MPRA

Munich Personal RePEc Archive

Simple taxation schemes on
non—-renewable resources extraction

Halkos, George and Papageorgiou, George

University of Thessaly, Department of Economics

August 2012

Online at https://mpra.ub.uni-muenchen.de/40945/
MPRA Paper No. 40945, posted 30 Aug 2012 09:05 UTC



Simple taxation schemes on
non—-renewable resources extraction

George E. Halkos and George J. Papageorgiou

University of Thessaly, Department of Economics,
Korai 43, 38333, Volos, Greece

Abstract

Traditional economic theory, up to the middle of the twentieth century, builds up the
production functions regardless of the inputs’ scarcity. In the last few decades it has
become clear that in many cases inputs are depletable quantities and at the same time
a lot of constraints are imposed in their usage in order to ensure economic
sustainability. Furthermore, the management of exploitation and use of natural
resources (either exhaustible or renewable) has been discussed by analyzing dynamic
models applying methods of Optimal Control Theory. This theory provides solutions
that are concerned with a single decision maker who can control the model’s
dynamics facing a certain performance index to be optimized. In this paper we
consider some simple taxation schemes based both on price charged and on the stock
size as well. As the feedback taxation rules are more efficient than the other (non
feedback) rules we have constructed the simple taxation scheme and found the
analytical expression of the tax function.
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1. Introduction

In the literature of Environmental Economics, existing models often makes an
assumption in which the involved agents exploit resources from a common pool area in a
non-cooperative way. This approach yields inefficiency in the well-known sense of the
“tragedy of commons” (Benchekroun, 2003). Tragedy of commons refers to a situation in
which a producible asset is exploited jointly by several economic agents whose “non-
cooperative” behavior results in overexploitation of the asset, i.e. an exploitation of the
asset that is not jointly efficient (not Pareto optimal).

Considering the market structure of resources exploitation in fact, these markets
are often oligopolistic, i.e., there are several decision makers whose policies influence each
other. So, game theoretical approaches are introduced into the discussion. According to the
theory of continuous time models of Optimal Control, the appropriate analogue of
differential games is used. Roughly, this is an extension of Optimal Control, when there is
an exactly one decision maker, to the case of N (N>1) decision makers interacting with
each other.

Dynamic models of exploitation (or harvesting) and use of natural resources refer
to two different systems of property rights: in the case of sole ownership, optimal
extraction policies can be obtained by means of Optimal Control Theory (Clark, 1976); in
the case of open access or common property exploitation, game theoretical models are
applicable in the sense that all decision makers exploit a resource from a common pool
without any restriction, looking only at their own profits over some time horizon, and
without considering the stock of the resource, which is diminished due to the extraction
policies of all the players of the game who share the common pool (Clark, 1980, Dockner
et al., 1989). Whenever decision makers are few, one cannot use models of perfect

competition, but the appropriate framework for the discussion of these problems is given



by theoretical approaches with special attention to the question of “how to play the game:
cooperatively or non—cooperatively?.

In Natural Resources Economics there is a chain of externalities arisen by human
activities, known as environmental externalities. Once a natural resource is explored and is
ready for exploitation the first externality arises from the fact that the extraction cost
increases not only with the current exploitation rate, but with the cumulative amount
extracted to date. Consequently, a unit of resource extracted today will inflict an inter-
temporal externality in the form of pushing up extraction costs at all future dates, assuming
a twice continuously differentiable cost function.

The cost function, along the extraction path, must be an increasing function not
only with respect to the extraction rate but also it must be an increasing function of the
remainder stock. In such a way it is possible to assume that the marginal current
exploitation cost is higher both at higher exploitation rate and, for a constant rate of
exploitation, at higher depletion rates.

The second externality is related to the use of the extracted resource. The resource
used not only damages the environment through the current flow of an externality, but also
harms the environment indirectly by adding to the accumulated stock of an externality and
pushing it toward to a critical level.

From the supply side point of view, resource-extracting oligopolists continually
engage in the search for additional stocks or in finding new technologies to transform
resources that are economically non-exploitable into resources that can be profitably
extracted. If the demand curve facing the industry is elastic, the discovery of
additional stocks will raise the industry’s profit. It is not clear, however, if all firms

will benefit from a windfall “gain” (discovery) that increases the stock of each firm.



When a given number of firms deplete an exhaustible resource with zero
extraction costs and iso-elastic demand, it has been argued that the oligopoly and cartel
outcomes are efficient and that firms deplete according to the Hotelling’s rule
(Dasgupta and Heal, 1979). This implies that dynamic oligopolies and cartels cannot be
distinguished from perfect competition and that firms act as if there are well defined
private property rights.

These results are somewhat counter intuitive and cannot explain the phenomena
of ‘wild—cutting’. One reason for excessive extraction rates in oligopolistic resource
markets may be that firms are worried that, if they announce to extract efficiently, one
of their rivals with access to current stock levels will have an incentive to deplete more
rapidly, therefore yielding inefficiency.

In this paper, we consider oligopolistic equilibrium in sub-game perfect strategies
in continuous time, and investigate the effect of a tax factor imposed by the regulator on
the price charged. For the analysis that follows we may use firstly a known model
reported by Benchekroun and Long (2006) (hereafter BL model). Following the BL
model, and taking the oligopolistic strategies as fixed, a taxation scheme which is
independent of the state (i.e. the remainder stock) obviously will transfer the overall tax
liability onto the value functions, i.e. on the discounted revenues. Moreover a tax (or
subsidy) on quantity, offered by the outset to each firm in order to compensate the tax
burden, will reduce each firm’s extraction feedback strategy. In the same way, taking
extraction strategies as given, a tax scheme depending on the state is expected to be
inducing efficient in the sense of Karp and Livernois (1994) or even better in the sense

of Benchekroun and Long (1998).



Moreover as the implications of an additional stock endowed to each firm
from the outset are well-known (and in a static model are not surprising) we study the
implications of such a taxation scheme. Starting from the Cournot equilibrium it is
familiar that a marginal reduction of all firms’ production will be beneficial to the
firms and will move them closer to the cooperative equilibrium. Conversely, increasing
the output of all firms is likely to move them further from the cooperative outcome and
will reduce their profits.

In a dynamic framework with free time horizon, this reasoning is not necessarily
valid. The typical extraction path under non-cooperation is monotonically decreasing
over time with production level below the production level of cooperative exploitation
for at least some interval of time, which we refer to as a scarcity phase. As it is well
known, when a firm receives an additional stock it splits its extra-exploitation between
the scarcity phase and the phase where production is above the cooperative level
(Benchekroun and Long, 2002, 2006). Increasing exploitation during the phase where
production is above the cooperative level decreases instantaneous profits but increasing
exploitation in the former phase raises instantaneous profits, resulting in an unclear
conclusion for the overall impact in firms profits.

The rest of the paper is organized as follows. Section 2 describes the model of
resource extraction with an isoelastic demand function. Section 3 provides the Markov
perfect Nash equilibrium strategies that are time consistent and the resulting value
function for the strategies. Section 4 proposes some policy instruments based on

changes of the allowed resource stock, while the last section concludes the paper.



2. The Benchekroun — Long (BL) model

Let us assume that there are N firms in an oligopoly market. Firm i is endowed
with a stock of a resource S, (¢) at time ¢, with S,(0)=S;. Let S(¢) denote the sum

of all stocks at time ¢, that is

We define S, (t)=S(¢)—S,(¢). We then also assume that the rate of change of

1
. - [1
firm’s i resource stock is!"!

0
dt

= $i(1)= ()

where 7, (t) is firm’s i extraction rate at time ¢.

The inverse demand function is given by

N
with f(a)=—a, ac(0,]] and h(t)=2h.(t) denotes the overall extracted

i=1 l
quantity. The function [ f (a)]<_l) =1/a>1 determines, in absolute value, the

instantaneous elasticity of demand, i.e. the inverse demand function is always elastic
and takes the hyperbolic shape if a =1 (i.e. a constant), but is always convex.

Here in order to form the dynamic problem it is assumed utility is derived from
revenues, so firms in industry are rather revenues maximizers. Moreover, the resource
stock is not restrictive for the firms’ decisions (i.e. extraction rate) but the regulator is

the decision maker of the state variable, i.e. the remainder resource stock as you will

(1A similar adoption in the resource reduction equation is made by Batabyal (1995, 1996).



see below. One of the results’®! of the model is that the control trajectory is strictly
dependent on the extraction trajectory as well as on the instantaneous elasticity. So,
the state variable in the problem, as affected from the control, is an optimal control for
every involved firm.

Having these assumptions the dynamic can be presented as follows. Firm’s i

revenues are given by the expression:
R <hz"h—i> =h; <hi + h—i)_a
where h,=h—h

The objective function of firm i is to maximize the present value of the stream of

cash flow subject to the system dynamics, that is the problem"”’

max [h(h+h,) e dr (1)
0
subject to éi(t):_hi(t) (2)
with S, (0)=s;

The control variable of firm i is its quantity A, while the state variable is its
remainder resource S,.

The goal is to find a strategy and the value function of the dynamic problem under
the closed loop!*! or Markovian Nash informational structure equilibrium which is by
definition the concept of equilibrium in which the choice of player’s i current action

1s conditioned on current time ¢ and on state vector too.

2] In another perspective a second result could be the fact that a tightening of the regulation on total
allowed resource stock can lead to an increase in firms’ NPV of discounted revenues.

B In this setting, where the state variable does not enter into the objective function, the induced game
seems to be a trivial one.

™ For more details about the informational structures of the dynamics games, see Basar and Olsder
(1995).



Under the closed—loop informational structure and stationarity of the game the
player’s i strategy space! is this of mappings

¢, R — R
which associates to a vector of resource stock (Sl,Sz,...,SN)eRZ the quantity

¢l.(Sl,S2,...,SN) to extract. Each player i of the game has to choose a quantity

h, (t) € R of the resource, and the price of that resource is then set according to

D(hy ey = [ZN;h m]“

The utility (total revenues) enjoyed by firm i is then given by

o0

Uy (6150350 ) = [ D(01(8),05(8)s00s0,(8) by () e el

0

where (Sk) evolve according to the differential equation determined by (2)

k=1,..,.N
Equilibrium should then be defined as a set of strategies for which no player has a
profitable deviation.

Imposing this assumption on informational structure of the game, clearly the
history of the game is important and is reflected in the current value of the state
vector. Consequently, player’s i optimal time paths take into account at any point of
time the control variables (quantity extracted) of the other players. This type of
equilibrium affects the state variables, requiring a revision of the player’s i controls at

any time instant.

B By strategy spaces, we mean the information available to each player together with a set of functions
with this information as domain. These functions are actually the permissible ways in which the players
are allowed to use that information. Open-loop strategies, where at each instant of time t the players
have knowledge of the present time instant t and the initial condition S(0) of the state, result in different
equilibrium from the strategies where at each instant of time t the players have knowledge of the time
t, the initial state S(0) and the current state S(t).



Here the Hamilton — Jacobi — Bellman (HJB) equation is applied to prove that the
conjectured strategy is a Markovian strategy and consequently a strongly time
consistent one. In contrast to the open-loop informational structure the closed-loop is
a strongly time consistent one, but the open-loop is not. Here the time consistent
property is in the sense of sub—game perfectness (for more details see Dockner et al.
2000). Then the Markov Perfect Nash Equilibrium (MPNE) is characterized as
follows.

Let ¢ be the strategy that specifies firm’s i extraction rate as a function of time ¢

and the vector of remainder resource stock at the same time. This is the strategy

Each firm takes competitors strategies as given and determines its optimal strategy

that solves problem (1) subject to the constraint expressed by(2) .

Proposition 1 (Benchekroun and Long, 2006)
Markov Perfect Nash Equilibrium exists, where the equilibrium strategy of firm i has
the property that its extraction level depends on its own resource stock and on

elasticity of demand. That is
h(1)=L5,(:) i=1,.,N
a

The discounted sum of firm’s i revenues V, (S ), when the total resource stock is S,

1

are given by V.(S)= [E] - (3)
P

Given the discounted revenues expression by (3), it is easy to see the impact from a

change in elasticity of demand in the discounted revenues. Therefore taking the
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derivative of the value function expression given by (3) with respect to the demand

curvature a, assuming that the initial resource stock of firm’s i and the overall

resource stock S remains unchanged, i.e.:

Sefe Fofehs ool

which is a negative or positive quantity, meaning that the discounted revenues’

change will be negative or positive, depending on the sign of the quantity 1—1In [ﬁ] .

a

The latter means that it remains profitable for each oligopolistic firm to extract, with

respect to the demand changes, only if the total resource stock fulfills the inequality

S<el(alp)

2.1. The unary elasticity demand (A special case)

Consider for a moment that elasticity of demand equals to one independent of
time, i.e. a=1. As it is simply clear in this case the market demand function
collapses to a hyperbolic shape, this being a special case of a more general class of
models based on isoelastic demand curves. An isoelastic demand function was used to
study the stability for a general Cournot oligopoly (Chiarella and Szidarovsky, 2000)
and in many variations (Puu, 1991, 1996; Puu and Norin 2003; Puu and Marin, 2006).

Furthermore isoelastic demand functions is a result in the case the consumers

maximize utility functions of the Cobb—Douglas type in a static environment. The
static problem for the i consumer is to max(D{)al <D§>az ... , subject to the budget

constraint y' = p,D| + p,D; +... with p, to denote the prices of the commodities

and D, denote the quantities demanded. The well-known outcome of this static
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constrained maximization is p,D, = a,y' where a, is the fixed spending share of the

i’s consumer income )’ on the k-th good.

From the above problem’s solution the resulting demand for each consumer is

i

a.y

D

reciprocal to price charged that is D, = , so dropping commodities indices, the

aggregate demand is obtained as (the sum of all consumers)

D= Z D' = Z @y E Puu (2008) also uses the following price specification
p

pP=— . 1s the total quantity produced, while

2.4 -
p)

R is the sum of the total budget shares that all consumers spend in the particular good.
It is well-known from the literature!® in such a case the maximum problem of a firm
choosing the output level is indeterminate if marginal cost is zero, since the revenues
generated by a hyperbolic demand are constant, thus economically unacceptable.

But even in this special case the model under closed-loop informational
structure yields linear strategies and value function as well. More precise setting

demand elasticity to one, a =1, the model solution yields the following results for

strategies and value function respectively:

h =pS, i=1,..,N (4)

The latter reasoning leads us to conclude the following corollary.

] For an exposition of a differential oligopoly model where firms face implicit menu costs of adjusting
output over time due to sticky market price, see Lambertini (2007).
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Corollary 1
The BL model of an exhaustible resource extraction even in the special case of

isoelastic demand, so for constant consumers’ budget share, yields deterministic

Markovian linear strategies and value functions given by (4) (5) respectively.

3.  Simple taxing schemes in the oligopoly
In this section we investigate the implications of a tax factor imposed on
prices charged by the extracting oligopolists. Thus we assume that the tax factor 7 it
is proportional to the price. In this way the discounted revenues for the i firm is the
following integral
PV = jem [h,. (1=7) (A + 1, )]‘“}dt (6)
0

subject to the constraint expressed by (2).

The simple taxation scheme leaves the extraction strategy unaffected and the
only impact is on the value functions of each oligopolist. The above result is recorded

in the next proposition.

Proposition 2.
In the BL model, there is a taxation scheme which leaves the extraction strategy

unaffected, also reducing each firm’s discounted revenues, as described by equation

(6). The tax scheme is depending on elasticity and the reduction on discounted
revenues is given by the binomial expression f(7)=(1—7)". The oligopolistic
firms follows the same extraction strategies & (t):(p/a)Sl. (t) and the reduced

discounted revenues are given by the expression ¥, (S)=(a/p)" S, / (S (1- T))a .
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Proof (In the appendix).

The tax factor 7is easily approximated using the linear approximation of the
binomial expression as’! 1 (a,T) = (1—7’)7" =1+ ar since the tax factor 7 is a real

number close to zero and a is a real number.

In what follows we will try with the same tax scheme on price charged but
now a subsidy is given to all firms from the outset in order to compensate the tax
burden. The subsidy is proportional to the quantity supplied in the market, therefore

the discounted revenues for the i firm are given by the following present value
Y= [ |(o)m[0=7)(h +h)] | ar (7)
0

Supposing that every firm adheres to the same extraction rate, i.e. the equation of

motion (2)remains valid, then the following proposition holds true.

Proposition 3.

In the case the firms receives a constant subsidy, as a fraction of quantity supplied in
the market, then in the feedback equilibrium every firm change their strategy,
reducing the extraction rates equal to tax factor imposed. Every firm raise the
discounted revenues with the quantity equal to the subsidy fraction, as it is expected.

In the model terms the feedback equilibrium strategy is defined as

h,(t)=(p/a)(1—7)S,(t)and the discounted revenues are given by the expression

Vi(8)=(alp) (1+6)s,/(S(1-7))"

7 Let f(T) = (l — 7')6 then f/<7') = ﬁ(l — T)ﬁ_l and setting 7 =0, f”(O) = [3 . Using linear
approximation f<7') ~ f(ﬁ) + f/(ﬁ> <x - ﬁ) , f<7') ~ f(ﬁ) + f/(ﬁ> <T - ﬁ) for which

(1—7’)6 ~ 1+ Or
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Proof (is the same as in proposition 2).

4. A tax scheme dependent on the resource stock
Let now consider a taxation scheme for which the tax function is dependent on the

remainder stock own in every extracting oligopolistic firm. The regulator takes the
extraction strategy as it is given and imposes the tax function 6 (Sl)regardless for the

extraction rate, since that strategy is one of a family of feedback strategies for every
firm at equilibrium. As it is intuitively known these taxation schemes are more fair
and therefore efficient, called “efficient inducing taxation schemes” (Benchekroun and
Long, 1998). Hence, in the same model the stream of the discounted revenues are now

given by the following expression:
PV = [ [1=8()]n](h+n)] “|ar (8)
0

subject to the equation of the own stock motion (2)

Proposition 4.
Given the model of equations (8) and (2) there exists a tax function dependent on the

stock, thus an efficient tax, for which the analytical expression is given by

sVeg

o8)=5s

Proof (In Appendix)
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5. Concluding remarks

In this paper we set up a very simple model of taxation for extracting oligopolists,
where the demand is not linear and the resulting game is not a linear quadratic one.
Due to the model’s demand function the resulting feedback strategies are linear. As
the analytic expressions of strategies and value function are known, it is easy for the
policy maker to construct tax schemes that may be efficient.

First, we consider a tax function which is based on the price charged and as it is
expected the above (intuitive) tax is not efficient in the sense of Benchekroun and
Long. Since this first tax function is not dependent on the state variable we try with an
improved taxation scheme dependent on the stock, which is may be more efficient. As
a result we calculate the analytical expression of the second tax scheme. The results,
in our opinion, are useful for a policy maker to make distributed extraction policies on
the industry in total as well as partially on a firm.

As it is known, from the BL model, a new technology that reduces the total
amount of the extraction stock is not necessarily approved by all firms in the industry.
The question raised and left for future research relates to the taxation scheme
proposed here and if it is an efficient one in the case of a windfall gain for every

oligopolistic firm.
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Appendix

Proofs of Propositions

Proof of Proposition 2

First we check that if firm’s j strategy is 4, = Ls ;» then firm’s i best response will
a
be 7, :£Sl.. The Hamilton-Jacobi-Bellman (hereafter HIB) equation for firm’s i
a

maximization problem is the following

;) X9V,
pViZhi[hﬂr(l—T)gS_i] +8—S’(—hi>+ > a—S’[—gst
J

i J=isj=1
Maximization of the RHS of the HJB equation with respect to 4, gives

=(1-7)" [hi +§S,~]_a - (41)

[hl. +"’S_l.]
a

o,
as,

Where S, represents the sum of all resource stocks except firm’s i stock, that is

N
S,=S8-S and S=) S,

J=1

We try with the value function

Aot

p Jj=1

Differentiation of the value function with respect to S, yields
%:[BS] (1—7')7“ [l—ai] (AZ)
oS, \a S

N
with S = ZS./ the same as above.

J=1



Equating the terms with the same power of (4.1) and (

resulting system of equations.

l—a s :1—(1i (A.3)
{hi +pS,] 5
a
and h+Ls, =Ls (44)
a a

Both equations (A.3) and (A.4) have the same solution

h=Ls .
a

1 1

19

A.2) we have the

Now we prove that substituting the above strategies into the RHS of the HIB function

we have equality with the LHS of the same equation. The partial derivative of the

value function ¥, with respect to S is

o,

—:—a[ ]SS(”‘) <0
oS, p

so the RHS of the HIB becomes

J=j
[ ]
a

N N
Where as above we have set S = ZS/' and S, = Z S,
J=

J=Lj#

RHS(HIB)= £ .[ﬁs]a—ﬁsi[l—a‘z][ﬁs]a+ 3 - [ ] 5,8 "+‘>[ ﬁsj]:
a a a i=1

H—a%—f—a%] pS, [ﬁs] — pV,(S)=LHS(HJB)
a



20

Proof of Proposition 4

Maximization of the RHS of the HJB function yields

[@%~§5¢JQ(L—5(SJ)1—» as,__|_9% (B

h+ls. ;
a

The partial derivative of the value function w.r.t. the state becomes

1 aS,  aS, d
S+S., 1-6(S,)ds,

1

Z_SV:[B] (5,+5,) " (1-6(s) "

1

(8, (B2)

Equating the terms inside the brackets for both equations yields the differential

equation
1-6(S.
sis) ey
as, S +S, ds,
For which the solution is:
§Veg

S)=—7="———-
( l) S[_l/aS—l



