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Abstract

Experimental evidence suggest that people only use a few iterations of strategic reasoning, and
that some people systematically use less iterations than others. In this paper, we present a novel
evolutionary foundation for these stylized facts. In our model, agents interact in a finitely repeated
Prisoner’s Dilemma, and each agent is characterized by the number of steps he thinks ahead. When
two agents interact, each of them has an independent probability to observe the opponent’s type.
We show that if this probability is not too close to 0 or 1, then the evolutionary process admits a
unique stable outcome, in which the population includes a mixture of “naive” agents who think 1

step ahead, and “moderately-sophisticated” agents who think up to 3 steps ahead.

Keywords: Indirect evolution, evolutionary stability, cognitive hierarchy, bounded forward-looking,
Prisoner’s Dilemma, Cooperation. JEL Classification: C73, D03.

1 Introduction

Experimental evidence suggest that in new strategic interactions most people only use a few
iterations of strategic reasoning. This stylized fact is observed in different forms in various
contexts. First, when playing long finite games, people only look a few stages ahead and
use backward induction reasoning to a limited extent. For example, players usually defect
only at the last couple of stages when playing finitely-repeated Prisoner’s Dilemma, (see, e.g.,
Selten and Stoecker (1986)) and “Centipede” games (McKelvey and Palfrey (1995); Nagel and

*I would also like to express my deep gratitude to Itai Arieli, Vince Crawford, Ariel Rubinstein, Peyton
Young, and seminar participants at University of Birmingham, University of Oxford and University College
London, for many useful comments, discussions and ideas.



1 Introduction 2

Tang (1998)), and when interacting in sequential bargaining, players ignore future bargaining
opportunities that are more than 1-2 steps ahead (Neelin, Sonnenschein, and Spiegel (1988);
Johnson, Camerer, Sen, and Rymon (2002)). Second, when facing iteratively dominated
strategies, almost everyone make the first iteration (not playing a dominated action), many
do the second iteration - assume that their opponent does not play dominated strategies, a few
make the third iteration, and further iterations are rare (see, e.g., Costa-Gomes, Crawford,
and Broseta (2001); Rapoport and Amaldoss (2004); Costa-Gomes and Crawford (2006)).
Third, according to the models of cognitive hierarchy (or level-k), most players best respond
to a belief that others use at most two iterations of strategic reasoning (see, e.g., Stahl and
Wilson (1994); Nagel (1995); Ho, Camerer, and Weigelt (1998); Bosch-Domenech, Montalvo,
Nagel, and Satorra (2002); Camerer, Ho, and Chong (2004); Crawford and Iriberri (2007)).

A second stylized fact is the heterogeneity of the population: some people systemically
use less iterations than others (Chong, Camerer, and Ho (2005); Costa-Gomes and Crawford
(2006); Hyndman, Terracol, and Vaksmann (2012)). These observations raise two related
evolutionary puzzles. The first puzzle is why people only use few steps. Experimental evi-
dence suggest that using more iterations is only unintuitive but not computationally complex
(at-least in simple games): with appropriate guidance and feedback players can learn to use
many iterations in a given game (Crawford (2008); Camerer (2003, Section 5.3.5)). In many
games, being able to do one more step than the opponent gives a substantial advantage.
As the cognitive cost of an additional level is moderate, it is puzzling why there was not an
“arms race” in which people learn to use more strategic iterations throughout the evolutionary
process (“red queen effect”, see Robson (2003)).

The second puzzle is how the “naive” people, who systematically use less iterations than
the more “sophisticated” agents, survived the evolutionary process. At first glance, it seems
that sophisticated agents would outperform naive agents due to the benefit of thinking one
level ahead. In this paper we present an evolutionary model that explains both puzzles and
yields a unique sharp prediction: an heterogeneous population of naive agents and moderately-
sophisticated agents, in which everyone uses only 1-3 strategic iterations. Our model focuses
on bounded forward-looking in repeated Prisoner’s Dilemma. We believe that it can also
shed light on other forms of bounded iterative reasoning.

Following the “indirect evolutionary approach” (Giith and Yaari (1992)) we present a
reduced-form static analysis for a dynamic process that describes the evolution of types in

a large population of agents.! This process can be interpreted in two different ways: (1)

! The indirect approach was mainly used to study evolution of preferences, and it is related the literature
on strategic delegation (e.g., Fershtman, Judd, and Kalai (1991)). Following, Stahl (1993); Stennek (2000);
Frenkel, Heller, and Teper (2012), we apply it to analyze evolution of cognitive biases.
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Tab. 1: Payoff at the symmetric stage game Prisoner’s Dilemma (A > 3.15).

biological process - types are genetically determined, and the payoff is the expected number
of offspring, and (2) learning and imitation process - an agent’s type describes the way he
perceives strategic interactions; once in a while an agent may decide to change his strategic
framework and imitate another person’s type, if the other person is more successful.

At each generation the agents in the population are randomly matched and each couple
plays M times (without rematching) the symmetric stage game of the Prisoner’s Dilemma
with the payoffs given in Table 1:2 mutual cooperation (both players play C) yields both
players A > 3.15, mutual defection (both players play D) gives 1, and if a single player
defects, he obtains A + 1 and his opponent gets 0. Note that the parameter A is the ratio
between what can be gained by mutual cooperation to the additional payoff that is obtained
by defecting.?

Each agent in our model has a type (level) in the set {Li, ..., L)/} that determines how
many steps he looks ahead. An agent of type L looks k steps ahead in his strategic reasoning.
When the horizon (the number of remaining stages) is larger than k the agent must follow a
simple heuristic. We assume that this heuristic must satisfy two properties: (1) “nice” (never
be the first player to defect), and (2) “retaliating” - defect if the opponent defected in the
previous stage. Two examples for such heuristics are “grim” and “tit-for-tat”.* When the
horizon is equal to k, the agent begins to play strategically and he may choose any action.
We interpret L’s behavior to stem from bounded forward-looking: when the horizon is larger
than k, he subjectively perceives it to be infinite, and he does not take into account the fact
that the interaction has a well-defined final period, and that this final period has strategic
implications. One can also consider our model as a reduced-form for an interaction with a

random unknown long length, in which each type Lj; gets a signal about the interaction’s

2 All our results are independent of the value of M (given that M > 4). The inequality A > 3.15 is required
for the solution we characterize below to be evolutionary stable in a non-empty interval of p-s.

3 We assume that defection yields the same additional payoff (relative to cooperation) regardless of the
opponent’s strategy to simplify the presentation of the result (but the results remain qualitatively similar
also without this assumption). Given this assumption we normalize, without loss of generality, the payoff of
being a single cooperator to be 0, and the additional payoff of defecting to be 1.

4 Grim heuristic defects if and only if the opponent ever defected in the past, and Tit-for-tat heuristic
defects if and only if the opponent defected in the previous stage. In Section 7 we discuss the extension of
our model to a setup in which a player may choose his heuristic for long horizons, and the relation to the
notion of analogy-based expectation equilibrium (Jehiel (2005)).
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realized length & periods before the end (see Section 7). Note that the set of strategies of type
Ly, is a strict subset of the set of strategies of type Ly.1, and that type L, is fully-rational
and has an unlimited set of strategies.

We assume that types are partially observable in the following way (similar to Dekel,
Ely, and Yilankaya (2007)): before the interaction begins, each agent has an independent

 Informally, this can be interpreted as an

probability p to observe his opponent’s type.
opportunity to observe your opponent’s past behavior, or to observe a trait that is correlated
with cognitive level (such as 1.Q. level, see Gill and Prowse (2012)). The total payoff of an
agent of type Ly is the undiscounted sum of payoffs in the repeated prisoner dilemma minus
an arbitrarily small cost that is increasing in k (a marginal cost for having a better forward
looking-ability).

In common with much of the evolutionary literature, we use a static solution concept to
tractably capture the stable points of a dynamic evolutionary process. Specifically, we adapt
the notion of evolutionary stable strategy (ESS, Maynard-Smith (1974)) to a setup with
different types. In such a setup, the state of the population is described by a configuration
(Dekel, Ely, and Yilankaya (2007)) - a pair consisting of a distribution of types and the
(possibly mixed) strategy that each type uses in the game. A configuration is evolutionary
stable if any sufficiently small group of mutants who invades the population is outperformed
by the incumbents in the post-entry population.®

Evolutionary stability can be sustained by playing very badly when facing types outside
the support of the distribution. However, this is unlikely to be stable in the long run,
as the strategy played against a non-existing type should slowly evolve as a response to
recurrent entrees of mutants. Thus, we refine neutral stability by requiring agents to play
undominated strategies against non-existing types. In Section 6 we show that our results are
robust to various plausible changes in the definition of stability in this setup, and to using
the alternative notion of Dekel, Ely, and Yilankaya (2007).

Our main result shows that if p is not too close to 0 and 1 (and this interval is increasing in
A), then there exists a unique evolutionary stable configuration with undominated strategies,
which includes two kind of players: (1) naive agents of type L; who only begin defecting
at the last stage, (2) moderately-sophisticated agents of type Lz: usually they defect two
stages before the end, unless they observe that their opponent is sophisticated, and in this

case, they begin defecting one stage earlier. The stability relies on the balance between the

5 The results remain the same also in the case in which agents can only observe lower opponents’ type (see
section 6).

6 The “mutants” achieve the same payoff if they are equivalent to the incumbents: have the same distribu-
tion of types and play the same on-equilibrium-path. If they are not equivalent, we require the mutants to
achieve a strictly lower payoff.
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direct disadvantage of naive agents - they defect too late, and the indirect “commitment”
advantage - when naivety is being observed, it induces moderately-sophisticated opponents
to postpone their defection (as naive agents are committed to cooperate longer), and this
allows an additional round of mutual cooperation. The proportion of the naive players is
increasing in both p and A.

It is interesting to note that stable configurations are very different when p is close to
0 or 1. In both cases, stable configurations must include fully-rational players who, when
facing other fully-rational agents, defect at all stages. When p is close to 0, types are too
rarely observed, and the indirect advantage of naive agents is too weak. When p is close to
1, there is an “arms-race” between sophisticated agents who observe each other: each such
agent wishes to defect one stage before his opponent. The result of this “race” is that there
must be some fully-rational agents in the population.

Existing evolutionary models that studied bounded strategic reasoning (Stahl (1993);
Stennek (2000)) focused on the case where types are unobservable (p = 0) , and showed
that in various games: (1) the most sophisticated type always survives, and (2) lower (more
naive) types can also survive if they do not play serially dominated strategies. Recently,
Mohlin (2012) showed that there may be evolutionary stable configurations in which the
highest type do not survive, and he also studied the case in which higher types can perfectly
observe lower types (a case similar to p = 1, see Section 6).” This paper focuses in a specific
game (repeated prisoner dilemma) and allow partial observability (p strictly between 0 and
1), and this allow us to obtain a sharp and qualitative different prediction: only naive and
moderately-sophisticated agents survive.

Existing experimental results verify the plausibility of both our assumption of using “nice”
and “retaliating” heuristic for large horizons, and of our main prediction. Selten and Stoecker
(1986) study the behavior of players in iterated Prisoner Dilemma games of 10 rounds (similar
results are presented in Andreoni and Miller (1993); Cooper, DeJong, Forsythe, and Ross
(1996); Bruttel, Giith, and Kamecke (2012)). They show that: (1) if any player defected,
then almost always both players defect at all remaining stages, (2) usually there is mutual
cooperation in the first 6 rounds, and (3) players begin defecting at the last 1-4 rounds.® Such

behavior has two main explanations in the literature: (1) some players are altruistic, and (2)

7 See also Crawford (2003) for a strategic (non-evolutionary) model of zero-sum games with “cheap-talk”
in which naive and sophisticated agents may co-exist and obtain the same payoff.

8 In Selten and Stoecker (1986)’s experiments players engaged in 25 sequences (“super-games”) of iterated
Prisoner’s Dilemma. The above results describe the behavior of subjects in the last 13 sequences (after
the initial 12 sequences in which players are inexperienced and their actions are “noisier”). During these 13
sequences there is a slow drift in the behavior of players towards earlier defections. Nevertheless, defections
before the last 4 rounds were infrequent also in the last couple of rounds.
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9 Johnson, Camerer, Sen, and Rymon (2002) studied

players have limited forward-looking.
the relative importance of these explanations in a related sequential bargaining game, and
their findings suggest the limited forward-looking is the main cause for this behavior.

A recent qualitative support for our prediction is given in Hyndman, Terracol, and Vaks-
mann (2012), which experimentally studied the strategic behavior of people across different
games. They showed that a fraction of the players consistently assign a low level of reasoning
to their opponent, while the remaining players alternate between different assessments of
their opponent’s cognitive skills. The former fraction corresponds to the “naive” agents in
our model who always best-reply to a belief that the opponent is non-strategic and follows
a “nice and retaliating” heuristic. The remaining players correspond to the “moderately-
sophisticated” agents in our model who, depending on the signal they obtain, best reply to
different beliefs about the opponent’s cognitive skill.

The paper is structured as follows. Section 2 presents our model. In Section 4 we present
our results, and it is followed by sketches of the proofs in Section ?? (formal proofs appear in
the appendix). Sections 6 shows that our results are robust to various changes in the model.

We conclude in Section 7.

2 Model

2.1 Strategies and Types

We study a symmetric finitely-iterated Prisoner’s Dilemma game that repeats M stages (M >
4), denoted by G. The payoff of each stage game are as described in Table 1 (A > 2+ /2).
This payoff is interpreted, as standard in the evolutionary literature, as representing “success”
or “fitness”. Define the horizon of a stage as the number of remaining stages including the
current stage. That is, the horizon at stage m is equal to M — k + 1. History hj of length
k is a sequence of k pairs, where the [-th pair describes the actions chosen by the players at
stage [. Let Hj be the sets of histories of length k, and let H = Uj<iaHy be the set of all
non-terminal histories.

A pure strategy s is a function from H into {C, D}. A | and a behavioral strategy o is a
function from H into A ({C, D}). With some abuse of notations we write o (hy) = C when
o assigns probability 1 to playing C' (and similarly for D). Let ¥ be the set of behavioral
strategies (henceforth, strategies). Strategy o is k-nice-retaliating if whenever the horizon is

larger than k: (1) o assigns probability 1 to C' if the opponent has never defected before, and

9 Heifetz and Pauzner (2005) explain this behavior with a different kind of cognitive limitations: at each
node, each player has a small probability to be “confused” and choose a different action than the optimal one.
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(2) o assigns probability 1 to D if the opponent has defected in the previous stage. Let Xy
be the set of k- Nice-Retaliating behavioral strategies. Let dy € ¥ be the pure strategy that
plays grim as long as the horizon is larger then k: defects if and only if the opponent has
defected in the past, and then defects at all following stages (when the horizon is at most k).
Let D = {di}y<p<)s be the set of all such “grim-then-defect” strategies. Let u (o, 0’) be the
expected payoff o_f a player who plays strategy o against an opponent who plays behavioral
strategy o’.

We imagine a large population randomly matched to play G. Different agents in the pop-
ulation differ in their cognitive ability, which is captured by their type. Let £ = {Ly,..., Ly}
be the set of types (or levels).!® An agent of type L looks only k steps ahead, and when
the horizon is larger than k& he ignores end-of-game strategic considerations and plays a “nice
and retaliating” heuristic . That is, an agent with type Ly can only play k-nice-retaliating
strategies. When the horizon is at most k, the agent is no longer limited in his play.

Let ¢: £ — RT a strictly increasing function satisfying ¢ (L;) = 0, and let 6 > 0. Agents
of type Ly bear a cognitive cost of 6 - ¢(Ly). In the analysis in the following sections we will
focus on the case where 0 is sufficiently small (arbitrarily low cognitive costs). The payoff of
the repeated game is the undiscounted sum of the stage payoffs minus the cognitive cost.

Following the model of partial observability of Dekel, Ely, and Yilankaya (2007), we
assume that each player knows the type of his opponent with probability p (and get no
information about his opponent’s type with probability 1 — p), independently of the event
that his opponent knows his type. We use the term stranger to describe an opponent that
his type was not observed. In Section 6 we demonstrate that our results remain the same

also if agents can only identify their opponent’s type if that type is lower.

2.2 Configurations

The state of the population is described by a configuration - a pair consisting of a distribution
of types and the strategy that each type uses in the game. Formally (where C (u)denote the
support of p):

Definition 1. Configuration (or population) (p,b) is a pair where p € A (L) is the distribu-
tion of types in the population, and b = (bk)kecm) is the profile of signal-dependent strategies
is played by each type in the population. That is, for each type Ly € C (u), by : LUD — Xy

is a signal-dependent strategy that specifies a behavioral k-nice-retaliating strategy for each

10 We explicitly omit level 0 (Lo, who uses a nice and retaliating heuristic throughout the entire interaction).
The results are qualitatively the same if Ly is included (see Subsection 6.1.1).
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possible observation about the opponent’s type (including observations with zero probability
of types outside C' (u)).

Remark 1. We note two points regarding Definition 1:

e Agents of type L can use a behavioral (non-pure) strategy. As usual in such models,
this can be interpreted as either: (1) each agent randomly chooses his actions, or (2) dif-
ferent fractions of type L, play different pure strategies, and the aggregate distribution

induces the randomness.

e A configuration also determines the strategies that are used against non-existing types
(“mutant” types outside C' (11)). In Section 6 we propose an alternative stability notion,
according to which, a configuration only determines that strategies that are used against
types with positive frequency (similar to the definition of a configuration in Dekel, Ely,
and Yilankaya (2007)).

Given a configuration (u,b), we call the types in C (u) as existing types or incumbents,
and types outside C (u) as non-existing types or mutant types. Next, we define the mixture

of two configurations as follows:

Definition 2. Let (u,b) and (u/,b") be configurations, and let 0 < € < 1. The mizture

configuration (ﬂ, b) =(1—€)(u,b)+e(p/,b) is:
e n=(1l—€)pu+eu.

e For each k € C (f1):
0 p(L)bht e p (L)Y
k= p :
p (L) + p' (L)

When e is small we interpret (1 — €) (u, b)+¢€ (@', b') as the post-entry configuration : a pop-
ulation of incumbents in state (i, b) that was invaded by e mutants with configuration(p’, b').
Finally, we define that two configurations are equivalent if they have the same distribution,

and they induce the same observed play. Formally:

Definition 3. Configurations (u,b) and (¢, V') are equivalent (denoted by (u,b) ~ (¢/, b))
if:
1. p=y.

2. For each pair of types Ly, Ly € C (u), the observed play when type Lj plays against
type L is the same in both populations.
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Note that two equivalent configurations induce the same observable play only on the equi-
librium path. Following the invasion of € mutants, the incumbents in each of the equivalent

configurations may act very differently when facing mutants.

3 Evolutionary Stability

3.1 Solution Concept

In a model without types, the state of the population is described by a strategy. A strategy
is neutrally (resp., evolutionary) stable if any sufficiently small group of mutants who invades
the population and play an arbitrary strategy would achieve a weakly (strictly) lower payoff

than the incumbents. Formally:

Definition 4. (Maynard-Smith (1974); Maynard Smith (1982)) Strategy o € ¥ is neutrally
(resp., evolutionary) stable if for any “mutant” strategy o’ (resp., 0’ # o) there exists some
€, € (0,1) such that for every 0 < € < €,

u(o,ec’ +(1—¢€)o) >u(o’,ec’ + (1 —¢€)o).
(resp., u(o,ec’ + (1 —€)o) > u(o’,ea’ + (1 —€) 0)).

In what follows we extend the notion of evolutionary stability from strategies to configu-
rations. Given two configurations (u,b) and (¢, ') define u ((i,0), (1, b)) as the expected
payoff of a player from population (u,b) who plays against an opponent from population
(1/,0') (and the type of each player is observed with independent probability p). A con-
figuration is neutrally (evolutionary) stable if any sufficiently small group of mutants who
invades the population would obtain a weakly (strictly) lower payoff than the incumbents in

the post-entry population. Formally:

Definition 5. Configuration (p, b) is neutrally (resp., evolutionary) stable if for any “mutant”
configuration (u/,0') (resp., any (u/,0') % (i, b)) there exists some €,» € (0,1) such that for
every 0 < e < €,:

u ((/vbv b) ) € (:LL/7 b/) + (1 - 6) (,U,, b)) > u ((Mlv bl) ' € (:LL/7 b/) + (1 - 6) <,U,, b)) :

(resp., u ((ua b) ) € (ﬂ’la b/) + (1 - E) (luv b)) > U ((Mla b/) ) € (:U“/a b/) + (1 - 6) (:ua b)) )
Definition 5 is closely related to Maynard Smith (1982)’s Definition 4 in two ways:

1. When the set of types is a singleton, then Definition 5 and Definition 4 coincide.
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2. Consider the following 2-player “meta-game”: each player chooses a type Lj and a signal-
dependent k-nice-retaliating strategy. Note that a mixed strategy in this meta-game is
a configuration, and a neutrally stable strategy in the “meta-game” is a neutrally stable

configuration.

Remark 2. Note that:
1. Any evolutionary stable configuration is also neutrally stable.

2. Evolutionary stable configurations are only weakly stable to invasions of mutants who

play exactly like the incumbents on-equilibrium-path.

With some abuse of notation we denote by L also the distribution that assigns mass 1 to type
Ly. Tt is well-known that any neutrally stable strategy is a Nash equilibrium. Proposition 1
shows that the strategy profile in a neutrally stable configuration is: (1) balanced - yield the
same payoff to all types in the population, and (2) Bayesian-Nash equilibrium.

Proposition 1. Let (i, b) be a neutrally stable configuration. Then, the strategy profile b: (1)
induces the same payoff for each type in the support of u, and (2) is a Bayes-Nash equilibrium
in the Bayesian game with distribution of types .

Proof.

1. Assume to the contrary that b induces different payoffs to different types. Let L, €
C' (u) be the type with the highest payoff. Then: w ((Ly, by), (1,b)) > u ((u,b) , (1, b)).
This implies that for sufficiently small € > 0, mutants of type L, who play b, would
achieve a strictly higher payoff than the incumbents and this contradicts the stability

of (u,b).

2. Assume to the contrary that b is not a Bayesian-Nash equilibrium. Let Ly € C (u)
be the type who does not play a best response against (u,b). This implies that there
exists strategy b, such that : u ((Ly, b)), (1,0)) > u ((Lg, by) , (11,b)). By the first part of
the proposition, u ((Ly, b) , (1, 0)) = w ((u, b) , (1, b)). This implies that for sufficiently
small € > 0, mutants of type L, who play b} would obtain a strictly higher than the
incumbents and this contradicts the stability of (u,b).
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3.2 Result (Stability)

Our first result characterizes an evolutionary stable configuration, (u*,b*) , in which naive
players (type L;) and moderately-sophisticated players (type Lj3) co-exist. Let the configu-
ration (u*,b*) be defined as follows:

1. The population includes only types L, and Lj:

p(A=1) =140 c(Ls)
p(A—1)

1—9-c(Ls)
p(A-1)

(L) = ;1 (Ls) =

2. The “naive” Agents of type L; play d; : use “grim” until the last stage, and defect at
the last stage.

3. The “moderately-sophisticated” agents of type L3 play:

(a) dy against strangers and observed L; (follow “grim” until the last 2 stages, and

defect in last 2 remaining stages).
(b) ds against any observed type different then L.

Theorem 1. Let (Afl)g <p< % and let & > 0 be sufficiently small. Then (u*,b*) is

evolutionary stable.

The formal proof appears in Appendix A.1. In what follows we briefly sketch the outline of
the proof. First, we show that b* is a Bayes-Nash equilibrium (given p*). Naive players (L;)
play their unique dominating strategy - d; (as they must follow their “nice and retaliating”
heuristic when the horizon is larger than 1). For sophisticated players, playing ds against
sophisticated opponents is strictly better than an earlier defection for small enough p, and
playing ds against strangers and naive opponents is strictly better than earlier defections if
p (L) is large enough.

Next, we show that (u*,b*) is balanced. In order to show it, we compare the fitness
of naive and sophisticated agents as a function of their opponent. Naive agents succeed
more only against an observing sophisticated opponent (who observed their type), because
their observed naivety induces an additional round of mutual cooperation. Sophisticated
agents achieve a better payoff in the two other cases: against naive opponents and against
an unobserving sophisticated opponent. This implies that there is a unique level of p (L4)
that balances the payoff of the two kinds of players. Finally, we use these two properties to
show resistance to mutations. If € more naive players join the populations, then due to the
previous arguments, naive agents would have a strictly lower payoff than the incumbents (on

average). The same holds for ¢ more moderately-sophisticated who join the population.
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4 Uniqueness

4.1 Undominated Configurations

The interaction admits additional evolutionary stable configurations. One such configuration

is described in the following example.

Example. Consider the configuration that assigns mass 1 to fully-rational agents (type
Ly) who deviate at all stages against any observed opponent’s type. One can see that
this configuration is evolutionary stable. However, the stability relies on the incumbents
defecting at all stages against naive mutants (L;). Such a strategy is strictly dominated by
an alternative strategy that cooperates for the first M — 2 stages against naive opponents.
Thus, in the long run, as a response to recurrent entrees of naive mutants, incumbents
are expected to evolve into cooperation at the first stages of the game when facing naive

opponents, and the stability of the configuration will be lost.

Motivated by this example, we refine neutral stability by not allowing agents to use “bad”
strategies against non-existing types. The payoff of an incumbent’s strategy that is played
against a mutant type, depends on that mutant’s strategy. One may expect that most of the
time invading mutants will best-reply to the incumbents because (see, Swinkels (1992)) either:
(1) “best-reply” mutants have higher fitness than other mutants, and thus they are expected
to survive longer in the post-entree population; or/and (2) mutants choose their strategy by

experimentation, and they are more likely to choose best-reply strategies. Formally:

Definition 6. Let (u,b) be a configuration and let L; € £L\C () be a mutant type. A signal-

dependent strategy Z~),~€ : LUD — X is best-reply if u ((L,;v l~),~€> , (p, b)) >u ((L,;v b;{) , (u, b))
for each alternative signal-dependent strategy b;; LU0 — X

An incumbent strategy by </§> is dominated by another strategy b;, < if it yields a strictly

TN~

k
worse payoff against all best-reply of mutants of type L;. Strategy by ( ) is undominated if

it is not dominated by any other strategy. Formally:

Definition 7. Let (u,b) be a configuration, let Ly € C' () be an incumbent type, let L; €

L\C (1) be a mutant type, let b}, <l~c> € 3 be strategy, and for each k' # k let b, (k') = by, (k')
. Strategy by (l?:) € Xy is dominated by b, (fc) if for each best-reply signal-dependent strategy

bp c LUD — S w((Liby), (Li,b) < w((Li,by), (L, b;)). Strategy by (%) € ¥, is
undominated if there does not exist strategy b}, (/2:) € X such that by (I%) is dominated by

b;(%).
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We refine the notion of neutral stability by requiring all strategies that are played against

non-existing mutants to be undominated. Formally:

Definition 8. Configuration (u,b) is undominated, if for each “incumbent” type L, € C (),
and for each “mutant” type L; € L\C (u), the strategy by (l%) is undominated.

A Configuration is undominated neutrally (evolutionary) stable if it is both undominated

and neutrally (evolutionary) stable.

4.2 Result (Uniqueness)

Our second shows that any undominated neutrally stable configuration must be equivalent

to (u*,b").
result gives a sharp prediction for the unique undominated neutrally stable configura-
tions in the interval ﬁ <p< % . In this configuration naive players (type L;) and

moderately-sophisticated players (type L3) co-exist. Formally:

Theorem 2. Let ﬁ <p<l1l- 124';4—;{, and let (u,b) be an undominated neutrally stable

configuration. Then (u,b) and (u*,b*) are equivalent.

The sketch of the proof is as follows (the formal proof is given in Appendix A.2). First,
observe that a configuration with a single type is not stable: 1) if the type is Ly, then the
entire population defects all the time, and mutants of type L; would induce cooperation
against them and invade the population; and 2) if the type is Ly # Ly, then mutants of
type L1 can invade the population and get strictly higher payoff then the incumbents. Let
Ly, be the smallest (“naive”) type in the population. Then, it is immediate to see that type
Ly must always defect when the horizon is at most k (as it is common knowledge that all
players are rational at that stage), and all other types must defect when the horizon is at
most k + 1.

The next step is to show that a large fraction of the non-naive population must cooperate
at all horizons larger than k& + 1 when facing strangers. Otherwise, a small increase in the
frequency of the naive players, would improve their fitness relative to the non-naive agents (as
many non-naive loose rounds of mutual cooperation while defecting earlier then k+ 1 against
strangers), and the configuration will be unstable. The fact that this fraction is so large,
implies that if there are non-naive players who defect at earlier horizon against strangers,
then: (1) the large fraction who defects at horizon k+1 against strangers must belong to type
Ly, and (2) all the remaining players (type larger than k + 1) must defect at horizon k + 2

against strangers and one stage before an observed opponent (who has not observed their
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type). This characterization allows to find the unique distribution of types who satisfy the
balance of payoffs, but it turns out that this distribution is not stable to small perturbations
in the frequency of the different types.

Finally, if all non-naive players defect at horizon k + 1 against strangers, then it implies
that they all defect at horizon k + 2 against observed non-naive opponents, and the balance
between the payoffs of the different types imply that the frequency of naive and non-naive
players is like in p*. Finally, we show that if £ > 1, then the configuration can be invaded
by mutants of type L, who would earn from inducing more mutual cooperation when being

observed by their opponent.

5 Stability for Low and High p-s

Our next result, shows that in the benchmark cases when p is close to 0 and 1 the undominated
neutrally stable configurations are very different. In both cases, stable configurations must
include fully-rational players who, when facing other fully-rational agents, defect at all stages.
When p is close to 0, this occurs because the indirect advantage of lower types is too small
and they can not exist in a stable configuration (because the probability of being identified by
the opponent is too low). When p is close to 1, there is an “arms-race” between sophisticated
agents who observe each other: each such agent wishes to defect one stage before his opponent.
The result of this “race” is that there must some fully-rational agents in the population.

Formally:
Theorem 3.

1. Let 0 < p < m. Then there exists an undominated evolutionary stable con-
figuration (,&, l~)> where all players have type Ly and they play dy; against strangers
and type Ly, and diyq against observed “mutant” type Ly < Ly;. Moreover, any other

undominated neutrally stable configuration is equivalent to (/1, b).

2. Let1 > p > %. Then in any undominated neutrally stable configuration there is a
positive frequency of players of type Ly, and these players defect at all stages when

observing an opponent of type Lyy.
The sketch of the proof is as follows (formal proof appear in Appendix A.3):

1. Low p-s: The configuration that everyone has type L, (fully-rational) and begin
defecting at the first stage is stable because the indirect advantage of naive mutants

(with a lower type than Ljs) is too small: they strictly lose when their naivety is
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unobserved, and their naivety is observed too rarely. Due to a similar argument, in
any other configuration where different types co-exist, the lower type would obtain a

strictly lower payoff (and this implies the uniqueness).

2. High p-s: Assume to the contrary that no agent in the population ever defects at the
first stage. Let [ < M be the horizon in which the highest type in the population begin
defecting when they observe an opponent of the same type. If p is large enough, then
their opponent is likely to observe their signal as well and begin defecting at stage [ as
well. This implies (again for large enough p) that starting to defect one stage earlier
is strictly better. This implies that mutants who “imitate” the highest type’s behavior
except defecting one stage earlier when observing an opponent with the highest type,

would achieve a strictly higher payoff.

6 Robustness

In this section we demonstrate that our results are robust to various plausible changes in the
model. In Subsection 6.1 we deal with variants in the types and in the signal structure, and

in Subsection 6.2 we deal with different stability notions.

6.1 Variants in the Model
6.1.1 Level O

In the model we do not allow players to belong to “level-0" (Ly) who follow a nice and
retaliating strategy at all rounds of the interaction. Such “level-0” players play a strictly-
dominated strategy (cooperating at the last stage), and we chose to omit them from the model
as such extreme bounded forward-looking may seem implausible. We note that our results
are qualitatively robust to the addition of type Ly in the following sense. All of our results
would remain shift a single step backwards: the naive players in the stable configurations
in C would be of type L instead of L, and the sophisticated players would look 1-2 steps
ahead instead of 2-3 steps.

6.1.2 Asymmetric Type Observability

In the model we assume that any agent has the same probability to observe his opponent’s
type. In particular, lower types may identify the exact type of a more sophisticated opponent.
One may argue (see, e.g., Mohlin (2012)) that it is more plausible that only higher types can

identify the type of their opponents. We formalize this alternative assumption as follows.
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Before the interaction begins each agent independently obtains a signal about his opponent.
With probability 1 — p the signal is non-informative (). With probability p the signal is

informative:
1. If the opponent’s type is strictly lower, then the agent exactly identifies it.

2. Tf the opponent’s type is weakly higher, then the agent only observes that is opponent’s
type is weakly higher than his own type.

One can see that all of our results remain the same in this setup.

6.1.3 Small Perturbations to the Signal Structure

Our results remain qualitatively similar if the signal structure is slightly altered by any of

the following perturbations:

1. There is a small positive correlation between the signal that each agent obtains about

his opponent’s type.
2. There is a small chance that the informative signal is incorrect.

That is, if the perturbation is small enough, then there exists a unique undominated neutrally

stable configuration which is closed to (u*, b*)).

6.2 Different Stability Notions
6.2.1 Focal Stability

One may argue that it is more plausible that the state of the population only specifies the
behavior of players against existing types, and the behavior against mutant that introduce
new types should be evolve as part of a post-entry adaptation process. In what follows we
formalize this idea, and present an alternative notion of focal stability, and state that all our
results remain the same with this stability notion (which may be of independent interest in
future research).

A compact configuration is a pair consisting of a distribution of types and the strategy

that each type uses against other types in the support of the distribution. Formally:

Definition 9. Compact Configuration (u,b) is a pair where y € A (L) is the distribution
of types in the population, and b = (bk)kec(“) is the profile of signal-dependent strategies is
played by each type in the population given any signal with positive probability. That is, for
each type Ly € C (p) in the population, by : C' (1)U — X is a signal-dependent strategy that
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specifies a k-nice-retaliating strategy for each possible observation (with positive probability)

about the opponent’s type.

Given a compact configuration (p,b), an invading mutant configuration (u',b") should
specify the signal-dependent k’-nice-retaliating strategy of each mutant type Ly € C (i)
against types in the support of the post-entry population C (u) U C (¢'). Internal mutant
configurations are those that do not introduce new types to the population: C (¢') C C (p).
Internal mutants are interpreted as the combination of small perturbations to the frequency of
incumbent types, and experimentation of new strategies by a small group in the population.
A compact configuration is internally neutrally (evolutionary) stable if any sufficiently small
group of (non-equivalent) internal mutants would obtain a weakly (strictly) lower payoff than

the incumbents in the post-entry population. Formally:

Definition 10. Compact configuration (u,b) is internally neutrally (evolutionary) stable if
for any internal mutant configuration (u/,b") ((1/,0') % (u,b)) with C (¢') € C(u) there

exists some €, € (0,1) such that for every 0 < € < €,
W ((2,b) € (1) + (1= €) (1,5)) = w (1) € (1, b) + (1= €) (11,0))

(u (e, b) € (', ) + (1 =€) (1, 0)) > w (', ) € (1, ) + (1 =€) (1, 0)) )

External mutants are those that introduce a new type to the population. In this case, we
assume that the incumbent population and the new mutant type interactively adapt their
joint behavior, while taking the “focal” behavior of incumbents against other incumbents and
strangers as fixed. We further assume that this adaptation process is fast enough relative to
the evolution of types, such that the behavior in the post-entry population converge into a
Bayesian-Nash equilibrium. A compact configuration is (strictly) externally focally stable if
any mutant with a new type would achieve a (strictly) worse payoff in the induced post-entree

Bayesian-Nash equilibrium. Formally:

Definition 11. Given a compact configuration (u,b), € > 0 and an external mutant type
Ly € L\C (u) let B (p,b, Ly, €) be the set of post-entree adjusted configurations: the set of
configurations (', ') that satisfy:

1. The post-entry distribution is a mixture of ¢ mutants and 1 — ¢ incumbents: ' =

(1—€)-p+e-Ly.

2. The incumbents continue to play the same (focally) as in the pre-entry configuration
against strangers and other incumbents: b}, (0) = b, (0) for each k € C' (p), (3) b}, (l%) =

b </~€> for each Ly, L; € C (p).
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3. Each incumbent type best reply when facing an observed mutant.
4. The mutant type best replies to all opponents.

Definition 12. Compact configuration (u,b) is (strictly ) externally focally stable if for any
mutant type Ly € L\C (u) there exists some €, € (0,1) such that for every 0 < € < ¢, and
in any post-entree adjusted configuration (u/, ') € B (u,b, k', €) the mutant obtains a lower
payoft:

W () (V) > u (L ¥) L (1)

(u ((p,0) (1, 0) > w (L, 0) , (1, 0)) )

Finally, a compact configuration is (strictly) focally stable if it is both neutrally (evolu-
tionary) stable and (strictly) externally focally stable. Simple adaptations to the proofs in
the appendix yield the same results with focal stability. Formally (proof is omitted):

Proposition 2. Let ﬁ <p<l-— ?4';4_’2 and let 0 > 0 be sufficiently small. Then the

compact configuration (u*,b*) is strictly focally stable. Moreover, if (u,b) is a focally stable

configuration then (u,b) and (u*,b*) are equivalent.

6.2.2 DEY-Stability (Dekel, Ely, and Yilankaya (2007))

In our definition of focal stability the incumbents only approximately best-reply in the post-
entry population, because they keep their play against incumbents and strangers the same,
and do not adjust it to the presence of the new ¢ mutants. In some evolutionary setups, the
adaptation process according to which agents choose their strategies might be much faster
then the evolutionary process according to which the frequency of the types evolve. In these
setups, it may be plausible to assume that the post-entree population adjust their play into
an exact Bayesian-Nash equilibrium after any entree of mutants (both external and internal
mutants).

Dekel, Ely, and Yilankaya (2007)’s notion of stability makes this assumption.!! A compact
configuration (u,b) is (strictly) DEY-stable if:

1. The strategy profile b is:

(a) A Bayesian-Nash equilibrium in the Bayesian game with the distribution of types
JTa

11 A similar approach is also used in the notions of mental equilibrium (Winter, Garcia-Jurado, and Mendez-
Naya (2010)) and evolutionary-stable types (Alger and Weibull (2012)). Both notions apply only to homoge-
nous populations that includes a single type, and thus are less appropriate to study stability of heterogeneous
populations.
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(b) Balanced - it induces the same payoff to all types in C (u).

2. For each “mutant” type L € L, there exists sufficiently small ¢; such that for each

€ < €, after e mutants of type L invade the population:

(a) There exist post-entry Bayesian-Nash equilibria in which the incumbents play is

only slightly changed relative to the pre-entry play.
(b) In all these equilibria the mutants would achieve a (strictly) lower payoff than the

incumbents.

With simple adaptations, Lemmas 3-4 apply also for DEY-stability. This immediately implies
the following theorem.

Proposition 3. Let ﬁ <p<l1l-— i’f—_‘j and let 6 > 0 be sufficiently small. Then the
compact configuration (u*,b*) is strictly DEY-stable.

Moreover, any other DEY-stable configuration (p,b) has similar qualitative properties:

1. Nawe agents of type L1 exist in the population.

2. Moderately-sophisticated types ( a non-empty subset of {Lo, L3, Ly}) co-exist together
with the nawe type.

3. Higher levels of sophistication (Lsand above) do not erist.

The reasons that we have to replace the uniqueness with the weaker “qualitative unique-

ness” is that Lemma 6 does not apply for DEY-stability:

e Part (1) of Lemma 6 does not hold in this setup, because after e mutants of type Lj
who always play ds enter the population, the incumbents adjust their strategies into
an exact Bayesian-Nash equilibrium by lowering the frequency of incumbent of type
L; would play d3. We note that this adjustment that is implied by Dekel, Ely, and
Yilankaya (2007)’s definition works in the opposite direction to the incentives that the
incumbents face: if a random perturbation slightly increased the frequency of L; play
ds, then the incumbents who play ds obtain a higher payoff, but the adjustment process

into a new equilibrium lowers their frequency in the population.

e Part (4) of Lemma 6 because Dekel, Ely, and Yilankaya (2007)’s definition only con-

siders entry of mutants with a single type.

Finally, we note that if one adapts Dekel, Ely, and Yilankaya (2007)’s definition by assuming
that the adjustment into a new exact equilibrium takes place only after the entree of external

mutants, then all of our results, including the uniqueness and Lemma 6 would hold.
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7 Concluding remarks

1. Other heuristics for long horizons: In our model we assumed that all players use
nice and retaliating heuristics whenever the horizon is larger than their forward-looking
ability. One could relax this assumption by allowing a player to choose his strategy
for long horizons from some fixed set of heuristics. For example, the set of possible
heuristics might be the strategies with “memory-1" (which depend only on the actions
observed in the previous stage). Note that these “memory-1” strategies include the
“orim” and “tit-for-tat” heuristics. A strategy of a player of type L, in this setup
specifies two strategic components for each possible signal about the opponent’s type:
(1) the heuristic he plays when the horizon is larger than k, and (2) the (unrestricted)
strategy he plays when the horizon is at most k. It is immediate to apply our first
result (Proposition 4) in this setup, and show that any configuration in C in which all
players choose grim as their heuristic is stable. We conjuncture that there are only
two sets of stable configurations in this extended setup: (1) efficient configurations:
type distribution and strategies are equivalent to (u*, b*), all players use heuristics that
cooperate as long as the opponent never defected before, and a large enough proportion
of each type defects if the opponent defected in the previous stage (a nice and retaliating
heuristic); and (2) inefficient configurations in which all players defect at all stages (and

use “always-defect” heuristic).

2. Analogy-based expectation equilibrium: Our model of bounded forward looking
types could also be formulated using Jehiel (2005)’s Analogy-Based Expectation Equi-
librium (ABEE). In this formulation a player of type Lj bundles all nodes with horizon
of at least k into a single analogy class (while fully-differentiating among nodes with
horizons smaller than k), and expects his opponent to play the same in all nodes of
this class. The requirement that players play an evolutionary refinement of a Bayesian-
Nash equilibrium in a configuration is replaced with the requirement that players play
an analogous evolutionary refinement of ABEE in a configuration: at each stage ev-
ery player best-responses to his analogy-based expectations, and expectations correctly
represent the average behavior in every class. As in the previous remark: (1) it is
immediate to show that every configuration in C is stable in this formulation (and play-
ers choose to play a nice and retaliating heuristic in their non-trivial analogy class),
and (2) we conjuncture that there are only two sets of stable configurations in this
ABEE formulation: efficient (u*, b*)-like configurations, and inefficient “always-defect”

configurations.
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3. Random continuation probability: Our model assumes that the repeated interac-
tion has a deterministic constant length, and that players completely ignore this fact
when the horizon is too large. These assumptions may seem unrealistic. However,
one should note that the model may be a reduced-form for a more realistic inter-
action with a random length and incomplete information. Specifiably, let T be the
random unknown length of each interaction. Assume that the interaction lasts at least
M rounds (Pr(T > M) = 1), and that the continuation probability at each stage
(Pr(T >n|T >n—1)) is not too far from 1. Bounded forward-looking is modeled
in this setup as the stage in which a player becomes aware to the timing of the final
period: player of type L gets a signal about the final period of the interaction (i.e.,
about the realization of T) k stages before the end. In this setup, players are not re-
stricted in their strategies (each type may play any strategy at any horizon). As in the
previous remarks: (1) it is immediate to see that any configuration in (p*,b*) is stable,
and (2) we conjuncture that there are only two sets of stable configurations: efficient

(u*, b*)-like configurations, and inefficient “always-defect” configurations.

4. Other games: The formal analysis deals only with iterated Prisoner’s Dilemma. How-
ever, we conjuncture that the results can be extended to other games in which iterated
reasoning decreases payoffs. In particular, the extension of our results to “centipede’™
like games (Rosenthal (1981)) is relatively straightforward. Such game can represent
sequential interactions of gift exchanges. Such interactions were important in primitive
hunter-gatherer populations (see, e.g., Haviland, Prins, and Walrath (2007), P. 440),

which driven the biological evolution of human characteristics.

A Proofs

A.1 Stability of (u*,b")

Proposition 4. Let ﬁ <p< % and let 6 > 0 sufficiently small. Then the configuration

(u*,b*) (characterized in Theorem 2) is an undominated strongly neutrally stable.

Proof. Tt is immediate to see that (u*, b*) does not use strictly dominated strategies against
mutant types and thus it is undominated configuration. In order to prove that is is neutrally
stable, we first show two auxiliary results: (u*,b*) is balanced (Lemma 1), and b* is a
Bayesian-Nash equilibrium (given p*) which is strict with respect to on-equilibrium-path

deviations (Lemma 2).

Lemma 1. Configuration (u*,0*) is balanced (induce the same payoff to all types in C (u*)).
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Proof. Let ¢ = ju(L1) be the frequency of the naive players. A naive player gets (L — 1) A+1
against a naive opponent, and (L — 2) A + 1 against a sophisticated opponent (type Ls3). A
sophisticated player gets (L —2) A+ (A4 1)+ 1= (L — 1) A+ 2 against a naive opponent,
and against a sophisticated opponent he gets: (L — 3) A+3 if both players identify each other,
(L—3)A4+(A+1)+2=(L—2)A+ 3 if only he identifies his opponent, (L —3) A+ 0+ 2
if only his opponent identifies him, and (L —2) A + 2 if both players identify each other.
Denote by 03 = § - ¢(L3) the cognitive cost of type Ls. The different types get the same
payoff if:

¢ (L=1)-A+1)+(0-q)-(L=2)- A+ 1) +d=¢-(L-1)-A+2)+(1-q)
(PP ((L=3)A+3)+p(L—p)((L—2)- A+3)+ (L =3)-A+2) + (1 —p)° (L—-2)-A+2)

1-q¢)(L-2)A+1-((L=3)A+1+20+p(1—p)(A+2+ 1)+ (1 —p)*(A+1)))+d=g¢

¢g=(1—q) (A= 2 +p(1=p)(A+3)+ (1 —p)*(A+1))) +

g=1-q)(A-(pPP2—-A-3+A+1)+p(A+3—-24-2)+ (A+1))) + 3

g=1-q)(A-(p(1—-A)+(A+1)))+3
¢=1-q¢)(—pQ1-A)=1)+03=(1-q) (p(A=1)=1)+ 3

qp(A-=1)—1+1)=p(A—-1)—1+33

p(A—1)—1+40d3
= As) (1)

Note that for each p > ﬁ we get a valid value of 0 < ¢ <1 for sufficiently small §. [

Lemma 2. The strategy profile b* is a Bayesian-Nash equilibrium given a distribution of
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types u*. Moreover, any deviation that induces a different play on-equilibrium-path, yields a

strictly worse outcome.

Proof. We have to show that both types play a best response (among the k-nice-retaliating
strategies). This is immediate for a naive player (L;), as his only choice is between cooperat-
ing and defecting at the last stage, and the latter strictly dominates the former. We have to
show that a sophisticated player (L3) play best response. It is immediate that ds is a strict
best response against an observed naive opponent. Next, we show that playing d, against
a stranger is strictly better than playing ds. This is true if the following inequality holds
(looking at the payoff of the last 3 rounds):

¢2A+2)+ (1 -q)(2p+(1-p)(A+2))>q(A+3)+(1-¢)Bp+ (1 -p)(A+3))

dA-1)>(1-q) & q> .

Using (1) one obtains:

pA? —pA—A>pA—p & p(A2—2A+1)>A<:>p>m.

It is immediate that ds is also strictly better (against strangers) than any other strategy
that induces a different play on-equilibrium-path. We are left with showing that it is strict
better for a sophisticated player to play ds and not dy against a sophisticated opponent (and
this immediately implies that dj is strictly better against identified sophisticated opponents
than any other strategy that induces a different play on-equilibrium-path). This is true if
the following inequality holds (focusing on the payoffs of the last 4 rounds, as all preceding

payoffs are the same):

p(A+3)+(1—-p)(2A+3)>p(A+4)+(1—p)(A+4)

A-1
A

1-pA-1)>p & A-1>Ap & p<

[]

We now use the lemmas to prove that (u*,b*) is strongly neutrally stable. That is, we

have to show that after an invasion of e mutants of configuration (u,b) ((u, b) % (u*,b*)), the
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incumbents obtain a strictly higher payoff than the mutants in the post-entree population
(for sufficiently small € > 0).

Consider first mutants of types L; or Lz (which exist in the pre-entry population). If these
mutants play differently against incumbents (strangers, L; or L3) then they earn strictly worse
by the previous lemmas. Thus, such mutants must play the same against incumbent types
and strangers (and may only differ in their play against “mutant” types other than L; and
Ls3). Denote such mutants as “imitating” mutants. Note that when the proportion of naive
agents become larger (smaller) relative to its proportion in p* (and agents still follow b*),
then the naive agents achieve a lower (higher) payoff than the sophisticated agents. This is
because naive agents obtain a strictly lower payoff than sophisticated agents, when facing
naive opponents (the sophisticated players obtain an additional fitness point by defecting
when the horizon is equal to 2). This implies that “imitating” mutants obtain a strictly
lower payoff than the incumbents when facing incumbents or “imitating” mutants (unless the
“imitating” mutants have the same distribution of types as the incumbents, and then they
obtain the same payoff).

Next, consider mutant of different types (Lo or Ly or more). Mutants of type Ly achieve
a strictly lower payoff against incumbents: they have the same payoff as L3 in most cases,
but they obtain a strictly lower payoff when they observe an opponent of type Ls (due to
their inability to defect 3 stages before the end). Mutants of higher types (Ljor more) obtain
at most the incumbents’ payoff when facing incumbents, while they have a strictly larger
cognitive cost (0 - ¢(Ly)). Thus also these mutants achieve a strictly lower payoff than the
incumbents. Finally, mutants may gain an advantage from a secret-handshake like behavior
() - playing the same against incumbent types and strangers, while cooperating with each
other when observing a mutant type (different then L; and L3). However, for sufficiently
small €, such an advantage cannot compensate for the strict disadvantages mentioned above,
and this implies that any configuration of mutants would obtain a strictly worse payoff than

the incumbents (unless they are equivalent, and then they obtain the same payoft). O

A.2 Uniqueness of (u*b%)

Proposition 5. Let ﬁ <p<l-— i’f_‘j and let (u, b) be a configuration that is not equivalent

to (u*,b*). Then (u,b) is not undominated neutrally stable.

The proposition follows immediately from the following five lemmas.
First, Lemma 3 shows that dominated neutrally stable configuration must include more

than one type in their support, and that the lowest type must be L; or Ly. Formally:
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Lemma 3. Let (u,b) be a configuration such that b is a Bayesian-Nash equilibrium given p.

Let type Ly, € C (u) be the smallest type in the population. Then:

1

\S]

Co

BN

Everyone defects (with probability 1) at any horizon weakly smaller than k.

Any type Ly # Ly, in the population defects (with probability 1) at horizon ki + 1.
If ki < M and p(Ly,) = 1 the configuration is not neutrally stable.

If k1 > 2 and p > ﬁ then the configuration is not dominated neutrally stable.

If p > 5= then Ly, € {Li, Ly} and pu(Ly,) < 1.

Proof.

1.

It is common knowledge that all types are at least k. This implies that defecting when
the horizon is at most &, defecting at all remaining stages is the unique strategy that
survives iterations of eliminating dominated strategies, and thus all players must defect

with probability 1 when the horizon is at most k; given any signal about the opponent.

Part (1) implies that defecting is strictly better than cooperating at horizon k; + 1 for
agents of type higher than k;.

Observe that if k&; < M, then € mutants of type Lg, 1 who play dg,+1 and enter the

population, would outperform the incumbents.

For a sufficiently small € > 0 ;¢ mutants of type L; who enter the population (and play
d;) would achieve a higher payoff (for any 6 > 0) if:

1
A-2)-p>1—p & P> ——
( )P p Y
This is because when type L; is identified, it is strictly dominating for his observing
opponent to cooperate at all horizons strictly larger than 2. Thus, when being observed,
Ly mutants get at least (A — 2) fitness points more than Lj, (as the opponent will
cooperate for at least one more turn). When being unobserved, L; mutants obtain at

most 1 point less than the Ly, incumbents.

It is immediately implied by parts (3) and (4).
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The following lemma shows that if everyone cooperates at all horizons strictly larger
than k; + 1 in a dominated neutrally-stable configuration, then this configuration must be

equivalent to (u*,b*).

Lemma 4. Let % > p. Let (u,b) be an undominated neutrally stable strategy, and let type
Ly, € C(un) be the smallest type in the population such that p(Lg,) < 1 and ky < M — 2.
Denote the remaining types in C () besides Lg, as non-naive incumbents. Assume that
all types in the population cooperate at all horizons strictly larger than ki + 1 when facing

strangers. Then:
1. No one defects at horizon strictly larger then ki + 2 against any incumbent.

2. All non-nawe incumbents play di, 11 against strangers or observed type Ly, , and plays

di,+2 against any non-naive observed incumbent.
3. No player in the population has type strictly larger than L, 4o.

4. The population only includes types { Ly, , Ly, 2}

5.
A—-1)—1+6-(c(L —c(L
M(Lkl):p( ) (¢ (Lyt2) — ¢ (Li,))
p(A-1)
(for any p > ﬁ, and no neutrally stable configuration exists if p < ﬁ)

6. (p,b) and (u*,b%) are equivalent configurations.
Proof.

1. We have to show that playing dj, ;2 is strictly better then an earlier defection against an
observed non-naive incumbent. This is because defecting at horizon k; + 3 (defecting
at horizon strictly larger than k; + 3) yields A — 1 (at least 2 - (A — 1)) less points
than dy, 12 against an unobserving opponent and at most 1 (2) more points than dj, o
against an observing opponent. Thus di, 4o is strictly better than defecting at horizon
of at least k; + 3 if:

A-1
A

1-p)-(A=1)>p & (A-1)>Ap & > p.
2. By part (2) of the previous lemma all non-naive incumbents play dj,,, when facing
strangers or observed Ly, . It is immediate that dj, o is strictly better than defecting

at horizon of at most k; + 1 when facing an observed incumbent. By the previous part,



A Proofs 27

any incumbent with type strictly larger then Ly 1 play dg,+2 against observed non-
naive incumbents. In order to complete the proof we have to show that all non-naive
incumbents have type different then Ly, 1. Assume to the contrary that: (I) all non-
naive incumbents have type Ly, +1; this implies that mutants of type Li, ;owho play
dk, +2against non-naive incumbents and di, ;1 against strangers or naive incumbents,
would outperform the incumbents; or (IT) Some of the non-naive incumbents have type
Ly, +1 while other incumbents have higher types; then for sufficiently small 6 > 0, the

latter group outperform the former.

3. Assume to the contrary that there are players of type strictly higher than Ly, 0. If
there are also incumbents of type Ly, 1 then the previous part shows that both groups
play the same on-equilibrium-path, and thus the agents with the strictly higher types
must obtain strictly lower payoffs due to the cognitive costs. Otherwise, any best-reply
mutant type Li,+1 must play di, ;1 against strangers and naive incumbents, and this
implies that in any undominated configuration, non-naive incumbents cannot defect at
horizons strictly higher than k.o when facing an observed mutant type Ly, ;1. This

implies that such mutants would outperform the incumbents due to the cognitive costs.
4. This is immediate from the previous two parts.

5. In any balanced configuration the naive and the non-naive incumbents must have the

same payoff. By repeating the calculation of Lemma 1, this can only hold if u (Lg,) =
p(A_l)_l'Hs'(C(Lk1+2)_c(l’k1 ))

DA—T) >0.

6. If Ly, = L; then the previous parts imply that (u,b) and (u*, b*) are equivalent config-
urations. Assume to the contrary that Ly, = L,. We now show that e mutants of type
Ly who invade the population would outperform the incumbents of type Lo (and this
immediately implies that the mutants also outperform the incumbents of type L4, as
the post-entree difference in the payoffs between the incumbents is O (€)). When facing
an opponent of type Ly or an unobserving opponent of type Ly, the mutants obtain one
less point. When facing an observing opponent of type L4, the mutants obtain A — 1

more fitness points. Thus the mutants achieve a strictly higher payoff if:
(L) +p(La) - (L=p) <p-(A=1)-pu(Ly),

p(L2) 4 (L) <peA-p(Le) & L<peAeu(Le) & n(l) > .
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By the previous part:

:1—5(C(L4)—C(L2))> 1
p-(A-1) p-A

f(La)

for a sufficiently small §.
O

Lemma 5. Let 1 — i’f—:j > p. Let (p,b) be an undominated neutrally stable strategy, and let
type Ly, € C (u) be the smallest type in the population such that p(Ly,) < 1 and ky < M —2.
Denote the remaining types in C' (u) besides Ly, as non-naive incumbents. Let ) be the mean
probability that a random non-naive incumbent cooperates at all horizons strictly larger than

k1 + 1 when facing a stranger. Assume that 0 <n < 1. Then:
2. If p > ﬁ, then Ly, = L.

(A=1)-(1—p)—1
(A-1)-(1-p)

4. m of the non-naiwe incumbents play dy,+1 against strangers and the remaining 1 — n

n >

play di, 12 against strangers.

Rd

When facing any incumbent, all types cooperate with probability 1 at all horizons strictly
larger than ki + 3.

6. No player in the population has type strictly larger than Ly, y3.

Proof. O]

1. The fact that there are incumbents who defect with with positive probability at horizons
strictly larger than k; + 1 against strangers implies that early defection (at horizon
strictly earlier than ky + 1) yields a weakly-better payoff than dy, ., against strangers.
Early defection at horizon ki +2 (>k; +2) yields at least A—1 (2-(A — 1)) less fitness
points against naive agents, and at most 1 (2) more points against non-naive opponents.
This can hold only if:

M(Lkl) . (A_ 1) < (1 _/’L(Lkl)) 1
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2. Assume to the contrary that k; > 1. Observe that ¢ mutants of type L; would outper-
form the incumbents of type Ly, (and thus would outperform all the incumbents in the

post-entry configuration ) if:
pr(A=1)- (1= pu(La)) > p(Le)-1

This is because the mutants of type L; earn at-least A — 1 more points when their
type is observed by a non-naive incumbent, they earn the same when their type is not
observed by a non-naive incumbent, and they earn at most 1 less point when playing

against a naive incumbent (type Lg, ). Thus the mutants would achieve a strictly higher

payoff if:
p-(A-1)
(A=1)>p(Ly) - (14+p-(A-1)) & > (L) .
p(A=D>ul) (+p-(A=1) & oo > ()
Substituting (2) yields:
p(A-1) 1 1

spA-(A-1)>1+p-(A-1) & p>

1+p (A-1) A A_17

To simplify notation, we will assume k; = 1 in the following proofs (though they hold

also for k; # 1 which may be possible for p < ﬁ)

3. Type Ly gets (L — 1) - A+ 1 points when playing against itself. A random player with
a type different than L; who plays against L; gets at most (L —1)- A+ 1+ 1 when he
observes his opponent’s type, and an expected payoff of at most - (L —1) A+ 2) +
(1—-n)-((L—2)-A+3). This implies that a necessary condition for other types to
achieve a higher payoff (on average) when playing against L; than the payoff that L,
gets against itself is (subtracting the equal amount of (L — 2)- A+ 1 from each payoff):

A<p-(A+1)+(0=p)-n-(A+1)+2-(1-n))

1

1
(A-1)-(1-p)

1
A-1———<n-(A-1) & 1- <n
I—p

(A-1)-(1-p)—1
(A=1)-(1-p)

If (3) does not hold, then the configuration cannot be naturally stable, because a

<1 (3)
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sufficiently small group of mutants with type L; who play d; would outperform the

incumbents.

4. We show that when facing strangers, all types cooperate with probability 1 at all
horizons strictly larger than 3. Assume to the contrary that there is a type who defects
with positive probability against strangers at horizon [ > 3. This implies that defecting
at horizon [ yields a weakly better payoff against strangers than dz. This can occur
only if:

n-(1=p)-(A=1)<(L=n)+n-p

This is because if [ =4 (I > 4), dj, 42 vields A — 1 (at least 2- (A — 1) ) more points
against non-observing opponents who cooperate at all horizons larger than 2, and it

yields at most 1 (2) less points against any other opponents. This implies:

1

1-p)-A-1)<1—n-1-p &n-1-p-A<1(1l—-p &n ——m.
n-(1-p)-(A-1)<1-n-(1-p) o n-(1-p) - A<1(1-p) (S
Substituting (3) yields:

(A-1-0-p—1_ 1
(A-1)-(1-p) ~(1-p)-A

AA-1)-(1-p)-A<A-1& A (A-1)-1-p)<2-A-1

S A(A-1)-(1-p) —1)<A—1

. < 2-A-1 o p>1 2-A—1
P=4a—n) " P="""a2_4
and we get a contradiction to p < 1 — 24=1. By part (2) of Lemma 3, all non-naive

incumbents defect with probability 1 at any horizon of at most 2. This implies that n
of the non-naive incumbents play dy against strangers and the remaining 1 — 7 play d3

against strangers.
5. The proof repeats the same argument of part (1) of the previous lemma.
6. The proof repeats the same argument of part (3) of the previous lemma.

Lemma 6. Let 1 > p > 0. Let (u,b) be a configuration, and let type Ly € C(u) be the
smallest type in the population (u(Lg,) < 1). Denote the remaining types in C (u) besides L,
as non-naive icumbents. Let n be the mean probability that a random non-naive incumbent
cooperates at all horizons strictly larger than ki + 1 when facing a stranger. Assume that

0 <n<1. Then (pu,b) cannot be undominated neutrally stable.

Proof. Assume to the contrary that (u,b) is undominated neutrally stable configuration.



A Proofs 31

1. All players who play ds against strangers have type Lo.
Assume to the contrary that there is a type Lj (l;; > 2) that plays dy with positive
probability against strangers (and by the previous lemma it plays d3 with the remaining
probability). Consider the following configuration of mutants: (¢/,0'): (1) ¢/ = u , (2)
for each k # k, b, = b, (3) for each Ly € L, b (k) = bz, (k), and (4) b7 (0) = d3. That
is, the mutants have the same distribution of types as the incumbents, and they play
the same except that mutants of type Lj always play ds when facing strangers. Observe
that such mutants would outperform the incumbents: mutants of type different than L;
obtain the same payoff as their counter incumbents, mutants of type L; would achieve
a strictly higher payoff when facing an unobserved opponent of type L; (pre-entry both
ds and ds3 yielded the same payoff; post-entry there are a bit more early defectors and
thus dsz yield a strictly higher payoff), and would obtain the same payoff in all other

cases. This implies that the configuration cannot be neutrally-stable.

2. C(p) = {L1, Lo, Ly}. Type Ly always plays dy, type Lo always plays do, and type Ly
plays dy against observed Ly, d3 against strangers and observed Lo, and plays dy against
observed L.

By the previous lemma, there are no types strictly higher than L,. By a similar
argument to part (2) of Lemma 4, this implies that agents of type Ly who play as the
incumbents of type L3 except that they play d4 against an observed type Lz, would
outperform agents of type L3. Thus, type L3 cannot be in the support of the population.
The strategies that each type plays against other incumbents follow immediately from

previous lemma and from the previous part of this lemma.

3. To simplify notation we characterize the frequency of each type in the case where the
cognitive costs converge to 0 (0 — o). The arguments work very similarly (but the

notation is more cumbersome) for for small enough 6. Then:

_ 1 o u(La) =1 I1+A—p-(A-1) N
A+p-(1-p)-(A-1) A+p-(1-p)-(A-1)

(L)

1
p-(A—-1)+1

Let py = p(Lg). The fact that (u,b) is a balanced configuration implies that types

p(Ly) =

Ly and L5 should have the same payoff. Type Ly obtains 1 more fitness point against
types L; and Lo, the same payoff against an unobserving type Ly, and A — 1 less points
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against an observing type L4. The balance between the payoffs implies:

1
p-(A-1)+1 (4)

(I—pa) =pa-p-(A=1) & pg=

Similarly, L, and L4 should have the same payoff. Type Ly obtain 1 less fitness point
against opponent of type Lo, the same against observed type L;, A — 1 more points
against unobserved type L;, and the comparison against opponent of type L4 depends
on the observability: A—2 more points when both types are observed, 1 less point when
both types are unobserved, 2 less points when only the opponent was observed, and
A — 1 more points when only the opponent was observing. Thus, the balance between

the payoffs implies (taking into account also the cognitive costs):
(I=p) - (A=D 4 (PP (A=2) =1 =p’+p-(1-p)- (A—1-2)) = s

L=p) - (A=1)+pa- (p* (A=3) =1+ 2p+ (p—p°) - (A=3)) = 12
(L=p)- - (A=) +ps-(p-(A=3)=1+2p) = po
(I=p) - A=D+p-p-(A=1)=1) =pp=1—n—u
pa-p-(A=1)=1—p-(1+(1-p)-(A-1))
pa-p-(A=1)=1—p-(A—p-(A-1))

p-(A=p-(A=1))=1—ps-p-(A-1)

_l—pp-(A-1)
M (A

Substituting (4) yields:

1— p-(A-1) 1
p-(A-1)+1 - p(A-1)+1

M (A—1) A—p-(A-1)

1 1
p-(A-D+1)-(A=p-(A-1) A+4p-(1-p)-(A—1°
This implies that:

M1 =

1 1
ugzl—ul—m:l—(p.(A_1)+1)-(A—p-(A—1))_p'(A_1)+1
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1+A—p-(A-1) _q 1+A—p-(A-1)

BT A A (Am D) G (A- D+ D (A= (A- 1))

1+ A-p-(A-1)
Atp-(1—p)-(A=1)*

If any of the p;-s is not between 0 and 1 then no neutrally stable configuration exists.

M2 =

4. The configuration is not neutrally stable.

A direct algebraic calculation reveals that for sufficiently small €, ¢ > 0:

(a) If p < 0.5 then e “imitating” mutants with a configuration (u/,b") with u/ (L) =
1—pu(Ly)+¢€, (/' (La) =0, ' (Lg) = p(Ly) — €, and b’ = b (play the same as the
incumbents) outperform the incumbents in the post-entry population.

(b) If p > 0.5 € “imitating” mutants with a configuration (¢/,b') with u'(L;) = 0,
W (Ly) = 1—p (Ly)+€, ' (Ly) = p(Lg)—€, and b’ = b outperform the incumbents

post-entry population for sufficiently small e.

m
A.3 Theorem 3 - Stable Configurations Near 0 and 1
Theorem. 3
1. Let 0 < p < ~——+——. Then there exists an undominated neutrally stable configura-

(M—2)-(A-1)"
tion <[~L, l~7> where all players have type Lys and they play dy against strangers and type
Ly, and diy1 against observed “mutant” type Ly < Ly;. Moreover, any other neutrally

stable configuration is equivalent to (/], 5)

2. Let 1 > p > %. Then in any stable configuration there is a positive frequency of

players of type Ly, and these players defect at all stages when observing an opponent

of type L.

Proof.

1. We begin by showing the stability of the configuration in which all players have type
Ly and they defect at all stages. It is immediate that player best reply to each other.
Consider € mutants with type & < L who invade the population. When facing in-

cumbents, the mutants obtain 1 fitness point less when their type is unobserved, and
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(A—1) - (M —k—1) — 1 more fitness points when their type is observed. Thus for

sufficiently small € and 9, the incumbents achieve a strictly lower payoftf if:

1-p)>p (A-1)- M—-k-1)-1) & 1>p-(A-1)- (M —k—1)

1
A—1)-(M—k—1)

1
(M—2)-(A-1)°

p<

This implies that for any p <

stable.

Next we show that any non-equivalent configuration cannot be neutrally stable when
1 e 1

p < 5 (thus, if EIR Sy

all players in the population have type Lj; then they must all play d,; in any Bayesian-

the configuration is undominated neutrally

<p< ﬁ then no neutrally stable configuration exists). If

Nash equilibrium, as it is the unique serially strictly undominated strategy. Otherwise,
let Ly < Lj; be the smallest type in the support of the population. If £ = M — 1, then
it is immediate that agents with type Lj; would outperform agents with type Lj;_;.
If £ < M — 2, then by repeating the arguments in Lemmas 3-6, one can see that no

undominated neutrally stable configuration exists.

2. Let L be the highest type in the population. Let [ be the largest horizon in which L
begins defecting with positive probability against an observed opponent of the same
type. If this probability is strictly less than 1, then by a similar argument to Part (1)
of Lemma 6, the configuration is not neutrally stable (e “imitating” mutants who differ
only in that their L;-s play d; with probability 1 would achieve a strictly higher payoft
in the post-entry population). Now, if [ < k, then e mutants of type L who play
di1 (start defecting one stage earlier) against observed Ly, and play the same as the
incumbents in all other cases, would outperform the incumbents of type Lj (and this

implies they would outperform all incumbents):

A—-1
A

p>(1-=p)-(A-1) e p-A>A-1) < p>

(because the mutants obtain 1 more point when their observed Ly opponent observes
their type, and they get at most A — 1 less points when he does not observe their
type; they obtain the same payoff against strangers and other observed opponents).
From similar reasons, If [ = k < M, then € mutants of type Ly, who play d; against
observed Lj, and play the same as the incumbents of type L, in all other cases, would
outperform incumbents of type Lj (and this implies they would outperform all incum-

bents) in any undominated neutrally stable configuration.



A Proofs 35

References

ALGER, L., aND J. WEIBULL (2012): “Homo Moralis-Preference evolution under incomplete

information and assortative matching,” Discussion paper, Toulouse School of Economics
(TSE).

ANDREONI, J., AND J. MILLER (1993): “Rational cooperation in the finitely repeated pris-

oner’s dilemma: Experimental evidence,” The Economic Journal, 103(418), 570-585.

BoscH-DOMENECH, A., J. MONTALVO, R. NAGEL, AND A. SATORRA (2002): “One,

two,(three), infinity,.... Newspaper and lab beauty-contest experiments,” The American
Economic Review, 92(5), 1687-1701.

BRUTTEL, L., W. GUTH, anp U. KAMECKE (2012): “Finitely repeated prisoners dilemma

experiments without a commonly known end,” International Journal of Game Theory, pp.
1-25.

CAMERER, C. (2003): Behavioral game theory: Experiments in strategic interaction. Prince-

ton University Press.

CAMERER, C., T. HO, anD J. CHONG (2004): “A cognitive hierarchy model of games,” The
Quarterly Journal of Economics, 119(3), 861-898.

CHONG, J., C. CAMERER, anD T. HO (2005): “Cognitive hierarchy: A limited thinking

theory in games,” FExperimental Business Research, pp. 203-228.

COOPER, R., D. DEJONG, R. FORSYTHE, anD T. Ross (1996): “Cooperation without
reputation: experimental evidence from prisoner’s dilemma games,” Games and Fconomic
Behavior, 12, 187-218.

CosTA-GOMES, M., axD V. CRAWFORD (2006): “Cognition and behavior in two-person

guessing games: An experimental study,” The American economic review, 96(5), 1737
1768.

CosTA-GOMES, M., V. CRAWFORD, AND B. BROSETA (2001): “Cognition and Behavior in
Normal-Form Games: An Experimental Study,” Econometrica, 69(5), 1193-1235.

CRAWFORD, V. (2003): “Lying for strategic advantage: Rational and boundedly rational

misrepresentation of intentions,” The American Economic Review, 93(1), 133-149.



A Proofs 36

CRAWFORD, V. (2008): “Look-ups as the windows of the strategic soul: Studying cognition
via information search in game experiments,” Perspectives on the Future of Economics:
Positive and Normative Foundations, A. Caplin and A. Schotter, Eds. Oxford University

Press.

CRAWFORD, V., AND N. IRIBERRI (2007): “Level-k Auctions: Can a Nonequilibrium Model
of Strategic Thinking Explain the Winner’s Curse and Overbidding in Private-Value Auc-
tions?,” Econometrica, 75(6), 1721-1770.

DEKEL, E., J. C. ELy, aND O. YILANKAYA (2007): “Evolution of Preferences,” Review of
Economic Studies, T4(3), 685-704.

FERSHTMAN, C., K. L. JupD, anD E. KALAI (1991): “Observable Contracts: Strategic

Delegation and Cooperation,” International Economic Review, 32(3), 551-559.
FRENKEL, S., Y. HELLER, AND R. TEPER (2012): “Endowment as a Blessing,” .

GILL, D., aND V. PROWSE (2012): “Cognitive ability and learning to play equilibrium: A

level-k analysis,” .

GUTH, W., aAND M. YAARI (1992): “Explaining Reciprocal Behavior in Simple Strategic
Games: An Evolutionary Approach,” in FExplaining Process and Change: Approaches to
Evolutionary Economics, ed. by U. Witt, pp. 23-34. The University of Michigan Press,
Ann Arbor.

HAvVILAND, W., H. PRINS, AND D. WALRATH (2007): Cultural anthropology: the human
challenge. Wadsworth Pub Co.

HEIFETZ, A., AND A. PAUZNER (2005): “Backward induction with players who doubt others’
faultlessness,” Mathematical Social Sciences, 50(3), 252-267.

Ho, T., C. CAMERER, AND K. WEIGELT (1998): “Iterated dominance and iterated best
response in experimental" p-beauty contests",” The American Economic Review, 88(4),

947-969.

HyNDMAN, K., A. TERRACOL, AND J. VAKSMANN (2012): “Beliefs and (In) Stability in

Normal-Form Games,” .

JEHIEL, P. (2005): “Analogy-based expectation equilibrium,” Journal of Economic theory,
123(2), 81-104.



A Proofs 37

JOHNSON, E., C. CAMERER, S. SEN, AND T. RYMON (2002): “Detecting failures of back-
ward induction: Monitoring information search in sequential bargaining,” Journal of Fco-
nomic Theory, 104(1), 16-47.

MAYNARD-SMITH, J. (1974): “The theory of games and the evolution of animal conflicts,”
Journal of Theoretical Biology, 47(1), 209 — 221.

MAYNARD SMITH, J. (1982): “Evolution and the theory of games,” .

McKELVEY, R., axnp T. PALFREY (1995): “Quantal response equilibria for normal form

games,” Games and Economic Behavior, 10(1), 6-38.

MoOHLIN, E. (2012): “Evolution of theories of mind,” Games and Economic Behavior, 75(1),
299 - 318.

NAGEL, R. (1995): “Unraveling in guessing games: An experimental study,” The American
Economic Review, 85(5), 1313-1326.

NAGEL, R., anp F. TANG (1998): “Experimental results on the centipede game in normal
form: an investigation on learning,” Journal of Mathematical Psychology, 42(2), 356-384.

NEELIN, J., H. SONNENSCHEIN, AND M. SPIEGEL (1988): “A further test of noncooperative
bargaining theory: Comment,” The American Economic Review, 78(4), 824-836.

RAPOPORT, A., aAND W. AMALDOSS (2004): “Mixed strategies and iterative elimination

of strongly dominated strategies: An experimental investigation of states of knowledge,”
Journal of Economic Behavior & Organization, 42(4), 483-521.

ROBSON, A. (2003): “The evolution of rationality and the Red Queen,” Journal of Economic
Theory, 111(1), 1-22.

ROSENTHAL, R. (1981): “Games of Perfect Information, Predatory Pricing and the Chain-
Store Paradox.,” Journal of Economic Theory, 25(1), 92-100.

SELTEN, R., AND R. STOECKER (1986): “End behavior in sequences of finite Prisoner’s

Dilemma supergames A learning theory approach,” Journal of Economic Behavior & Or-
ganization, 7(1), 47-70.

STAHL, D. (1993): “Evolution of Smart-n Players,” Games and Economic Behavior, 5(4),
604-617.



A Proofs 38

STAHL, D., AND P. WILSON (1994): “Experimental evidence on players’ models of other

players,” Journal of economic behavior € organization, 25(3), 309-327.

STENNEK, J. (2000): “The survival value of assuming others to be rational,” International
Journal of Game Theory, 29(2), 147-163.

SWINKELS, J. (1992): “Evolutionary stability with equilibrium entrants,” Journal of Eco-
nomic Theory, 57(2), 306-332.

WINTER, E., I. GARCIA-JURADO, AND L. MENDEZ-NAYA (2010): “Mental Equilibrium and

Rational Emotionsl,” .



