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Abstract 

 

This article provides the in-sample estimation and evaluates the out-of-sample 

conditional mean and volatility forecast performance of the conventional GARCH, 

APARCH and the benchmark Riskmetrics model on the U.S. real estate finance data 

for the pre-crisis and post-crisis periods in 2008. The empirical results show that the 

Riskmetrics model performed satisfactorily in the in-sample estimation but poorly in 

the out-of-sample forecast. For the post-crisis out-of-sample forecasts, all models 

naturally performed poorly in conditional mean and volatility forecast.     
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I Introduction 

 Most analysts would agree that the origin of the September 2008 financial 

crisis in U.S. began in March 2007 with the collapse of the subprime mortgage 

industry that eventually led to a worldwide credit crunch as banks and hedge funds 

invested heavily in subprime mortgage backed securities. The crisis turned imminent 

when the U.S. Federal Reserve took over the two largest mortgage based security 

companies, and further deteriorated following the collapse of Lehman Brothers. The 

subsequent financial meltdown had spread to other international financial centers. 

 While a number of recent studies on the causes of the 2008 U.S. financial 

crisis have concentrated on both financial and monetary fundamentals (Taylor and 

Williams, 2008; Taylor, 2009; Schwartz, 2009; Financial Services Authority, 2009; 

French et al., 2010; Wong and Li, 2010), the crash in the subprime mortgage industry 

in 2007 could be the result of cumulative economic events since the mid-1990s, 

including the prolonged low interest rate regime, the rapid recovery in the U.S. 

housing markets after the burst of the dot-com bubble in 2001 and the continuous 

increase in unsecured sub-prime lending to unqualified home purchasers. These 

incidences have led to an increase in the volume of collateralized debt obligations 

(CDOs) backed by asset and sub-prime mortgage securities. Although the U.S. 

housing price has accelerated significantly between 2003 and 2006, after the collapse 

of the subprime mortgage market in early 2007, the large number of mortgage 

delinquencies and defaults has reversed both the housing price and the value of 

mortgage-backed securities. The sub-prime mortgage crisis has drawn renewed 

attention on how banks measure the risk of assets and the extent of accuracy in 

volatility forecast.  

 A commonly used approach in measuring investment risk is based on the 

historical variability of assets return. Markowitz (1952) first used assets return 

volatility as a measurement of risk. However, Wheaton et al. (1999) argued that real 

estate risk measurement should not be based solely on the historical data, because 

most real estate assets are still privately owned and do not produce an efficient asset 

pricing. Under inefficient asset pricing, positive shocks could probably set off asset 
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price fluctuations that would easily be predicted. Wheaton et al. (1999) showed that 

historic variability can be decomposed into predictable and non-predictable 

components. The predictable components appeared when the series exhibited 

autoregressive characteristics or other significant patterns. The non-predictable 

components involved future uncertainty or the asset returns yielded a random walk 

series. If the asset returns exhibited random walk, the future of the asset returns could 

not be forecasted.       

 Undoubtedly, assets returns volatility is still the main concern of investors, 

financial institutions and regulatory authorities. In empirical financial literature, the 

most frequent instrument used to measure risk is the Autoregressive Conditional 

Heteroscedastic approach (ARCH) (Engle, 1982) that allows for the conditional 

means and variance to change over time. The risk management group of J. P. Morgan 

(1996) released a technical model, called RiskMetrics, to measure assets returns 

volatility and volatility forecast. The RiskMetrics model is based on the integrated 

and generalized ARCH (IGARCH) model of Engle and Bollerslev (1986) with fixed 

ARCH and GARCH coefficients. In practice, most of the major financial institutions 

have adopted the RiskMetrics model to manage market risk. The accuracy of the 

model, therefore, has become the major concern, especially for the out-of-sample 

forecast. Since the banks would ultimately bear the risk from loan defaults, it has been 

criticized that banks have under-estimated the potential risk in the sub-prime 

mortgages.   

   Recent developments in forecasting analysis can be used to evaluate the 

accuracy of the various forecast models (West, 1996, 2001, 2006). In this paper, the 

in-sample estimation of the real estates related financial data series are compared with 

the out-of-sample conditional mean and volatility forecast performance of the 

conventional GARCH model, the Asymmetric Power ARCH (APARCH) model and 

the benchmark Riskmetrics model for the two pre-crisis and post-crisis periods. 

Section II shows the methodology, while Section III provides the data description. 

Section IV presents the in-sample estimation and out-of-sample forecast of various 

models. Section V concludes the paper.  
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II Methodology  

In-sample analysis 

 The Autoregressive Conditional Heteroscedastic (ARCH) model permits the 

conditional means and variance to change over time (Engle, 1982). The ARCH model 

in the in-sample analysis can be given as:  

 t t-1 t ty  |  ~  (x , h )   ,        (1)

 
2

0 1 1t th w u   ,        (2) 

where xt β is the mean of  yt , which is a linear combination of lagged variables 

included in the information set (Ωt-1) with a vector (β) of unknown parameters. Based 

on past forecast errors, the underlying forecast variance (ht) may change over time, 

thereby keeping the unconditional variance constant. 

 The generalized ARCH (GARCH) model that incorporated the problem of 

parsimony (Bollerslev, 1986) allows a longer memory and a more flexible structure. 

The variance equation of the GARCH (p, q) process can be defined as: 

 2
0

1 1

q p

t i t i i t i

i i

h w u h  
 

    ,       (3) 

where w0 > 0, αi ≥ 0 and βi ≥ 0 ( i ). The GARCH ),( qp  process permits an 

autoregressive moving average component in the heteroscedastic variance. 

 An alternative to the GARCH-type model is the Asymmetric Power ARCH 

(APARCH) model (Ding et al., 1993) that extends Equation (3) into the following:  

 
1 1

( ) ,
q p

t i t i i t i j t j

i j

w
          

 

          (4) 

where 0  and 11  i . The parameter δ  plays the role of a Box-Cox 

transformation of t , while i represents the asymmetric responses that a negative 

shock to a financial time series is likely to cause higher volatility than a positive 

shock of the same magnitude (Black, 1976; Christie, 1982; French et al., 1987; 

Nelson, 1991; Schwert, 1990; Engle and Ng, 1993). Taking into account the 
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asymmetric response, the APARCH model allows for the flexibility of a varying 

exponent. It nests the GJR model (Glosten et al., 1993) when 2  , and the GARCH 

model of Taylor (1986) and Schwert (1990) when 1  , and 0 ( 1, , )i i p   . 

 Due to uncertainty in financial markets, the management of financial risk is 

common in most financial institutions. The risk management group of J. P. Morgan 

(1996) has proposed a market risk management methodology known as RiskMetrics 

to manage the potential risk in financial markets. The RiskMetrics model is defined as: 

 
2

1
2

1
2 )1(   ttt  ,      (5) 

where ω is equal to zero and λ is generally set to 0.094 in practice. Equation (5) is a 

basic conditional variance model of the RiskMetrics, and the variance equation is 

modeled as a linear combination of lagged squared residuals and lagged conditional 

variances. The in-sample estimation of the GARCH, APARCH and Riskmetrics 

models on the real estates related data series will be compared.  

  

Out-of-sample volatility forecasting 

The accuracy in forecasting is important for investors, financial institutions and 

regulatory authority to measure the potential risk of their asset portfolios. In order to 

compare the forecasting performance of alternative models, an out-of-sample forecast 

by the moving window procedure that began with the estimation of each individual 

model using in-sample period data was used to predict the one-step-ahead (month) 

volatility forecasts, and the in-sample estimation period was shifted forward by one 

period for estimation and prediction. This process is repeated N times until the last 

observation of the forecasting period. The predicted one-month-ahead volatility is 

then compared with the realized volatility and all the estimated results are recorded 

for the models comparison using the statistical tests.  

 Though most studies have used the square return as a proxy for volatility 

(Brailsford and Faff, 1996; Brooks and Persands, 2002; Sadorsky 2006), Andersen 

and Bollerslev (1998) used the integrated volatility as a proxy for realized volatility. 

By using this method, the realized volatility can provide a consistent non-parametric 
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estimate of the price variability that has transpired over a given discrete interval. In 

addition, similar to the other literatures on conditional volatility forecasting, the 

monthly forecast errors generated from each model are compared by using the 

following two statistic tests to evaluate and compare the forecast errors between 

models. 

 

a) Traditional loss functions 

 The general symmetric loss functions includes the mean absolute error (MAE), 

mean absolute percentage error (MAPE) and root mean squared error (RMSE), which 

are defined, respectively, as:  

 

2 2
,

1
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where n represents the number of forecast. 
2
,t f  and 

2
T  represent the one-month-

forecast volatility and realized volatility, respectively. However, the symmetric loss 

function assumed that the investors put the same weight on both the over-prediction 

and under-prediction of volatility. This, however, is not the case in practice.  

 

b) Asymmetric loss functions: 

 The mean mixed error statistics that considered under-prediction (MME(U)) 

more heavily is applied in order to account for the asymmetric properties in the loss 

function. The MME(U) is defined as:  

2 2 2 2
, ,
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1
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and the statistic with heavier weight on over-prediction (MME(O)) is defined as: 
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III Data Description 

 Since one of the causes of the 2008 financial crisis was the U.S. housing 

market, the data used in the empirical analysis include the housing price index (HPI), 

total home market amount (RHMA) and loan to price ratio (LTP) to reflect the 

housing market situation in U.S. at that time of the 2008 crisis. Some of the 

commercial and global investment banks (for example, Bear Stearns, Lehman 

Brothers) in the 2008 financial crisis were faced with an unprecedented loss due to 

their large involvement in the subprime and other low-rated mortgage securities. 

Those risky loans are included in the bank’s asset account. The commercial bank 

assets in the form of consumer loan (CL) should, therefore, be investigated while 

inter-bank loan (IL) could provide information on those risky mortgages transferred to 

other banks. The choice of variables is meant to provide good proxies for the U. S. 

housing market that has caused the financial crisis. The use of loan to price ratio, 

consumer loan and inter-bank loan can help to trace the flow of the risky mortgages in 

the analysis/   

 All the monthly data can be obtained from Data Stream and are expressed in 

logarithm. For the data on RHMA, LTP, CL and IL, the sample period started from 

January 1988 to February 2009, while HPI covered the period from January 1991 to 

February 2009. The RHMA, CL and IL are calculated by deducting the log consumer 

price index (CPI) so as to account for inflation. All the data are first differenced by 

using the formula yt = Pt - Pt-1.  

 Table 1 shows the descriptive statistics for HPI, RHMA, LTP, CL and IL. Most 

of the data series exhibit a non-zero Skewness and a high Excess Kurtosis property, 

and consequently the Jarque-Bera tests for normality are strong and statistically 

significant, with the exception of HPI. The standard deviation of RHMA is slightly 

higher than others due to the relatively higher value. The Box-Pierce test Q(5) for 

returns cannot reject the null that no serial correlation existed in the case of HPI, 



8 
 

RHMA, LTP and CL. The results of Box-Pierce test for squared returns Q
2(5) 

indicated that a strong presence of an ARCH-structure existed in most of the series, 

with the exception of CL, and the statistic results of the Augmented Dickey-Fuller 

(ADF) test indicate that all series are stationary after first differential. 

 

Table 1 Descriptive statistics 

  HPI  RHMA  LTP  CL  IL  

min -0.004  -0.216  -0.039  -0.027  -0.135 

mean 0.004  0.003  0.000  0.001  0.001 

max 0.014  0.197  0.041  0.053  0.182 

std.dev 0.003  0.053  0.010  0.011  0.043 

Skewness 0.133  -0.214  0.024  0.790  -0.010 

Excess Kurtosis -0.406  1.949  2.325  2.554  1.948 

Jarque-Bera 1.868  27.996  38.543  26.645  29.580 

 (0.393)  (0.000)†  (0.000)†  (0.000)†  (0.000)† 

Q (5) 129.16  27.37  14.73  37.01  4.95 

 (0.000)†  (0.000)†  (0.0012)*  (0.000)†  (0.422) 
Q

2 (5) 120.21  31.09  12.88  9.37  15.94 

 (0.000)†  (0.000)†  (0.025)*  (0.095)  (0.007)† 
ADF -6.933†  -4.996†  -4.809†  -2.917†  -5.512† 

Note: Q(5) and Q2(5) represent the Box-Pierce test statistics at lag 5 for returns and  
required returns, respectively.  † and * represent statistical significance at 5% and 10%, 
respectively. 

 

IV  Empirical Results 

In-sample analysis 

 One can start with the in-sample estimation for each series in order to compare 

the performance between the models. Since the first burst of the sub-prime mortgage 

crisis occurred in October 2007, the end date prior to the crisis is selected. The in-

sample period started from February 1988 to June 2007 for RHMA, LTP, CL and IL, 

and the period from February 1991 to June 2007 for HPI.  

 Table 2 reports the estimated parameters of the univariate APARCH, GARCH 

and Riskmetrics with skewed student distribution. The three parameters of w, α and β 

are the GARCH parameters from Equation (3), and ψi  are the coefficients of the AR 

process. Since the first lagged value is statistically significant, a total of four series 

can be specified as AR (1) process in the conditional mean equation, with the 
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exception of IL. As for the conditional variance equation, the weights of I
 and I  

satisfy the non-negativity constraint and the 1I I    restriction in all models. It is 

apparent that most of the constant terms are statistically insignificant at 5 percent 

level, while the coefficients of lagged squared residual and coefficients of lagged 

variance terms are highly significant statistically and the sum of alpha and beta is 

close to unity, indicating that the persistence of the conditional variance in all series is 

high. 

  In the APARCH estimations, the estimated asymmetric parameter γ1 is 

statistically insignificant in all series except HPI. This suggests that there is no 

asymmetric response to positive and negative shocks in RHMA, LTP, CL and IL. The 

hypotheses of the parameter δ=1 (conditional standard deviation) and δ=2 (conditional 

variance) cannot be rejected in the cases of HPI, RHMA and LTP at 5% significant 

level. This indicates that the conventional GARCH specification may be more 

appropriate than the APARCH model. In the case of CL and IL, the parameter δ is 

statistically significant. This result supports the use of a model that allows the power 

term to be estimated, the APARCH model is more suitable in all cases. 

 The statistical results of student distribution (Df) are highly significant in most 

series, and the normality test gives the identical results that most series do not follow 

normal distribution, with the exception of HPI. The Ljung-Box test is used to detect 

the misspecification in the conditional mean and the variance equation. The results of 

the portmanteau test on standardized residuals LB(8) are mostly insignificant 

statistically at 5% significant level, with the exception of CL, indicating that the serial 

correlations in conditional mean have successfully been eliminated by the AR process. 

Similarly, no serial correlation in variance equation is detected as the results of the 

portmanteau test on squared standardized residuals LB
2(8) are all statistically 

insignificant, with the exception of CL. 
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Table 2 Model estimated results and diagnostic tests 
 Skewed APARCH Skewed GARCH Skewed Riskmetrics 

HPI RHMA LTP CL IL HPI RHMA LTP CL IL HPI RHMA LTP CL IL 

GARCH parameters 
ψ0 

 
ψ1 

 
wI 
 
α1 
 
β1 
 
γ 
 
δ 
 
θ 
 
Df 

 

0.004 
(0.001)† 
0.622 
(0.05)† 
14.462 
(80.66) 

0.06 
(0.041) 
0.823 

(0.093) 
0.866 

(0.391)† 
1.522 

(0.956) 
0.131 

(0.113) 
30.193 
(63.56) 

0.002 
(-0.002) 
-0.351 

(0.073)† 
58.408 
(114.5) 
0.263 

(0.065)† 
0.633 

(0.075)† 
0.102 

(0.301) 
1.137 

(0.61)† 
-0.102 
(0.127) 
5.487 

(1.997)† 

0.0000 
(0.000) 
-0.218 
(0.08)† 
18.419 

(117.39) 
0.175 

(0.078)† 
0.749 

(0.082)† 
0.106 

(0.234) 
1.849 
(1.35) 
-0.047 
(0.108) 
6.464 

(2.434)† 

0.001 
(0.001) 
0.395 

(0.056)† 
6.831 

(70.11) 
0.027 

(0.015)* 
0.959 

(0.023) 
0.071 

(0.154) 
2.043 

(0.076)† 
0.207 

(0.135) 
8.666 

(5.294)* 

0.002 
(0.003) 
0.018 

(0.071) 
15.216 
(89.02) 
0.088 

(0.092) 
0.813 

(0.295)† 
-0.237 
(0.264) 
1.999 

(0.043)† 
-0.048 
(0.09) 
7.344 

(3.702)† 

0.004 
(0.001)† 

0.618 
(0.058)† 

3.139 
(2.275) 
0.076 

(0.094) 
0.523 

(0.333) 
 
 
 
 

0.138 
(0.106) 
22.723 

(31.152) 

0.002 
(0.002) 
-0.33 

(0.068)† 
3.862 

(1.552)† 
0.234 

(0.085)† 
0.648 

(0.068)† 
 
 
 
 

-0.097 
(0.113) 
5.456 

(1.939)† 

0 
0 

-0.226 
(0.066)† 

8.713 
(4.812)* 

0.17 
(0.078)† 

0.749 
(0.07)† 

 
 
 
 

-0.033 
(0.107) 
6.733 

(2.537)† 

0.001 
(0.001) 
0.400 

(0.059)† 
0.010 

(0.017) 
0.026 

(0.015)* 
0.97 

(0.028)† 
 
 
 
 

0.249 
(0.191) 
8.601 

(5.680) 

0.001 
(0.003) 
0.021 

(0.074) 
2.383 

(4.776) 
0.089 

(0.096) 
0.786 

(0.34)† 
 
 
 
 

-0.071 
(0.095) 
6.861 

(3.293)† 

0.004 
(0.001)† 
0.662 

(0.055)† 
 
 

0.06 
 

0.94 
 
 
 
 
 

0.168 
(0.096) 
15.559 
(13.65) 

0.003 
(0.002) 
-0.314 

(0.078)† 
 
 

0.06 
 

0.94 
 
 
 
 
 

-0.037 
(0.109) 
5.247 

(1.192)* 

0 
(0.001) 
-0.21 

(0.066)† 
 
 

0.06 
 

0.94 
 
 
 
 
 

-0.02 
(0.092) 
6.318 

(1.627)† 

0.000 
(0.001) 
0.406 

(0.062)† 
 
 

0.06 
 

0.94 
 
 
 
 
 

0.185 
(0.128) 
10.986 

(5.725)* 

0.001 
(0.003) 
0.015 

(0.078) 
 
 

0.06 
 

0.94 
 
 
 
 
 

-0.061 
(0.084) 
7.964 

(3.199)† 

Diagnostics tests 
LB (8) 
LB2(8) 
Norm 
 
Log 
AIC 
HQ 

17.918* 
2.009 
1.943 

(0.379) 
883.76 
-8.881 
-8.820 

14.889 
4.203 
168.7 

(0.00)† 
357.94 
-4.664 
-4.610 

11.321 
3.5 

77.263 
(0.000)† 
761.69 
-6.492 
-6.438 

59.333* 
23.787† 
125.64 

(0.000)† 
753.16 
-6.396 
-6.348 

6.137 
5.507 
15.935 

(0.000)† 
412.62 
-3.473 
-3.425 

18.328* 
1.467 
1.408 

(0.495) 
881.75 
-8.881 
-8.834 

14.534 
4.615 
134.75 

(0.000)† 
357.55 

[-4.671] 
[-4.629] 

11.234 
3.847 

55.354 
(0.000)† 
761.57 

[-6.507] 
[6.466] 

60.976† 
22.561† 
110.95 

(0.000)† 
753.44 

[-6.407] 
-6.365 

6.425 
7.112 

19.464 
(0.000)† 
412.33 
-3.479 
-3.438 

16.78* 
3.087 

6.3 
(0.043) 
879.08 

[-8.884] 
[-8.857] 

19.12 
4.1 

159.33 
(0.000)† 
351.25 
-4.646 
-4.622 

11.14 
11.348 
40.57 

(0.000)† 
754.5 
-6.473 
-6.449 

60.883† 
13.037 
90.678 

(0.000)† 
750.37 
-6.407 

[-6.383] 

6.087 
5.020 

27.692 
(0.000)† 
409.58 

[-3.481] 
[-3.458] 

Notes: Figures in parenthesis represent the standard errors of the coefficients in univariate APARCH models. † and *  represent statistical significance 
at 5% and 10%, respectively. LB (8) and LB

2 (8) represent the Ljung-Box test statistics at lag 8 for standardized and squared standardized residuals, 
respectively. Norm and Log stand for Normality and Logliklihood, respectively. AIC and HQ are Akaike Information Criterion and Hannan-Quinn 
Criterion, respectively. [  ] shows the best fit model. 
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 In the case of CL, due to the misspecification of the conditional mean in the 

data series, we have to consider higher lagged values for the dependent variables in 

the mean equation. The Akaike Information Criterion (AIC) statistics suggest that up 

to two lags should be added in the mean equations and the value of LB(8) and LB
2(8) 

would then decline, respectively, to 15.21 and 9.08 in the AR (2) - APARCH 

specification. Similar results are also found in the AR (2) - GARCH and AR (2) - 

RiskMetrics models. The problem of serial correlation and misspecification in 

conditional variance equation are therefore eliminated from CL. 

 Because the same data sets are used, the results with regard to the significance 

of the coefficients are almost the same among the three models. However, the one 

difference among the three models is the specification and the value of coefficients. 

The Akaike Information Criterion (AIC) and Hannan-Quinn Criterion (HQ) are used 

to evaluate the in-sample goodness of fit of the models. In accordance with the 

criterion, the RiskMetrics model provides the best performance in HPI and IL while 

the conventional GARCH model provides better fit in RHMA and LTP. For the CL, 

the AIC and HQ criteria do not obtain a consistent result in measuring the goodness of 

fit among the models. However, it is obvious that the APARCH model provides the 

poorest performance for the in-sample estimation.  

 

Out-of-sample forecast 

 The out-of-sample forecast starts with the estimation of each model using in-

sample period data to predict the one-step-ahead (month) volatility forecasts, and the 

in-sample estimation period is shifted forward by one period for estimation and 

prediction. This process is repeated N times until the last observation of the 

forecasting period. The date of the collapse of the Lehman Brothers in mid-September 

is chosen to distinguish the out-of-sample forecast into the pre-crisis and post-crisis 

periods. The pre-crisis period for the forecasting analysis is ranged from June 2007 to 

September 2008, while the post-crisis period is ranged from September 2008 to 

March 2009. The predicted one-month-ahead volatility is then compared with the 

realized volatility and all the estimated results are recorded for the models comparison 
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using the statistical tests. 

 

 

(a) Housing price index 

 

(b) Real home mortgage amount 

 

(c) Loan to price ratio 

 

(d) Commercial bank assets – consumer loan 

 

(e) Commercial bank assets- inter-bank loan 

Figure 1 Conditional mean forecasts 

 

 The five portions of Figure 1 illustrate the conditional mean forecast of HPI, 

RHMA, LTP, CL and IL. Due probably to the similar specification in the mean 

equation of the three models, the general impression is that their conditional mean 

forecasts are almost the same. However, there is clearly a significant deviation 

between the conditional mean forecasts and observed series in all cases, especially 
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after the period of mid-September 2008. Note that the deviation is more serious in the 

case of CL and IL, as both have declined sharply resulting from the housing market 

downturn and the delinquent or foreclosure of home mortgage. 

 

(a) Housing price index (b) Real home mortgage amount 

 

(c) Loan to price ratio (d) Commercial bank assets – consumer loan 

 

(e) Commercial bank assets- inter-bank loan 

Figure 2 Conditional volatility forecasts 
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 The five portions in Figure 2 present the conditional volatility forecasts 

compared with the realized volatility for the various models. It is apparent that the 

prediction from the various models have under-predicted the volatility in each series. 

In addition, a high deviation between the conditional volatility forecasts and realized 

volatility could be seen from the beginning of May 2008 in most cases. However, it 

seems that all models have failed to capture this ex-post information available at time 

t to generate a more accurate volatility prediction.  

 Table 3 shows the actual and relative values of the pre-crisis and post-crisis 

forecast error statistics on conditional mean for each model across the five error 

measures. First, consider the results of MAE, RMSE and MAPE statistics. For the 

HPI, all three statistics indicate that the APARCH model provides the most accurate 

forecast in both pre-crisis and post-crisis periods. This can be seen from the actual 

values of APARCH, which is smallest among the three models (0.0051, 0.0067, 

0.0062 in the pre-crisis period, and 0.0063, 0.0075, 0.0071 in the post-crisis period). 

Both the MAE and MAPE statistics suggested that the APARCH model gave, 

respectively, 15% (1 - 0.8472) and 18% (1 – 0.8196) more accurate forecast than the 

RiskMetrics model in the pre-crisis period.  

 Other than HPI, the RiskMetrics model ranked second in accuracy in the case 

of RHMA in both forecast periods. The APARCH model ranked third, and gave a 

relative poor performance in both pre-crisis and post-crisis periods among three 

models even though their relative values are close to each other. For both CL and IL, 

the RiskMetrics model provided the poorest forecasts among the three models. 

However, both the difference in the accurate and relative values is extremely small, 

suggesting that the performance among the three models do not have a significant 

difference in forecasting the conditional mean of CL and IL. 
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Table 3 Error statistics from forecasting monthly conditional mean 
 (June 2007 – September 2008) (June 2007 – March 2009) 

MAE RMSE MAPE MAE RMSE MAPE 
Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative 

HPI 

APARCH 
GARCH 
RiskMetrics 

 
0.0051 
0.0060 
0.0060 

 
0.8472 
0.9884 
1.0000 

 
0.0067 
0.0071 
0.0071 

 
0.9423 
0.9930 
1.0000 

 
0.0062 
0.0074 
0.0075 

 
0.8196 
0.9854 
1.0000 

 
0.0063 
0.0066 
0.0067 

 
0.9390 
0.9881 
1.0000 

 
0.0075 
0.0078 
0.0079 

 
0.9580 
0.9924 
1.0000 

 
0.0071 
0.0082 
0.0083 

 
0.8568 
0.9807 
1.0000 

RHMA 

APARCH 
GARCH 
RiskMetrics 

 
0.2190 
0.2123 
0.0212 

 
1.0000 
0.9694 
0.0970 

 
0.0271 
0.2619 
0.0262 

 
1.0000 
9.6642 
0.9675 

 
0.0230 
0.2191 
0.0222 

 
1.0000 
9.5178 
0.9631 

 
0.0217 
0.0212 
0.0213 

 
1.0000 
0.9770 
0.9797 

 
0.0265 
0.0258 
0.0259 

 
1.0000 
0.9744 
0.9762 

 
0.0237 
0.0228 
0.0232 

 
1.0000 
0.9628 
0.9814 

LTP 

APARCH 
GARCH 
RiskMetrics 

 
0.0156 
0.0157 
0.0153 

 
0.9911 
1.0000 
0.9727 

 
0.1231 
0.1236 
0.1230 

 
0.9959 
1.0000 
0.9952 

 
0.0117 
0.0123 
0.0122 

 
0.9560 
1.0000 
0.9927 

 
0.0080 
0.0078 
0.0079 

 
1.0000 
0.9713 
0.9813 

 
0.0113 
0.0112 
0.0112 

 
1.0000 
0.9911 
0.9964 

 
0.0081 
0.0076 
0.0077 

 
1.0000 
0.9420 
0.9445 

CL 

APARCH 
GARCH 
RiskMetrics 

 
0.0090 
0.0090 
0.0090 

 
0.9956 
0.9934 
1.0000 

 
0.0104 
0.0104 
0.0105 

 
0.9971 
0.9952 
1.0000 

 
0.0593 
0.0596 
0.0679 

 
0.8736 
0.8783 
1.0000 

 
0.0113 
0l0113 
0.0113 

 
1.0000 
0.9938 
0.9965 

 
0.0131 
0.0130 
0.0130 

 
1.0000 
0.9923 
0.9931 

 
0.0472 
0.0473 
0.0532 

 
0.8868 
0.8896 
1.0000 

IL 

APARCH 
GARCH 
RiskMetrics 

 
0.0328 
0.0329 
0.0330 

 
0.9939 
0.9976 
1.0000 

 
0.0399 
0.0400 
0.0401 

 
0.9945 
0.9980 
1.0000 

 
0.0326 
0.0327 
0.0328 

 
0.9930 
0.9976 
1.0000 

 
0.0495 
0.0495 
0.0496 

 
0.9984 
0.9974 
1.0000 

 
0.0774 
0.0773 
0.0775 

 
0.9990 
0.9970 
1.0000 

 
0.0519 
0.0518 
0.0512 

 
1.0000 
0.9977 
0.9856 

Note: The relative error statistics is measured by expressing the actual statistics as a ratio to the worst performing model for a given error 
measure. 

 



16 
 

 

Table 4 Error statistics from forecasting monthly conditional volatility 
 (June 2007 – September 2008) (June 2007 – March 2009) 

MAE RMSE MAPE MAE RMSE MAPE 
Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative 

HPI 

APARCH 
GARCH 
RiskMetrics 

 
0.0001 
0.0001 
0.0001 

 
0.8544 
0.9491 
1.0000 

 
0.0001 
0.0001 
0.0001 

 
0.9223 
0.9883 
1.0000 

 
0.0003 
0.0002 
0.0001 

 
1.0000 
0.5926 
0.4815 

 
0.0001 
0.0001 
0.0001 

 
0.9703 
0.9865 
1.0000 

 
0.0001 
0.0001 
0.0001 

 
0.9206 
0.9944 
1.0000 

 
0.0002 
0.0001 
0.0001 

 
1.0000 
0.6087 
0.5217 

RHMA 

APARCH 
GARCH 
RiskMetrics 

 
0.0006 
0.0006 
0.0006 

 
0.9365 
1.0000 
0.9206 

 
0.0009 
0.0009 
0.0009 

 
0.9923 
1.0000 
0.9890 

 
0.0156 
0.0156 
0.0157 

 
0.9898 
0.9900 
1.0000 

 
0.0006 
0.0006 
0.0006 

 
0.9516 
1.0000 
0.9355 

 
0.0009 
0.0009 
0.0008 

 
0.9884 
1.0000 
0.9767 

 
0.0149 
0.0154 
0.0156 

 
0.9520 
0.9827 
1.0000 

LTP 

APARCH 
GARCH 
RiskMetrics 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9793 
0.9217 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9667 
0.9613 

 
0.0027 
0.0025 
0.0023 

 
1.0000 
0.9296 
0.8556 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9974 
0.9902 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9545 
0.9545 

 
0.0023 
0.0023 
0.0022 

 
1.0000 
0.9827 
0.9307 

CL 

APARCH 
GARCH 
RiskMetrics 

 
0.0001 
0.0001 
0.0001 

 
0.9086 
1.0000 
0.9872 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9817 
0.9794 

 
0.4465 
0.6089 
0.5405 

 
0.7332 
1.0000 
0.8876 

 
0.0002 
0.0002 
0.0002 

 
1.0000 
0.9877 
0.9842 

 
0.0003 
0.0003 
0.0003 

 
1.0000 
0.9755 
0.9706 

 
0.3190 
0.4351 
0.3862 

 
0.7333 
1.0000 
0.8876 

IL 

APARCH 
GARCH 
RiskMetrics 

 
0.0015 
0.0015 
0.0016 

 
0.9321 
0.9383 
1.0000 

 
0.0022 
0.0022 
0.0022 

 
1.0000 
0.9776 
0.9955 

 
0.0189 
0.0231 
0.0290 

 
0.6514 
0.7960 
1.0000 

 
0.0067 
0.0067 
0.0064 

 
1.0000 
0.9970 
0.9552 

 
0.0150 
0.0145 
0.0147 

 
1.0000 
0.9726 
0.9806 

 
0.2552 
0.2684 
0.1150 

 
0.9508 
1.0000 
0.4286 

Note: Same as Table 3. 
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Table 5 Error statistics from forecasting monthly conditional mean and volatility 
 (June 2007 – September 2008) (June 2007 – March 2009) 

Conditional mean Conditional volatility Conditional mean Conditional volatility 
MME(U) MME(O) MME(U) MME(O) MME(U) MME(O) MME(U) MME(O) 

Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative Actual Relative 

HPI 

APARCH 
GARCH 
RiskMetrics 

 
0.0067 
0.0065 
0.0066 

 
1.0000 
0.9701 
0.9776 

 
0.0787 
0.0763 
0.0767 

 
1.0000 
0.9688 
0.9737 

 
0.0013 
0.0019 
0.0022 

 
0.5899 
0.8848 
1.0000 

 
0.0043 
0.0033 
0.0023 

 
1.0000 
0.7685 
0.5370 

 
0.0158 
0.0184 
0.0186 

 
0.8502 
0.9860 
1.0000 

 
0.0605 
0.0617 
0.0621 

 
0.9738 
0.9937 
1.0000 

 
0.0035 
0.0042 
0.0044 

 
0.7936 
0.9610 
1.0000 

 
0.0031 
0.0024 
0.0017 

 
1.0000 
0.7717 
0.5434 

RHMA 

APARCH 
GARCH 
RiskMetrics 

 
0.0231 
0.0216 
0.0218 

 
1.0000 
0.9321 
0.9429 

 
0.1344 
0.1364 
0.1378 

 
0.9754 
0.9903 
1.0000 

 
0.0004 
0.0005 
0.0007 

 
0.6087 
0.7536 
1.0000 

 
0.0168 
0.0186 
0.0165 

 
0.9016 
1.0000 
0.8844 

 
0.0534 
0.0510 
0.0507 

 
1.0000 
0.9556 
0.9489 

 
0.1012 
0.1024 
0.1033 

 
0.9792 
0.9916 
1.0000 

 
0.0073 
0.0072 
0.0075 

 
0.9747 
0.9521 
1.0000 

 
0.0122 
0.0135 
0.0119 

 
0.9041 
1.0000 
0.8870 

LTP 

APARCH 
GARCH 
RiskMetrics 

 
0.0128 
0.0105 
0.0104 

 
1.0000 
0.8164 
0.8133 

 
0.0774 
0.0795 
0.0804 

 
0.9623 
0.9891 
1.0000 

 
0.0001 
0.0001 
0.0001 

 
0.9091 
1.0000 
0.8182 

 
0.0097 
0.0098 
0.0094 

 
0.9868 
1.0000 
0.9522 

 
0.0273 
0.0241 
0.0239 

 
1.0000 
0.8820 
0.8757 

 
0.0565 
0.0579 
0.0585 

 
0.9660 
0.9896 
1.0000 

 
0.0027 
0.0026 
0.0028 

 
0.9676 
0.9245 
1.0000 

 
0.0072 
0.0073 
0.0067 

 
0.9808 
1.0000 
0.9207 

CL 

APARCH 
GARCH 
RiskMetrics 

 
0.0352 
0.0351 
0.0358 

 
0.9838 
0.9796 
1.0000 

 
0.0617 
0.0618 
0.0609 

 
0.9981 
1.0000 
0.9845 

 
0.0020 
0.0016 
0.0017 

 
1.0000 
0.8061 
0.8878 

 
0.0069 
0.0076 
0.0072 

 
0.9001 
1.0000 
0.9514 

 
0.0565 
0.0562 
0.0570 

 
0.9902 
0.9863 
1.0000 

 
0.0476 
0.0477 
0.0470 

 
0.9985 
1.0000 
0.9866 

 
0.0066 
0.0062 
0.0063 

 
1.0000 
0.9376 
0.9635 

 
0.0050 
0.0055 
0.0053 

 
0.9024 
1.0000 
0.9530 

IL 

APARCH 
GARCH 
RiskMetrics 

 
0.0494 
0.0495 
0.0497 

 
0.9932 
0.9966 
1.0000 

 
0.1493 
0.1484 
0.1484 

 
1.0000 
0.9939 
0.9940 

 
0.0027 
0.0033 
0.0029 

 
0.8374 
1.0000 
0.8926 

 
0.0464 
0.0514 
0.0507 

 
0.9036 
1.0000 
0.9868 

 
0.0901 
0.0906 
0.0909 

 
0.9914 
0.9969 
1.0000 

 
0.1176 
0.1171 
0.1172 

 
1.0000 
0.9957 
0.9963 

 
0.0130 
0.0122 
0.0108 

 
1.0000 
0.9368 
0.8335 

 
0.0338 
0.0375 
0.0375 

 
0.8998 
0.9989 
1.0000 

Note: The relative error statistics is measured by expressing the actual statistics as a ratio to the worst performing model for a given error measure. 
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 Table 4 shows the pre-crisis and post-crisis forecast errors statistics on conditional 

volatility. The MAE and RMSE statistics suggest that the RiskMetrics model has provided the 

most inaccurate forecast in both pre-crisis and post-crisis periods. Similar to the conditional 

mean forecast result shown in Table 3, the MAE statistics suggests that the forecast by the 

APARCH model is 15% more accurate than the RiskMetrics model. Interestingly, the MAPE 

statistics indicates that the APARCH is the worst model in predicting the conditional volatility 

among the three models. In addition, the APARCH model is 51% and 48% less accurate than the 

RiskMetrics model in pre-crisis period and post-crisis period, respectively.  

 In measuring the conditional volatility forecast of RHMA, the MAE and RMSE statistics 

suggest that the RiskMetrics model has performed better than both APARCH and GARCH 

models. However, the MAPE statistics presents an opposite outcome that the RiskMetrics model 

provides a less accurate forecast in both pre-crisis and post-crisis periods. In the case of LTP, it is 

clear that the actual value of the pre-crisis and post-crisis forecast error statistics on conditional 

volatility is similar in various models. There is no clear distinction between models forecast 

though all statistics show that the APARCH model has the poorest performance on LTP 

conditional volatility. 

 The forecast error statistics shown in Table 3 and Table 4 are based on the assumption of 

symmetric loss function. It is, however, common in practice that under-prediction and over-

prediction are not equally weighted by investors. Table 5 presents the MME statistics that show 

the over-prediction and under-prediction in the conditional mean and volatility for the pre-crisis 

and post-crisis periods, respectively. It could significantly be seen that both conditional mean and 

conditional volatility have generally been over-predicted by all models in all cases as the actual 

values of MME(O) in both conditional mean and volatility are considerably higher than that of 

MME(U). Conversely, under-prediction in conditional mean and volatility is common during the 

post-crisis period. 

 Due to the downturn of the U.S. economy after the collapse of Lehman Brothers in mid-

September 2008, the magnitude of financial market volatility has increased remarkably. One can 

see from the result of forecast error statistics in Table 3 and Table 4 that the actual value of 

forecast error in each model is much larger in the post-crisis than in the pre-crisis period. In 

contrast to the actual value of MME statistics in pre-crisis period shown in Table 5, it is 
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apparently that the actual values of MME(U) of all underlying variables have increased sharply 

in post-crisis period. The MME(U) statistics in Table 5 that weights under-prediction errors more 

heavily has shown that the RiskMetrics model has provided the worst conditional mean forecast 

for HPI, LTP and IL. For the conditional volatility forecast, the RiskMetrics model has also 

performed poorly in HPI, RHMA and LTP. It implies that a model with a good performance in 

in-sample analysis may not provide an accurate out-of-sample forecast. 

 

 

V Conclusion 

 This paper has provided the in-sample estimation of the conventional GARCH, APARCH 

and the benchmark Riskmetrics model on real estates related finance series, and evaluated the 

out-of-sample conditional mean and volatility forecast performance of various models. The date 

on the collapse of the Lehman Brothers in mid-September is chosen to distinguish the out-of-

sample forecast into pre-crisis and post-crisis periods. The empirical results show that the 

Riskmetrics model has performed satisfactorily in the in-sample estimation but poorly in the out-

of-sample forecast. For the post-crisis out-of-sample forecasts, all models have performed poorly 

in conditional mean and volatility forecast. This result probably is expected. Nonetheless, the 

2008 financial crisis has provided a good insight that banks could have under-estimated the 

potential risk in the sub-prime mortgages. To a large extent, asset returns generally have a 

random walk feature. An over-reliance on forecasting the future movement of the asset returns is 

not an appropriate move in reality. 

 Although standard models have been used in the volatility forecast exercise, the 

performance of the data prior to the 2008 crisis can provide lessons on the riskiness of real estate 

finance. Nonetheless, the volatility forecasting analysis using the U.S. real estates related finance 

data poses challenges on existing methodologies and the use of other suitable proxy variables in 

forecasting the risk in the real estate market. This paper has probably brought out the problem 

and left the solution to future studies.    
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