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Abstract

The problem of instrument proliferation and its consequences (overfitting

of endogenous variables, bias of estimates, weakening of Sargan/Hansen

test) are well known. The literature provides little guidance on how many

instruments is too many. It is common practice to report the instrument

count and to test the sensitivity of results to the use of more or fewer in-

struments. Strategies to alleviate the instrument proliferation problem are

the lag-depth truncation and/or the collapse of the instrument set (the lat-

ter being an horizontal squeezing of the instrument matrix). However, such

strategies involve either a certain degree of arbitrariness (based on the

ability and the experience of the researcher) or of trust in the restrictions

implicitly imposed (and hence untestable) on the instrument matrix. The

aim of the paper is to introduce a new strategy to reduce the instrument

count. The technique we propose is statistically founded and purely data-

driven and, as such, it can be considered a sort of benchmark solution to

the problem of instrument proliferation. We apply the principal component

analysis (PCA) on the instrument matrix and exploit the PCA scores as

the instrument set for the panel generalized method-of-moments (GMM)

estimation. Through extensive Monte Carlo simulations, under alternative

characteristics of persistence of the endogenous variables, we compare the

performance of the Difference GMM, Level and System GMM estimators
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when lag truncation, collapsing and our principal component-based IV re-

duction (PCIVR henceforth) are applied to the instrument set. The same

comparison has been carried out with two empirical applications on real

data: the first replicates the estimates of Blundell and Bond [1998]; the

second exploits a new and large panel data-set in order to assess the role

of tangible and intangible capital on productivity. Results show that PCIVR

is a promising strategy of instrument reduction.

JEL classification: C13, C15, C33, C36, C63.

Keywords: Panel data, generalized method of moments, proliferation of

instruments, principal component analysis, persistence.

1 Introduction

Dynamic panel data (DPD) have become very popular in the last two decades,

thanks in particular to the increasing availability of panel datasets both at a micro

level (e.g. data for individuals, households or firms) and at a macro level (e.g.

data for Regions or Countries). The use of dynamic models in macroeconomics

dates back to many decades ago, while it is relatively recent in microeconomics.

The possibility of including some kind of dynamics also in a microeconomic

framework has become very appealing: in fact, it is now a common practice to

estimate dynamic models in empirical analysis in most microeconomic fields.

In particular, the generalized method-of-moments (GMM) estimator, in the

Holtz-Eakin, Newey and Rosen [1988], Arellano and Bond [1991], Arellano and

Bover [1995] and Blundell and Bond [1998] formulations, has gained a leading

role among the DPD estimators, mainly due to its flexibility and to the very few

assumptions about the data generating process it requires. Most of all, while

preventing from the well known DPD bias (see Nickell [1981]) and from the

trade off between lag depth and sample size1, the GMM estimator also gives

the opportunity to account for individual time-invariant effects and for potential

endogeneity of regressors. Another advantage is the availability of “internal”

instruments (lags of the endogenous variables), a noticeable point when finding

instruments is not an easy task. The implementation of ad hoc procedures in

many statistical softwares and the consequent availability of “buttons to push”

have done the rest of the job.

The GMM estimator however is not the panacea for all the drawbacks of the

1This former problem is instead an intrinsic and unavoidable characteristic of the Anderson-

Hsiao [1981, 1982] 2SLS estimator for DPD.
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previously proposed DPD estimators: it is in fact not free of faults. Instrument

proliferation, among the others, is a severe issue in the application of the GMM

estimator to DPD models and needs to receive more attention than what it has

been done so far. The potential distortions in the estimates by instrumental

variables (IV) and GMM estimators when the instrument count gets larger and

larger have been treated extensively in the literature2, but not enough attention

has been paid to this issue in Difference, Level and System GMM estimation of

DPD (DIF GMM, LEV GMM and SYS GMM henceforth).

Though these versions of the GMM estimator are designed for a large N-

small T framework, and though the time dimension in panel datasets remains

well below that of a typical time series, it is well-known that the number of

moment conditions increases exponentially with T and the dimension, m, of the

vector of endogenous regressors other than the lagged dependent variable; this

number can get rapidly large relative to the sample size. Consequently, the

excessive number of instruments can create a trade-off between bias (overfitting

of endogenous variables) and efficiency (additional moment conditions), give an

imprecise estimate of the variance/covariance matrix of the moments, lower the

power of specification tests (Sargan [1958] / Hansen [1982] test of over-identifying

restrictions) and exacerbate the weak instruments problem.

Unfortunately, the problem of instrument proliferation is only rarely detected

and addressed in empirical analyses with the consequent risk of drawing mis-

leading conclusions about the coefficient estimates. In many empirical papers,

GMM is often applied with unclear specification of the estimator concerning ini-

tial weighting matrix, onestep or twostep estimate and, in particular, the selection

of instruments: different results emerge as a consequence of different choices of

the instrument matrix (for example, how many lags are included) and it becomes

difficult to interpret such results as robustness checks, as they are based on a

certain degree of arbitrariness, ability or experience of the researcher.

Moreover, there is not a clear indication on how many instruments is too many

and on which is a reasonable number of instruments to be used in empirical works.

The paper has two aims. The first one is to introduce a data-driven technique

for the reduction of the instrument count in GMM estimation of DPD with other

explanatory endogenous variables in addition to the lagged dependent variable.

We extract the principal components from the instrument matrix through the prin-

cipal component analysis (PCA) and use the PCA scores as a new set of instru-

2See, among the others, Ziliak [1997] and Bowsher [2002].
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ments (we call this procedure principal component-based IV reduction, PCIVR,

henceforth). In doing so, we aspire to answer the question “How many moment

conditions can be used and still expect to be able to obtain valid inference when

estimating by GMM?”. Since, in the words of Hall and Peixe [2003, p. 271], “It is

impossible to verify a priori which elements of the candidate [instruments] set sat-

isfy [the] conditions [orthogonality, identification, efficiency, and non-redundancy]

for a given data set”, we suggest a statistically founded rule for the selection of

non redundant IVs, based on the characteristics of the empirical problem at hand.

In doing so, we extend the analysis of Doran and Schmidt [2006] who consider

an eigenvalue-eigenvector decomposition of the variance matrix of the moment

conditions, and then discard the terms corresponding to the smallest eigenval-

ues; they simulate a simple autoregressive DPD and compare results for different

autoregressive parameter values, different variance of individual effects, different

sample sizes N and T .3

The second aim of the paper is to fill the gap in the literature by comparing

the performance of the Difference, Level and System GMM estimators when

various instrument reduction techniques are adopted. In order to do so, we both

run extensive Monte Carlo experiments and we estimate economic models on real

data, allowing for the presence of endogenous variables (together with the lagged

dependent variable), and checking the effects of various persistence characteristics

of the stochastic processes, of different sample sizes N and T , and of the use of

Windmeijer [2005] finite sample correction.

Along with the PCIVR method, the other techniques to reduce the number of

moment conditions we compare are the two usually employed in the empirical

literature: the collapsing of the instrument matrix (Roodman [2009b]) and the

reduction of the lag depth of the instruments. Both solutions make the instrument

count linear in T : the former creates different instruments for each lag but not

also for each time period; the latter consists of the inclusion as instruments of

only few lags instead of all the available ones. Both techniques, separately or

combined together, have gained popularity thanks to their direct implementability

in the statistical softwares and are now commonly, and often blindly, used in

empirical works.4 However, collapsing and lag depth truncation involve a certain

3Mehrhoff [2009] sketches the idea of applying the PCA on the GMM-style instrument matrix in

the Difference GMM framework with no additional endogenous regressors and an arbitrary choice

of the number of components to be retained.
4Other suggestions by the literature had less following in the applied works: the projection-

restricted IV estimation of Arellano [2003] and the canonical correlations and information criteria

of Hall and Peixe [2003].
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degree of arbitrariness as they ask either to trust the restrictions that are imposed

when the instrument matrix is collapsed or to choose how many lags to include

among the instruments. Despite some attempts to investigate the performance of

the GMM estimators when instrument reduction techniques are employed, the

literature in this fields lacks of exhaustive experiments that compare extensively

these strategies and their robustness to different settings of the parameters in the

simulation model of a DPD with other endogenous variables besides the lagged

dependent variable. Our paper aims to fill this gap.5

Our results confirm that PCIVR is a general, data-driven technique to reduce

overidentification problems that can be fruitfully applied to any overidentified

GMM problem. Having tried alternative criteria in order to select the num-

ber of retained components (keep only the components whose eigenvalues are

larger than the average eigenvalue or retain only the components that explain a

given predetermined portion of the original variance), we suggest, as a selection

criterion, the explanation of 90% of the original variance.

In the remainder of the work we proceed as follows: in section 2, after

reviewing the collapsing and limiting, we illustrate the extraction of principal

components from the instrument matrix and discuss the rationale of applying the

PCA on the instrument set; the comparison of a number of instrument reduction

techniques is presented by replicating the Blundell and Bond [1998] estimates for

the labour demand in the UK and by exploiting extensive Monte Carlo simulations

(in section 3); in section 4 we present an empirical application that estimates a

production function with three inputs - labour, tangible and intangible capital -

for a large panel data-set; section 5 draws the conclusions and indicate practical

hints for the empirical analysis; the Appendix runs through the technical details

of the PCA.

2 Reducing the instrument count in GMM estimation

Consider the general one-way error component DPD model:

yit = αyit−1 + β ′xi,t + φt + υit , υit = ηi + εit , (1)

where i = 1, .., N , t = 1, .., T , x is a m-dimensional vector of potentially endoge-

nous regressors, the φt are the time effects (usually considered deterministic), the

5Roodman [2009b] presents only a Monte Carlo experiment limited to an autoregressive model

to compare the collapsing and lag-truncation techniques but restricts the analysis to the System

GMM estimator and to a specific parameter setting. Mehrhoff [2009] instead bounds his experiment

to the Difference GMM estimator, that is less exposed to instrument proliferation dangers.
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ηi are the individual effects and εit is a zero-mean idiosyncratic error, allowed

to be heteroskedastic but not serially correlated. The standard assumptions are:

E [ηi]=E [εit ]=E [ηiεit ]=0 and predetermined initial conditions E [yi1εit ]=0.

The Arellano-Bond and Arellano-Bover / Blundell-Bond estimators are linear

GMM estimators for the model in first differences (DIF GMM) or in levels (LEV

GMM) or both (SYS GMM) where the instrument matrix Z includes the lagged

values of the endogenous variables only or also the lagged first differences of the

endogenous variables6. In the standard framework of DIF and SYS GMM, the

columns of the instrument matrix Z correspond respectively to two different sets

of meaningful moment conditions.

In particular, the Arellano-Bond DIF GMM estimator exploits, for each en-

dogenous variable, the following (T − 2)(T − 1)/2 moment conditions for the

equation (1) in first differences:7

E [(Zi
dif)′

∆υi] = E [(Zit−l
dif)′

∆υit ] = 0 for t ≥ 3, l ≥ 2 (2)

For the sake of simplicity suppose m=1; the instrument matrix Zdif, that sati-

sfies the moment restrictions in (2), contains an IV for each endogenous variable,

time period and lag distance and it has the well known form:

Zdif
i =




yi1 xi1 0 . . . . . . . . . . . . . . . . . . 0
...

...
...

. . .
...

...
... . . . . . . 0

0 0 . . . 0 yi1 . . . yiT −2 xi1 . . . xiT −2



 (3)

The Blundell-Bond SYS GMM estimator also exploits, for each endogenous

variable, the additional non-redundant T − 2 orthogonality conditions for the

equation (1) in levels:

E [(Zi
lev)′υi] = E [(Zis

lev)′υiT ] = 0 for s = 2, ..., T − 1 (4)

6We use Z to define a general instrument matrix for DPD GMM estimation. Z can stand for

the untransformed matrix, the collapsed matrix or the limited matrix of instruments. When we need

to indicate more precisely the matrix we are considering, we use specific superscripts to denote it.
7Suitably lagged x-variables can also be used as IVs when the x-variables are predetermined

or strictly exogenous: for predetermined x-variables we have l ≥ 1 and (T − 2)(T + 1)/2 moment

conditions; if they are instead strictly exogenous l = 0 and the moment conditions are T (T − 2).
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where, again for m=1, the instrument matrix is:8

Zlev
i =




∆yi2 ∆xi2 0 . . . 0

...
...

. . . . . . 0

0 0 . . . ∆yiT −1 ∆xiT −1



 (5)

The full instrument matrix for the SYS GMM estimator will thus be:

Z
sys
i =

(
Zdif

i 0

0 Zlev
i

)
. (6)

Since usually lags of the explanatory variables are used as IVs, “the phe-

nomenon of moment condition proliferation is far from being a theoretical construct

and arises in a natural way in many empirical econometric settings” (Han and

Phillips [2006, p. 149]). The dimension of the GMM-type instrument matrix

grows exponentially as the number of time periods and regressors expands, even

if the time span of the panel is of moderate size.

2.1 Collapsing and limiting the instrument set

As discussed in Roodman [2009], when we collapse the instrument set we

impose the same condition for all t and we create an instrument for each en-

dogenous variable and lag distance rather than for each endogenous variable,

time period and lag distance. The collapsed instrument matrix for the equation

in first differences has the form, for m=1:

Zdif, C
i =




yi1 0 xi1 0 0 . . .

yi2 yi1 xi2 xi1 0 . . .
...

...
...

...
...

. . .



 (7)

with (T − 2) moment conditions for each endogenous.

Similarly, the collapsed matrix for the equation in levels is:

Zlev, C
i =




∆yi2 ∆xi2

∆yi3 ∆xi3
...

...



 (8)

8The LEV GMM estimation considers, for each endogenous variable, time period and lag

distance, all the available lags of the first differences as instrument for the equation in levels

because they are non redundant. See Bond [2002] and Bun and Windmeijer [2010] for further

discussion on this issue.
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The collapsed matrix for the system estimator will thus be:

Z
sys, C
i =

(
Zdif, C

i 0

0 Zlev, C
i

)
. (9)

with (T − 2) + 1 moment conditions for each endogenous variable.

When instead we limit the lag depth, we truncate the moment restrictions

and exploit the conditions in equation (2) only for 2 ≤ l ≤ M , where M is the

maximum lag depth we consider. The limited instrument matrix for the equation

in first differences will be:

Zdif, L
i =





yi1 xi1 0 0 0 0 0 0 0 0 0 0 . . .

0 0 yi2 yi1 xi2 xi1 0 0 0 0 0 0 . . .

0 0 0 0 0 0 yi3 yi2 xi3 xi2 0 0 . . .
...

...
...

...
...

...
...

...
...

...
...

...
. . .





(10)

The number of instruments is
(T −2)(T −1)

2 −
(T −2−M)(T −1−M)

2 and the instrument

count depends on the number of endogenous variables, on T and on M . The

truncation in the lag depth has no impact on Zlev
i , as it already includes only

the first lag available. By limiting arbitrarily the lag depth, we drop from the

instrument set Z all the information about the lags greater than M ; by collapsing

the instrument matrix, we retain a lot more information as none of the lags is

actually dropped, though restrictions are imposed on the coefficients of subsets

of instruments so that we only generate a single instrument for each lag.

2.2 Extracting principal components from the matrix of instruments

In order to face the problem of instrument proliferation, we propose a strategy

that involves a stochastic transformation of the instrument set: we extract the

principal components from the instrument matrix Z.

The adoption of principal components analysis (PCA) or factor analysis to ex-

tract a small number of factors from a large set of variables has become popular

in macroeconomic fields of analysis. The main use of factors is in forecasting in

second stage regressions, but they are also employed as instrumental variables

in IV estimation, in augmented VAR models and in DSGE models9. The seminal

works by Stock and Watson [1998, 2002a, 2002b] develop the use of static prin-

cipal components to identify common factors when the number of variables in the

9Stock and Watson [2010] provide an extensive survey on the use of estimated factors in eco-

nomic analysis.
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dataset gets very large, while Forni et al. [2000, 2004, 2005] propose the use of

dynamic principal components. Stock and Watson [2002a] prove consistency of

the factors as the number of original variables gets sufficiently large, so that the

principal components are estimated precisely enough to be used as data instead

of the original variables in subsequent regressions.

The idea of using principal components or factors as instrumental variables is

not so new in the literature. Kloek and Mennes [1960] and Amemiya [1966] first

proposed the use of principal components in instrumental variable (IV) estimation.

In this stream of literature, we find, among the others, important contributions by

Kapetanios and Marcellino [2010], Groen and Kapetanios [2009] and by Bai and

Ng [2010] that rely on factor-IV or factor-GMM estimation10.

In the stream that uses factors as instruments, the main novelty of what we do

here is that we consider a DPD model with endogenous explanatory variables and

extract principal components allowing for two strategies: (1) we apply PCA to a

large set of lags of each instrument considered separately (what we call PCIV); (2)

we apply PCA to a large set of lags of all the different instruments taken together

(what we call PCIVT). The idea is that of identifying the most meaningful basis

to re-express the information conveyed by the Z, avoiding multicollinearities in

the instrument set. This new basis should filter out the noise component of

the moment conditions11 and reveal the signal delivered by the instrument set

(coming from the mean of the sample moment conditions); most important, the

noise reduction is the result of a data-driven procedure.

Through the PCA we extract the largest eigenvalues from the estimated co-

variance12 or correlation matrix13 of Z and, by combining the relative eigenvectors,

we obtain the loading matrix and the score matrix. We then use the PCA scores

as new instrumental variables for the endogenous variables in GMM estimates

(PCIVR).

10A review of the literature on Factor-IV and Factor-GMM estimations is in the introduction of

Kapetanios and Marcellino [2010].
11The degree of variation over the sample moment conditions increases as the number of moment

conditions raises
12An unbiased estimator of the covariance matrix of a p-dimensional vector x of random variables

is given by the sample covariance matrix C = 1
N−1 X′X where X is a N × p zero mean design

matrix.
13There is not a clear indication in the theoretical literature on which is the preferable matrix

among the two. The PCA is scale dependent and the components that are extracted from either

matrices are different. The PCA on the covariance matrix can be used when the variables are

in commensurable units and have similar variances, as it is generally the case in Monte Carlo

experiments. In estimating economic models the PCA on the correlation matrix is instead preferable.

We always use PCA on the correlation matrix.
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In practice, defined Z as the general p-columns GMM-style instrument ma-

trix14, we extract p eigenvalues λ1, λ2, ..., λp ≥ 0 from the covariance matrix of Z,

ordered from the largest to the smallest, and derive the corresponding eigenvec-

tors (principal components) α1, α2, ..., αp. Our new instruments will be the scores

from PCA that are defined as:

sk = Zαk for k = 1, 2, ..., p. (11)

If we write Z = [z1 z2 ... zp] with zj being the j th column of the instrument

matrix, the score sk corresponding to the k th component can therefore be rewritten

as:

sk = αk1z1 + αk2z2 + ... + αkpzp (12)

where αkj is the j th element of the principal component αk .

Since the aim of the PCA is data reduction, it would not help to keep all the

p scores in the analysis as this would imply no decrease in the number of instru-

ments; only in the first application of section 3 we will check the impact of PCIVR

on estimation results when all the p components are retained. In general we sug-

gest to retain only (m + 1) ≤ q < p principal components; as a consequence,

only the q corresponding score vectors will form the new transformed instrument

matrix. Alternative criteria can be applied in order to select the components to

be retained.15 In line with Doran and Schmidt [2006, p. 406], we propose the

variability criterion; in particular, we retain the components that explain 90%

of the original variance. With this criterion, the leading eigenvectors from the

eigen decomposition of the correlation matrix of the instruments describe a series

of uncorrelated linear combinations of the instruments that contain most of the

variance. Compared to alternative criteria to select the eigenvalues of interest,

we think that retaining principal components that explain a given predetermined

portion of the original variance better avoids the magnification of sampling errors

in the process of inversion of the variance matrix of the moment conditions. This

should decrease the variance of the estimated weighting matrix and improve finite

sample performance of the GMM estimator.16

14Z can be Zdif , Zsys , Zdif,C , Zsys,C , Zdif,L , Zsys,L , according to the notation adopted in the previous

sections. Remember that, in the simplified case of a balanced panel with Ti = T ∀i, and m

endogenous variables plus the lagged dependent variable, we have: Zdif has p = ((T − 2)(T −

1)/2)(m + 1) columns, Zdif,C has p = (T − 2)(m + 1) columns, Zdif,L a number of columns

depending also on the lag truncation. In system GMM estimation, further (T − 2)(m+ 1) columns

are added in Zsys and in Zsys,L , while only m + 1 are added to Zsys,C .
15The criteria are discussed in the Appendix.
16According to alternative selection criteria, the smallest eigenvalue or the two or three smallest
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Defined the matrix of PCA loadings as V = [α1 α2 ... αp] and the matrix

of PCA scores as S, we have that S = ZV. Instead of the moment conditions in

(2), we will therefore exploit the following restrictions:

E [(Sdif)′
∆υ] = E [(ZdifV)′

∆υ] = 0. (13)

Similarly, in the SYS GMM we will also exploit the additional orthogonality

conditions

E [(Slev)′υ] = E [(ZlevV)′υ] = 0. (14)

In both cases, the number of moment restrictions depends on the number of

components we retain in the analysis that, in turn, depends on the nature of the

data at hand. As our starting point is that instruments are orthogonal to the

error term, a linear combination of the original instruments will also obviously

be orthogonal to the error term.

The rationale of PCIVR is to use, instead of the untransformed instruments,

linear combinations of the original instruments that are properly weighed ac-

cording to the PCA loadings: no available instrument is actually dropped, but

its influence might be rescaled after the PCA. It is also worth noticing that none

of the instruments that are not in the original matrix Z will enter the linear

combinations which forms the columns of the new instrument matrix. PCA thus

preserves all the information in the original instrument set.

A further advantage of PCA is that we can extract principal components not

only from the untransformed instrument matrix but also from any transformation

we think could be useful; for example, applying PCA to the limited or collapsed

instrument matrix would retain all the information each matrix conveys and thus

further reduce the number of instruments. As another example, we could apply

multistep PCA (see e.g. D’Alessio [1989]) to highlight structural aspects of the

data at hand, like persistence or heterogeneity among clusters of individuals.

ones can be arbitrarily dropped; alternatively, one could retain the eigenvalues higher than the

average eigenvalue or a fixed number of the highest ones. Results that compare the performance

of PCIVR when seveleral of such criteria are applied, as well as under various alternative settings,

are available in Mammi [2011].
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3 Comparing the instrument reduction techniques

3.1 The application of PCIVR technique to Blundell and Bond [1998]
model

In this section we apply our PCIVR technique to the Blundell and Bond [1998]

dynamic labour demand equation of p. 135:

nit = αnit−1 + β0wit + β1wit−1 + γ0kit + γ1kit−1 + φt + ηi + vit (15)

where nit is the log of employment in firm i in year t , wit is the log of the real

product wage and kit is the log of the capital stock. The sample is an unbalanced

panel of 140 UK listed manufacturing companies with between 7 and 9 annual

observations over the period 1976-1984. Results are reported in Tables 1, 2 and

3 for DIF, SYS and LEV GMM, respectively; in particular, the first column of

Tables 1 and 2 replicate DIF and SYS GMM estimates of the last two columns

of Table 4 in Blundell and Bond [1998]. Table 3 adds also LEV GMM estimates.

The other columns of Tables 1, 2 and 3 present collapsing (DIFc, SYSc and LEVc),

limiting (DIFl, SYSl and LEVl) and PCIVR on each variable separately and on

the variables together (DPCIV100, DPCIV90, DPCIVT90; SPCIV100, SPCIV90,

SPCIVT90; LPCIV100, LPCIV90, LPCIVT90). Reported estimates are the one-

step GMM ones with standard errors robust to heteroskedasticity. The first point

to stress is that PCIV100, which uses PCA to just transform the instrument set

without dropping any of the moment conditions, does not alter the estimation

results originally presented by Blundell and Bond. This is true for each variable

of the model, for the specification tests and for different GMM estimates (DIF,

SYS or LEV). The retain of the scores that are able to explain 90% of the original

variance (PCIV90) in DIF GMM makes evident the problem of near unit root

characterizing the data at hand: lagged wage is no more significant, and Hansen

and residuals second-order autocorrelation tests present lower p-values. This a

signal of weak instruments due to persistence that specially affect DIF GMM.

These problems are exacerbated by PCIVT: putting together all the instruments

and their lags, the PCA operates a sort of reduced form between near unit root

stochastic processes and therefore, compared to collapse and lag truncation, casts

light on the inappropriateness of the instruments. The overfitting of the model

with troublesome moment conditions produces a downwards bias of the estimates

(in the direction of Within-Group estimates) and a general increase in the vari-

ance. Moving to SYS GMM we note that the weak instruments problem due to

persistence is reduced, as suggested by Blundell and Bond. Now PCIV90 de-

livers estimation results that are in line with original SYS GMM more than the
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other instrument reduction techniques, like collapsing and lag truncation. Com-

pared to original SYS GMM, however, the reduced number of moment conditions

implied by PCIVR reveals the rejection of the orthogonality conditions through

the Hansen test. This rejection can be explained by the use of moment conditions

in levels for the equation in differences; when we look at the LEV GMM, in which

moment conditions in first differences are used for equations in level, we note

how estimation results are close each other and that the Hansen test does not

reject the overidentifying restrictions (the persistence of instruments is solved by

the first-difference transformation).

3.2 Monte Carlo experiments: a multivariate dynamic panel data model

In our set of Monte Carlo simulations we estimate a multivariate DPD whose

settings are the same as in Blundell et al. [2000]. The model of interest is:

yit = αyit−1 + βxit + ηi + vit (16)

xit = ρxit−1 + τηi + θvit + eit

where ηi ∼ N (0, σ 2
η ) are the fixed effects; vit ∼ N (0, σ 2

v ) and eit ∼ N (0, σ 2
e )

are the idiosyncratic shocks. Initial observations are drawn from a covariance

stationary distribution such that

E

[(
xi1 −

τηi

1 − ρ

)
τηi

]
= 0 (17)

E







yi1 −
β

(

τηi

1−ρ

)

+ ηi

1 − α



 ηi



 = 0. (18)

The xit process is positively correlated with ηi and the value of θ is negative

to mimic the effects of measurement error. The setting of the parameters in the

simulation model is as follows:
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α 0.5, 0.95

ρ 0.5, 0.95

Iterations 100, 1000

N 500

T 5, 8, 20

β 1

τ 0.25

θ -0.1

σ 2η 1

σ 2v 1

σ 2e 0.16

In Tables 4, 5, 6 and 7 we consider 500 individuals and two different time

lenghts, i.e. T =5, 8; each experiment consists of 1000 iterations; reported es-

timates are the two-step DIF and SYS GMM estimators, with standard errors

robust to heteroskedasticity and with the Windmeijer [2005] finite sample cor-

rection. In Tables 8 and 9 we consider 500 individuals and a large temporal

span, T =20; each experiment consists of 100 iterations and reported estimates

are the one-step DIF and SYS GMM estimators, with standard errors robust to

heteroskedasticity. We consider different degrees of persistence for yit and xit ,

as captured by the autoregressive coefficients α and ρ. The displayed results are

as follows: mean is the mean of estimates; p5 and p95 are the 5th and the 95th

percentiles of estimates; sd is the standard deviation of estimates, Hp mean, min

and max are the mean, minimum and maximum of the p-values of the Hansen

test and Hdf range is the number of overidentifying restrictions. The main aim of

these simulations is to show that the PCIVR statistical approach gives results in

line with the most appropriate estimation method, that depends on the parame-

ters’ setting and on the temporal length T . Compared to collapsing and limiting

instruments reduction techniques, PCIVR magnifies the good or bad performance

of an estimation method, without altering the core of the results. In the case

of stationarity of both variables DIF and SYS GMM provide close results, con-

firmed by the PCIVR. As the temporal dimension of the sample grows, it becomes

more evident the effectiveness of PCIVR in reducing the number of overidentify-

ing restrictions: this is particularly true when all the instruments are considered

14



together, as in the case of PCIVT, where the reduction process driven by the

characteristics of the simulated data. While collapsing and limiting a priori fix

the number of moment conditions, the PCIVR presents a range of overidentifying

restrictions which is the wider the larger is T .

As we move towards the near unit root case of one or of both variables, the

latter scenario being very close to the Blundell and Bond empirical application

presented above, SYS GMM provides less biased and more precise estimates. It

is particularly remarkable that the collapsing gives the highest standard errors

in the case of persistence: this loss in the precision of the estimates is due to

non-acceptable constraints on the dynamic structure of the instrument set. PCIVR

is generally safer than collapsing and limiting as it provides estimates closer to

the true parameters. The only not convincing performance is that of PCIVT in

the case of DIF GMM under persistent stochastic processes: in addition to the

problems of near unit root in the variables, we have here also an artificial and

not economically-grounded correlation structure among the variables that further

negatively affects the procedure of principal component extraction. In section

4, we will see that, on the contrary, PCIVT on a set of variables that have an

economically-founded relationship has a better and more convincing performance.

4 An empirical example: old and new panel data methods

applied to the controversial issue of production function

estimates

In order to compare the performance of alternative instrument reduction tech-

niques in the estimation of an economic model on real data, we use a production

function specification with three inputs - labour, tangible and intangible capital

stocks - on a large and unbalanced panel of Italian manufacturing companies

over the period 1982-2010. Two main reasons drive our choice. As first mo-

tivation, the estimation of production functions from company panel data has

become puzzling for panel data estimation methods (e.g. Mairesse and Sassenou

[1991], Griliches [1998]). Pooled OLS regressions yield plausible parameter es-

timates, in line with factor shares and generally consistent with constant return

to scale. However these estimates should be biased by omitted heterogeneity

and endogeneity issues. Attempts to control for unobserved heterogeneity with

within or first-difference transformations tend to yield less satisfactory parameter

estimates: “In empirical practice, the application of panel data methods to micro-

data produced rather unsatisfactory results: low and often insignificant capital
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coefficients and unreasonably low estimates of returns to scale” (Griliches and

Mairesse [1998] p. 177; see also the discussion in Mairesse and Hall [1995]).

The endogeneity issue arises from the simultaneous choice of output and inputs

by the decision maker and from the correlations between firm-effects (efficiency

levels of the companies, unknown to the econometrician) and the explanatory

variables. It also arises from possible measurement errors in variables: omis-

sion of labour and capital intensity-of-utilisation variables - such as hours of

work per employees and hours of operation per machine; problems in capital

stocks construction (changes in the accounting normative, choice of depreciation

rates); lack of distinction between blue and white collars in the labour input;

lack of firm-specific prices. Noticeable is the fact that GMM methods are usu-

ally applied on first differenced equations using appropriately lagged levels of

explanatory variables as instruments, with lag-depth truncation at t-3 (Mairesse

and Hall [1996] for France and US; Mairesse and Jaumandreu [2005] for France

and Spain; Bontempi and Mairesse [2008] for Italy). The second motivation is that

our data-set is a large unbalanced panel with a considerable temporal span and

our specification model includes three endogenous explanatory variables. Since

the number of available instruments depends on the length of the panel and on the

number of endogenous explanatory variables, and it changes from cross-section

to cross-section, the GMM estimation procedures become very complex, calling

for a fruitful use of PCIVR techniques in reducing overfitting problems. Table 10

shows the by-year and by-industry sample composition. Data are drawn from

the CADS (Company Accounts Data Service of Centrale dei Bilanci), which is

highly representative of the population of Italian companies, covering over 50%

of the value-added produced by those companies included in the Italian Central

Statistical Office’s Census (further details, cleaning rules and definitions of vari-

ables are in Bontempi and Mairesse [2008]). The total number of observations,

more than 717,000, is roughly equally splitted between services and manufac-

turing companies; the total number of individuals is 73,072, with the availability

of minimum 4 years and of maximum 29 years. In order to produce estimation

results in line with those of the literature on production function estimates and

to preserve the handiness of the empirical framework, we proceed with only the

manufacturing companies. We also split the temporal span in two periods, 1982-

1993 and 1995-2010, so that we can check the robustness of our findings to

changes in the macroeconomic context.17

17It is worthy to be noted the change of the accounting standards - particularly for the capital

stock - following the implementation of the Fourth European Commission Directive since 1993.
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The standard model proposed by the literature is the Cobb-Douglas produc-

tion function with multiplicative specification of the total capital and constant

(but non-unity) elasticity of substitution:

Qit = AiBtL
β
itC

α
it K

γ
ite

ε
it (19)

where Q indicates the value added; the terms Ai and Bt respectively capture

efficiency (unmeasurable firm-specific characteristics, like management ability)

and the state of technology (the macroeconomic events that affect all companies,

like business cycle and “disembodied technical changes” i.e. changes over time in

the rates of productivity growth); labels C , K and L are tangible and intangible

capital stocks and labour, respectively, with the associated parameters measuring

the output elasticity to each input; εit is the usual idiosyncratic shocks, allowed

to be heteroskedastic and within-firm autocorrelated.18

By taking the logarithms of equation 19, and defining all the variables per

employee, the multiplicative production function specification becomes:

(qit − lit) = ai + bt + (µ − 1)lit + α(cit − lit) + γ(kit − lit) + εit (20)

where lower-case letters denote logarithms; ai and bt are the usual individual

and time effects. Table 11 reports, over the columns, the main statistics of the

variables in model 20. In line with the Italian manufacturing division, the data-set

is mainly characterized by small and medium-sized firms (with a median number

of employees equal to 46 units; about 113 units on average).19 Input variables

are characterized by outliers causing departures of non-parametric measures of

spread (inter-quartile range, iqr) from parametric ones (standard deviation, sd).

This is particularly evident in intangible capital stock, suggesting that large in-

tangible stocks are concentrated in relatively few companies, and that zeros more

prevail here than in the other two inputs. The decomposition of standard deviation

in its between, within and residual components shows that the across companies

variability prevails, with shares higher than 60% (in line with the findings in

Griliches [1988]). Table 12 presents correlations among the variables of equation

20 and tangible and intangible gross investments (inv and iinv , respectively);

we shall return to this point below, in discussing the role of “internal” (lags of

endogenous explanatory variables) and “external” (variables not included in the

18Note that we assume a one-period gestation lag before intangible and tangible stocks become

fully productive; beginning-of-period capital measures avoid the simultaneous correlation between

capital inputs and the disturbance term.
19The average Italian limited liability company employs 44 workers.
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equation of interest but suggested by the economic structure of the problem at

hand) instruments in GMM applications. For now, we note that investments are

highly correlated with the endogenous variables of equation 20.

Table 13 presents estimation results for the sub-period 1982-1993. The first

three columns report, as benchmarks, pooled OLS estimates (biased by the omis-

sion of firm-specific effects, correlated with explanatory variables), and within

and first-differences estimates, both accounting for cross-sectional heterogeneity.

The first-differences estimates are affected by random year-by-year noise that

hides the signal of data (Griliches and Hausman [1986]); its effect is particularly

evident in the elasticity of labour, and produces disappointing decreasing returns

to scale. The following five columns of Table 13 compare DIF GMM estimates

with usual “internal” instruments: it is noticeable the lack of robustness in esti-

mation results accordingly to the different technique used to reduce the number of

moment conditions and the rejection of overidentifying restrictions by the Hansen

test; PCIVR and PCIVRT produce the best results. Estimates further improve as

we move towards the last five columns of the Table, in which “external” instru-

ments are used: particularly in the case of PCIVRT, overidentifying restrictions

are not rejected and, at least, elasticities of the output to the capital stocks go

in the direction of more sensible results. We prefer the “external” instrument to

the “internal” ones, for at least one reason: the lags of the explanatory variables

may be affected by the same measurement error (possibly correlated over time)

that we are trying to tackle. In general, however, the difficulty with DIF GMM

estimates is that the past levels of variables are poor instruments for the current

differences of the explanatory variables; this even in a large cross-sectional di-

mension, as in our case, see Bound et al. [1995]. Under covariance stationarity

assumptions of the variables in equation 20 we use past differences of investment

as (“external”) instruments for the levels of productive inputs; accordingly to the

above cited literature, LEV GMM - more than DIF GMM - keeps the relevant

information in the variables of interest. Results are presented in Table 14 for

the two 1982-1993 and 1995-2010 sub-periods. The estimates are encouraging,

because robust to changes in the sample periods and in the temporal span, with a

non-rejection by the Hansen test that is more evident in the most recent period;

moreover, previous disappointing decreasing returns to scale have vanished in

favour of constant returns to scale (from an economic point of view, in the first

period, or both in economic and statistical terms in the second period).20. It is

20These estimates of elasticities of output with respect to inputs are consistent with evidence for

other countries obtained by using constrained models - like the total factor productivity approach

- to avoid endogeneity and GMM estimating problems
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also remarkable the good performance of PCIVRT in an economic context in which

the reduced form behind the production function contemplates the possibility of

complementarities among productive inputs (which are magnified by the principal

components extraction when the instruments and their lags are putted together).

Compared to PCIVR, collapsing and lag truncation present worse results: esti-

mated elasticities for some inputs are less in line with not-reduced GMM and

PCIVR, and present lower precision. The not-convincing result obtained with

lag-depth truncation of the instrument set should be paid a particular attention,

as this reduction strategy is commonly adopted in the literature on productivity.

5 Conclusions

This paper introduces a new strategy to reduce the number of instruments in

the GMM estimation of dynamic panel data, namely the extraction of principal

components from the instrument matrix (PCIVR), and compares the alternative

instrument reduction techniques through Monte Carlo simulations and empirical

applications.

First, we discussed the rationale of applying the PCA on the instrument

matrix stressing that it involves a purely data-driven procedure which does not

require particular assumptions on the coefficient of the matrix: it is instead the

most information-preserving technique among those we discuss here.

Secondly, we both use empirical applications and run extensive Monte Carlo

simulations of multivariate DPD model with endogenous variables additional to

the lagged dependent one. We found that the extraction of principal components

from the instrument matrix tends to improve GMM results when the assumptions

under DIF or LEV/SYS GMM are valid.

In the light of the previous findings, we are able to suggest some indications

for applied research and to sketch some potential extensions of this work.

Overall, the extraction of principal components from the instrument set seems

to be a promising approach to the issue of instrument proliferation: in fact it

appears reasonable to exploit the correlations between the instruments to sum-

marize the original information. Our results confirm that PCIVR is a general,

data-driven technique to reduce overidentification problems that can be fruit-

fully applied to any overidentified GMM problem. We suggest the researcher

on always reporting the number of instruments and not to adopt an instrument

reduction technique a priori, as every strategy could have serious drawbacks if

some assumptions do not hold.
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Proper procedures to extract principal components from the instrument matrix

have been programmed by the authors in the software Stata: these are based on

the preliminary construction of the instrument matrices. This availability could

facilitate the researchers in presenting the estimates obtained with alternative

GMM estimators with and without data-driven instrument reduction techniques.

Further developments can go in the direction of merging our PCIVR with

statistical tests on the validity of the moment conditions. The reduction in the

number of overidentifying restrictions should improve the reliability of tests on

instruments’ validity. In particular, we are going in the direction of multi-step

principal components analysis, which involves the identification of “reference”

matrices of instruments that enlighten aspects of the data at hand that are pro-

blematic for the validity of the instruments; among these, the characteristics of

persistence of the instruments.
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Table 1: BB98 model: comparison between GMM DIF estimates

Variable DIF DIFc DIFl DPCIV100 DPCIV90 DPCIVT90

n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.707 0.840 0.787 0.707 0.802 0.508

0.084 0.107 0.120 0.084 0.126 0.179

0.000 0.000 0.000 0.000 0.000 0.005

-0.709 -0.971 -0.662 -0.709 -0.862 -0.675

0.117 0.290 0.193 0.117 0.210 0.269

0.000 0.001 0.001 0.000 0.000 0.012

0.500 0.632 0.617 0.500 0.222 0.315

0.111 0.163 0.130 0.111 0.294 0.235

0.000 0.000 0.000 0.000 0.450 0.179

0.466 0.632 0.479 0.466 0.578 0.654

0.101 0.215 0.139 0.101 0.225 0.209

0.000 0.003 0.001 0.000 0.010 0.002

-0.215 -0.547 -0.438 -0.215 -0.411 -0.200

0.086 0.192 0.111 0.086 0.195 0.236

0.012 0.004 0.000 0.012 0.035 0.397

Hansen 88.797 14.622 35.693 88.797 23.432 17.197

Hansenp 0.211 0.553 0.389 0.211 0.136 0.102

Hansen df 79 16 34 79 17 11

ar1p 0.000 0.000 0.000 0.000 0.001 0.055

ar2p 0.891 0.901 0.929 0.891 0.544 0.547

Obs. 751 751 751 751 751 751
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Table 2: BB98 model: comparison between GMM SYS estimates

Variable SYS SYSc SYSl SPCIV100 SPCIV90 SPCIVT90

n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.811 0.777 0.841 0.809 0.902 0.857

0.058 0.068 0.059 0.058 0.048 0.068

0.000 0.000 0.000 0.000 0.000 0.000

-0.795 -0.875 -0.784 -0.796 -0.742 -0.724

0.097 0.260 0.148 0.097 0.154 0.150

0.000 0.001 0.000 0.000 0.000 0.000

0.550 0.693 0.560 0.547 0.464 0.560

0.152 0.255 0.179 0.153 0.195 0.180

0.000 0.007 0.002 0.000 0.017 0.002

0.429 0.604 0.506 0.429 0.534 0.540

0.076 0.210 0.078 0.076 0.096 0.098

0.000 0.004 0.000 0.000 0.000 0.000

-0.280 -0.434 -0.380 -0.280 -0.441 -0.414

0.078 0.246 0.079 0.078 0.103 0.097

0.000 0.078 0.000 0.000 0.000 0.000

Hansen 115.726 17.997 70.504 115.347 57.597 42.518

Hansenp 0.135 0.523 0.078 0.140 0.022 0.022

Hansen df 100 19 55 100 38 26

ar1p 0.000 0.000 0.000 0.000 0.000 0.000

ar2p 0.934 0.975 0.920 0.931 0.785 0.905

Obs. 891 891 891 891 891 891
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Table 3: BB98 model: comparison between GMM LEV estimates

Variable LEV LEVc LEVl LPCIV100 LPCIV90 LPCIVT90

n coeff

se

p

w coeff

se

p

wt−1 coeff

se

p

k coeff

se

p

kt−1 coeff

se

p

0.944 0.893 0.934 0.944 0.944 0.927

0.022 0.091 0.033 0.022 0.027 0.026

0.000 0.000 0.000 0.000 0.000 0.000

-0.606 -0.730 -0.809 -0.606 -0.776 -0.723

0.167 0.239 0.166 0.167 0.162 0.158

0.000 0.002 0.000 0.000 0.000 0.000

0.500 0.725 0.552 0.500 0.609 0.612

0.177 0.221 0.175 0.177 0.159 0.164

0.005 0.001 0.002 0.005 0.000 0.000

0.522 0.831 0.500 0.522 0.516 0.565

0.062 0.126 0.068 0.062 0.065 0.060

0.000 0.000 0.000 0.000 0.000 0.000

-0.477 -0.763 -0.444 -0.477 -0.468 -0.510

0.068 0.161 0.074 0.068 0.070 0.066

0.000 0.000 0.000 0.000 0.000 0.000

Hansen 86.805 17.657 49.700 86.805 62.608 60.454

Hansenp 0.257 0.344 0.040 0.257 0.455 0.148

Hansen df 79 16 34 79 62 50

ar1p 0.135 0.380 0.037 0.135 0.018 0.092

ar2p 0.912 0.543 0.080 0.912 0.232 0.487

Obs. 891 891 891 891 891 891
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Table 4: Monte Carlo results, T = 5, ρ = 0.5, β = 1, N = 500, R = 1000

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.473 0.482 0.470 0.458 0.400 0.506 0.498 0.506 0.506 0.505

sd 0.076 0.101 0.087 0.137 0.301 0.044 0.048 0.044 0.046 0.051

p5 0.352 0.318 0.329 0.236 -0.083 0.434 0.415 0.433 0.426 0.417

p95 0.602 0.653 0.616 0.677 0.918 0.576 0.572 0.576 0.579 0.584

β mean 0.953 0.971 0.942 0.932 0.949 1.010 1.000 1.010 1.012 1.016

sd 0.181 0.237 0.210 0.283 0.298 0.126 0.129 0.126 0.125 0.192

p5 0.658 0.597 0.595 0.468 0.463 0.791 0.778 0.789 0.800 0.706

p95 1.264 1.354 1.288 1.395 1.432 1.209 1.208 1.204 1.209 1.363

Hp mean 0.489 0.503 0.494 0.491 0.491 0.490 0.500 0.491 0.494 0.496

min 0.001 0.002 0.000 0.001 0.001 0.001 0.003 0.001 0.003 0.002

max 0.998 0.999 0.996 0.998 0.998 1.000 0.998 1.000 1.000 1.000

Hdf range 10 4 8 4 3-4 16 6 14 10 8-9

α=0.95

α mean 0.215 0.106 0.139 0.020 -0.007 0.973 0.949 0.973 0.974 0.972

sd 0.326 0.478 0.343 0.490 0.556 0.020 0.090 0.020 0.022 0.025

p5 -0.336 -0.632 -0.392 -0.733 -0.823 0.941 0.848 0.942 0.939 0.931

p95 0.736 0.875 0.697 0.821 0.908 1.002 1.011 1.003 1.008 1.008

β mean -0.429 -0.643 -0.585 -0.798 -0.778 1.005 0.987 1.008 1.013 0.995

sd 0.673 0.987 0.707 1.000 1.115 0.110 0.209 0.111 0.115 0.191

p5 -1.625 -2.180 -1.698 -2.345 -2.472 0.825 0.712 0.830 0.831 0.691

p95 0.649 0.930 0.506 0.788 1.073 1.181 1.216 1.186 1.205 1.317

Hp mean 0.423 0.490 0.451 0.508 0.514 0.443 0.501 0.453 0.471 0.476

min 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000

max 0.998 1.000 0.998 1.000 1.000 0.999 0.996 1.000 1.000 1.000

Hdf range 10 4 8 4 3 16 6 14 10 8
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Table 5: Monte Carlo results, T = 5, ρ = 0.95, β = 1, N = 500, R = 1000

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.461 0.478 0.446 0.437 0.076 0.509 0.499 0.508 0.505 0.497

sd 0.059 0.078 0.074 0.126 1.544 0.028 0.029 0.028 0.027 0.062

p5 0.369 0.360 0.334 0.259 -1.285 0.464 0.452 0.463 0.461 0.387

p95 0.557 0.618 0.576 0.641 1.489 0.556 0.548 0.554 0.549 0.590

β mean 0.354 0.604 0.012 -0.053 -1.982 1.019 0.994 1.022 1.030 1.043

sd 0.965 1.410 1.344 2.185 11.487 0.068 0.123 0.070 0.080 0.196

p5 -1.168 -1.396 -2.035 -3.200 -14.847 0.905 0.813 0.901 0.895 0.730

p95 1.950 3.099 2.299 3.362 9.047 1.119 1.130 1.127 1.148 1.356

Hp mean 0.473 0.507 0.490 0.505 0.588 0.427 0.489 0.436 0.446 0.461

min 0.001 0.004 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001

max 0.999 1.000 0.998 1.000 0.999 1.000 1.000 1.000 1.000 1.000

Hdf range 10 4 8 4 1 16 6 14 10 6-7

α=0.95

α mean 0.764 0.769 0.757 0.764 0.542 0.958 0.952 0.958 0.958 0.959

sd 0.117 0.192 0.129 0.188 1.127 0.007 0.025 0.007 0.008 0.012

p5 0.571 0.455 0.534 0.455 -0.638 0.946 0.920 0.946 0.945 0.941

p95 0.948 1.058 0.952 1.046 1.558 0.967 0.976 0.968 0.970 0.975

β mean -2.499 -2.429 -2.648 -2.502 -2.916 0.987 0.953 0.988 0.990 0.975

sd 2.202 3.692 2.389 3.546 13.892 0.060 0.341 0.062 0.071 0.104

p5 -6.142 -8.352 -6.659 -8.274 -16.748 0.905 0.757 0.905 0.890 0.836

p95 0.903 3.111 1.103 3.018 9.503 1.084 1.148 1.087 1.099 1.124

Hp mean 0.528 0.567 0.563 0.563 0.599 0.496 0.517 0.502 0.511 0.515

min 0.001 0.002 0.002 0.001 0.000 0.003 0.000 0.001 0.000 0.002

max 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999

Hdf range 10 4 8 4 1 16 6 14 10 6-7
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Table 6: Monte Carlo results, T = 8, ρ = 0.5, β = 1, N = 500, R = 1000

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.483 0.488 0.481 0.466 0.434 0.510 0.500 0.511 0.511 0.511

sd 0.037 0.051 0.047 0.082 0.189 0.029 0.032 0.031 0.032 0.036

p5 0.423 0.409 0.404 0.334 0.122 0.463 0.448 0.462 0.455 0.448

p95 0.543 0.575 0.560 0.596 0.723 0.558 0.550 0.560 0.561 0.564

β mean 0.953 0.974 0.939 0.949 1.007 1.009 1.000 1.019 1.026 1.016

sd 0.112 0.148 0.156 0.163 0.188 0.106 0.111 0.113 0.105 0.173

p5 0.767 0.734 0.677 0.674 0.715 0.838 0.813 0.837 0.859 0.732

p95 1.141 1.217 1.201 1.211 1.306 1.190 1.177 1.206 1.197 1.310

Hp mean 0.456 0.479 0.480 0.490 0.488 0.453 0.476 0.476 0.475 0.480

min 0.000 0.002 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001

max 0.994 0.999 0.998 1.000 0.999 0.997 0.998 0.999 0.999 1.000

Hdf range 40 10 20 10-12 7-9 52 12 32 22-24 17-20

α=0.95

α mean 0.541 0.412 0.194 0.309 0.309 0.974 0.951 0.975 0.975 0.974

sd 0.165 0.351 0.223 0.348 0.421 0.010 0.056 0.011 0.013 0.015

p5 0.262 -0.213 -0.148 -0.293 -0.410 0.958 0.867 0.956 0.954 0.949

p95 0.791 0.950 0.579 0.864 0.950 0.990 0.993 0.992 0.994 0.996

β mean 0.224 -0.027 -0.500 -0.186 -0.159 0.997 0.992 1.002 1.021 0.986

sd 0.346 0.723 0.474 0.701 0.841 0.089 0.137 0.091 0.100 0.169

p5 -0.384 -1.357 -1.268 -1.400 -1.675 0.850 0.808 0.851 0.869 0.709

p95 0.737 1.061 0.273 0.894 1.105 1.145 1.178 1.157 1.189 1.262

Hp mean 0.385 0.465 0.413 0.461 0.469 0.380 0.481 0.431 0.443 0.443

min 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000

max 0.997 0.998 0.999 1.000 0.999 0.994 0.999 0.997 0.997 0.997

Hdf range 40 10 20 10-11 6-8 52 12 32 22-23 16-18
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Table 7: Monte Carlo results, T = 8, ρ = 0.95, β = 1, N = 500, R = 1000

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.480 0.491 0.451 0.403 0.024 0.512 0.499 0.512 0.502 0.497

sd 0.029 0.034 0.049 0.130 0.581 0.018 0.020 0.020 0.023 0.034

p5 0.433 0.437 0.374 0.189 -0.856 0.482 0.465 0.481 0.466 0.439

p95 0.528 0.550 0.530 0.607 0.923 0.542 0.531 0.544 0.541 0.552

β mean 0.762 0.867 0.101 0.140 -0.590 1.052 1.002 1.055 1.083 1.106

sd 0.305 0.462 0.870 1.201 3.188 0.049 0.108 0.052 0.084 0.127

p5 0.276 0.115 -1.291 -1.892 -6.079 0.966 0.832 0.964 0.944 0.902

p95 1.282 1.624 1.525 2.000 3.774 1.125 1.126 1.135 1.219 1.310

Hp mean 0.449 0.483 0.464 0.472 0.537 0.349 0.476 0.385 0.416 0.424

min 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

max 0.995 1.000 0.999 1.000 0.999 0.999 1.000 0.999 0.998 1.000

Hdf range 40 10 20 8 3 52 12 32 20 13-14

α=0.95

α mean 0.808 0.815 0.777 0.775 0.573 0.958 0.951 0.958 0.959 0.959

sd 0.062 0.111 0.088 0.136 0.416 0.004 0.014 0.004 0.005 0.006

p5 0.697 0.612 0.624 0.529 -0.237 0.952 0.933 0.951 0.950 0.950

p95 0.904 0.978 0.915 0.971 1.101 0.964 0.966 0.964 0.966 0.968

β mean -1.488 -1.415 -2.067 -2.005 -2.700 0.980 0.975 0.983 0.977 0.966

sd 1.083 1.984 1.543 2.311 3.773 0.038 0.191 0.042 0.053 0.065

p5 -3.455 -5.032 -4.601 -6.091 -8.548 0.922 0.852 0.918 0.895 0.866

p95 0.186 1.503 0.402 1.335 3.201 1.045 1.115 1.054 1.066 1.072

Hp mean 0.472 0.515 0.512 0.532 0.590 0.463 0.495 0.484 0.486 0.492

min 0.001 0.002 0.001 0.000 0.002 0.000 0.000 0.002 0.000 0.002

max 0.998 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 0.999

Hdf range 40 10 20 8 3 52 12 32 20 13
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Table 8: Monte Carlo results, T = 20, ρ = 0.5, β = 1, N = 500, R = 100

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.480 0.492 0.486 0.483 0.485 0.502 0.494 0.514 0.518 0.521

sd 0.014 0.021 0.020 0.026 0.065 0.014 0.017 0.018 0.017 0.020

p5 0.455 0.459 0.457 0.436 0.388 0.476 0.468 0.488 0.490 0.489

p95 0.500 0.528 0.518 0.528 0.591 0.524 0.521 0.544 0.546 0.554

β mean 0.813 0.955 0.890 0.929 0.947 0.925 0.966 1.060 1.068 1.047

sd 0.060 0.095 0.109 0.099 0.110 0.070 0.088 0.107 0.089 0.092

p5 0.715 0.797 0.731 0.775 0.773 0.823 0.823 0.918 0.916 0.907

p95 0.907 1.126 1.096 1.091 1.148 1.041 1.121 1.234 1.209 1.213

Hp mean 0.376 0.490 0.499 0.522 0.518 0.411 0.519 0.462 0.477 0.464

min 0.065 0.007 0.020 0.017 0.024 0.081 0.040 0.017 0.025 0.024

max 0.803 0.994 0.993 0.982 0.965 0.845 0.981 0.957 0.941 0.951

Hdf range 340 34 68 43-50 31-45 376 36 104 77-84 61-75

α=0.95

α mean 0.854 0.752 0.574 0.863 0.687 0.974 0.946 0.978 0.978 0.979

sd 0.027 0.124 0.133 0.063 0.166 0.005 0.024 0.005 0.005 0.006

p5 0.803 0.546 0.381 0.758 0.389 0.967 0.899 0.971 0.969 0.968

p95 0.897 0.946 0.790 0.959 0.954 0.984 0.982 0.987 0.987 0.989

β mean 0.704 0.566 0.137 0.793 0.466 0.917 0.978 1.001 1.021 0.982

sd 0.068 0.271 0.303 0.153 0.425 0.061 0.091 0.089 0.079 0.135

p5 0.585 0.095 -0.309 0.573 -0.347 0.831 0.823 0.872 0.898 0.793

p95 0.805 0.971 0.646 1.019 1.201 1.021 1.112 1.159 1.150 1.176

Hp mean 0.357 0.521 0.432 0.474 0.535 0.365 0.540 0.390 0.432 0.422

min 0.088 0.014 0.007 0.040 0.019 0.080 0.012 0.010 0.049 0.007

max 0.826 0.983 0.941 0.999 0.988 0.784 0.986 0.988 0.953 0.962

Hdf range 340 34 68 40-46 20-25 376 36 104 74-80 50-55
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Table 9: Monte Carlo results, T = 20, ρ = 0.95, β = 1, N = 500, R = 100

DIF DIFc DIFl DPCIV90 DPCIVT SYS SYSc SYSl SPCIV90 SPCIVT

α=0.5

α mean 0.493 0.498 0.480 0.403 0.428 0.509 0.499 0.507 0.512 0.501

sd 0.011 0.014 0.020 0.151 0.239 0.010 0.012 0.013 0.013 0.016

p5 0.473 0.474 0.445 0.107 -0.001 0.491 0.478 0.485 0.491 0.475

p95 0.509 0.523 0.512 0.609 0.791 0.524 0.519 0.527 0.532 0.529

β mean 0.927 0.977 0.531 0.649 0.643 1.089 1.012 1.129 1.117 1.170

sd 0.053 0.115 0.416 0.559 1.026 0.033 0.093 0.041 0.040 0.054

p5 0.838 0.780 -0.156 -0.426 -1.317 1.042 0.869 1.061 1.053 1.070

p95 1.008 1.147 1.064 1.396 2.006 1.140 1.137 1.197 1.174 1.250

Hp mean 0.392 0.544 0.483 0.539 0.537 0.372 0.527 0.314 0.368 0.406

min 0.062 0.089 0.020 0.013 0.020 0.078 0.044 0.001 0.004 0.008

max 0.831 0.990 0.970 0.996 0.999 0.808 0.986 0.857 0.979 0.970

Hdf range 340 34 68 24 11 376 36 104 58 41-42

α=0.95

α mean 0.909 0.938 0.867 0.891 0.722 0.957 0.951 0.958 0.958 0.960

sd 0.013 0.020 0.044 0.056 0.226 0.002 0.006 0.002 0.002 0.002

p5 0.889 0.905 0.794 0.797 0.277 0.954 0.943 0.954 0.954 0.955

p95 0.931 0.970 0.932 0.979 1.014 0.959 0.963 0.960 0.961 0.963

β mean 0.443 0.822 -0.316 0.358 -0.748 0.999 1.000 0.991 0.988 0.959

sd 0.179 0.273 0.705 0.636 1.849 0.028 0.071 0.032 0.034 0.041

p5 0.123 0.379 -1.527 -0.800 -3.874 0.948 0.892 0.938 0.933 0.895

p95 0.735 1.306 0.702 1.305 1.831 1.041 1.110 1.037 1.043 1.028

Hp mean 0.372 0.529 0.475 0.500 0.621 0.391 0.531 0.435 0.394 0.429

min 0.108 0.009 0.007 0.004 0.009 0.096 0.018 0.014 0.026 0.046

max 0.863 0.993 0.929 0.998 0.999 0.826 0.994 0.945 0.965 0.979

Hdf range 340 34 68 24 11 376 36 104 58 41
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Table 10: Production function: sample size

Year Serv . Manuf . Total Year Serv . Manuf . Total

1982 5,146 10,122 15,268 1997 14,075 15,749 29,824

1983 5,101 9,553 14,654 1998 13,786 15,398 29,184

1984 6,371 11,421 17,792 1999 14,251 15,532 29,783

1985 7,286 12,288 19,574 2000 14,394 15,331 29,725

1986 8,084 12,999 21,083 2001 14,138 14,456 28,594

1987 8,490 13,225 21,715 2002 13,276 13,716 26,992

1988 9,044 13,420 22,464 2003 16,469 16,173 32,642

1989 9,922 14,053 23,975 2004 16,875 16,365 33,240

1990 10,563 14,546 25,109 2005 15,929 14,824 30,753

1991 10,421 14,389 24,810 2006 15,088 13,676 28,764

1992 10,328 14,268 24,596 2007 14,115 12,709 26,824

1993 9,275 12,155 21,430 2008 13,226 12,136 25,362

1994 13,216 14,259 27,475 2009 11,958 11,179 23,137

1995 11,198 12,864 24,062 2010 10,529 10,081 20,610

1996 8,111 9,966 18,077 Total 330,665 386,853 717,518

30



Table 11: Production function: statistics

mean p50 sd iqr between within residual N T

ql 3.797 3.791 0.53 0.593 60.34 2.78 36.88 386853 10.13

cl 3.458 3.488 1.032 1.294 79.54 3.66 16.8 284433 7.54

kl 0.215 0.246 1.537 1.931 67.17 0.34 32.49 284433 7.54

l 3.908 3.829 1.06 1.242 91.59 0.62 7.8 386853 10.13

Table 12: Production function: pairwise correlations

ql cl kl l inv iinv

ql 1

cl 0.3612* 1

kl 0.1622* 0.0941* 1

l -0.0978* -0.0687* -0.0626* 1

inv 0.1428* 0.3281* 0.0479* -0.0760* 1

iinv 0.1114* 0.0311* 0.3425* -0.0316* 0.1117* 1
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Table 13: Production function: benchmark and DIF GMM estimates 1982-1993

Internal IVs External IVs

Var. OLS WI FD DIF DIFc DIFl DPCIV90 DPCIVT90 DIF DIFc DIFl DPCIV90 DPCIVT90

cl 0.153 0.104 0.076 0.053 0.103 0.007 0.138 0.146 0.060 0.067 0.028 0.070 0.092

se 0.003 0.004 0.004 0.031 0.039 0.037 0.037 0.059 0.052 0.049 0.052 0.050 0.052

t 51.0 26.7 18.1 1.7 2.6 0.2 3.8 2.5 1.2 1.4 0.5 1.4 1.8

kl 0.032 0.004 0.006 0.047 -0.132 0.008 -0.002 -0.009 0.014 0.011 0.010 0.013 0.012

se 0.002 0.002 0.002 0.041 0.098 0.056 0.050 0.065 0.006 0.006 0.006 0.006 0.006

t 18.8 2.4 2.7 1.2 -1.3 0.1 0.0 -0.1 2.2 1.8 1.6 2.1 1.9

l -0.027 -0.212 -0.548 -0.435 -0.696 -0.640 -0.399 -0.378 -0.682 -0.603 -0.754 -0.667 -0.631

se 0.003 0.008 0.009 0.079 0.178 0.106 0.093 0.115 0.144 0.176 0.168 0.146 0.149

t -10.8 -26.5 -60.2 -5.5 -3.9 -6.0 -4.3 -3.3 -4.7 -3.4 -4.5 -4.6 -4.2

H - - - 211.7 63.9 113.6 108.0 92.9 115.5 24.3 55.7 70.2 82.6

Hp - - - 0.000 0.000 0.000 0.001 0.001 0.031 0.110 0.008 0.537 0.126

Hdf - - - 142 25 50 66 53 89 17 33 72 69

N 109738 109738 79519 79519 79519 79519 79519 79519 79519 79519 79519 79519 79519

T 5.07 5.07 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16
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Table 14: Production function: LEV GMM estimates with external IVs

1982-1993 1995-2010

Var. LEV LEVc LEVl LPCIV90 LPCIVT90 LEV LEVc LEVl LPCIV90 LPCIVT90

cl 0.207 0.208 0.254 0.210 0.214 0.226 0.244 0.231 0.227 0.214

se 0.016 0.017 0.019 0.016 0.016 0.037 0.064 0.062 0.045 0.041

t 13.2 12.2 13.2 13.2 13.5 6.1 3.8 3.8 5.1 5.2

kl 0.041 0.040 0.041 0.040 0.038 0.031 0.030 0.032 0.032 0.028

se 0.005 0.005 0.005 0.005 0.005 0.011 0.019 0.018 0.013 0.012

t 8.7 8.9 8.2 8.5 8.3 2.8 1.6 1.8 2.4 2.3

l 0.034 0.036 0.041 0.034 0.039 0.025 0.026 0.019 0.022 0.033

se 0.016 0.014 0.016 0.016 0.016 0.028 0.049 0.046 0.033 0.031

t 2.2 2.5 2.6 2.2 2.5 0.9 0.5 0.4 0.7 1.1

H 118.7 38.4 42.5 106.9 97.8 198.3 32.9 67.2 157.0 155.6

Hp 0.019 0.002 0.124 0.014 0.034 0.180 0.132 0.043 0.154 0.145

Hdf 89 17 33 77 74 181 25 49 140 138

N 109738 109738 109738 109738 109738 156241 156241 156241 156241 156241

T 5.07 5.07 5.07 5.07 5.07 6.00 6.00 6.00 6.00 6.00
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Appendix

The principal component analysis (PCA)

The PCA is a statistical tool which is used for data reduction according to a

data-driven procedure. Intuitively, what PCA does is to find several orthogonal

linear combinations of the original variables ordering them on the basis of the

portion of the variance in the original data they account for. A principal compo-

nent is therefore a linear combination of observed variables that is obtained by

exploiting a set of optimal weights for each original variable. The first principal

component (PC) will be the linear combination of the original variables that has

the largest variance among all the possible linear combinations of the original

variables. The second PC will be the linear combination, orthogonal to the first

PC, that accounts for the largest portion of the residual variance once the first

PC has been extracted, and so on. All the principal components taken together

contain all the information conveyed by the original data.

In other words, through PCA we aim at reducing the dimension of the data

while retaining, at the same time, as much of the original variability in the data

as possible.

More formally, if we define C as the p x p covariance or correlation matrix

of the p original variables in the data, the k th principal component pck for k =

1, 2, ..., p is obtained as

pck = u′
kx (21)

where x is the vector of the p variables in the sample, uk is the k th eigenvector

of C corresponding to the k th largest eigenvalue λk subject to the normalization

constraints:

uk
′uk = 1 (22)

uk
′uj = 0 for i 6= j . (23)

pc1 = u′
1x is therefore the linear combination of the p variables orthogonal to all

other combinations that, subject to the above constraints, has the maximum vari-

ance. Similarly pc2 is the linear combination, orthogonal to pc1, that maximizes

the residual variance.

In matrix notation, we can interpret the principal components in the light

of the eigenvalue-eigenvector decomposition of the correlation or the covariance

matrix C:

C = VΛV′ =

p∑

i=1

λiviv
′
i (24)
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where V is the matrix consisting of the eigenvectors (principal components) of C, Λ

is the diagonal matrix that has as element kk the eigenvalue λk corresponding to

the eigenvector vk . The elements vkj of the eigenvector vk , namely the coefficients

of each linear combination, are the loadings, that represent the contribution of

each original value to the PC: in other words, they can be interpreted as the

weights of the j th variable in pck .

Subject to the conditions in equations (23) and (13), that is if uk is such to

have unit length, the variance of the k th principal component, var(pck ), is given

by λk . The total variance of all the principal components will be equal to the

variance of the original variables so that:

p∑

k=1

λk = tr(C). (25)

As a consequence, each principal component will account for a portion of the

variance of the original data equal to:

Pk =
λk

tr(C)
. (26)

By multiplying each original variable by its loading in each PC, we obtain

the matrix of the principal component scores defined as follows:

S = XV (27)

where X is the original data matrix and V is the same as above. In other terms,

the scores sj indicate the influence of a PC on a specific sample. The matrix S

can be used in the analysis in the place of X: in fact, the matrix S contains the

original data matrix in a rotated coordinate system. Clearly the original matrix

of data can be written as:

X = V′S (28)

where V and S are orthogonal.

The number of eigenvalues and eigenvectors, and thus of the principal com-

ponents, obviously equals the number of variables in the original data.

As the aim of PCA is a reduction of the data dimension through a maxi-

mization of the variance explained by the first components and the elimination

of multicollinearities in the data, that imply potential problems in inverting the

original matrix, we will want to select and keep a number of components q which

is smaller than p: we will therefore select the q eigenvectors corresponding to
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the q largest eigenvalues of C such that they explain most of the variability in the

data. The q largest principal components will account for the following portion

of the original variance: ∑q
k=1 λk

tr(C)
. (29)

Accordingly, in the matrix V only q eigenvectors will be retained and the scores

will be computed form the reduced V matrix.

It is then possible to exploit directly the scores from the PCA by using them

instead of the original variables.

A relevant issue is how to choose the the q principal components to be

retained in the analysis. Two criteria are generally adopted in the literature: the

first implies that only the components that explain a given predetermined portion,

usually between 70% and 90%, of the original variance are to be retained; the

second one keeps only the components whose eigenvalues are larger than the

average eigenvalue which obviously is the average variance in the original data.
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