Z = {z1,g, ...,zT,g}, denoting whether the corresponding cell is the Nash equilibrium or not. The desired

output corresponding to the cell which is the Nash equilibrium is encoded with a value of 1, or 0 otherwise.

In the case of batch training which is used in this paper, all the 1000 training games are presented in a single batch

to the neural network and the mean square error over all games, E, is computed according to:

E =
1

2
·

G

∑
g=1

(
T

∑
t=1

(zt,g − yt,g)
2) (3)

The neural network weights will then be adjusted as explained below, after which another batch (with exactly the

same inputs as the previous batch) will be presented to the NN. This process is repeated until the cross validation

criterion is met and training ends. The most common learning algorithm used in training NNs is the backpropagation

algorithm which uses a gradient descent technique. After the presentation of each set of inputs the weights are changed

according to the following equation:

�w·,·
·,· = −η

∂E

∂w
·,·
·,·

(4)
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This is a gradient descent technique as the updating of the weights depends on the negative of the gradient of

the error function and on its magnitude, where η is referred to as the step size (or learning rate) that governs the

magnitude of the change in the weights. Hence, weights will be changed in the direction which reduces the error, E,

and the magnitude of the change will also be related to the sensitivity of the error function to small changes in the

weight. In standard backpropagation η is a constant, whereas backpropagation with an adaptive learning parameter

scales η upwards if the mean square error E decreased in the previous batch presentation or scaled downwards if E

increased. The necessary algebra to derive ∂E/∂w for both output layer and hidden layer neurons is presented below.

In more detail, for weights in the output layer, using the chain rule leads to the following derivation:

∂E

∂w
3,2
s,t

=
G

∑
g=1

∂E

∂yt,g

∂yt,g

∂ i3t

∂ i3t

∂w
3,2
s,t

(5)

However, from equation 2 it is clear that:

∂ i3t

∂w
3,2
s,t

= as (6)

and from equation 3:

∂E

∂yt,g
= (yt,g − zt,g) (7)

Substituting these equations into equation 5 and recognizing that for a linear transfer function f
�

2(i
3
t ) = 1 results

in:

∂E

∂w
3,2
s,t

=
G

∑
g=1

(yt,g − zt,g)as (8)

The necessary calculations for weights in hidden layers is more involved as the desired output of such neurons is

not immediately available as is the case for output layer neurons. Using the chain rule, the analog to equation 5 for a

hidden layer neuron is:

∂E

∂w
2,1
s,r

=
G

∑
g=1

T

∑
t=1

∂E

∂yt,g

∂yt,g

∂as

∂as

∂w
2,1
s,r

(9)

This equation now has a summation of terms over t since hidden layer weights can affect the error of the NN

through all the output layer neurons due to the propagation of the effect of w
2,1
s,r through the interconnections between

the sth neuron and all T neurons in the output layer. The derivative of the output of the sth neuron with respect to the

weight under investigation is given by:

∂as

∂w
2,1
s,r

= pr f
�

1(i
2
s ) (10)

The derivative of the error function w.r.t. the output of each final layer neuron, ∂E/∂yt,g, is still given by equation 7.

Finally, the derivatives of the output of each final layer neuron w.r.t. the output of each hidden layer neuron are given

by:

∂yt,g

∂as

= w
3,2
t,s f

�

2(i
3
t ) (11)

In conclusion, substituting equations 10, 7, 11 and f
�

2(i
3
t ) = 1 into equation 9 leads to the following equation:

∂E

∂w
2,1
s,r

=
G

∑
g=1

T

∑
t=1

pr f
�

1(i
2
s )(yt,g − zt,g)w

3,2
t,s (12)
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