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Abstract

We study an optimal timing decision problem where an agent endowed with a risky invest-

ment opportunity trades the benefits of waiting for additional information against a potential

loss in first-mover advantage. The players’ clocks are de-synchronized in that they learn of

the investment opportunity at different times. Previous literature has uncovered an inverted-U

shaped relationship between a player’s equilibrium expected expenditures and the measure of his

competitors. This result no longer holds when the increase in the measure of players leads to a

decrease in the degree of clock synchronization in the game. We show that the result reemerges

if information arrives only at discrete times, and thus, a player’s strategic beliefs are updated

between decision times in a measurably meaningful way.
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1 Introduction

In a variety of situations that are modelled as preemption games, economic agents are heterogenous

with respect to the times when they learn of an investment opportunity. For instance, some firms

may become aware of a change in consumer demand earlier than others, R&D departments may

make a technological breakthrough that allows them to start developing a new product at different

times, and stock traders may learn of the possible existence of a financial bubble sequentially. Brun-

nermeier and Morgan (2010) refer to these types of situations as clock games with de-synchronized

clocks. More precisely, a clock game has a set of players who, sequentially, receive a signal informing

them of the opportunity to take a particular action. A player’s clock starts at the instant when he

receives his signal. The time interval over which all clocks start is called the awareness window,

and an increase in its length corresponds to a decrease in the degree of clock synchronization in the

game. Brunnermeier and Morgan (2010) study clock games with a fixed number of players and a

varying degree of clock synchronization.

In many real-world examples of clock games, if the action yields a risky prospect, players have

the option to wait and acquire additional payoff-relevant information before taking it.1 In this case,

the clock de-synchronization induces heterogeneity among players with respect to the amount of

information that they possess at any given time. Barbos (2012) studies clock games with risky

prospects and unobservable moves, and examines the strategic effect of a change in n, the measure

of players in the game, when the degree of clock synchronization in the game is fixed. The resulting

model is applied to investigate the relationship between competition and innovation. In many real-

world situations, though, the decrease in the degree of clock synchronization is generated precisely

by the increase in n, as it may take more time for a larger set of players to learn of an investment

opportunity. In this paper, we consider a clock game with risky prospects, and investigate the

strategic effect of an increase in n that decreases the degree of clock synchronization.

The players in our model decide on the time when to undertake a project by trading the

benefits of waiting for additional information about its feasibility against a potential loss in first-

mover advantage: a player’s ex-post payoff from a feasible project is decreasing in the measure of

competitors who moved before him. This results in an optimal timing decision problem in which

a player compares the marginal cost of waiting for additional information (the expected loss in

first-mover advantage) with its marginal benefit (the value of information), and invests as soon as

the former exceeds the latter. Players are subjected to a non-negativity constraint on the expected

ex-ante payoff that accounts for the risk and cost of investment. Barbos (2012) shows that in

these games, an increase in n that does not alter the degree of clock synchronization, leads to an

inverted-U relationship between a player’s expected expenditures and the measure of players.

1For instance, a firm may acquire information about the likely profitability of the investment before undertaking
it, an R&D department may perform additional tests to examine the technological feasibility of the invention before
developing it into a new product, and a stock trader may examine in more detail the underlying economic activity
on which the financial bubble may have been generated before altering his trading position.
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The key driving force behind this result is the adverse effect of an increase in n on a player’s

expected ex-post payoff, and therefore on his marginal cost of waiting. When n is small, an increase

in this measure induces then a player to undertake a riskier project by investing earlier. When n

is high, and the non-negativity constraint on the expected ex-ante payoff binds, a player adjusts

to a further increase in the measure of his competitors by investing with a decreasing probability

while holding the risk level constant. In equilibrium, this increases the expected ex-post payoffs by

reducing the measure of players who invest, and allows for non-negative ex-ante payoffs. From the

viewpoint of the time a player’s clock starts, an increase in n therefore leads to an increase in a

player’s expected expenditures when n is small, and to a decrease when n is sufficiently high.

This relationship no longer holds if the increase in n results in a decrease in the degree of clock

synchronization in the game that preserves the density of clock starting times in the awareness

window. In this case, a higher n does not increase a player’s marginal cost of waiting by means of

decreasing his expected ex-post payoff, but by increasing his belief about the event that investment

is ongoing in the game at a given time. While this belief is increasing in n, it is inelastic with

respect to it in a neighborhood of the equilibrium waiting time. In particular, a player knows for

sure that, at the equilibrium waiting time, investment is ongoing in the game. Therefore, as the

interval between decision times shrinks, in the limit, the marginal cost is perfectly inelastic with

respect to n at the equilibrium waiting time. Since the optimal waiting time is determined by the

equality between the marginal cost and the marginal benefit of waiting, the optimality condition

is satisfied for the same waiting time irrespective of the value of n. Therefore, a player does not

invest earlier in a project when the measure of his competitors increases.

In this paper we show that the result reemerges if the information about the feasibility of the

project arrives only at discrete times.2 For instance, macroeconomic data is released at various

regular intervals, information about a firm’s financial status comes quarterly, test results for new

drugs are obtained at discrete times, etc. In these cases a player’s strategic beliefs are updated

in a measurably meaningful way between decision times, and thus the marginal cost of waiting is

nowhere perfectly inelastic. Instead, it is increasing in n at all possible waiting times, and therefore,

for low values of n, an increase in n induces a player to undertake the project earlier. For values of

n for which the non-negativity constraint on the expected ex-ante payoff binds, a player reacts to

a further increase in n by investing with a decreasing probability and by waiting longer.

Clock games were introduced in the literature by Abreu and Brunnermeier (2002, 2003) to study

the persistence of mispricing in financial markets.3 Brunnermeier and Morgan (2010) construct a

finite agent analog of their model and test in an experimental setting some of its key predictions

that relate the degree of clock de-synchronization in the game with the equilibrium delay. In these

models, the payoff structure exhibits a mixture of preemption games and wars of attrition: the

2Our model is strategically isomorphic to one in which information arrives continuously but players are restricted
to take actions at discrete times. Thus, our results extend also to situations captured by these types of models.

3See also Doblas-Madrid (2012) who consider a discrete time version of the Abreu and Brunnermeier (2002) model
and assumes endogenous pricing and no behavioral types.
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payoffs are increasing deterministically as a function of time up to the kth player to move, and fall

to a random value immediately after.4 This payoff structure is designed so as to mimic a financial

bubble where traders who ride it enjoy its benefits as long as there are still enough agents in the

market, but incur a loss when a crash occurs once sufficiently many of them exited.5

The ex-post payoffs in our model are decreasing in the measure of players who have moved by a

given time, as in pure preemption games, but players have an incentive to wait that is determined by

the value of information that they can acquire. This relates out paper to the literature on timing

of irreversible actions under uncertainty. Jensen (1982), Chamley and Gale (1994) or Decamps

and Mariotti (2004) study models of endogenous or exogenous information acquisition in which the

incentive to invest early is provided by the discounting of future payoffs rather than the competitive

pressure. On the other hand, preemption games have been extensively studied in the literature,

starting with the seminal papers of Reinganum (1981) and Fundenber and Tirole (1985). While the

model is distinct, Weeds (2002), who also studies preemption games where the incentive to delay

investment is provided by the opportunity to learn new information, is the closest paper to ours

from this literature.6 Finally, another related stream of research is the experimentation literature

(see, for instance, Bolton and Harris (1999) or Cripps, Keller and Rady (2005)) that studies the

trade-off between current output and information that can help increase output in the future.

2 The Model

There is a continuum set of identical and risk-neutral players who, sequentially, learn of an invest-

ment opportunity in a risky project. A mass a of players learn of the opportunity at each instant

t ∈ [t0, t0+η], with η > 0. Players do not know t0 but have a prior distribution on it that is uniform

on R.7 The moment when player i learns of the opportunity, i.e., when his clock starts, is denoted

by ti. Since players become aware of the project at different times, their clocks are de-synchronized.

Once player i’s clock starts, he may invest at any time ti + t, with t ≥ 0. There is a one-time fixed

cost c of investing. A player does not observe his opponents’ actions.8

At ti, player i has belief p0 that the project is feasible. Delaying action allows learning at no

cost additional information about its feasibility. As in Barbos (2012), we consider that an infeasible

project generates a negative signal with a Poisson rate µ, but here we assume that player i can

observe such a signal only at times ti+t, with t ∈ δZ+ ≡ {δ, 2δ, 3δ, ...}, and δ ∈
(
0, η2

)
. If the project

4Sahuguet (2006) and Park and Smith (2008) are other papers with non-nomonotonic payoff structures.
5Another paper that examines clock games in an experimental setting is Camerer, Kang and Ray (2010).
6Hoppe (2000), Lambrecht and Perraudin (2003), and Argenziano and Schmidt-Dengler (2012) are also related.
7The continuum set of players can be interpreted simply as the distribution of the unknown locations on the

timeline of a finite number of players. The nonstandard distribution of t0 is used to avoid boundary effects. An
alternative is to discard the common prior assumption, and instead of having player i’s posterior belief about t0 at ti
be derived from a common prior about t0, to consider this belief to be the player’s prior about t0 at that time.

8As Park and Smith (2008) argue “silent timing games” capture economic applications where timing decisions
must be made well ahead of the time the action begins, as with high-tech market entry decisions or R&D investments.
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is feasible, no negative signal is generated. Therefore, once a player receives a negative signal, he

learns that the project is infeasible. On the other hand, as time passes, absent a negative signal,

his belief that the project is feasible is updated favorably and the risk of investment is reduced.

The signals are private information to each player.

Player i’s ex-post payoff from investing at time ti + t in a feasible project is

Π(m,m(t|ti, t0)) = A(m)− θm(t|ti, t0), for some θ ∈ R+, and A : R+ → R+ with A
′ (·) < 0. (1)

where m is the total measure of players that invest in the project and m(t|ti, t0) is the measure of

players that invest before player i. The specification of Π captures a congestion effect and a first-

mover advantage.9 The ex-post payoff from investing in an infeasible project is zero.10 To isolate

the effect of competitive pressure in inducing players to invest early, we assume no intertemporal

discounting. The payoff of a player who does not invest is normalized at zero.

Note that the measure of players in the game is n = aη; thus, higher values of either a or

η increase n. A higher a holds constant the degree of clock synchronization. A higher η lowers

the degree of clock synchronization, but holds constant the density of clock starting times in the

awareness window, [t0, t0+ η]. Our focus in this paper is on the strategic effect of an increase in η.

To simplify exposition, we make the following assumption that ensures an interior solution.

Assumption 1 We assume η ∈ (ηm, ηM ), where ηm solves Π(aηm, aηm) − c = 0, and ηM solves

p0aθδ
(
δ − δ2

2ηM

)
= c (1− p0)

(
1− e−µδ

)
.

The upper bound ensures that players do acquire some information before investing. The lower

bound ensures that they do not do so indefinitely.

3 Results

In section 3.1 we introduce concepts that are used in the formal analysis of the game. In section

3.2 we present the equilibrium of the game for a fixed value of η, while in section 3.3 we present

9The quasilinear functional form of Π allows for a more transparent intuition of the results and a clearer exposition.
With this specification, the marginal cost of waiting for one more period is essentially the expected measure of players
who invest in that period, rather than the corresponding effect on the expected payoff. As in Barbos (2012), the
salient results of the paper extend to more general functional forms for Π.
10The model can be represented as a Bayesian game in normal-form as follows. The type of a player i is the time ti

when his clock starts. The set of possible sets of types of the players is {[t0, t0 + η] : t0 ∈ [ti − η, ti]}. A type profile,
denoted by T (t0), is a uniform probability density function over a set of the form [t0, t0 + η]. The set of possible type
profiles is thus T ≡ {T (t0) : T (t0) ∼ Uniform ([t0, t0 + η]) for some t0 ∈ [ti − η, ti]}. A player’s belief φi(T (t0)|ti) is
determined by the posterior belief about t0 as follows: φi(T (t0)|ti) =

1
η
, if t0 ∈ [ti − η, ti] and 0 otherwise. In other

words, player i believes that the opponents are distributed uniformly on [t0, t0 + η], where t0 is distributed uniformly
on [ti − η, ti]. The action space of player i is the set of possible waiting times R+ ∪ {∞}, where {∞} represents the
option to not invest in the project.
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the main result of the paper that elicits the effect of an increase in η on the equilibrium strategies.

In section 3.4 we discuss the results and provide the intuition for the contrast between the results

obtained when information arrives continuously and when it arrives discretely.

3.1 Preliminaries

Note that it is never a best response for player i to invest at times ti+ t, with t /∈ δZ+. In fact, the

model is strategically isomorphic to one in which players observe the negative signals continuously,

but can only take decisions in discrete time. Therefore, we restrict attention throughout to decision

times ti + t, with t ∈ δZ+. A strategy is then a probability distribution function s(·) over the set

of waiting times δZ+ ∪ {∞}. For t ∈ δZ+, st is the probability that player i invests at time ti + t,

conditional on no negative signal having been received up to or at that time. With a slight abuse

of notation, s∞ denotes the probability that the player does not invest even if a negative signal is

never received.

We define a simple strategy to be one that assigns strictly positive probability to at most two

finite waiting times.

Definition 2 A simple strategy with waiting time τ is a probability distribution s(·) over δZ+∪{∞}

such that: (i) sτ > 0, (ii) sτ+δ ≥ 0, (iii) st = 0 for all t ∈ δZ+\{τ , τ + δ}.

In the rest of the paper, we use 〈sτ , sτ+δ〉 to denote a generic simple strategy when sτ+δ ≥ 0,

and use 〈sτ 〉 to denote a simple strategy for the particular case when sτ+δ = 0. We will focus on

symmetric equilibria in simple strategies. Besides their relative intuitive appeal determined by the

lower degree of complexity than that typically associated with strategies that involve randomization

over multiple pure strategies, this class of strategies is also the smallest with the property that it

contains a unique symmetric equilibrium for values of η in (ηm, ηM ) except a countable subset.
11

We will refer throughout to values computed as of moment ti for player i as the ex-ante values.

The formal analysis of the game is based on the comparison, for an arbitrary player i, of the ex-ante

marginal cost and marginal benefit of waiting at ti+ t for one more period δ, while keeping track of

the option value of waiting. The ex-ante marginal cost (MC) of waiting at ti+ t is the decrease in

the expected payoff due to the increase in the expected measure of players that invest between ti+t

and ti+ t+δ. The ex-ante marginal benefit (MB) of waiting at ti+ t is the value of the information

acquired between the same times. Next, we provide precise definitions for the two concepts.

Denote by F the event that the project is feasible, by Nt the event that a negative signal is

received by player i before ti + t, and by F
c and N c

t their complements. The Poisson generating

11Symmetric equilibria in other strategies cannot be excluded. As Barbos (2012) argues, the intuition behind the
salient results of the paper would be preserved in these alternative equilibria.
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process implies that, conditional on F c, the delay of arrival of a negative signal has an exponential

distribution with parameter µ. Therefore, for t ∈ δZ+, we have Pr (Nt|F
c) = 1− e−µt.

The MB of waiting at ti + t, computed as of moment ti, is the expected value of the forgone

costs on an infeasible project generated by the additional information, i.e.,

MB(t) ≡ c · Pr(Nt+δ ∩N
c
t |F

c) · Pr(F c) = c (1− p0)
[
1− e−µδ

]
e−µt (2)

The equality in (2) follows because Nt ⊂ Nt+δ implies Pr(Nt+δ ∩ N
c
t |F

c) = Pr(Nt+δ\Nt|F
c) =

Pr(Nt+δ|F
c)− Pr(Nt|F

c) = e−µt − e−µ(t+δ).

Next, we define formally the MC of waiting under a strategy profile in which all players adopt

a simple strategy 〈sτ 〉. Note first that for a given value of t0, if all players adopt 〈sτ 〉, the first

player invests at t0 + τ , while the last invests at t0 + τ + η. Therefore, conditional on t0, from the

perspective of player i, the measure of players who have already invested by time ti + t is

m〈sτ 〉(t|ti, t0) =





0, when ti + t < t0 + τ

sτa [(ti + t)− (t0 + τ)] , when ti + t ∈ [t0 + τ , t0 + τ + η]

sτaη, when ti + t > t0 + τ + η

(3)

The uniform prior distribution on t0 implies that, at ti, player i’s posterior of t0 is uniform on

[ti − η, ti]. Thus, the expected measure of players who have invested by time ti + t is

λ〈sτ 〉(t|ti) ≡ Et0
[
m〈sτ 〉(t|ti, t0)

]
=
1

η

∫ ti

ti−η
m〈sτ 〉(t|ti, t0)dt0 (4)

Then, conditional on F , player i’s expected ex-post payoff from investing at ti + t is

Et0
[
Π
(
sτaη,m〈sτ 〉(t|ti, t0)

)]
= A (sτaη)− θλ〈sτ 〉(t|ti) (5)

Firm i’s ex-ante MC of waiting at ti + t is then the unconditional expected difference between the

expected payoff from investing at ti + t, and the expected payoff from investing at ti + t+ δ

MC〈sτ 〉(t) ≡ aθp0
[
λ〈sτ 〉(t+ δ|ti)− λ〈sτ 〉(t|ti)

]
(6)

Denote by

Φ〈sτ 〉 (t) ≡

{
1
η

[
η − τ +

(
t+ δ

2

)]
, for t ∈ (max (0, τ − η) , τ)

1
η

[
η −

(
t+ δ

2

)
+ τ

]
, for t ∈ [τ , τ + η)

(7)

The following lemma elicits the MC of waiting for one more period δ. Its proof is in appendix A.12

Lemma 3 Under a symmetric strategy profile 〈sτ 〉, MC〈sτ 〉(t) = p0asτθδΦ〈sτ 〉 (t) for t ∈ δZ+ ∩

12MC〈sτ 〉(t) is zero for t ∈ δZ+\ (max (0, τ − η) , τ + η) since under the symmetric strategy profile 〈sτ 〉, no player
is supposed to invest before ti +max (0, τ − η) or after ti + τ + η.
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(max (0, τ − η) , τ + η).

To understand the lemma, consider first some t ∈ [max (0, τ − η) , τ ]∩δZ+. As explained above,

under a strategy profile 〈sτ 〉, from player i’s viewpoint, investment has started in the game by time

ti + t if and only if ti + t ≥ t0 + τ , that is, t0 ≤ ti − (τ − t). Also, with probability one, investment

has not yet ended by ti + t since t < τ . Given that t0 ≥ ti − η, it follows that player i’s belief

that investment is ongoing in the game at ti + t is Pr (t0 ∈ [ti − η, ti − (τ − t))) =
1
η
[η − τ + t].

Similarly, for t ∈ [τ , τ + η], investing has started for sure in the game, but it has not yet ended if

and only if ti + t ≤ t0 + τ + η, i.e., for t0 ∈ [ti − η + (t − τ), ti). Therefore, player i’s belief that

investment is ongoing at ti + t is Pr (t0 ∈ [ti − η + (t− τ), ti)) =
1
η
[η − t+ τ ]. Φ〈sτ 〉 (t), as defined

by (7), is then just the "average" belief that investment is ongoing in the game at the times in

[t, t+ δ].

On the other hand, from (3) and (4), by some straightforward calculations, we have that

1

asτ

∂

∂t
λ〈sτ 〉(t|ti) =

{
1
η

∫ ti−(τ−t)
ti−η

dt0 =
1
η
[η − τ + t] , for t ∈ [max (0, τ − η) , τ ]

1
η

∫ ti
ti−η+(t−τ)

dt0 =
1
η
[η − t+ τ ] , for t ∈ [τ , τ + η]

(8)

Therefore, 1
asτ

∂
∂t
λ〈sτ 〉(t|ti) equals precisely the measure of the set of values of t0 for which investment

is ongoing at ti + t. Thus, waiting for an additional infinitesimal amount of time ∆t, increases

λ〈sτ 〉(t|ti) by asτ ·∆t times the probability that investment is ongoing in the game at ti+ t. Lemma

3 states that the ex-ante MC of waiting for a period δ is p0θasτ · δ multiplied by Φ〈sτ 〉 (t), i.e., by

the average belief over [t, t+ δ] that investment is ongoing in the game.

The above argument underscores the key distinction between increases in n by means of increases

in a or η. Note that since Φ〈sτ 〉 (t) is increasing in η,MC〈sτ 〉(t) is strictly increasing in both a and η,

for all t ∈ [max (0, τ − η) , τ + η]. However, the two parameters increase the MC through distinct

channels. A higher a increases the potential loss in ex-post payoff from being beaten to the punch

by another player, conditional on the fact that investment is ongoing in the game at the time the

player invests. On the other hand, a higher η increases the (average) belief that a player has on

[t, t+ δ] regarding the event that other players are investing. In other words, while the increase in

a decreases the ex-ante expected payoff of a player by means of decreasing the ex-post payoffs, an

increase in η decreases it by means of altering a player’s strategic beliefs. This distinction lies at

the core of the results in this paper.13

Next, we define formally and compute the ex-ante MC of waiting under a symmetric strategy

profile 〈sτ , sτ+δ〉. Note that in this case, the expected measure of players who have invested by

13This also underlies the role that the uncertainty about t0 plays in the model. If t0 is common knowledge, in a
symmetric equilibrium, the MC of waiting does not increase when η increases. The MC would be either p0asτθδ or
zero depending on whether investment is ongoing or not. As we will see, this would imply, for instance, that players
do not respond by investing earlier for low values of η.
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time ti + t, from the perspective of player i, is

λ〈sτ ,sτ+δ〉(t|ti) = λ〈sτ 〉(t|ti) + λ〈sτ+δ〉(t|ti) (9)

Essentially, one can think of the mass a of players whose clocks start at any time ti as being split

into a mass that adopts strategy 〈sτ 〉, and a mass that adopts strategy 〈sτ+δ〉; thus, (9) follows

immediately. Then, the MC of waiting at ti + t, with t ∈ δZ+ ∩ (max (0, τ − η) , τ + η) is

MC〈sτ ,sτ+δ〉(t) ≡ aθp0
[
λ〈sτ ,sτ+δ〉(t+ δ|ti)− λ〈sτ ,sτ+δ〉(t|ti)

]
(10)

= MC〈sτ 〉(t) +MC〈sτ+δ〉(t)

= p0aθδ
[
sτΦ〈sτ 〉 (t) + sτ+δΦ〈sτ+δ〉 (t)

]

where the first equality follows from (6) and (9), and the second from lemma 3.

The last result of the section elicits the ex-ante expected investment expenditures of a player

who adopts a simple strategy 〈sτ , sτ+δ〉. We denote this amount by I〈sτ ,sτ+δ〉. Note that the ex-

ante unconditional probability of investment of a player who adopts 〈sτ 〉 is the probability that a

negative signal is not received by time τ , i.e., Pr (N c
t ) = p0+(1− p0) e

−µτ . The proof of the lemma

follows then immediately from the fact that I〈sτ ,sτ+δ〉 = cPr (N
c
τ ) sτ + cPr

(
N c
τ+δ

)
sτ+δ.

Lemma 4 I〈sτ ,sτ+δ〉 = c [p0 + (1− p0) e
−µτ ] sτ + c

[
p0 + (1− p0) e

−µ(τ+δ)
]
sτ+δ

3.2 The Equilibrium for a Fixed Value of η

The next proposition identifies the necessary and sufficient conditions for a symmetric equilibrium

in which players adopt strategy 〈sτ 〉 to exist for a fixed value of η. Its proof is in appendix B1. The

equilibrium notion we employ throughout is the Bayesian Nash Equilibrium.

Proposition 5 A symmetric equilibrium strategy 〈sτ 〉 exists if and only if

p0Π

(
sτaη,

1

2
sτaη

)
− c

[
p0 + (1− p0) e

−µτ
]
≥ 0, ( = 0, if sτ < 1) (11)

MC〈sτ 〉(τ − δ) ≤MB (τ − δ) (12)

MB (τ) ≤MC〈sτ 〉(τ) (13)

Π(sτaη, sτaη)− c ≤ 0, for sτ ∈ (0, 1) (14)

To understand condition (11), note first that in the symmetric equilibrium under consideration,

player i’s expected ex-post payoff from a feasible project is Π
(
asτη,

1
2asτη

)
. This is because the

expected measure of players whose clocks started before that of player i is precisely 1
2aη, and all

players wait the same time. Second, Pr (N c
τ ) = [p0 + (1− p0) e

−µτ ] is the equilibrium unconditional

probability that the investment is made, so cPr (N c
t ) is the expected ex-ante investment cost.

9



Therefore, condition (11) states that the expected ex-ante payoff from following the equilibrium

strategy is non-negative. Conditions (12) and (13) state that it is enough for player i to have an

incentive to wait at ti + τ − δ, and an incentive to not wait at ti + τ , in order to not have an

incentive to deviate from the equilibrium strategy of investing precisely at ti+ τ . Condition (14) is

necessary because otherwise players would wait until all uncertainty about the project is removed.

The formal proof of proposition 5 from the appendix explores the properties of a player i’s

expected ex-ante payoff from investing at ti + t for all t ∈ δZ+. Essentially, though, the proof

amounts to showing a virtual single crossing property between the MC and MB curves. The MB

curve is above the MC curve for t < τ , and below for values of t immediately above τ .14 While

the two curves may intersect again for some higher value t > τ , the shape of the ex-ante expected

payoff as a function of the waiting time t and condition (14) imply that the player does not find

it profitable to wait more than τ time units. Therefore, players postpone investing as long as the

MB of waiting exceeds the MC, and invest as soon as the MC exceeds the MB.

Definition 6 We say that a property holds for almost any η ∈ (ηm, ηM ) if it holds for all η ∈

(ηm, ηM ) except a countable subset.

The next corollary states the uniqueness of the equilibrium strategy 〈sτ 〉 except for a countable

subset where some knife-edge conditions are satisfied. Its proof is in appendix B2.

Corollary 7 For almost any η ∈ (ηm, ηM ), there is at most one strategy 〈sτ 〉 satisfying (11)-(14).

The next proposition, whose proof is in appendix B3, describes a symmetric equilibrium in

which players adopt simple strategy 〈sτ , sτ+δ〉, with sτ+δ > 0.

Proposition 8 A symmetric equilibrium strategy 〈sτ , sτ+δ〉, with sτ+δ > 0, exists if and only if

p0Π
(
(sτ + sτ+δ) aη, λ〈sτ ,sτ+δ〉(τ |ti)

)
− c

[
p0 + (1− p0) e

−µτ
]
≥ 0, ( = 0, if sτ + sτ+δ < 1) (15)

MC〈sτ ,sτ+δ〉(τ) =MB (τ) (16)

Π((sτ + sτ+δ) aη, (sτ + sτ+δ) aη)− c ≤ 0, for sτ + sτ+δ < 1 (17)

As in the case of proposition 5, it is necessary that players expect non-negative ex-ante payoffs,

and that waiting until all uncertainty is removed is not profitable. Condition (16) requires that

players are indifferent between waiting τ or τ + δ time units. The shape of the expected ex-ante

payoff as a function of the waiting time implies that these are sufficient for it to be maximized

at waiting times τ and τ + δ. The next corollary, whose proof is in appendix B4, states some

uniqueness properties of strategies 〈sτ , sτ+δ〉 satisfying the conditions in proposition 8. Note that

14Note that the MB is decreasing in t, while the MC is increasing for t < τ and decreasing for t > τ .
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part (i) only claims the uniqueness of 〈sτ , sτ+δ〉 for a fixed value of τ . Corollary 14 will state the

uniqueness of the symmetric equilibrium in simple strategies for any τ and almost any η.

Corollary 9 (i) For almost any η ∈ (ηm, ηM ) and any τ ∈ δZ+, there exist at most on pair of

values (sτ , sτ+δ) satisfying (15)-(17). (ii) For almost any η ∈ (ηm, ηM ), there exists no strategy

〈sτ , sτ+δ〉, with sτ + sτ+δ = 1, satisfying (15)-(17).

3.3 The Strategic Effect of a Change in the Measure of Players

The main result of the paper elicits the equilibrium strategies and expected ex-ante investment

expenditures as the measure of players in the game varies. To illustrate the role of the discreteness

of the information arrival, we present first the equilibrium of the game in which information arrives

continuously.

The first proposition considers the case when n increases by means of an increase in a. 〈saτ 〉

denotes a simple strategy in the game corresponding to a given value of a. τa, saτ and I
a are the

respective waiting time, probability of investment, and expected investment expenditures. The

proposition, whose proof is in Barbos (2012), uncovers the inverted-U shaped relationship between

the measure of players in the game and a player’s equilibrium ex-ante investment expenditures.

Proposition 10 Assume information arrives continuously. Then, there exists a unique symmetric

equilibrium simple strategy 〈saτ 〉, and a threshold â, such that: (i) for a < â,
d
da
τa < 0, saτ = 1, and

d
da
Ia > 0 ; (ii) for a > â, d

da
τa = 0, d

da
saτ < 0, and

d
da
Ia < 0.

The next proposition considers the case when n increases by means of η. Its formal proof follows

immediately from the characterization of the equilibrium necessary and sufficient conditions from

Barbos (2012), and is thus omitted. Instead, we will present its intuition in section 3.4. 〈sητ 〉, τη,

sητ and Iη have the obvious definitions.

Proposition 11 Assume information arrives continuously. Then, there exists a unique symmetric

equilibrium simple strategy 〈sητ 〉, and a threshold η̂, such that: (i) for η < η̂,
d
dη
τη = 0, sητ = 1, and

d
dη
Iη = 0; (ii) for η > η̂, d

dη
τη > 0, d

dη
sητ < 0, and

d
dη
Iη < 0.

Therefore, the inverted-U relationship between the measure of players in the game and the

equilibrium ex-ante investment expenditures that emerges when the measure of players increases

by means of an increase in a, does not do so when the increase is by means of η. In particular, for

small values of η, players do not react by decreasing the equilibrium delay when η increases.

We now return to the case where information arrives at discrete times. If n increases by means

of a, it can be shown that the equilibrium has the same properties as when information arrives

11



continuously, only that τa and Ia are step functions when a < â. Proposition 12 presents the main

result of the paper when the increase in n is by means of η. Its proof, as well as more precise

statements, with the exact conditions determining the equilibrium strategies and the cutoffs, can

be found in appendix C1. The corollary is proved in appendix C2.

Proposition 12 There exists η̂ ∈ (ηm, ηM ) and an increasing sequence {η0 ≡ η̂, η1, η2, ...} ⊂

(ηm, ηM ), such that in equilibrium,

1. When η ∈ (ηm, η̂), players adopt 〈s
η
τ 〉, with s

η
τ = 1, and τη a decreasing step function of η.

2. When η ∈ (η̂, ηM ), players adopt either

(a) 〈sητ 〉, for η ∈ ∪k∈N
{
[η2k, η2k+1)

}
, and

〈
sητ , s

η
τ+δ

〉
, for η ∈ ∪k∈N

{
[η2k+1, η2k+2)

}
, where

τη = τ η̂ + kδ, for η ∈ [η2k, η2k+2), or

(b)
〈
sητ , s

η
τ+δ

〉
, for η ∈ ∪k∈N

{
[η2k, η2k+1)

}
, and 〈sητ 〉, for η ∈ ∪k∈N

{
[η2k+1, η2k+2)

}
, where

τη = τ η̂ + (k − 1) δ, for η ∈ [η2k, η2k+2).

Corollary 13 (i) For η ∈ (ηm, η̂), I
η is an increasing step function of η; (ii) For η ∈ (η̂, ηM ),

d
dη
Iη < 0.

For low values of η, players expect strictly positive equilibrium ex-ante payoffs and invest with

probability sητ = 1 if a negative signal is not received by time τη. For these values, as η increases,

the MC curve shifts up, exceeding the MB earlier and inducing players to weakly decrease the

equilibrium delay τη. The step function τη emerges because the discreteness of δZ+ implies that

the equilibrium strategies will prescribe investment after a given waiting time for a range of values

of η. Since for η ∈ (ηm, η̂), players undertake riskier investments as η increases, they increase the

expected ex-ante investment expenditures because, from an ex-ante point of view, the likelihood

that they invest is higher.

When η is sufficiently high, i.e., at η̂, condition (11) is satisfied with equality and the equilibrium

expected ex-ante payoff is zero. For η ∈ (η̂, ηM ), there is no equilibrium with players adopting 〈s
η
τ 〉,

with sητ = 1. To see this, note that if such an equilibrium existed, as η increases above η̂, to continue

to expect non-negative ex-ante payoffs, players would need to invest in safer projects. But if sητ = 1,

the MC would continue to shift up as η increases. Thus, the trade-off between the MC and the

MB of waiting would be solved earlier, inducing players to actually invest in riskier projects.

Instead, for η ∈ (η̂, ηM ) players decrease s
η
τ and invest later. For some values of η ∈ (η̂, ηM ),

all players that invest, do so after waiting the same time τη; for the rest, there are two equilibrium

waiting times. The resulting equilibrium profile of waiting times is increasing in η for η > η̂, while

the ex-ante expected investment expenditures are decreasing.

The equilibrium strategy for η ∈ (η̂, ηM ) in case (a) of proposition 12.2 is presented in the

following figure. τ0 ≡ τ η̂ denotes the equilibrium waiting time at η̂. As η increases on [η̂, η1],

12



players adopt strategy 〈sητ0〉, continuing to invest after waiting the same time as at η = η̂, but with

a decreasing probability. On [η1, η2], players adopt strategy
〈
sητ0 , s

η
τ0+δ

〉
; as η increases they lower

sητ0 and increase s
η
τ0+δ

. The upper bound of the interval, η2, is defined by s
η2
τ0 = 0. On [η2, η3],

players adopt strategy
〈
sητ0+δ

〉
, and as η increases, they decrease sητ0+δ until η = η3, where they

start adopting strategy
〈
sητ0+δ, s

η
τ0+2δ

〉
.

To understand the intuition for the equilibrium strategy when η ≥ η̂, note first that as η

increases on intervals [η̂, η1], [η2, η3], [η4, η5], etc., s
η
τ decreases so as to keep the expected ex-ante

payoff at zero, since the waiting time is constant on these intervals. We will argue next that this

implies that for t in a neighborhood of τη, MCη
〈sητ〉

(t) decreases as η increases on these intervals.

This is in contrast to the finding derived from lemma 3, where sητ was constant as η increased.

For a fixed value of τη, let sητ be the value that satisfies (11) with equality

p0Π

(
sητaη,

1

2
sητaη

)
− c

[
p0 + (1− p0) e

−µτη
]
= 0 (18)

Since Π is strictly decreasing in both arguments, η·sητ is constant. Now, from (7), by straightforward

calculations, it follows that
∂ lnΦ〈sητ〉(t)

∂ ln η
≤ 1 (19)

for t ∈ [τη − η
2 , τ

η + η
2 ]. Thus, Φ〈sητ〉 is inelastic with respect to η, for t in a neighborhood of τ

η.

Intuitively, if all players wait the same time τη before investing, player i already assigns a high

probability to the event that investment is ongoing at ti + t, when t is close to τ
η, irrespective of

the value of η. Therefore, an increase in η does not alter significantly his strategic beliefs. On

the other hand, from (7), it also follows that the MCη
〈sητ〉

curve is unit elastic with respect to

sητ . Note now that as η increases, since sητ · η is constant, the absolute values of the percentage

changes in sητ and η must be equal. Therefore, if η increases by 1%, s
η
τ decreases by 1%, while

(19) implies that Φ〈sητ〉 increases by less than 1%. It follows then that, as claimed, as η increases,

MC〈sητ〉(t) = p0as
η
τθδΦ〈sητ〉 (t) decreases for t ∈ [τ

η − η
2 , τ

η + η
2 ].

13



Now, as argued earlier, for η < η̂, as η increases, the MC shifts up and players wait less before

investing. At η = η̂, (11) is satisfied with equality, while by proposition 5, MC〈sητ0〉
(τ0 − δ) ≤

MB (τ0 − δ) and MB (τ0) ≤ MC〈sητ0〉
(τ0), where, as defined previously, τ0 = τ

η̂. As η increases

above η̂, sητ0 decreases so as to hold the expected ex-ante payoff at zero and so, the MC〈sητ0〉
(t)

decreases for t ∈ [τ0 −
η
2 , τ0 +

η
2 ]. Since δ <

η
2 , MC〈sητ0〉

(τ0 − δ) and MC〈sητ0〉
(τ0) decrease. Let η1

be defined by

MC〈sη1τ0〉
(τ0) =MB (τ0) (20)

As η increases just above η1 to η1 + ε, where ε is arbitrarily small, MC
〈
s
η1+ε
τ0

〉 (τ0) falls below

MB (τ0). So
〈
s
η1+ε
τ0

〉
is not an equilibrium strategy because it fails to satisfy (13); players would

have an incentive to deviate and invest after waiting τ0 + δ time units. However,
〈
s
η1+ε
τ0+δ

〉
is

also not an equilibrium. To understand this, note that if it was, since players would invest now

in safer projects, for the zero expected ex-ante payoff condition to continue to be satisfied, the

probability of investment should have an instant upward jump immediately above η1. This would

lower the expected ex-post payoff and offset the higher likelihood that the project is feasible. Thus,

s
η1+ε
τ0+δ

> s
η1
τ0 . Now, by inspecting (7), it follows that Φ〈sτ+δ〉 (τ) = Φ〈sτ 〉 (τ), and thus that

MC〈sη1τ0〉
(τ0) =MC〈

s
η1
τ0+δ

〉 (τ0) (21)

Then, (20), (21), and s
η1+ε
τ0+δ

> s
η1
τ0 imply that

MC〈
s
η1+ε
τ0+δ

〉 (τ0) > MB (τ0) (22)

Thus,
〈
s
η1+ε
τ0+δ

〉
is not an equilibrium strategy because it fails (12); players would deviate from the

prescribed equilibrium strategy of waiting τ0 + δ time units, and instead wait τ0 time units.

The issue is resolved if the transition between the waiting times τ0 and τ0+δ is smooth, in that

as η increases above η1, players decrease the probability of waiting τ0 time units and increase the

probability of waiting τ0 + δ time units. Thus, as η increases on [η1, η2], s
η
τ0 decreases and s

η
τ0+δ

increases such that players expect zero ex-ante payoffs if investing after waiting either τ0 or τ0 + δ

time units. After the transition is complete at η2, where η2 is defined by s
η2
τ0 = 0, as η further

increases, all players that invest, do so after waiting τ0 + δ time units. Then the process repeats.

The case (b) from proposition 12.2 appears because it may happen that when condition (13)

binds for some value η̂ and waiting time τ η̂, as η increases slightly, if the waiting time decreases to

τ η̂−δ and all players invest, the non-negative ex-ante payoff condition in (14) is no longer satisfied.

In this case, immediately above η̂, players employ a strategy
〈
sητη−δ, s

η
τη

〉
. The analysis is similar

to the one from case (a).

The next corollary, whose proof is in appendix C3, states the uniqueness of the equilibrium.
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Corollary 14 For almost any η ∈ (ηm, ηM ), the equilibrium in proposition 12 is the unique equi-

librium in simple strategies.

3.4 Discussion

As explained in section 3.1, an increase in η leads each player to have a higher belief about the event

that investment is ongoing in the game at any time, thus increasing the MC of waiting. For low

levels of η, when players expect strictly positive ex-ante payoffs and thus invest with conditional

probability one, the upward shift of theMC curve induces players to invest earlier. For high values

of η, the non-negativity constraint on the equilibrium expected ex-ante payoff binds and players

invest with a decreasing conditional probability. The effect of the belief updating on the marginal

cost of waiting is of second order, and is compensated by the first order effect of the decrease in

equilibrium probability of investment. On net, the MC decreases for these higher values of η,

inducing players to invest later, thus further reducing investment. Therefore, for higher values of

η, when η increases, players invest with a decreasing probability and wait longer.

The inverted-U shaped relationship between η and Iη does not emerge when information arrives

continuously because the value of the MC at the equilibrium waiting time does not increase when

η increases. To understand why, recall from the discussion motivating the results in Proposition

12 that Φη
〈sητ〉

(t) is inelastic with respect to η in the neighborhood around τη. In particular, as

δ approaches 0, according to the equilibrium strategies of the other players, investment is almost

surely ongoing in the game at times around the equilibrium waiting time τη. Thus, that belief is

not altered in a measurably meaningful way between τη− δ and τη+ δ. In the limit as δ → 0, while

the MC〈sητ〉(t) increases in η for all t 6= τη, MC〈sητ〉(τ
η) stays constant because at ti + τ

η player

i knows for sure that investment is ongoing in the game irrespective of the value of η. Thus, the

MC curve crosses the MB curve at the same point as η increases for η < η̂, and so players do not

change their waiting time. For η > η̂, as η increases, sητ must decrease to satisfy the zero profit

condition. This shifts down the MC curve everywhere and induces players to invest later.15

4 Conclusion

Previous literature found that an increase in the number of players in a preemption game induces

them to undertake riskier actions as long as they expect non-negative payoffs from doing so. For

instance, when the number of firms in an industry increases, they become more agressive in their

innovative activities. This is no longer the case if the increase in the number of players is purely on

an extensive margin, in that it leads to an increase in the amount of time it takes for all players to

learn of an investment opportunity. For instance, if the increase in the number of firms is associated

15Note that when the increase in n is by means of an increase in a, the effect on the MC is of the first order and
thus players do wait less for the lower values of a. For higher values, the effects of the increase in a and decrease in
saτ perfectly compensate each other and the equilibrium waiting time stays constant.
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with a larger technological dispersion in the industry that expands the amount of time it takes for

all firms to make a technological breakthrough, the positive relationship between competition and

innovation no longer holds. In this paper we show that the positive relationship reemerges if

players take investment decisions at discrete times either because the information arrives discretely

or because they are constrained to do so.

Appendix

Appendix A. Proof of Lemma 3

First, we present a result that elicits λ〈sτ 〉(t|ti).

Lemma 15 Consider a strategy profile under which each player employs the strategy 〈sτ 〉. Then,

the expected measure of players who have invested before player i at moment ti + t, with t ≥ 0 is

λ〈sτ 〉(t|ti) =





0, for t ∈ [0,max(0, τ − η)]

sτa
[
(t−τ+η)2

2η

]
, for t ∈ (max(0, τ − η), τ ]

sτa
[
η
2 + (t− τ)−

(t−τ)2

2η

]
, for t ∈ (τ , τ + η]

sτaη, for t > τ + η

(23)

Proof. This follows from (3) and (4) by direct computation. A detailed argument is presented in

Barbos (2012). �

To show the result in lemma 3, it is then sufficient then to employ (6) to compute MC〈sτ 〉(t).

Thus, for t ∈ δZ+ ∩ [max(0, τ − η), τ + η], we have:

λ〈sτ 〉(t+ δ|ti)− λ〈sτ 〉(t|ti) =

=




sτa

[
(t+δ−τ+η)2

2η

]
− sτa

[
(t−τ+η)2

2η

]
, for t ∈ [max(0, τ − η), τ − δ]

sτa
[
η
2 + (t+ δ − τ)−

(t+δ−τ)2

2η

]
− sτa

[
η
2 + (t− τ)−

(t−τ)2

2η

]
, for t ∈ [τ , τ + η]

=





sτa
[
(t+δ−τ+η)2

2η

]
− sτa

[
(t−τ+η)2

2η

]
, for t ∈ [max(0, τ − η), τ ]

sτa
[
η
2 + (t+ δ − τ)−

(t+δ−τ)2

2η

]
− sτa

[
η
2 + (t− τ)−

(t−τ)2

2η

]
, for t ∈ [τ , τ + η]

=

{
sτa

δ
η

[
η − (τ − t) + δ

2

]
, for t ∈ [max (0, τ − η) , τ)

sτa
δ
η

[
η − (t− τ)− δ

2

]
, for t ∈ [τ , τ + η]

The result from the lemma 3 follows then immediately. Note that in the above, we did not

compute λ〈sτ 〉(t + δ|ti) − λ〈sτ 〉(t|ti) for t /∈ δZ+. Also, we did not compute the MC for t /∈

(max(0, τ − η), τ + η) since, as it will become clear shortly, it is never a best response for a player

to invest at those times under a symmetric strategy profile 〈sτ 〉. �
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Appendix B1. Proof of Proposition 5

We will show first that the conditions in the proposition are sufficient for 〈sτ 〉 to be a symmetric

equilibrium strategy of the game. Assume all other players, but player i play strategy 〈sτ 〉 that

satisfies (11)-(14). We will show that in that case it is i’s best response to play the same strategy.

First, note that if τ > η, then λ〈sτ 〉(t|ti) = 0 for t ∈ [0, τ − η] so it is not i’s best response to invest

before ti+ τ − η. Also, by (14), clearly it is not his best response to invest after ti+ τ + η. Denote

by

Ψ〈sτ 〉(t) ≡ p0
[
A (sτaη)− θλ〈sτ 〉(t|ti)

]
− c

[
p0 + (1− p0) e

−µt
]
, for t ≥ 0. (24)

Note that when t ∈ δZ+, Ψ〈sτ 〉(t) is player i’s expected ex-ante payoff from investing at ti + t.

However, note that we define Ψ〈sτ 〉(t) for all values of t ≥ 0 so as to be able to employ standard

calculus methods. To prove the result it is enough to show that Ψ〈sτ 〉(·) is maximized at t = τ

in the set [max(0, τ − η), τ + η] ∩ δZ+. From (23) and (24), it follows that when t < τ , we have

Ψ′′〈sτ 〉(t) = −p0θλ
′′
〈sτ 〉
(t|ti)−µ

2c (1− p0) e
−µt = −p0θa

sτ
η
−µ2c (1− p0) e

−µt < 0. On the other hand,

for t ∈ [τ , τ + η], we have Ψ′′′〈sτ 〉(t) = µ
3c (1− p0) e

−µt > 0.

Now first, the condition p0
[
A (sτaη)−

1
2sτθaη

]
− c

[
p0 + (1− p0) e

−µt
]
≥ 0 from the text of

the proposition, ensures that Ψ〈sτ 〉(τ) ≥ 0 since λ〈sτ 〉(τ |ti) =
1
2sτaη. Thus, i has a non-negative

expected ex-ante payoff from pursuing strategy 〈sτ 〉. Second, from (24) it follows that

Ψ〈sτ 〉(τ) ≥ Ψ〈sτ 〉(τ − δ)⇔

⇔ −p0θλ〈sτ 〉(τ |ti)− c (1− p0) e
−µτ ≥ −p0θλ〈sτ 〉(τ − δ|ti)− c (1− p0) e

−µ(τ−δ)

⇔ p0θ
[
λ〈sτ 〉(τ |ti)− λ〈sτ 〉(τ − δ|ti)

]
≤ c (1− p0)

[
e−µ(τ−δ) − e−µτ

]

⇔ MC〈sτ 〉(τ − δ) ≤MB(τ − δ)

which is condition (12) from the text of the proposition. Therefore, since Ψ〈sτ 〉 is concave for

t ≤ τ , and Ψ〈sτ 〉(τ) ≥ Ψ〈sτ 〉(τ − δ), it must be that it is increasing for all t ≤ τ − δ. Thus,

Ψ〈sτ 〉(t) ≤ Ψ〈sτ 〉(τ) for t ≤ τ .

On the other hand, it is straightforward to see that

Ψ〈sτ 〉(τ) ≥ Ψ〈sτ 〉(τ + δ)⇔MB(τ) ≤MC〈sτ 〉(τ)

which is condition (13) from the text of the proposition. Since Ψ′′′〈sτ 〉(t) > 0, it follows that once

Ψ〈sτ 〉 (·) is convex, it will be convex for all higher values of t. Since Ψ〈sτ 〉(τ) ≥ Ψ〈sτ 〉(τ + δ), Ψ〈sτ 〉

is decreasing in between τ and τ + δ. But, Ψ〈sτ 〉 can start increasing only after it becomes convex.

So after it starts increasing, it will increase forever. Since (14), for the case when sτ < 1, and

assumption 1, for the case when sτ = 1, ensure that Ψ〈sτ 〉(τ + η) ≤ 0, it means that Ψ〈sτ 〉(t) ≤ 0

for t ≤ τ + η. Therefore, as desired, Ψ〈sτ 〉(τ) ≥ Ψ〈sτ 〉(t) for all 0 ≤ t ≤ τ + η. This completes the

proof of sufficiency in the proposition.

The necessity of (11)-(14) is straightforward. When sτ < 1, (11) is necessary to be satisfied
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with equality for players to be willing to mix. (13) and (12) are necessary as otherwise players

would be better off waiting τ − δ or τ + δ time units. (14) is necessary because otherwise players

deviate and invest after all uncertainty is removed. This completes the proof of proposition 5. �

Appendix B2. Proof of Corollary 7

First, we argue that for a fixed value of sτ there can be at most one value of τ satisfying (12) and

(13). To see this, we rewrite (12) and (13) using lemma 3 as

p0asτθδ
1

η

(
η −

δ

2

)
≤ c (1− p0)

(
1− e−µδ

)
e−µ(τ−δ) (25)

c (1− p0)
[
1− e−µδ

]
e−µτ ≤ p0asτθδ

1

η

(
η −

δ

2

)
(26)

which since the left hand side of (25) equals the right hand side of (26) imply

e−µτ ≤
p0asτθ

c (1− p0) (1− e−µδ)
δ
1

η

(
η −

δ

2

)
≤ e−µτeµδ ⇒

−µτ ≤ ln

{
p0asτθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
≤ −µτ + µδ ⇒

τ ∈

[
−
1

µ
ln

{
p0asτθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
,−
1

µ
ln

{
p0asτθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
+ δ

]

(27)

Note that (27) pins down a unique value for τ for a given value of sτ , except if

−
1

µ
ln

{
p0asτθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
∈ δZ+ (28)

The set of values of η for which (28) is satisfied is countable. (27) also implies that for all values of

η, except a countable subset, there is at most one symmetric equilibrium in simple strategies 〈sτ 〉

with sτ = 1.

Next, we argue that for all values of η, except a countable subset, there is a unique equilibrium

in simple strategies 〈sτ 〉. Assume by contradiction that there are two such equilibria 〈sτ 〉 and 〈s
′
τ 〉.

If τ = τ ′, then from (11) it follows that sτ = s
′
τ because A is strictly decreasing in both arguments

and thus the two strategies would be identical. If τ > τ ′ then from (27) it must be that sτ < s
′
τ .

However, from (24) it is clear that when τ > τ ′ and sτ < s
′
τ , we have Ψ〈sτ 〉(τ) > Ψ〈s′τ 〉(τ

′). This

implies that Ψ〈sτ 〉(τ) > 0, and thus that sτ = 1. This is inconsistent with sτ < s
′
τ . Thus, indeed

there is at most one symmetric equilibrium in simple strategies 〈sτ 〉. �
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Appendix B3. Proof of Proposition 8

Showing the necessity of the conditions (15)-(17) is straightforward. We will show next their

sufficiency. Assume all other players, but player i, adopt strategy 〈sτ , sτ+δ〉 with sτ+δ > 0. Then,

as in (24), denote by

Ψ〈sτ ,sτ+δ〉(t) ≡ p0
[
A ((sτ + sτ+δ) aη)− θλ〈sτ ,sτ+δ〉(t|ti)

]
− c

[
p0 + (1− p0) e

−µt
]
, for t ≥ 0 (29)

and note that when t ∈ δZ+, Ψ〈sτ 〉(t) is i’s expected ex-ante payoff if it invests at time ti + t. We

will show that Ψ′′〈sτ ,sτ+δ〉(t) < 0 for t < τ and Ψ
′′′
〈sτ ,sτ+δ〉

(t) > 0 for t > τ + δ so that the argument

from the proof of proposition 5 from appendix B1 will go through in this case as well with a slight

modification. First, by (9), it follows that

Ψ〈sτ ,sτ+δ〉(t) = p0
[
A ((sτ + sτ+δ) aη)− θλ〈sτ 〉(t|ti)− θλ〈sτ+δ〉(t|ti)

]
− c

[
p0 + (1− p0) e

−µt
]

Using lemma 15, we have then that

Ψ′′〈sτ ,sτ+δ〉(t) =

{
−p0θa (sτ + sτ+δ)

1
η
− µ2c (1− p0) e

−µt, for t < τ

p0θasτ
1
η
− p0θasτ+δ

1
η
− µ2c (1− p0) e

−µt, for τ < t < τ + δ
(30)

On the other hand,

Ψ′′′〈sτ ,sτ+δ〉(t) = µ
3c (1− p0) e

−µt, for all t ≥ max(0, τ − η)

Note that Ψ′′〈sτ 〉,α(τ+δ)(t) < 0 for t < τ and Ψ′′′〈sτ 〉,α(τ+δ)(t) > 0 for t > τ + δ. Moreover, it is

straightforward to see that

lim
t→(τ+δ)−

Ψ′′〈sτ ,sτ+δ〉(t) = p0θa (sτ − asτ+δ)
1

η
− µ2c (1− p0) e

−µ(τ+δ)

< lim
t→(τ+δ)+

Ψ′′〈sτ ,sτ+δ〉(t) = p0θa (sτ + sτ+δ)
1

η
− µ2c (1− p0) e

−µ(τ+δ)

Finally, the condition from (16) in the text of the proposition 8 is equivalent to

Ψ〈sτ ,sτ+δ〉(τ) = Ψ〈sτ ,sτ+δ〉(τ + δ) (31)

while (17) implies

Ψ〈sτ ,sτ+δ〉(τ + η + δ) < 0

We will argue now that Ψ〈sτ ,sτ+δ〉(τ) ≥ Ψ〈sτ ,sτ+δ〉(t) for all t ∈ δZ+. We consider two cases.

Case 1: sτ ≤ sτ+δ. In this case, from (30) it follows that Ψ′′〈sτ ,sτ+δ〉(t) < 0 for t ∈ (τ , τ + δ).

Therefore the function Ψ〈sτ ,sτ+δ〉 is concave for t < τ+δ. It is clear then that this and Ψ〈sτ ,sτ+δ〉(τ) =
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Ψ〈sτ ,sτ+δ〉(τ + δ) imply that Ψ
′
〈sτ ,sτ+δ〉

(τ) > 0 and Ψ′〈sτ ,sτ+δ〉(τ + δ) < 0.
16 Since Ψ′′′〈sτ ,sτ+δ〉(t) > 0 for

t > τ+δ and Ψ〈sτ ,sτ+δ〉(τ+η+δ) < 0, an argument similar to the one from the proof of proposition

5 shows the result.

Case 2: sτ > sτ+δ. In this case, Ψ
′′′
〈sτ ,sτ+δ〉

(t) > 0 for t ≥ τ together with the facts that

lim
t→(τ+δ)−

Ψ′′〈sτ ,sτ+δ〉(t) < lim
t→(τ+δ)+

Ψ′′〈sτ ,sτ+δ〉(t) implies that once Ψ〈sτ ,sτ+δ〉 is convex, it will be convex

for all higher values. If Ψ〈sτ ,sτ+δ〉 were increasing at τ + δ, then it should already be convex there

and thus it would be increasing for all values above τ + δ. But this contradicts the fact that

Ψ〈sτ ,sτ+δ〉(τ) ≥ 0 > Ψ〈sτ ,sτ+δ〉(τ + η + δ). Therefore, Ψ
′
〈sτ ,sτ+δ〉

(τ + δ) < 0. Also, Ψ′〈sτ ,sτ+δ〉(τ) >

0 because otherwise, in order for Ψ〈sτ ,sτ+δ〉 to be decreasing at τ + δ, it should have increased

somewhere between τ and τ + δ, which would imply that Ψ〈sτ ,sτ+δ〉 was convex at that point and

therefore convex and increasing from that point to τ + δ. But this would contradict the fact that

Ψ〈sτ ,sτ+δ〉 should be decreasing at τ + δ. The rest of the argument goes as in the previous case. �

Appendix B4. Proof of Corollary 9

We show first the uniqueness of the strategy 〈sτ , sτ+δ〉 satisfying (15)-(17) for a fixed value of τ .

Note first that lemma 15 implies λ〈sτ+δ〉(τ |ti) = sτ+δa
(η−δ)2

2η , λ〈sτ 〉(τ + δ|ti) = sτa
(
η
2 + δ −

δ2

2η

)
,

λ〈sτ 〉(τ |ti) = sτa
η
2 and λ〈sτ+δ〉(τ + δ|ti) = sτ+δa

η
2 . Using these in (29) it follows that

Ψ〈sτ ,sτ+δ〉(τ) = p0A ((sτ + sτ+δ) aη)− p0θa

[
sτ
η

2
+ sτ+δ

(η − δ)2

2η

]
− c

[
p0 + (1− p0) e

−µτ
]

(32)

Ψ〈sτ ,sτ+δ〉(τ + δ) = (33)

= p0A ((sτ + sτ+δ) aη)− p0θa

[
sτ

(
η

2
+ δ −

δ2

2η

)
+ sτ+δ

η

2

]
− c

[
p0 + (1− p0) e

−µ(τ+δ)
]

Since Ψ〈sτ ,sτ+δ〉(τ) = Ψ〈sτ ,sτ+δ〉(τ + δ), by subtracting the two equations we rewrite (16) as

p0θa (sτ + sτ+δ)

(
δ −

δ2

2η

)
= c (1− p0)

(
1− e−µδ

)
e−µτ (34)

Now, when Ψ〈sτ ,sτ+δ〉(τ) > 0, it must be that sτ +sτ+δ = 1. From (34) this uniquely determines

the value of τ . However, unless − 1
µ
ln

{
p0aθ

c(1−p0)[1−e−µδ]

(
δ − δ2

2η

)}
∈ δZ+, such an equilibrium does

not exist. Therefore, a symmetric equilibrium in strategies 〈sτ , sτ+δ〉 with sτ +sτ+δ = 1 exists only

for a countable set of values of η.

On the other hand, when sτ + sτ+δ < 1, (34) gives sτ + sτ+δ for any given value of τ .

16By straightforward calculations it follows that Ψ is differentiable at both τ and τ + δ.
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Ψ〈sτ ,sτ+δ〉(τ) = 0, (32) can be rewritten as

p0A ((sτ + sτ+δ) aη)− p0θa

[
(sτ + sτ+δ)

η

2
− sτ+δ

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µτ
]
= 0 (35)

Since sτ + sτ+δ is determined by the value of τ , (35) determines sτ+δ uniquely as a function of τ ,

and therefore sτ is determined as well. Therefore, for any τ ∈ δZ+, there exists at most one pair

of sτ and sτ+δ satisfying (15)-(17). �

Appendix C1. Proof of Proposition 12

We will show that for any value of η ∈ [ηm, ηM ], where ηm and ηM are defined in assumption 1

there exists a symmetric equilibrium in simple strategies. Note first that

−
1

µ
ln

{
p0aθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
> 0⇔

p0aθ

(
δ −

δ2

2η

)
< c (1− p0)

(
1− e−µδ

)
⇔ η < ηM

It follows that there always exists at least one value of τ satisfying (27) for sητ = 1. Let τ̃ (η) to be

the value satisfying (27) for sητ = 1 when −
1
µ
ln

{
p0aθ

c(1−p0)(1−e−µδ)

(
δ − δ2

2η

)}
/∈ δZ+, and let τ̃ (η) be

the upper bound of the interval otherwise. Formally,

τ̃ (η) ≡

(
−
1

µ
ln

{
p0aθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
,−
1

µ
ln

{
p0aθ

c (1− p0) (1− e−µδ)

(
δ −

δ2

2η

)}
+ δ

]
∩δZ+

The resulting τ̃ (η) is a decreasing step function of η. As η increases, the two bounds decrease,

and for values of η for which − 1
µ
ln

{
p0aθ

c(1−p0)(1−e−µδ)

(
δ − δ2

2η

)}
∈ δZ+, the value of τ̃ (η) has a

downward jump. In between these values, τ̃ (η) is constant.

Definition 16 Let
〈
s̃η
τ̃(η)

〉
be the simple strategy with waiting time τ̃ (η) and probability of invest-

ment s̃η
τ̃(η) = 1.

We have two cases to consider depending on the sign ofΨ〈
s̃
ηm
τ̃(ηm)

〉(τ̃ (ηm)). IfΨ
〈
s̃
ηm
τ̃(ηm)

〉(τ̃ (ηm)) <

0, ηm is too high for players to expect non-negative ex-ante payoffs if they all invest in the project.

In this case, let η̂ ≡ ηm.

If Ψ〈
s̃
ηm
τ̃(ηm)

〉(τ̃ (ηm)) > 0, let η̂ be the maximum value of η for which the following are satisfied

Ψ〈
s̃
η

τ̃(η)

〉(τ̃ (η)) ≥ 0 (36)

MC〈
s̃
η

τ̃(η)

〉(τ̃ (η)− δ) ≤ MB (τ̃ (η)− δ) (37)

MB (τ̃ (η)) ≤ MC〈
s̃
η

τ̃(η)

〉(τ̃ (η)) (38)
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First, note that (37) and (38) can be rewritten as in (27), with s̃η
τ̃(η) = 1. Thus, they will

always be satisfied for some τ̃ (η). On the other hand, from (24) it follows that Ψ〈
s̃
η

τ̃(η)

〉(τ̃ (η))

is decreasing in η because A′(·) < 0, λ〈
s̃
η

τ̃(η)

〉(τ̃ (η)) = 1
2aη, and τ̃ (η) is weakly decreasing in η.

However, since τ̃ (η) is not continuous, Ψ〈
s̃
η

τ̃(η)

〉(τ̃ (η)) is not continuous at the values of η for which

τ̃ (η) has the downward jump. The points of discontinuity of τ̃ (η) occur at values of η for which

MC〈
s̃
η

τ̃(η)

〉(τ̃ (η)−δ) =MB (τ̃ (η)− δ). This is intuitive since in between two points of discontinuity

of τ̃ (η), MC〈
s̃
η

τ̃(η)

〉(τ̃ (η) − δ) and MC〈
s̃
η

τ̃(η)

〉(τ̃ (η)) both increase as η increases. Therefore, η̂ is

defined either by

(i) Ψ〈
s̃
η̂

τ̃(η̂)

〉(τ̃ (η̂)) = 0, or by (39)

(ii) MC〈
s̃
η̂

τ̃(η̂)

〉(τ̃ (η̂)− δ) =MB (τ̃ (η̂)− δ) , Ψ〈
s̃
η̂

τ̃(η̂)

〉(τ̃ (η̂)) ≥ 0, and lim
η→η̂+

Ψ〈
s̃
η

τ̃(η)

〉(τ̃ (η)) < 0

(40)

As we will argue shortly, case (i) will correspond to case (a) in the text of proposition 12(2 ) because

just above η̂ players will start investing at τ̃ (η̂) with a decreasing probability. Case (ii), which

occurs when Ψ〈s̃ητ〉(τ̃ (η)) falls below 0 at a point of discontinuity of τ̃ (η), will correspond to case

(b). Note also that η̂ > ηm because Ψ
〈
s̃
η

τ̃(η)

〉(τ̃ (η)) is decreasing in η. Then for any η ∈ [ηm, η̂], let

τη ≡ τ̃ (η) and 〈sητ 〉 ≡
〈
s̃η
τ̃(η)

〉
and note that all conditions of proposition 5 are satisfied, that τη is

decreasing in η, and that sητ = 1.

Lemma 17 For any η > η̂ there is no symmetric equilibrium in simple strategies 〈sητ 〉 with s
η
τ = 1.

Proof. Consider first case (i) from (39). Let τ0 ≡ τ̃ (η̂) and denote by η1 the minimal value of η for

which τ0 is an equilibrium waiting time. Note that at η
1
, players have just switched from

〈
s̃ητ0+δ

〉

to 〈s̃ητ0〉. Therefore, MC〈
s̃
η
1
τ0+δ

〉(τ0) = MB (τ0). Since the MC is increasing in η on
[
η
1
, η̂
]
,

MC〈
s̃
η
τ0+δ

〉(τ0) increases, exceeding MB (τ0). Thus,
〈
s̃ητ0+δ

〉
is not an equilibrium strategy for

η ∈
[
η
1
, η̂
]
. Instead, players adopt strategy 〈s̃ητ0〉.

At η̂, we have Ψ〈
s̃
η̂
τ0

〉(τ0) = 0. Above η̂, if all players were to adopt 〈s̃ητ0〉, Ψ〈s̃ητ0〉
(τ0) < 0

and players would expect negative ex-ante payoffs from 〈s̃ητ0〉. To avoid this, if players were to

continue to invest with probability 1, they must switch immediately to waiting for more than τ0

units of time, so as to invest in safer projects. But switching to investing at τ0 + δ is not a

feasible equilibrium strategy because MC〈
s̃
η
τ0+δ

〉(τ0) > MB (τ0), so condition (12) would not be

satisfied. Also, since when s̃ητ0+kδ = s̃ητ0+δ = 1, we have that for any k ≥ 1, MC〈
s̃
η
τ0+kδ

〉(τ0 +

kδ − δ) = MC〈
s̃
η
τ0+δ

〉(τ0) = p0aθ
(
δ − δ2

2η

)
, and MB (τ0) > MB (τ0 + kδ − δ), it follows that

MC〈
s̃
η
τ0+kδ

〉(τ0 + kδ − δ) > MB (τ0 + kδ − δ). Thus, no waiting time higher than τ0 is feasible in
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an equilibrium with s̃ητ0+kδ = 1.

On the other hand, if η̂ is defined by case (ii) in (40), at η̂ we have MC〈
s̃
η̂
τ0

〉(τ0 − δ) =

MB (τ0 − δ). By the same argument as above, it follows then that when s̃
η
τ0+kδ

= 1, we have

MC〈
s̃
η
τ0+kδ

〉(τ0 + kδ − δ) > MB (τ0 + kδ − δ) for all k ≥ 1, so no equilibrium in which players

invest with probability 1 exists. �

Since by corollary 9, it is also the case that, generically, no symmetric equilibrium in simple

strategies
〈
sητ , s

η
τ+δ

〉
with sητ + s

η
τ+δ = 1 exists, the equilibrium probability of investment must be

lower than 1 for η > η̂.

Definition 18 For a fixed value of τ , let 〈sητ 〉 be the simple strategy with waiting time τ and with

sητ defined implicitly by the equation Ψ〈sητ〉
(τ) = 0.

Lemma 19 MC〈sητ〉(τ) and MC〈sητ〉(τ − δ) are decreasing in η.

Proof. We can rewrite Ψ〈sητ〉
(τ) = 0 as p0

(
A (asητη)−

1
2aθs

η
τη
)
− c

[
p0 + (1− p0) e

−µτ
]
= 0. Since

A′ < 0, the equation p0
(
A (ax)− 1

2aθx
)
− c

[
p0 + (1− p0) e

−µτ
]
= 0 has a unique solution x0 for

a fixed τ . Therefore, sητη = x0 for all η. Now, MC〈sητ〉
(τ) = MC〈sητ〉

(τ − δ) = p0aθs
η
τ

(
δ − δ2

2η

)
=

p0aθ
x0
η

(
δ − δ2

2η

)
, which is decreasing in η for η > δ. �

We identify next one symmetric equilibrium simple strategy for each value of η with η > η̂.

Corollary 14 will argue that generically each of these equilibria is unique in the set of simple

strategies for that particular value of η.

We consider first case (i) from (39) and let again τ0 ≡ τ̃ (η̂). Without loss of generality, we

assume thatMB (τ0) < MC〈
s̃
η̂
τ0

〉(τ0). Otherwise, the analysis is the same as in case (ii) that will be

discussed below. Note now that MC〈
s̃
η̂
τ0

〉(τ0) =MC〈
s
η̂
τ0

〉(τ0) because at η̂, we have s̃
η̂
τ0 = s

η̂
τ0 = 1.

Since by lemma 19, MC〈sητ〉(τ) and MC〈sητ〉(τ − δ) are decreasing in η, define η1 to be such that

MC〈sη1τ0〉
(τ0) = MB(τ0). If no such value exists, then the simple strategy we will define next for

η ∈ (η̂, η1) will be the equilibrium strategy for all values of η > η̂. Thus, for η ∈ (η̂, η1), define

〈sητ 〉 by letting τη ≡ τ0 and s
η
τ ≡ s

η
τ0 . This strategy satisfies all conditions of proposition 5. (11)

is satisfied by the definition of sητ0 . (12) is satisfied because MC〈sητ〉(τ0 − δ) = MC〈sητ〉(τ0 − δ) <

MC〈
s
η̂
τ0

〉(τ0 − δ) ≤ MB (τ0 − δ). (13) is satisfied because MC〈s̃ητ0〉
(τ0) is decreasing in η and

η < η1. Finally, (14) is satisfied because Π(s
η
τaη, s

η
τaη) = Π (aη̂, aη̂) < c because sητ0η = η̂, as

shown in the proof of lemma 19.

As η increases above η1, a profile in which all players adopt the strategy 〈s
η
τ 〉 that was defined

on (η̂, η1) is no longer an equilibrium because MC〈sη1τ0〉
(τ0) > MB(τ0). Moreover, immediately

above η1, strategy
〈
sητ0+δ

〉
also does not constitute an equilibrium. In other words, it is not an

equilibrium for all players that invest to do so after waiting for a time τ0+ δ. To see this, note first
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that MC〈sη1τ0〉
(τ0) = p0aθs

η1
τ0

(
δ − δ2

2η1

)
and MC〈

s
η1
τ0+δ

〉(τ0) = p0aθs
η1
τ0+δ

(
δ − δ2

2η1

)
. Now, given the

definition of sητ0+δ, it must be that s
η1
τ0+δ

> s
η1
τ0 . Intuitively, if at η1 players were to invest after

waiting for τ0 + δ, since they would invest in safer projects, in order for the zero profit condition

to be satisfied, the mixing probability should have an upward jump relative to s
η1
τ0 . But then,

MC〈
s
η1
τ0+δ

〉(τ0) = p0aθs
η1
τ0+δ

(
δ −

δ2

2η1

)
> p0aθs

η1
τ0

(
δ −

δ2

2η1

)
=MC〈sη1τ0〉

(τ0) =MB(τ0)

Therefore,MC〈
s
η1
τ0+δ

〉(τ0) > MB(τ0), which contradicts (12) from proposition 5. Let η2 be defined

by MC〈
s
η2
τ0+δ

〉(τ0) = MB(τ0). Since MC〈
s
η
τ0+δ

〉(τ0) is decreasing in η, we have η2 > η1 and

MC〈
s
η
τ0+δ

〉(τ0) > MB(τ0) for all η ∈ [η1, η2). Therefore, strategy
〈
sητ0+δ

〉
does not constitute an

equilibrium for any η ∈ [η1, η2). By an identical argument, it follows that no other simple strategy〈
sητ0+kδ

〉
with k ≥ 1 is an equilibrium for η ∈ [η1, η2) since

MC〈
s
η
τ0+kδ

〉(τ0 + kδ − δ) ≥MC〈
s
η
τ0+δ

〉(τ0) > MB(τ0) ≥MB(τ0 + kδ − δ)

where the first inequality comes from the fact that sητ0+kδ ≥ s
η
τ0+δ

.

Instead, for η ∈ [η1, η2), there is an symmetric equilibrium in which players adopt strategy〈
sητ0 , s

η
τ0+δ

〉
, with sητ0 + s

η
τ0+δ

< 1, satisfying the conditions of proposition 8.

Lemma 20 For η ∈ [η1, η2) there exists a simple strategy
〈
sητ0 , s

η
τ0+δ

〉
satisfying (15)-(17).

Proof. As in (34), condition (16) can be rewritten as

p0θa
(
sητ0 + s

η
τ0+δ

)(
δ −

δ2

2η

)
= c (1− p0)

(
1− e−µδ

)
e−µτ0 ⇒ (41)

sητ0 + s
η
τ0+δ

= L
2η

2η − δ
(42)

where L ≡
c(1−p0)(1−e−µδ)e−µτ0

p0θa
. On the other hand, condition (33) with Ψ〈

s
η
τ0
,s
η
τ0+δ

〉(τ0) = 0 is

p0A
((
sητ0 + s

η
τ0+δ

)
aη
)
− p0θa

[(
sητ0 + s

η
τ0+δ

) η
2
+ sητ0

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µ(τ0+δ)
]
= 0

(43)

Substituting sητ0 + s
η
τ0+δ

from (42), we obtain

p0A

(
aL

2η2

2η − δ

)
− p0θa

[
L

η2

2η − δ
+ sητ0

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µ(τ0+δ)
]
= 0

This equation defines sητ0 as an implicit function of η. Using the implicit function theorem, it

follows that the resulting sητ0 is decreasing in η.

24



We will argue next that sητ0 ∈ (0, 1) for η ∈ [η1, η2), so that s
η
τ0 is a well defined probability. Note

that at η1, (41) and (43) are satisfied for s
η1
τ0 = s

η1
τ0 and s

η1
τ0+δ

= 0, while at η2, they are satisfied

for s
η2
τ0 = 0 and s

η2
τ0+δ

= s
η2
τ0+δ

. By corollary (9), these are the unique equilibrium strategies〈
sητ0 , s

η
τ0+δ

〉
at those values of η. Thus, sητ0 decreases on (η1, η2) from s

η1
τ0 to 0. Therefore, as

claimed, sητ0 ∈ [0, 1).

From (42) it also follows that sητ0 + s
η
τ0+δ

is decreasing in η. Moreover, s
η1
τ0 > s

η2
τ0+δ

. To see this,

note that they solve the equations

MC〈sη1τ0〉
(τ0) = MB(τ0)⇒ p0aθs

η1
τ0

(
δ −

δ2

2η1

)
=MB(τ0)

MC〈
s
η2
τ0+δ

〉(τ0) = MB(τ0)⇒ p0aθs
η2
τ0+δ

(
δ −

δ2

2η2

)
=MB(τ0)

Therefore, s
η1
τ0

(
δ − δ2

2η1

)
= s

η2
τ0+δ

(
δ − δ2

2η2

)
, which since η2 > η1 implies s

η1
τ0 > s

η2
τ0+δ

. Since s
η1
τ0 +

s
η1
τ0+δ

= s
η1
τ0 , s

η2
τ0 + s

η2
τ0+δ

= s
η2
τ0+δ

, and sητ0 + s
η
τ0+δ

is decreasing in η, it follows that sητ0 + s
η
τ0+δ

∈[
s
η2
τ0+δ

, s
η1
τ0

]
⊂ (0, 1) for η ∈ [η1, η2).

We will show next that sητ0+δ ∈ (0, 1). Since s
η1
τ0+δ

= 0 and s
η2
τ0+δ

= s
η2
τ0+δ

∈ (0, 1), it would be

enough to show that sητ0+δ is increasing in η. Now, from (32) with Ψ〈
s
η
τ0
,s
η
τ0+δ

〉(τ0 + δ) = 0 and

substituting sητ0 + s
η
τ0+δ

from (42) we have

p0A

(
aL

2η2

2η − δ

)
− p0θa

[
L

η2

2η − δ
− sητ0+δ

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µτ0
]
= 0 (44)

Because ∂
∂η

[
A
(
aL 2η2

2η−δ

)]
< 0 and the derivative of the left hand side of (44) with respect to sητ0+δ

is positive, using the implicit function theorem, to show that sητ0+δ is increasing in η it is enough

to show that

∂

∂η

[
L

η2

2η − δ
− sητ0+δ

(
δ −

δ2

2η

)]
> 0⇔ L

2η2 − 2ηδ

(2η − δ)2
− sητ0+δ

δ2

2η2
> 0 (45)

Now note from (42), sητ0 > 0 implies that

sητ0+δ < L
2η

2η − δ
(46)

Substituting (46) into (45), we have

L
2η2 − 2ηδ

(2η − δ)2
− sητ0+δ

δ2

2η2
> L

2η2 − 2ηδ

(2η − δ)2
− L

2η

2η − δ

δ2

2η2
(47)

so using that L > 0 and 2η − δ > 0, it follows that it is enough to show that

η − δ

2η − δ
−
δ2

2η2
> 0⇔ H(η) ≡ 2η3 − 2η2δ − 2ηδ2 + δ3 > 0
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We have H ′(η) ≡ 6η2 − 4ηδ − 2δ2 and H ′′(η) ≡ 12η − 4δ. Since H ′′(η) > 0 for η > δ and

H ′(δ) = 0, it follows that H ′(η) ≥ 0 for η > δ. Also, H(2δ) = 5δ3 > 0. Therefore, H(η) > 0 for

η > 2δ, i.e., for δ ∈
(
0, η2

)
. Therefore, sητ0+δ is well defined.

Finally, from (42) it also follows that
(
sητ0 + s

η
τ0+δ

)
η = L 2η2

2η−δ , which is increasing in η. There-

fore,
(
sητ0 + s

η
τ0+δ

)
η > s

η1
τ0η1 = η̂. Thus, condition (17) of the proposition 8 is also satisfied. This

completes the proof of lemma 20. �

Thus, as η increases above η1, players gradually shift the weight of the mixing probabilities from

waiting for τ0 towards waiting for τ0+δ, until at η2 where players no longer invest after waiting for

τ0. Using the same arguments as before, it can be shown that above η2, the symmetric equilibrium

strategy is 〈sητ 〉, with τη = τ0 + δ and s
η
τ = sητ0+δ. As shown in lemma 19, MC

〈
s
η
τ0+δ

〉(τ0 + δ)

and MC〈
s
η
τ0+δ

〉(τ0 + 2δ) decrease in η until η3 where MC
〈
s
η3
τ0+δ

〉(τ0 + δ) = MB(τ0 + δ), and the

players start adopting
〈
sητ0+δ, s

η
τ0+2δ

〉
, with mixing probabilities defined in a similar manner as for

〈
sητ0 , s

η
τ0+δ

〉
. Then, as η increases, the process repeats.

The argument for the case (b) of proposition 8(2) and τ0 − δ is sustainable in a mixed strategy

equilibrium is similar to the one above. This completes the proof of proposition 12. �

Appendix C2. Proof of Corollary 13

Part (i) of the corollary follows immediately from lemma 4 and the fact that when η ∈ (ηm, η̂), the

equilibrium strategy 〈sητ 〉 has s
η
τ = 1 and τη a decreasing step function.

For part (ii), note from lemma 4 that it is sufficient to show that ∂
∂η
sητ < 0 when players adopt

〈sητ 〉 and that
∂
∂η

[
sητ + e−µδs

η
τ+δ

]
< 0 when players adopt

〈
sητ , s

η
τ+δ

〉
. The first condition follows

immediately from the proof of proposition 12. From (42), we have that sητ + s
η
τ+δ = L

2η
2η−δ where L

does not depend on η. Clearly, ∂
∂η

[
sητ + s

η
τ+δ

]
< 0, and since from the proof of proposition 12 we

know that ∂
∂η
sητ+δ > 0 and

∂
∂η
sητ , we have that

∂
∂η
sητ < −

∂
∂η
sητ+δ < 0. But then

∂
∂η
sητ < −e−µδ

∂
∂η
sητ+δ,

so ∂
∂η

[
sητ + e−µδs

η
τ+δ

]
< 0. This completes the proof of the corollary. �

Appendix C3. Proof of Corollary 14

First, by corollary 7, for all values of η ∈ (ηm, η̂), but a countable subset, there is no other symmetric

equilibrium simple strategy 〈sητ 〉. Also, by corollary 9(ii), there is no symmetric equilibrium simple

strategy
〈
sητ , s

η
τ+δ

〉
with sητ + s

η
τ+δ = 1. It remains to show that there is no symmetric equilibrium

simple strategy
〈
sητ , s

η
τ+δ

〉
with sητ + s

η
τ+δ < 1. Assume by contradiction that such a strategy〈

sητ , s
η
τ+δ

〉
exists for some η ∈ (ηm, ηM ). In order for sητ + s

η
τ+δ < 1, it must be that players

expect zero ex-ante payoffs in this equilibrium. Moreover, since players expect strictly positive

ex-ante payoffs while they all invest after waiting for time τ̃ (η), it must be that τ < τ̃ (η) because
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otherwise sητ + s
η
τ+δ < 1 would not be possible. Now, note that the definition of τ̃ (η) implies

c (1− p0)
(
1− e−µδ

)
e−µτ̃(η)eµδ ≥ p0aθ

(
δ −

δ2

2η

)
≥ c (1− p0)

(
1− e−µδ

)
e−µτ̃(η)

Now, from (34) it follows that

p0aθ
(
sητ + s

η
τ+δ

)(
δ −

δ2

2η

)
= c (1− p0)

(
1− e−µδ

)
e−µτ

≥ c (1− p0)
(
1− e−µδ

)
e−µτ̃(η)eµδ ≥ p0aθ

(
δ −

δ2

2η

)

where the first inequality follows from τ ≤ τ̃ (η)− δ. This contradicts sητ + s
η
τ+δ < 1.

We consider next the case (a) from proposition 12.2. First, we show that the equilibrium in

proposition 12.2 is unique on (η̂, η1). By corollary 7 there can be no other symmetric equilibrium

strategy 〈sητ 〉. Assume by contradiction that there exists a symmetric equilibrium simple strategy〈
sητ , s

η
τ+δ

〉
. Since the strategy 〈sητ0〉 is an equilibrium on (η̂, η1), it follows by corollary 9(i) that it

must be that τ 6= τ0.

Assume first that τ < τ0. Then it must be that

p0aθ
(
sητ + s

η
τ+δ

)(
δ −

δ2

2η

)
≥ c (1− p0)

(
1− e−µδ

)
e−µτ0eµδ ≥ p0aθs

η
τ0

(
δ −

δ2

2η

)

where the first inequality follows from (34) and the fact that τ ≤ τ0 − δ, while the second from

MB (τ0 − δ) ≥MC〈sητ0〉
(τ0 − δ). Therefore, s

η
τ + s

η
τ+δ > s

η
τ0 . But then from (33) we have

Ψ〈sητ ,sητ+δ〉
(τ + δ) = p0A

((
sητ + s

η
τ+δ

)
aη
)
− p0θa

[(
sητ + s

η
τ+δ

) η
2
+ sητ

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µ(τ+δ)
]

< p0A
(
sητ0aη

)
− p0θa

[
sητ0
η

2

]
− c

[
p0 + (1− p0) e

−µτ0
]
= Ψ〈sητ0〉

(τ0) = 0

where the inequality follows from sητ + s
η
τ+δ > sητ0 , A

′ < 0, sητ > 0 and τ + δ ≤ τ0. Therefore,

Ψ〈sητ ,sητ+δ〉
(τ + δ) < 0, which provides the contradiction.

Assume now that τ > τ0. Then,

p0aθ
(
sητ + s

η
τ+δ

)(
δ −

δ2

2η

)
= c (1− p0)

(
1− e−µδ

)
e−µτ

< c (1− p0)
(
1− e−µδ

)
e−µτ0 ≤ p0aθs

η
τ0

(
δ −

δ2

2η

)

where the equality follows from (34), and the last inequality from MC〈sητ0〉
(τ0) ≥ MB (τ0). It
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follows thus that sητ + s
η
τ+δ ≤ s

η
τ0 . Now, from (32) and (29) we have

Ψ〈sητ ,sητ+δ〉
(τ) = p0A

((
sητ + s

η
τ+δ

)
aη
)
− p0θa

[(
sητ + s

η
τ+δ

) η
2
− sητ+δ

(
δ −

δ2

2η

)]
− c

[
p0 + (1− p0) e

−µτ
]

> p0A
(
sητ0aη

)
− p0θa

[
sητ0
η

2

]
− c

[
p0 + (1− p0) e

−µτ0
]
= Ψ〈sητ0〉

(τ0) = 0

because sητ + s
η
τ+δ ≤ sητ0 , A

′ < 0, sητ+δ > 0 and τ > τ0. Therefore, Ψ〈sητ ,sητ+δ〉
(τ) > 0, which is a

contradiction. This completes the proof of the uniqueness of the symmetric equilibrium in simple

strategies on (η̂, η1).

Next, we argue that
〈
sητ0 , s

η
τ0+δ

〉
defined in lemma 20 is the unique simple strategy symmetric

equilibrium for η ∈ (η1, η2). First, as argued above, there is no equilibrium simple strategy 〈sητ 〉 on

(η1, η2). Assume by contradiction that there is some other equilibrium simple strategy
〈
sητ , s

η
τ+δ

〉
.

By corollary 9, it must be that τ 6= τ0 and that s
η
τ + s

η
τ+δ < 1.

Assume first that τ < τ0. Then, (34) applied to both
〈
sητ0 , s

η
τ0+δ

〉
and

〈
sητ , s

η
τ+δ

〉
implies

sητ0 + s
η
τ0+δ

< sητ + s
η
τ+δ (48)

On the other hand, using (33), Ψ〈sητ ,sητ+δ〉
(τ + δ) = 0 and Ψ〈

s
η
τ0
,s
η
τ0+δ

〉(τ0 + δ) = 0 imply

p0A
((
sητ + s

η
τ+δ

)
aη
)
= p0θa

[(
sητ + s

η
τ+δ

) η
2
+ sητ

(
δ −

δ2

2η

)]
+ c

[
p0 + (1− p0) e

−µ(τ+δ)
]

p0A
((
sητ0 + s

η
τ0+δ

)
aη
)

= p0θa

[(
sητ0 + s

η
τ0+δ

) η
2
+ sητ0

(
δ −

δ2

2η

)]
+ c

[
p0 + (1− p0) e

−µ(τ0+δ)
]

Using (51) and A′ < 0, these imply

p0θas
η
τ

(
δ −

δ2

2η

)
≤ p0θa

[(
sητ0 + s

η
τ0+δ

− sητ − s
η
τ+δ

) η
2

]
+c (1− p0) e

−µδ
(
e−µτ0 − e−µτ

)
+p0θas

η
τ0

(
δ −

δ2

2η

)

(49)

Now, note that, by the definition of η1, from (41) and the fact that s
η1
τ0+δ

= 0, we have

p0θas
η1
τ0

(
δ −

δ2

2η1

)
= c (1− p0)

(
1− e−µδ

)
e−µτ0 (50)

Writing (49) for η = η1, and using (50) to substitute p0θas
η1
τ0

(
δ − δ2

2η1

)
, we have

θas
η1
τ

(
δ −

δ2

2η1

)
≤ p0θa

[(
s
η1
τ0 + s

η1
τ0+δ

− s
η1
τ − s

η1
τ+δ

) η1
2

]
+ c (1− p0)

[
e−µτ0 − e−µδe−µτ

]

But since τ ≤ τ0 − δ, we have e
−µτ0 − e−µδe−µτ ≤ 0, and thus s

η1
τ < 0. Since sητ is decreasing in η

on (η1, η2), it follows that s
η
τ < 0 for all η ∈ (η1, η2). This provides the desired contradiction.
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Assume now that τ > τ0. Then, (34) applied to
〈
sητ0 , s

η
τ0+δ

〉
and

〈
sητ , s

η
τ+δ

〉
implies

sητ0 + s
η
τ0+δ

> sητ + s
η
τ+δ (51)

Using (32) to write Ψ〈sητ ,sητ+δ〉
(τ) = 0 and Ψ〈

s
η
τ0
,s
η
τ0+δ

〉(τ0) = 0, and then using (51) and A′ < 0, we

have

p0θas
η
τ+δ

(
δ −

δ2

2η

)
≤ p0θa

[(
sητ + s

η
τ+δ − s

η
τ0
− sητ0+δ

) η
2

]
+c (1− p0)

(
e−µτ − e−µτ0

)
+p0θas

η
τ0+δ

(
δ −

δ2

2η

)

(52)

By the definition of η2, from (41) and the fact that s
η2
τ0 = 0, we have

p0θas
η2
τ0+δ

(
δ −

δ2

2η2

)
= c (1− p0)

(
1− e−µδ

)
e−µτ0 (53)

Writing (52) for η = η2, and using (53) to substitute p0θas
η2
τ0+δ

(
δ − δ2

2η2

)
, we have

θas
η2
τ+δ

(
δ −

δ2

2η2

)
≤ p0θa

[(
s
η2
τ + s

η2
τ+δ − s

η2
τ0 − s

η2
τ0+δ

) η2
2

]
+ c (1− p0)

[
e−µτ − e−µ(τ0+δ)

]

From (51) and τ ≥ τ0 + δ, this implies that s
η2
τ+δ < 0. Since s

η
τ+δ is increasing in η on (η1, η2), it

follows that sητ+δ < 0 for all η ∈ (η1, η2). This provides the contradiction and completes the proof

of the uniqueness of the equilibrium in simple strategies on (η1, η2).

The argument of the uniqueness of the equilibrium in simple strategies for η ∈ (η2k, η2k+1)

with k ∈ N is identical with the argument presented above for η ∈ (η̂, η1), while the argument for

η ∈ (η2k+1, η2k+2) is identical to the one presented for η ∈ (η1, η2). The analysis for the case (b) of

proposition 12.2 is similar. This completes the proof of corollary 14. �
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