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Abstract   Evolution of preferences models often assume that all agents display and 

observe preferences costlessly.  Instead, we endogenize mindsight (to observe preferences) 

and transparency (to show preferences) as slightly costly mechanisms that agents may or 

may not possess.  Unlike in the costless models, we show that universal rule-rationality, 

mindsight and transparency do not constitute an equilibrium but universal act-rationality, 

mind-blindness, and opaqueness do.  We also find that rule-rationality, mindsight, and 

transparency may exist in evolved populations, albeit only in a portion of the population 

whose size fluctuates along an orbit around a focal point.  We apply our results to 

Ultimatum and Trust games to explore how costly and optional mindsight may affect 

economic performance in interactions among evolved agents. 
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1. Introduction 

Most game theory models do not explicitly inquire into the origins of their players.  

The tacit assumption is that players are creatures of the moment, created out of nothing just 

to earn the most from playing the game once and then disappear without consequences.  By 

construction, such momentary agents are act-rational in the sense that each player (i) 

always chooses the action that maximizes his payoff and (ii) assumes that other players also 

always choose their actions to maximize their payoffs.  In the case of the Ultimatum game 

to divide a resource between a proposer and a responder, a responder who obeys (i) accepts 

any offer of one cent or more and a proposer who obeys (i) and (ii) offers one cent.  But 

experiments reveal that human subjects usually do not play this way: most proposers make 

substantial offers and many responders refuse small offers. (Oosterbeek 2004)  Evidently 

many human responders do not obey (i) and most human proposers not obey (i) and/or (ii).  

Experimental economics has documented such gaps between theoretical equilibria and 

experimental play in a variety of games.  But considering the different origins of 

momentary agents and human subjects, the gap in how they play should not surprise.  Even 

anonymous strangers who interact only once in a carefully staged experiment are a product 

of a long process of evolution.  According to evolutionary psychology, humans evolved 

under selection pressure favoring the ability to make psychological commitments and 

perceive or infer psychological commitments of others. (Nesse 2001)  In particular, 

evolutionary psychologists stress that human interactions are fundamentally mediated by 

theory of mind, by subjective commitments secured with emotions not under voluntary 

control, and by other psychological capabilities refined through selection in social contexts.  

(Nesse 2001)  At the level of the brain, interpersonal neurobiology emphasizes the role of 

“mindsight,” the ability to form and make use of mental representations of how a human 

(oneself or another) thinks and feels in the midst of an interaction.  (Siegel 2001)   

A branch of game theory that has gone beyond momentary agents in the direction 

pointed by evolutionary psychology is evolution of preferences theory, first formulated as 

the indirect evolutionary approach by Guth and Yaari (1992).  Treating agents’ decision-

making as an endogenous capability subject to evolutionary selection, the theory shows that 

selection on the basis of relative performance in a strategic interaction yields agents who 

are committed to pursue a “subjective utility” different from the payoffs they actually earn 

in the interaction. (Banerjee and Weibull 1995; Guth and Peleg 2001)  Asking “What to 

maximize if you must?” in a generic game, Heifetz, et. al. (2007) formally and broadly 

demonstrated that strategic interaction inherently generates the incentive to commit to 

maximize something other than the objective payoffs, and that such commitments do not 

disappear under evolutionary dynamics.  In a similar vein, Aumann (2008) informally 

argues that evolution favors rule-rational agents committed to an optimal rule of behavior 

over act-rational agents who optimize one act at a time.  
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All this ultimately rests on Schelling’s (1960) insight that if players can make 

commitments they often find it advantageous to do so, and often the commitments 

drastically change how a game is played.  Since momentary agents in simple games are 

denied the ability to make commitments, they are act-rational by construction.  Since agents 

in evolution of preferences models are allowed to make commitments, in equilibrium all 

agents are committed to rule-rational preferences.  But this finding of universal rule-

rationality among evolved agents critically depends on the assumption that the agents can 

costlessly display and observe preferences.  Attempts to relax this assumption have mostly 

relied on noisy signaling to model how agents get information about the preferences of 

other agents.  (Guth and Kliemt, 1998 and 2000;  Heifetz, et. al., 2007)  Instead of 

stochastically degrading the communication of preferences among agents, we endogenize it 

by making such communication slightly costly and optional.  Specifically, we allow agents 

to be opaque or transparent, blind or with mindsight, in the following sense:  an agent with 

mindsight observes the preferences of a transparent agent, a blind agent cannot observe 

another’s preferences, and the preferences of an opaque agent are not observable by anyone.   

Because mindsight and transparency are slightly costly in our model, the rule-

rational population in which all agents are transparent and have mindsight can be invaded 

by blind and opaque agents.  Reversing the findings of the costless evolution of preferences 

models, we show that universal rule-rationality is not an equilibrium but universal act-

rationality is.  However, we also find that there exists a focal point surrounded by closed 

orbits along which rule-rational transparent agents and agents with mindsight may exist in 

in the long-run and in significant proportions.  We apply our results to Ultimatum and Trust 

games to explore how economic performance in evolved populations is affected by rule-

rationality, mindsight, and transparency. 

The distinction between rule-rationality and act-rationality has been long noted by 

philosophers of rationality and morality, albeit using different terminology. (Gauthier, 1986, 

Chapter VI)  Of particular relevance to our model is Danielson’s (1990) pioneering book 

which explicitly considers mindsight and transparency among strategically interacting 

agents.  Attempting to algorithmically examine Gauthier’s (1986) theory of rational 

morality, Danielson conceives agents as logic programs that may examine other agents’ 

programs and may allow themselves to be examined by others’ programs.  Like Danielson, 

we assume each agent operates according to its own built-in “decision logic” and allow 

some agents to display and observe these decision logics.  Unlike Danielson, we assume 

that the display and observation of decision logics are costly and focus on evolutionary 

population dynamics. 

The rest of the paper is organized as follows.  The next section lays out the formal 

framework.  Section 3 presents results of equilibrium analysis.  We then explore our 

findings in the context of the Ultimatum Game (Section 4) and the Trust Game (Section 5).   

Section 6 concludes.  
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2. The model 

There are two separate populations of agents:  “leaders” and “responders.”  A dyad 

is formed by randomly drawing one agent from each population.  The state of the 

environment (e.g., weather) that prevails when the dyad interacts is expressed by random 

variable e, which is drawn every time a dyad is formed.
1
  Each dyad plays a base game as 

follows:  first both players observe e, then the leader observes the responder and takes 

action x, and finally the responder observes x and takes action y.  The resulting payoffs are 

),,(1 eyx  to the leader and ),,(2 eyx  to the responder.  When a dyad is formed, the leader 

is endowed with 0

1 and the responder with 0

2 .  If at least one player abstains from the 

game, both players keep these endowments. 

We make the following assumptions about the cognitive structures and processes 

that agents use to choose actions.  

Definition   Decision logic is a deterministic function, algorithm, or program within an 

agent that computes the action the agent takes whenever he plays.  

Assumption   Each responder has a decision logic whose inputs are the leader’s action and 

the state of the environment: ),( exy i . 

Definition Theory of mind is what a leader believes to be the decision logic of a responder 

in his dyad.  

Assumption   Each leader has a decision logic whose inputs are a theory of mind and the 

state of the environment: ),( ex i .  

Assumption  Each leader’s decision logic maximizes the payoff given the theory of mind:  

)),,(,(maxarg),( 1 eexxe
x

  . 

Every leader is one of two psychological types: either blind (type B) or with 

mindsight (type M).  Every responder is one of two psychological types: either transparent 

(type T) or opaque (type O).   We define these properties as follows. 

Definition  The decision logic of a leader with mindsight takes as input the decision logic of 

a transparent responder.   

                                                 
1 Although e does not play a direct role in the analysis, it is necessary to assume a changing environment in 

order to ensure that agents dynamically compute their actions rather than being hardwired.  
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Definition  The decision logic of a transparent responder is taken as input by the decision 

logic of every leader with mindsight.    

Definition  The decision logic of a blind leader cannot take as input the decision logic of 

any responder. 

Definition The decision logic of an opaque responder cannot be taken as input by any 

leader. 

In terms of psychological traits, there are four possible types of dyads:  MT, MO, 

BT, and BO.  In the MO, BT, and BO dyads, the leader cannot observe responder’s 

decision logic and therefore the leader’s decision logic relies on a built-in theory of mind 

 which may or may not be accurate.  Only in the MT dyad the leader observes the 

responder’s decision logic and uses it as the theory of mind.
2
 

The type of responder is given by ),(  , where },{ OT  indicates transparency 

or opaqueness and   is the decision logic; that is ),( exy  .  Displaying one’s decision 

logic is a costly capability – a transparent responder incurs a cost 0  every time he plays.  

Many types of opaque and transparent responders may exist, differing in terms of their 

decision logic.  The state of responder population is given by the population share vector
3
 

),...,,,...,( 11 TOOO qqqq q , where ]1,0[iq is the share of the i
th 

type of responder ),( ii  , 

O is the number of opaque responder types, T is the number of transparent responder types, 

and 1 iq . 

The type of leader is specified by ),(  , where },{ MB indicates blindness or 

mindsight and   is the theory of mind.  Mindsight is a costly capability – a leader with 

mindsight incurs a cost μ > 0 every time he plays.  Many types of blind leaders and leaders 

with mindsight may exist, differing in terms of their decision logic.  The state of leader 

population is given by the population share vector ),...,,,...,( 11 MBBB pppp p , where 

]1,0[ip
 
is the share of the i

th 
type of leader ),( ii  , B is the number of blind leader types, 

M is the number of leader types with mindsight, and 1 ip .    

    The payoffs earned in each of the four dyads are as follows
4
: 

Blind-Opaque dyad:  (leader type i = 1,…,B; responder type j = 1,…,O) 

)))((),((1 iji

BO

ij    to the leader 

                                                 
2 In general, the leader in the MT dyad could ignore the input and use an incorrect theory of mind.  As proven 

in Proposition 2, doing so cannot increase the leader’s payoff in the dyad.  
3 Population share vectors q and p are column vectors. 
4 For notational clarity, we omit the environment parameter e in most expressions hereinafter. 
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)))((),((2 iji

OB

ij    to the responder 

Blind-Transparent dyad: (i = 1,…,B;  j = O+1,…,O+T) 

)))((),((1 iji

BT

ij    to the leader  

  )))((),((2 iji

TB

ij  to the responder 

Mindsight-Opaque dyad:  (i = B+1,…,B+M;  j = 1,…,O) 

  )))((),((1 iji

MO

ij  to the leader  

)))((),((2 iji

OM

ij    to the responder 

Mindsight-Transparent dyad:  (i = B+1,…,B+M;  j = O+1,…,O+T) 

  )))((),((1 jjj

MT

ij  to the leader  

  )))((),((2 jjj

TM

ij  to the responder 

 

The leaders’ payoff matrix has B+M rows and O+T columns arranged as follows: 











MTMO

BTBO

L ΠΠ
ΠΠ

Π  

where  ][ BO

ij

BO Π  is the B-row O-column matrix of leader payoffs in blind-opaque 

dyads, BTΠ  is the B-row T-column matrix of leader payoffs in blind-transparent dyads, 

MOΠ  is the M-row O-column matrix of leader payoffs in mindsight-opaque dyads, and 

MTΠ  is the M-row T-column matrix of leader payoffs in mindsight-transparent dyads.   

Analogously, the responders’ payoff matrix has B+M rows and O+T columns 

arranged as follows: 











TMOM

TBOB

R ΠΠ
ΠΠ

Π  

The evolutionary dynamics occur as follows.  During each generation many random 

dyads are formed to play the base game.  Each type of leader (responder) accumulates 

fitness equal to the sum of the payoffs earned by that type of leader (responder) in the base 

game.  At the end of a generation agents replicate and die.  Replication occurs within the 
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leader and responder populations separately.  The replication is governed by a standard 

replicator dynamic.  Specifically, the share of a given type of leader (responder) in the new 

population of leaders (responders) equals the fitness share earned by that type of leader 

(responder) in the old population, computed as the share of the total fitness earned by all 

leaders (responders) in the old generation.  Many generations ensue.   

The expected fitness of each leader type given the state of the responder population 

is given by the expected fitness vector qΠV L

L  .  The population average fitness of 

leaders is L

LV Vp  .  Analogously, the expected fitness of each responder type given the 

state of the leader population is pΠV R

R ˆ , where RΠ̂  is the transpose of RΠ .   The 

population average fitness of responders is R

RV Vq  .  The replicator dynamic is: 

Leaders:   MBiVVpp L

L

iii  ,...,1),(  

Responders:   TOjVVqq R

R

jjj  ,...,1),(  

 

Definition  A fixed point is a population state of leaders and responders (p,q) that satisfies 

the following conditions for all i = 1,…, B+M and j = 1,…, O+T: 

(i) 0 iL

L

i pifVV  

(ii) ,0 jR

R

j qifVV  

(iii) 0 iL

L

i pifVV  

(iv) 0 jR

R

j qifVV  

 

In our framework there are two populations of agents, each playing a different role 

in an asymmetric base game.  As is commonly done in evolutionary game theory models, 

we could have introduced a stage in which role assignment is randomly determined before 

play in each dyad.  This would have made the base game symmetric and allowed all the 

players to belong to a single population.  The benefit of our approach is that it retains 

separate focus on mindsight and transparency, which are inherently asymmetric capabilities 

for receiving and transmitting information about preferences. 
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3. Equilibrium analysis 

Although the space of possible decision logics is very large, two decision logics 

play a central role in equilibrium analysis.  Following Aumann (2008), we will refer to 

them as act-rationality and rule-rationality.  

Definition  An act-rational responder has decision logic ),,(maxarg),( 2 eyxexA
y
  .

 

Definition  A rule-rational responder has decision logic R(x, e) such that   

))),((),(())),((),((.. 22 eRRReRRRtsRe     and 

)),(,()),(,(..)( 11 exRxexRxtsRRxe    

Decision logic A is the responder’s best response whereas decision logic R is the 

responder’s best strategic commitment.  The first condition in the definition of R ensures 

that no other decision logic yields the responder a higher payoff.  The second condition 

ensures R “punishes” as much as possible a leader who does not maximize own payoff by 

taking into account the leader’s commitment to R.   

As a shorthand, we will denote the leader’s payoff-maximizing strategy given the 

decision logic of the responder as follows: 

))(,(maxarg)( 1 xAxAx
x

A   

))(,(maxarg)( 1 xRxRx
x

R   

We will also use the following shorthand notation to denote base game payoffs to 

leaders (i=1) and responders (i=2), gross of the costs of mindsight and transparency: 

))(,(

))(,(

))(,(

))(,(

AAi

AR

i

RRi

RA

i

AAi

AA

i

RRi

RR

i

xRx

xAx

xAx

xRx

















 

We confine attention to base games in which strategic commitment affects payoffs.    

This class of games is large and can be formally described as in Heifetz, et. al. (2007).  For 

our purposes, it suffices to assume the following about the payoff structure of the base 

game: 

Assumption 1   The base game is such that xA, and xR are uniquely defined and satisfy the 

following: 
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exx RA    

 ei

AA

i  0     (participation constraint under act-rationality) 

ei

RR

i  0     (participation constraint under rule-rationality) 

 

We also assume that the costs of mindsight and transparency are not too large 

relative to their effect on payoffs in the base game.  Specifically: 

Assumption 2     For a responder facing a leader with mindsight, the cost of transparency is 

less than the benefit of strategic commitment: 

                                                   eAARR  22   

Assumption 3    For a leader facing a rule-rational transparent responder, the cost of 

mindsight is less than the benefit of heeding the responder’s strategic commitment: 

                                                   eARRR  11   

 

The following propositions characterize fixed point populations.  All the proofs are 

in the Appendix. 

 

Proposition 1   At a fixed point, every opaque responder is act-rational. 

 

Proposition 2   At a fixed point, every leader with mindsight uses the transparent 

responder’s decision logic as the theory of mind and believes that an opaque responder is 

act-rational.  That is, a leader with mindsight in a dyad with a responder of type ),(  has 

the theory of mind:  









OifA

Tif
M




 

 

Proposition 3   The only monomorphic population that is a fixed point is:  all responders 

are opaque and act-rational, all leaders are blind and hold act-rationality as the theory of 

mind.  Moreover, this is a stable fixed point. 
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Proposition 4   A population in which all leaders have mindsight is not a fixed point. 

 

Proposition 5   A population in which all responders are transparent and have the same 

decision logic is not a fixed point. 

 

Proposition 6   If the cost of mindsight is sufficiently small, there exists a unique fixed 

point at which a share )1,0(*m of leaders have mindsight, a share )1,0(*t  of responders 

are transparent, all blind leaders believe responders are rule-rational, and all transparent 

responders are rule-rational.  This fixed point is given by 

RAAA

RARR

m
22

22*








         
RAAA

t
11

1*





  

Moreover, (m*, t*) is an evolutionary focal point around which all trajectories are closed 

orbits with the time frequencies of (m, t) along the orbits equal to (m*, t*).   

 

Proposition 7   There exists a unique unstable fixed point at which a fraction )1,0(*m of 

leaders have mindsight, a fraction )1,0(*t  of responders are transparent, all blind leaders 

believe responders are act-rational, and all transparent responders are rule-rational.    

 

The foregoing propositions identify combinations of psychological traits and 

decision logics that may evolve among agents subject to selection based on their 

performance in a sequential dyadic interaction.  The only monomorphic evolutionarily 

stable state is universal blindness, opaqueness, and act-rationality.   Blind leaders and 

opaque responders cannot go extinct.  Opaque responders are act-rational.  Although 

neither a blind leader nor a leader with mindsight can see the decision logic of an opaque 

responder, the leader with mindsight has an advantage when paired with an opaque 

responder because by seeing opaqueness he can infer that the responder is act-rational.  

Although mindsight, transparency, and rule-rationality cannot be universal and cannot be 

present in asymptotically stable proportions, they may nevertheless be present in an 

evolved population along closed orbits around a focal point.  In such populations, blind 

leaders assume that responders are rule-rational and leaders with mindsight assume that 

opaque responders are act-rational.    
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4. Ultimatum island 

Imagine an island populated by two species: pushers and pullers.  Every minute, a 

random pusher finds a resource of value e and a random puller appears nearby.  To extract 

the resource they must cooperate:  the pusher must push while the puller pulls.  The pusher 

offers to give x to the puller after they extract the resource, where   ex0  and ε 

is the minimum amount that can be allocated to an agent.
5
  The puller accepts or rejects the 

offer.  If the puller rejects, the agents go their separate ways and the resource rots away.  If 

the puller accepts, the agents cooperate to extract and divide the resource.  There are no 

endowments that agents can keep by abstaining from the game:  00

2

0

1   .  The pusher 

and puller payoff functions are, respectively  









rejectyif

acceptyifxe
yx

0
),(1        









rejectyif

acceptyifx
yx

0
),(2  

Under ideal institutions that costlessly ensure cooperation in all dyads, realized product is  

P = e.  This is the first-best baseline.   We ask: What kind of rationality may evolve on this 

island? 

The decision logic of an act-rational puller is:  












xifreject

xifaccept
xA )(  

The decision logic of a rule-rational puller is: 












exifreject

exifaccept
xR )(  

Pusher strategies are: Ax  and  exR .  The payoffs under the various combinations 

of decision logics are:  

















RA

AR

RR

AA e

1

1

1

1

0
      

















e

e

RA

AR

RR

AA

2

2

2

2

0
 

By Proposition 3, the blind/opaque/act-rational population in which all pushers are 

(B, A) and all pullers are (O, A) is evolutionarily stable.   

                                                 
5 To avoid weak inequalities, we assume that when cooperating each agent incurs a small cost and therefore 

agents make and accept only those offers which give both parties a strictly positive gain of at least ε. 
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By Proposition 6, the following population is an evolutionary focal point:  

Pushers:  (B, R) and (M, ΦM
)    Population shares: 







2
,

2
1







e
m

e
b  

Pullers:  (O, A) and (T, R)    Population shares:  






2

1,
2 





e

t
e

o   

           provided 







e

e )2(

 

and   2 e  

 

 Table 1 presents a numerical example comparing economic performance in the 

monomorphic population and at the bimorphic focal point.   In the monomorphic 

equilibrium all pushers offer the minimum and pullers always accept.  There is no 

mindsight among pushers or transparency among pullers.  All pullers are act-rational and 

all pushers believe that all pullers are act-rational.  Mindsight, transparency and rule-

rationality exist along closed orbits around the bimorphic focal point.  In these populations 

too offers are never rejected since blind pushers believe that pullers are rule-rational and 

offer almost everything.  The total product realized is only τ less than in the monomorphic 

equilibrium, but is allocated almost entirely to the pullers.  Mindsight and transparency thus 

serve to reverse the allocation in favor of pullers. 

<Table 1 about here> 

Without mindsight pushers exploit the act-rational pullers and this is a stable 

equilibrium.  Since mindsight and transparency enable pullers to turn the tables and exploit 

the pushers, it can be said that pullers prefer to display their rule-rational decision logic but 

pushers prefer not to look.   Yet even though mindsight hurts them, pushers with mindsight 

can be present in an evolved population.  Although mindsight hurts pushers, because it is 

locally adaptive it does not go extinct.  As the numerical example shows, even a small 

fraction of pushers with mindsight may be enough to support transparency and rule-

rationality among almost all pullers, and make the blind pushers adopt rule-rationality as 

their theory of the puller’s mind.   

According to experimental evidence compiled across numerous ultimatum 

experiments conducted in different cultures, on average, human proposers offer 40% of the 

pie and human responders reject 16% of offers. (Oosterbeek 2004)   Although our simple 

model cannot explain this data, it points to the possibility that a more refined model of 

mindsight, transparency and evolutionary commitment to rule-rationality may be able to 

help account for this evidence. 
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5. Trust island 

An island is populated by two species: getters and workers.  Every minute a random 

getter obtains a resource of value e > 0.  The getter can “invest” some portion  ],0[ ex  of 

the resource to be worked on by a random worker who is nearby.   The worker’s effort 

multiplies the value of the investment by a factor of k > 1.  After finishing the work, the 

worker can pay back any amount ],0[ kxy  to the getter.  The resulting payoffs are 

yxeyx ),(1  to the getter and ykxyx ),(2  to the worker.  The endowments in 

each dyad are:  e0

1    and 00

2  .  Under ideal institutions that costlessly ensure 

maximal investment in all dyads, the product realized is  P = ke.  This is the first-best 

baseline.  We want to know:  What kind of rationality may evolve on this island? 

The decision logic of an act-rational worker never returns anything to the getter:  

0),( exA  

The decision logic of a rule-rational worker minimally rewards those getters who invest 

everything and punishes all others: 









exif

exife
exR

0
),(


 

Getter strategies are: 0Ax  and exR  . The payoffs under the various 

combinations of decision logics are:  

01

1

1

1









RA

AR

RR

AA

e

e

e









      

ke

eke

RA

AR

RR

AA









2

2

2

2

0

0









 

By Proposition 3, the blind / opaque / act-rational population in which all getters are 

(B, A) and all workers are (O, A) is evolutionarily stable.   

By Proposition 6, the following population is an evolutionary focal point:  

Getters:  (B, R) and (M, ΦM
)    Population shares: 

ke

e
m

ke

e
b

 



 ,1  

Workers:  (O, A) and (T, R)    Population shares:  
e

t
e

o


 1,  
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           provided 





e

e

 

and    )1(ke  

 

Table 2 gives a numerical example comparing economic performance in the 

monomorphic population and at the bimorphic focal point.  In the monomorphic 

equilibrium getters do not invest anything and the workers earn nothing.  In orbits around 

the bimorphic focal point, blind getters believe that workers are committed to repay with 

interest and invest everything.  Some of them are betrayed by act-rational workers.  But 

investment occurs in most dyads, the only exception being dyads in which a getter with 

mindsight is paired with an opaque act-rational worker.  Mindsight and transparency serve 

to increase the average product but also allocate most of the gains to the workers.  However, 

average fitness of both getters and workers is higher near the bimorphic focal point than in 

the monomorphic population. 

<Table 2 about here> 

This case shows that mindsight, transparency and rule-rationality can be critical for 

trust, can make all players better off on average, and may exist in evolved populations.  

Unlike in the Ultimatum Game, mindsight and transparency are incentive-compatible for 

all: it can be said workers want to show their decision logic and getters want to see it.  But 

since mindsight is costly, a fraction of getters evolves to free-ride without mindsight.  Such 

blind trusting getters in turn create a niche for opaque act-rational workers, who evolve to 

prey on them.  However, as the numerical example in Table 2 shows, distrust, betrayal, 

opaqueness and act-rationality can all be very rare even if only a minority of the getters 

have mindsight.   

 

 

6. Conclusion 

We studied the decision logics and the capabilities for showing and observing them 

which may evolve among randomly paired agents subject to selection based on their 

performance in a strategic interaction.  We found if mindsight and transparency are costly 

and optional, universal blindness, opaqueness, and act-rationality constitute the only 

evolutionarily stable equilibrium.  We also found that blind leaders and opaque responders 

cannot go extinct and opaque responders must be act-rational.  We showed that mindsight, 

transparency, and rule-rationality cannot be maintained in the entire population, nor can 

they be maintained in an asymptotically stable share of the population.   
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However, we also demonstrated that the evolution of mindsight, transparency, and 

rule-rationality cannot be ruled out.  Mindsight, transparency, and rule-rationality may be 

found in a significant share of the population, a share that fluctuates along a closed orbit 

around a focal point.  In such populations, blind leaders assume every responder is rule-

rational and leaders with mindsight assume that an opaque responder is act-rational.   

We applied our general findings to two specific contexts: Ultimatum Game and 

Trust Game.   In both games, mindsight, transparency, and rule-rationality serve to allocate 

most of the surplus to responders.  Given the zero-sum nature of the Ultimatum Game, 

mindsight does not engender new value and leaders are better off in the equilibrium without 

mindsight.  But in the Trust Game, both leaders and responders earn more in populations 

with mindsight and mindsight, transparency, and rule-rationality are essential for enabling 

the investment that generates the new value.   

On stability and complexity grounds, we conclude that act-rationality, blindness, 

and opaqueness are more likely to be found in a population of evolved agents than rule-

rationality, mindsight, and transparency.  However, we also conclude that the evolution of 

rule-rationality, mindsight, and transparency is possible.  Committing to, displaying, 

observing and inferring preferences constitutes an important dimension along which 

strategically interacting agents may evolve.  Further work on this dimension of evolution 

may shed light on the complex psychology and behavior revealed in game experiments.  
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Appendix  

 

Definition.  Decision logics   and   are different  (denoted by   ) if   

),(),( exex   except at a countable set of points ),( ex   where ),(),( exex   

 

Proof  of Proposition 1  Suppose that in the population of responders there are some 

opaque agents with act-rational decision logic A and some opaque agents with a different 

decision logic AZ  .  Since a leader facing an opaque responder in a dyad cannot see 

whether the responder has A or Z, the leader’s action is the same against either type of 

responder.  By definition of act-rationality, replying to the leader’s action using A yields the 

responder a higher payoff than replying using Z.  Thus opaque Z-responders earn lower 

average fitness than opaque A-responders.  Therefore the assumed population is not a fixed 

point.  Next suppose that all opaque responders are act-rational.  A mutant opaque 

responder with decision logic Z has a lower fitness and therefore cannot invade.  ■ 
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Proof of Proposition 2   When a leader with mindsight is paired with an opaque responder, 

he sees that the responder is opaque and uses some theory of mind.  Suppose some leaders 

use A and some leaders use AZ   as the theory of mind for opaque responders. Since, at a 

fixed point all opaque responders are act-rational (Proposition 1), the leader who uses A 

earns a higher payoff than the leader who uses Z.  Thus the two types of leader cannot 

coexist at a fixed point.  Furthermore, if all leaders with mindsight use A for opaque 

responders, a mutant leader using Z for opaque responders cannot invade.   

When a leader with mindsight meets a transparent responder with decision logic 
 
, he can 

use it as the theory of mind or may use a different theory Z  .  Using Z yields the leader 

a lower payoff, and thus lower fitness, than using  .  Thus the two types of leader cannot 

coexist at a fixed point.  Furthermore, if all leaders with mindsight use   for transparent 

responders, a mutant leader using Z for transparent responders cannot invade.■ 

 

Proof of Proposition 3   Suppose all leaders are of type (B, A) and all responders are of 

type (O, A).  Since all responders are opaque, a mutant leader with mindsight can get no 

information but would incur the cost of mindsight.  Since all responders are act-rational, a 

mutant leader with a different theory of mind would earn less fitness.  Thus mutants with 

mindsight or different theory of mind cannot invade the leader population.  Since all leaders 

are blind, a mutant responder who is transparent cannot influence any leader’s action, but 

would incur the cost of transparency.  A mutant responder who is not act-rational would 

earn less fitness than an act-rational responder.  Thus mutant responders who are 

transparent or have a different decision logic cannot invade the responder population.  That 

other possible monomorphic populations are not fixed points is proved as Propositions 4 

and 5. ■ 

 

Proof of Proposition 4   Suppose all leaders have mindsight.  By Proposition 2, if this is a 

fixed point then all leaders have theory of mind 
M .  From the definition of R it follows 

that, when playing against a population of (M, 
M ) leaders, a (T, R) responder would earn 

higher fitness than a (T, Z) responder for any AZ  .  Assumption 2 implies that a (T, R) 

responder would earn higher fitness than a (O, A) responder.  By Proposition 1, an (O, A) 

responder would earn higher fitness than a (O, Z) responder for any AZ  .  Thus, if all 

leaders have mindsight and the population is a fixed point, then all responders must be (T, 

R).  A mutant (B, R) leader would earn the same payoff as a (M, 
M ) leader but save the 

cost of mindsight.  Thus a mutant blind leader can invade the leader population. ■ 
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Proof of Proposition 5   Suppose there is a fixed point at which all responders are of type 

(T, Θ).  A blind (B, Θ) leader would play the same as a (M, 
M ) leader, but save the cost 

of mindsight.  Thus the leader population must consist entirely (B, Θ) agents.  A mutant (O, 

A) responder can earn more against such leaders than a (T, Θ) responder.   Therefore a 

mutant opaque act-rational responder can invade.  ■ 

 

Proof of Proposition 6   Consider a population of leaders consisting of (B, R) and (M, ΦM
) 

types and a population of responders consisting of (O, A) and (T, R) types.  The system is 

an asymmetric evolutionary game analyzed by Gintis (2009, Sec. 12.17).  We follow his 

approach to solve for the fixed point and ascertain its stability.   

Let b be the share of blind leaders, m the share of leaders with mindsight, o the share of 

opaque responders, and t the share of transparent responders.  The leader population is 

given by ),( mbp , where  b + m =  1 and  ]1,0[, mb .  The responder population is given 

by ),( toq , where  o + t = 1 and  ]1,0[, to .  The payoff matrices are: 

Leaders:     














RRAA

RRRA

L

11

11Π       

Responders:      















RRAA

RRRA

R

22

22Π  

Adding a constant to each entry in a column of  
LΠ  or in a row of 

RΠ  does not affect the 

replicator dynamics.  Therefore we can simplify the payoff matrices as follows: 












0

0

11 


RAAALΠ          

 












0

0

22

22




RRAA

RARR

RΠ  

Using the population share of blind leaders b and population share of opaque responders o 

as state variables, we can express the replicator equations of the two populations as follows: 

))(1(

))(1(

oooo

bbbb










 

where 
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RAAA

RAAA

RRAA

22

11

22 0

0

















 

The fixed point is given by: 

RAAA

RRAA

b
22

22*









      ,   
RAAA

o
11

*







  

and m* = 1 – b* and t* = 1 – o*.  Since α and β have opposite signs, this population is an 

evolutionary focal point surrounded by trajectories which are closed orbits such that the 

time frequencies of (b, o) along the orbits equal (b*, o*).   (Gintis, 2009, Theorem 12.9) 

Next, we need to establish that a third type of responder cannot invade the bimorphic 

responder population consisting of (O, A) and (T, R) types.  By Proposition 1, a mutant of 

type (O, Z≠A) cannot invade.  A mutant of type (T, A) also cannot invade because it is 

treated the same as (O, A) responder by both types of leader and therefore earns τ less 

fitness than (O, A) responder.  Lastly, consider a mutant responder of type (T, Z) such that 

Z≠R and Z≠A.  Since R is the decision logic that induces the leader with mindsight to 

take the action which lets the responder maximize its payoff, the mutant earns less than the 

incumbent (T, R) responder earns against (B, R) or (M, ΦM
) leader.     

Finally, we need to establish that a third type of leader cannot invade the bimorphic leader 

population consisting of (B, R) and (M, ΦM
) types.  By Proposition 2, a leader with 

mindsight but with a theory of mind different from ΦM
 cannot invade.   So we only need to 

consider a mutant blind leader with decision logic Z≠R.  The expected fitness of such (B, 

Z) leader is ZRZA

BZ toV 11   .  The expected fitness of incumbent (M, ΦM
) is 

  RRAA

M toV 11
 .   The mutant cannot invade if 

MBZ VV  , which reduces to  

)()( 1111

ZRRRZAAA to   . 

By definition of A, ZAAA

11   .  By definition of R, ZRRR

11   .  Therefore, the upper bound 

on   is positive and for any Z there exists a sufficiently small positive   such that (B, Z) 

cannot invade.    ■ 

 

Proof of Proposition 7   The proof is analogous to the proof of Proposition 6.  The 

difference lies in the fitness earned by blind leaders and by responders paired with blind 

leaders.    Consider a population of leaders consisting of (B, A) and (M, ΦM
) types and a 
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population of responders consisting of (O, A) and (T, R) types.   The key parameters of the 

replicator dynamic are: 

RRAR

RRAR

RRAA

RRAR

22

11

22

11

0

0

















 

The fixed point is given by: 

RRAR

RRAA

b
22

22*









      ,   
RRAR

RRAR

o
11

11*









  

Since α and β have the same sign, (b*, o*) is a saddle point and therefore unstable.  (Gintis, 

2009, Theorem 12.9)  ■ 
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Table 1  Economic performance in the Ultimatum game in the monomorphic equilibrium 

consisting solely of act-rational agents without mindsight or transparency, and at the 

bimorphic focal point where act- and rule-rational agents coexist.  

 

Base game: Ultimatum  e=100, ε=5, μ=2, τ=1 
      Monomorphic  Bimorphic  
Population          
Leaders (pushers)          
Blind  (B, A)  a  1  0 
Blind  (B, R)  b  0  0.989 
Mindsight (M, ΦM

)  m  0  0.011 
Responders (pullers)          
Opaque act‐rational  (O, A)  o  1  0.022 
Transparent rule‐rational  (T, R)  t  0  0.978 

           
Performance          
Leader average fitness  VL  95  5 
Responder average fitness  VR  5  94 
Total product realized  P=VL+VR 100  99 
First‐best product possible  e  100  100 
Fraction of first‐best realized  P/e  1  0.99 
Leader share of product  VL/P  0.95  0.05 
Responder share of product  VR/P  0.05  0.95 
Fraction of dyads with rejected offers  a t  0  0 
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Table 2  Economic performance in the Trust game in the monomorphic equilibrium 

consisting solely of act-rational agents without mindsight or transparency, and at the 

bimorphic focal point where act- and rule-rational agents coexist. 

 

Base game: Trust  e=100, ε=5, μ=2, τ=1, k=5 
      Monomorphic  Bimorphic  
Population          
Leaders (getters)          
Blind  (B, A)  a  1  0 
Blind  (B, R)  b  0  0.788 
Mindsight (M, ΦM

)  m  0  0.212 
Responders (workers)          
Opaque act‐rational  (O, A)  o  1  0.02 
Transparent rule‐rational  (T, R)  t  0  0.98 

           
Performance          
Leader average fitness  VL  100  102.9 
Responder average fitness  VR  0  394 
Total product realized  P=VL+VR 100  496.9 
First‐best product possible  k e  500  500 
Fraction of first‐best realized  P/(ke)  0.2  0.9938 
Leader share of product  VL/P  1  0.21 
Responder share of product  VR/P  0  0.79 
Fraction of dyads with reciprocated trust (b+m)t 0  0.98 
Fraction of dyads with distrust  a + m o 1  0.00424 
Fraction of dyads with betrayal  b o  0  0.01576 

 

 


