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Abstract:  

 This paper employs a fully nonparametric stochastic frontier model with time and 

individual effects to study technical efficiency in China’s post-reform economy. The 

panel data cover China’s thirty provinces for the period of 1985-2008. The empirical 

results show that the average output elasticity of labor is larger than the other two inputs 

of capital and human capital. Based on the specified inefficiency Tobit model, the factor 

analysis on technical efficiency shows that the time effects of technical efficiency in 

China’s post-reform economy are significantly contingent on the factors. There exists 

significant regional differences in technical efficiency in China’s economic development, 

and a number of policy implications can be drawn. 

 

 

Key words: Fully nonparametric stochastic frontier; time effects and individual effects; 

time variant; technical efficiency; Tobit model. 

 

JEL Classifications: C52, D24, O47 

_____ 
† Corresponding author: Kui-Wai Li, City University of Hong Kong, Tel.: 852 34428805; 

Fax.: 852 34420195; E-mail: efkwli@cityu.edu.hk. 

Acknowledgement: The authors are indebted to the invaluable comments from the 

referees and would like to express their gratitude for the various research funding 

supports. Zhou’s research was supported by the National Natural Science Foundation of 

China (Grant 70971143), and Li’s research funding was supported by the City 

University of Hong Kong under two Strategic Research Grants (Numbers 7001907 and 

7002175). Research assistance from Liang Wang, Helen H. K. Lam, Pang Yu and Lan 

Ting are gratefully acknowledged. The usual disclaimer applies. 

 



 2 

1.  Introduction 

The discussion on the sustainability of economic growth in China’s post-reform 

economy has led to studies on China’s productivity, using either growth accounting or 

stochastic frontier analysis (SFA) (Chen et al., 2009; Chen et al., 2008; Wu, 2000, 2003, 

2004; Hu and Khan, 1997; Woo, 1998; Mao and Koo, 1997; Borenstein and Ostry, 1996; 

Yang and Lahr, 2010). For example, the studies by Chow and Li (2002) and Li (2003) 

used investment figures to construct capital stock to estimate China’s national total 

factor productivity (TFP) growth rates have been extended by Liu and Li (2006) and Li 

(2009) who incorporated the human capital variable and alternative investment data to 

examine both national and provincial TFP growth rates. Similar studies by Wang and 

Yao (2003) have examined the sources of China’s economic growth, while Swamy 

(2003), Motohashi (2007) and Bosworth and Collins (2008) have compared China’s 

TFP with other world economies.  

In studying the technical change in the United States, Solow (1957) differentiated 

the movement along the production function caused by input growth from shift in the 

production function caused by technical progress. Both Bauer (1990) and Kumbhakar 

and Lovell (2000) have shown that TFP growth composes of technical progress, 

technical efficiency change and a scale economies effect. In theory, technical progress is 

an outward shift of the production frontier and technical efficiency change shows the 

movement from a position within towards a position on the production frontier, while 

the scale economies effect reflects an increase in return to scale.  

Other studies have elaborated and extended China’s post-reform economic 

productivity to efficiency analysis by using the Malmquist productivity index (MPI) and 

data envelop analysis (DEA) (Wu, 1995, 2008). The MPI that decomposes productivity 

into efficiency and technological change has also been applied in Ma et al. (2002) and 

Movshuk (2004). Studies on the productivity and efficiency performance of individual 

industries in China have been conducted by Jefferson (1990) and Mu and Lee (2005), 

while Yao et al. (2007) and Sun et al. (1999) agreed that SFA and DEA are the more 

effective approach to measure the technical efficiency of industries. The SFA used in 

studies on the China’s economy have provided useful implications on the production 
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function and technical efficiency performance (Huang and Kalirajan, 1998; Kalirajan et 

al., 1996; Brummer et al., 2006; Hu and McAleer, 2005; Tong, 1999; Wu 2000, 2003; 

Fu, 2005).  

Nonetheless, studies on China’s post-reform economy have provided a continued 

debate on whether technical progress or technical efficiency is the more important 

contributing factor to China’s TFP growth (Wu, 2000; Li and Liu, 2011). After more 

than three decades of economic reform since 1978, it would be useful to examine if 

technical efficiency has become an important factor in China’s growth. In addition, an 

objective measure on the technical efficiency among China’s provinces is crucial. Given 

the extraordinary nature, the heterogeneity of development in various regions and 

different time periods, a flexible stochastic frontier model can be used to study technical 

efficiency in the post-reform China’s economy. 

Empirical studies using the conventional stochastic frontier analysis on panel data 

models often implicitly impose a restriction that information differences have no effect 

on the way risk-neutral decision makers utilize the same input bundle (Christopher et al., 

2010). The result is that informational differences are mistaken for differences in 

technical efficiency. The two specific effects that reflect information differences are the 

individual effects and the time effects. They are usually specified in stochastic frontier 

models in the manner that individual effects are time-invariant and do not interact with 

time effects, often in linearity or in parametric forms. However, when the individuals in 

the sample differ in technology and efficiency with differenced information, especially 

when such heterogeneity changes with time, the linear or parametric specification 

cannot fully describe the heterogeneity in the production function and may induce a bias 

in the measurement of technical efficiency. Conventional methods (either DEA or SFA) 

attribute the model misspecification errors to inefficiency (Fu, 2005; Balaguer-Coll et 

al., 2007; Grösche, 2009; Joseph et al., 2010; Battese and Coelli, 1992, 1995; 

Kumbhakar and Lovell, 2000; Wu 2003). Researchers have relaxed distributional 

assumptions in the error component and parametric assumptions in SFA to achieve a 

more reliable measurement of technical efficiency (Greene, 2005; Kneip and Simar, 

1996; and Henderson and Simar, 2005). 
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The data set used in this study contains the thirty provinces in China for the period 

from 1985 to 2008. One can note that China during the sample period has experienced a 

systemic transition with heterogeneity of provinces and development periods. The 

regional effects and time effects should be given sufficient attention in measuring the 

technical efficiency of the economy. This paper provides a time-variant estimation of 

technical efficiency in China’s post-reform economy by specifying and estimating a 

fully nonparametric stochastic frontier model with nonparametric individual and time 

effects (Henderson and Simar, 2005). A factor analysis on technical efficiency by using 

the Tobit regression will also be conducted. 

Section 2 specifies the nonparametric model and presents the estimation method. 

Data and variables specification are illustrated in Section 3. Section 4 presents the 

empirical results of the frontier model and the measurement of the technical efficiency. 

Section 5 provides the specification test to show the suitability of the nonparametric 

model. Section 6 provides a factor analysis on the technical efficiency based on the 

Tobit estimation. Section 7 concludes the paper. 

 

 

2．Fully Nonparametric Model Specification  

The studies in Gong and Sickles (1992) and Christopher et al. (2010) show that the 

estimates of technical efficiency for the parametric panel data frontier model can be 

improved when the production function model is closer to the true underlying 

technology. In practice, the data generating process is unknown and so are the stochastic 

factors in the economic data. Hence a flexible model specification will give a more 

reliable result on frontier and efficiency estimates. In our sample period, production 

technology and efficiency in China has experienced uneven development among 

different provinces. A fully nonparametric stochastic model can thus give reliable 

technical efficiency estimates. We specify the nonparametric stochastic frontier model 

as follows: 

( , , ) ,   1,2, , ; 1,2, ,it it ity f x i t u i n t T                    (1) 
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where ity  is the logarithm of real gross regional product (RGRP) for province i  in 

year t ; itx  is the vector of the logarithm of the three inputs: capital (K), labor (L) and 

human capital (HC); ( , , )f x i t  is the production function which is allowed to vary over 

each province and time period, and is nonparametric with input variables x , individual 

effects and time effects; itu  is the error term independent of itx . As we know, human 

capital may have an impact on production through both direct and indirect channels 

(Barro and Sala-i-Martin, 1999; Benhabib and Spiegel, 2005; Vandenbussche et al., 

2006). Equally, the human capital embodied in the labor force can exert a direct and an 

indirect influence on aggregate production through technological innovation, imitation 

and adoption. Given that the impact channels are uncertain, it would be appropriate to 

allow human capital to enter the production function and interact with capital and labor 

inputs, individual and time effects in a nonparametric manner. 

 Model (1) can be estimated using the approach in Henderson and Simar (2005). 

Denote ( , , )x i t  as the first derivative of ( , , )f x i t  with respect to x . By the Taylor 

expansion,  

( , , ) ( ) ( , , ) (| |)it it it ity f x i t x x x i t o x x u      ,           (2) 

where (| |)ito x x  is the higher-order term of | |itx x . Since we apply the local linear 

estimation, and the higher-order term is (| |)co h  as the bandwidth ch  of the 

continuous variable tends to zero, and hence the higher-order term can be merged into 

the error term and does not affect the consistency of the nonparametric function. Note 

that the frontier function includes unordered categorical variable i  and ordered 

categorical variable t . To smooth them, the following kernel function is applied: 

( , , )ijts c u oK h h h    , , ,1
( ) /

q

r js r cr u ij o tsr
k x x h l l


  

where ( )k   is the kernel for continuous input variables; ,u ij
l  and ,o ts

l  are the kernels 

for the individual variable i  and the time variable t , defined as 
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As 0uh  , , 1{ }
u ij

l j i   is the indictor function of province i, implying that only the 

data of province i are used in the estimation; as 1uh  , , 1
u ij

l  , the product kernel is 

unrelated to province i, implying that individual effects have been smoothed out. Now 

uh  is allowed to change continuously, and is combined with the above two special 

cases and plays a role in the smoothness of individual effects. In the similar way, oh  

plays a role in the smoothness of time effects. We call 1( , , ), ,c c cq u oh h h h h  the 

smoothers or bandwidths for continuous variables, individual variable, and time 

variable, respectively. Let (1, )
js js

X x x  . From (2), ' '( , , ) ( ( , , ), ( , , ) )x i t f x i t x i t   

can be estimated by 

1

' '

1 1 1 1

ˆ( , , ) ( , , ) ( , , )
n T n T

ijts c u o js js ijts c u o js js

j s j s

x i t K h h h X X K h h h X y


   

   
    
   
  .   (3) 

The optimal bandwidth ( , , )c u oh h h  can be determined by the least squares cross 

validation (LSCV) approach: 

 0( , , )c u oh h h ＝ 2
0 1 1

ˆarg min ( , , ) ( ( , , ))
T n

c u o it i itt i
CV b b b y f x i t 

   .   (4) 

Here ˆ ( , , )i itf x i t  is the leave-one-out estimator of ( , , )itf x i t  with bandwidths ch , ub  

and ob , where 0cb , ,u oh h  are positive constants, 1/(4 )
0 ( )( ) q

c c
h b std x nT

  , and ( )std x  

denotes the sample standard deviation vector.  

Following Henderson and Simar (2005), the estimate of technical efficiency for 

province i in time period t is defined as 

ˆexp ( , , )it itTE f x i t
1, ,

ˆmax ( , , )it
j n

f x j t .                 (5) 

Essentially the measure of technical efficiency compares the difference between the 

actual (estimated) outputs of province i and the maximum potential output produced by 

any other province in the sample for the same time period. 

 Besides the nonparametric specification in Model (1), we also present two other 
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specifications of semiparametric and parametric models for comparison. The purpose is 

to know what will happen to the estimates when restrictive specifications on the 

technology are estimated. The two special cases are restricted forms of Model (1) with 

time-invariant production functions instead of time-variant ones. In the semiparametric 

case, the specification is 

( ) ,  1,2, , ; 1,2, ,it it i ity f x u i n t T               (6) 

where ( )f   is a nonparametric function of the inputs to be estimated, which is an 

averaged and time-invariant production function, and the fixed effects i iu    enter 

the model in a linear and additive form which is also time-invariant. The function ( )f   

can be estimated, denoted as ˆ ( )f  , by the locally linear nonparametric kernel methods 

(Li and Racine, 2007). The parametric case is a particular case of the semiparametric 

form with '( )
it it

f x x  : 

  ' ,   1 , 2 , , ; 1 , 2
i t i t i i t

y x u i n t                     (7) 

The parameter  , denoted as ̂ , can be estimated by the conventional within-estimator 

for panel data models with fixed effects. The technical efficiency for province i is 

defined as (Kneip and Simar, 1996)  

ˆexp )i iTE u ,                             (8) 

where in a normalization form ˆ
iu 

i
ˆmax i ˆ

i , ˆ
i 1

ˆ( ( )) /
T

it itt
y f x T


   in the 

semiparametric case, and ˆ
i

'

1
ˆ( ) /

T

it itt
y x T


   in the parametric case. We will 

apply specification tests only to the most suitable model in our empirical study. 

 

 

3.  Data and Variables 

Despite the debate on the accuracy of macroeconomic data and the lack of a 

reliable alternative set of economic data in post-reform China, empirical studies have 

relied on reconstructed macroeconomic variables (Young, 2000; Rawski and Xiao, 2001; 
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Holz, 2006; Chow 2006). 1  Other than accuracy, critics have noted a number of 

problems in China’s macroeconomic data. One concern is the transformation from the 

Soviet material product system (MPS) to the system of national accounts (SNA) as the 

former does not value “non-market” and “non-materials” output and services and 

another concern is the deficiency in China’s national account and statistical practice 

(Maddison and Wu, 2008; Wu, 2000, 2003). 2
 Others have concentrated on the 

estimation of the capital stock series, and that such detailed measures as the scrap rate 

and depreciation rate of the same capital equipment at different years are absent (Wu, 

2007; Holz, 2006). A number of empirical studies agree that problems in the time series 

data may cancel out each other and that China’s statistical reporting system and data 

reliability have improved over the years (Chow and Li, 2002; Li, 2003, 2009; Szirmai et 

al., 2005).  

The data for China’s thirty provinces and the construction of key variables used in 

this paper are elaborated in the Appendix. The thirty provinces that include the four 

autonomy areas and three municipalities under direct central administration are 

geographically divided into four regions. The Southern region composes of nine 

southern provinces, commonly known as the Pearl River Delta provinces of Fujian, 

Guangdong, Guangxi, Hainan, Jiangxi, Hunan, Sichuan (including Chongqing since 

1997), Guizhou and Yunnan. The Eastern region consists of twelve provinces, including 

mainly provinces in the Yellow River and Yangtze River Delta regions of Beijing, 

Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Shandong, Anhui, Henan, Hubei, Shanxi 

and Gansu. The Western region refers to the remote provinces of Inner Mongolia, Tibet, 

Shaanxi, Qinghai, Ningxia, and Xinjiang. The remaining three provinces in 

Northeastern region are Jilin, Heilongjiang and Liaoning, which consist of the 

traditional state-owned heavy industries. These four sub-regions in China are chosen in 

our study to reflect the geographical strength and economic growth concentration. 

 China’s national and regional output figures can be obtained, respectively, from the 

                                                        
1 China’s GDP has been revised upwards by US$300 billion in December 2005. South China Morning Post, 
December 13 and 21, 2005, and January 13, 2006. 
2 For example, China’s National Bureau of Statistics (NBS) reported in December 2004 that by incorporating 
non-agricultural activities, annual GDP estimates have been under-reported. 
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Statistical Yearbook of China and the various provincial statistical yearbooks. Scholars 

have used national income and sector output to construct China’s physical capital stock 

(Jefferson et al., 1996; Wu, 1995, 2008). One reliable method shown in Chow and Li 

(2002) and Li (2003) is Chow’s (1993) estimation of China’s 1952 physical capital 

stock. Based on the “accumulation” figures available up to 1978 in the official statistics 

and the additional comparable net investment and provincial depreciation figures since 

1978, the construction of China’s national and provincial physical capital stock series 

have been extended to 1998. While Li (2009) has repeated the construction exercise and 

extended the data to 2006, the analysis in this paper adopts the same steps and extends 

China’s provincial physical capital stock to 2008. The data of the labor inputs are the 

total employed persons (in ten thousand persons) obtained from the Statistical Yearbook 

of China. 

 Human capital has been considered as an endogenous growth variable (Romer, 

1990; Tamura, 2002, 2006; Turner et al., 2008). Similarly, there have been alternative 

methods in constructing human capital (Gemmell, 1996; Zhang et al., 2005; Chi, 2008). 

The inventory approach used in Wang and Yao (2003) measures China’s human capital 

stock per capita in average years of schooling for the period 1984-2000. In Liu and Li 

(2006) and Li et al. (2009), the years of schooling are divided into six levels (primary 

education, junior secondary, senior secondary, vocational secondary, specialized 

secondary and higher education). The inventory-based construction of the human capital 

stock has been adjusted by inter-provincial migration and mortality rates from the 

estimated census data. Since 2004, the six levels of schooling have been reclassified 

into four levels of primary education, junior middle education (including regular junior 

middle and vocational junior middle education), senior middle education (including 

regular senior middle, vocational middle and specialized secondary), and higher 

education. Following Li (2009, Appendix), standard assumptions on the transition 

between different classifications are used so that national and regional human capital 

stocks per capita adjusted by employment figures can be updated to 2008 (see 

Appendix). Li et al. (2009, Table 3) reports that the estimation on China’s human capital 

by the inventory method is similar to the estimation in Barro and Lee (2001), whose 
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study has shown that China’s human capital is lower than that of other Asian economies. 

 In order to eliminate the size effect of the provinces that may affect the measure of 

technical efficiency, we include in the denominator of each province’s real gross 

regional product (RGRP), physical capital stock and labor inputs the province’s total 

population. Kneip and Simar (1996) and Henderson and Simar (2005) have also made 

such an adjustment in their frontier models to measure technical efficiency. Table 1 

provides the simple statistics for the data of the four variables. The coefficients of 

variation in the last column of Table 1 show that RGRP and physical capital stock have 

much larger degrees of variation than the other two variables in our sample.  

 

Table 1 Summary Statistics of the Data (30 provinces: 1985-2008) 

 average min max stdev coefficient of variation 

RGRP/Population  2581.71 326.26 26576.64 2936.55  114% 

Capital/ Population 9219.06 848.10 86385.38 11103.96 120% 

Labor/ Population 0.51  0.36  0.82  0.07  15% 

Human Capital 5.45  0.74  10.88  1.90  35% 

  

Figure 1 reports the dynamic average performances of the four variables. One 

general observation is that these variables show obvious time trends in the sample 

period, especially since the late 1990s. The labor per capita variable has shown a clear 

structural break. The Eastern region has the highest average RGRP per capita. The 

Northeastern region has a similar level of RGRP per capita to the national average, 

whereas the Western and Southern regions have a lower level than the national average. 

Although the Northeastern region has the highest level of physical capital and human 

capital per capita, it has the lowest labor per capita. The differences in RGDP, level of 

physical capital stock and human capital per capita across provinces and regions show 

clearly that there are great variations in the development paths among the provinces in 

China’s post-reform economy. The statistical evidences shown in Table 1 and Figure 1 

hint that a flexible time-variant stochastic econometric model with individual effects 

and time effects may be required in order to estimate a reliable measure of technical 

efficiency for China’s post-reform economy. 
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Figure 1 Dynamics of China’s Average Real GDP or GRP per capita (1985-2008) 

 

 

4.  Estimation Results 

In order to provide a comparison with the estimation of the nonparametric 

specification indicated in Model (1), we also specify two other restricted versions with 

time-invariant specification, namely, the semiparametric Model (6) and the parametric 

Model (7). All the variables are expressed in logarithms. The variables are adjusted for 

the time trend effect in the two restricted models, but not in the nonparametric Model (1) 

because the time effect has already been picked up by the categorical variable. This 

time-effect adjustment for dependent and independent variables in the time-invariant 

models is also used in Kneip and Simar (1996) and Henderson and Simar (2005). The 



 12 

technical efficiency for the two restricted versions is calculated from Model (8).  

In the nonparametric estimation of Model (1) and Model (6), we select the 

fourth-order Gaussian kernel function    2 2( ) 1.5 0.5 exp / 2 / 2k u u u     to 

alleviate the curse of dimensionality since the dimension of the input variables is three. 

By using the least squares cross validation (LSCV) approach shown in (4), the optimal 

bandwidths of the three continuous input variables are 0.492, 0.072 and 0.217, and the 

optimal bandwidths of categorical variable i  and ordered categorical variable t  are 

0.153 and 1.035, respectively, for the estimation of Model (1).3 The LSCV optimal 

bandwidths of the three continuous input variables for the local linear nonparametric 

estimation of the semiparametric Model (6) are 0.051, 0.046 and 0.041.4 

We use R2, the squared correlation coefficient between the dependent variable and 

the fitted value, to measure the goodness-of-fit for the estimated model. The R2 values 

for the estimation of the three models are shown in the last column of Table 2, and the 

values given by parametric and semiparametric models are 0.38 and 0.48, respectively. 

The nonparametric estimation gives a large goodness-of-fit measure with R2 = 0.98.5 

 

Table 2 Estimation of Average Output Elasticity 

 Capital Labor Human Capital R2 

Parametric 0.6191 0.1475 -0.0949 0.3772 

 (0.0948)  (0.0764)  (0.1009)   

Semiparametric 0.6513 0.2785 -0.1336 0.4828 

 (0.0844) (0.1053) (0.1000)  

Nonparametric 0.7494 1.2211 0.5488 0.9829 

 (0.0796) (0.4431) (0.2664)  

Note: The values in parenthesis are the bootstrapped standard errors of the estimates. The 

replications are 400. 

 

                                                        
3 In order to examine the effect of the kernel selection on the estimation results, we also apply the second-order and 
the sixth-order Gaussian kernel for the nonparametric estimation. It is found that the results are quite similar. Hence 
we only report the results from the fourth-order Gaussian kernel. 
4 The optimal bandwidths chosen in the nonparametric estimation of the semiparametric model (6) are much smaller 
than those in the nonparametric estimation of the nonparametric model (1). This is due to the fact that the variables 
have been adjusted for the time effect in the semiparametric model (6) but not in the nonparametric model (1). 
However, the categorical variable t in nonparametric model (1) picks up the time effect with an optimal bandwidth of 
1.035. 
5 Note that the R2 from the nonparametric estimation is not suitably compared with the R2s from the parametric and 
semiparametric estimations since they have different dependent variables. For the latter two models, the dependent 
variables have been dealt with by a time-effect adjustment since they are specified with a time-invariant restriction. 



 13 

Table 2 shows the sample average of the output elasticity estimates of the three 

inputs in the three specification models and their corresponding bootstrapped standard 

errors. In the parametric and semiparametric models, the coefficient estimates of capital 

and labor are positive and significant, while the coefficient estimates of human capital, 

though insignificant, are negative and unexpected. However, the elasticity estimates of 

the three inputs in the nonparametric model are positive and significant, which can 

provide expected and meaningful economic explanation. When compared to other 

studies, for example, by Young (2003) and Li (2009) who do not estimate the output 

elasticity of inputs by using per capita output and inputs, our finding shown in Table 2 is 

that the output elasticity of labor, instead of the elasticity of capital, is the largest of the 

three inputs. 

Table 3 presents the estimates of the yearly average technical efficiency of the 30 

provinces. The average time-invariant technical efficiency results are calculated 

according to the parametric Model (7) and semiparametric Model (6) using formula (8), 

while the average time-variant technical efficiency results are calculated according to 

the nonparametric Model (1) using formula (5).  

Table 3 shows a large discrepancy in the ranking of provinces between the 

semiparametric and parametric models for a majority of provinces. Only the three 

provinces of Beijing, Heilongjiang and Jiangxi are ranked in almost the same order 

between the two estimates. Such a result, along with the weak goodness of fit and the 

meaningless and insignificant coefficient estimates of human capital, suggests that the 

time-invariant assumption shown by the linear parametric and semiparametric models 

may be incorrect. The less restrictive nonparametric time-variant model can correctly be 

used to calculate the time-variant technical efficiency. Indeed, many of the rankings in 

the nonparametric model differ significantly from those in the parametric and 

semiparametric models. 

 

 

 

Table 3 Average Technical Efficiency and Province Ranking 
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Province   Parametric   Semiparametric   Nonparametric     DEA      

TE rank TE rank TE rank TE rank 

Beijing 0.2309 29 0.9901 28 0.7988  27 0.6941 17 

Tianjin 0.2840 27 0.9905 24 0.8924  21 0.8474  8 

Heibei 0.7621  8 0.9980  3 0.9794   9 0.9252  5 

Shanxi 0.6185 16 0.9903 25 0.8478  25 0.6018 24 

Inner Mongolia 0.6267 13 0.9923 17 0.9504  15 0.7031 16 

Liaoning 0.2576 28 0.9922 18 0.6885  30 0.6123 23 

Jilin 0.6204 15 0.9864 30 0.9153  19 0.7496 15 

Heilongjiang 0.6294 12 0.9930 12 1.0000   1 0.8059 11 

Shanghai 0.1839 30 0.9931 11 0.9575  14 1.0000  1 

Jiangsu 0.4151 25 0.9917 19 0.9598  13 1.0000  2 

Zhejiang 0.4270 24 0.9952  6 0.9954   6 0.8626  7 

Anhui 0.7821  5 0.9934  9 0.9924   8 0.7610 14 

Fujian 0.6014 17 1.0000  1 1.0000   2 0.8423  9 

Jiangxi 0.7683  7 0.9935  7 0.9682  11 0.7624 13 

Shandong 0.5856 18 0.9934 10 0.9324  16 0.8685  6 

Henan 0.7571  9 0.9915 20 0.8625  24 0.6927 19 

Hubei 0.6775 11 0.9929 14 0.9997   3 0.8095 10 

Hunan 0.8760  3 0.9902 27 0.9945   7 0.7865 12 

Guangdong 0.5441 22 0.9955  5 0.9784  10 0.9967  3 

Guangxi 1.0000  1 0.9929 15 0.9032  20 0.6935 18 

Hainan 0.5446 20 0.9957  4 0.8680  23 0.6185 22 

Sichuan 0.7820 6 0.9912 22 0.9976   4 0.9911  4 

Guizhou 0.9786  2 0.9890 29 0.9154  18 0.5914 25 

Yunnan 0.8543  4 0.9924 16 0.9671  12 0.6653 20 

Tibet 0.3752 26 0.9999  2 0.9967   5 0.3878 30 

Shaanxi 0.6227 14 0.9915 21 0.8404  26 0.5638 27 

Gansu 0.6838 10 0.9903 26 0.9310  17 0.6497 21 

Qinghai 0.5445 21 0.9912 23 0.7565  28 0.4713 28 

Ningxia 0.4996 23 0.9930 13 0.7558  29 0.4506 29 

Xinjiang 0.5496 19 0.9935  8 0.8740  22 0.5793 26 

 

The nonparametric time-variant model estimation provides more information on the 

provinces and time dependent structure of the efficiencies. Appendix Table A1 reports 

the yearly technical efficiency scores of all provinces based on the nonparametric Model 

(1) and the formula (5). The scores show that the two provinces of Heilongjiang and 

Fujian are technically efficient in all years during the sample period. A total of thirteen 

provinces (Beijing, Shanxi, Liaoning, Jilin, Henan, Guangxi, Hainan, Guizhou, Shaanxi, 

Gansu, Qinghai, Ningxia, and Xinjiang) are not technically efficient in any year; the 

remaining 15 provinces are technically efficient in at least one time period. Beijing 
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ranked 27th in technical efficiency and is less efficient than many other provinces. 

It can be calculated from Appendix Table A1 that 29.7 percent of observations (720 

observations from 30 provinces in 24 sample years) have attained technical efficiency. 

The coefficient of variation for technical efficiency estimates is 10.6 percent, which 

shows that the difference of technical efficiency among the provinces should not be 

ignored. Such a finding is not available from the time-invariant parametric or 

semiparametric models. 

Figure 2 presents the dynamics of the average technical efficiency for the 30 

provinces in the sample period. Economic liberalization in the early years of economic 

reform and openness has probably led to the initial increase in technical efficiency. The 

initial increase in technical efficiency, however, was not sustainable. The technical 

efficiency declined rapidly to the lowest level in 1992 before it bounced back and 

reached new peaks in 1998 and 2006. 
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Figure 2 The Dynamics of Technical Efficiency 

 

Figure 3 shows the regional variation in the dynamics of average technical 

efficiency. At the national level, and despite the marginal decline between 1985 and 

1992, the overall trend has been a gradual increase in technical efficiency. Both the 

Eastern and Southern regions have shown a better performance than the national 

average. Provinces in the Western and Northeastern regions have shown a lower level of 
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efficiency than the national average. Provinces in the Northeastern region have shown a 

lowest level of technical efficiency before 1994, but since then, it has overtaken the 

Western region. Although there has been much attention and emphasis on the economic 

development in the Western region, its technical efficiency has remained backward, 

probably due to the faster economic development in the Eastern and Southern regions 

that had made the interior regions unattractive. Technical efficiency tends to be higher 

than the national average in the Eastern and Southern regions, which historically have 

been the most developed regions in China. 
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Figure 3 The Dynamics of Average National and Regional Technical Efficiency 

 

 

5.  Model Specification Test and Discussion 

The semiparametric Model (6) and the linear parametric Model (7) assume 

time-invariant specifications in the estimation of technical efficiency, while the 

nonparametric Model (1) allows a flexible production specification with time-variant 

production technology. We have shown that the efficiency rankings among provinces in 

China differ greatly in the different approaches used to measure technical efficiency, 

and that the nonparametric specification is most suited to our sample. For a rigid 

analysis one needs to present a specification test whether this is acceptable or not.  
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This section presents two tests for model specification. The first test is to choose 

between (6) and (7). The null hypothesis is linear parametric Model (7) and the 

alternative is semiparametric Model (6). The second test is to choose between (1) and 

(6). The null hypothesis is semiparametric Model (6) and the alternative is 

nonparametric Model (1). We apply the test approach in Henderson et al. (2008). The 

test statistics for the two tests are, respectively, 

 
2

(1) '

1 1

1 ˆ ( )
n T

n it it

i t

I x f x
nT


 

   and  
2

(2)

1 1

1 ˆ( ) ( , , )
n T

n it it

i t

I f x f x i t
nT  

  , 

where ̂  is a consistent estimate of the coefficient vector in (7), while ( )f   and 

ˆ ( , , )f i t  are the consistent estimators of (6) and (1), respectively. Under the 

corresponding null, statistics (1)
n

I  and (2)
n

I  converge to zero in probability; under the 

alternatives, they both converge to positive constants. Here we use bootstrap method to 

approximate the asymptotic distribution and obtain the probability value (p-value) of 

each test, where the bootstrap replicate is 600. The values of (1)
n

I  and (2)
n

I  are 2.1113 

and 3.9936 with the corresponding bootstrapped p-values of 0.0317 and 0.0025, 

respectively. The test results show that the nulls are rejected at a 5 percent significant 

level, and imply that the final model we should apply in our study is the nonparametric 

Model (1). This justifies the use of fully nonparametric model specification and 

estimation and further reconfirms the analysis on technical efficiency.  

 It would be interesting to compare the technical efficiency estimate from the 

nonparametric Model (1) and the technical efficiency measure from the data envelope 

analysis (DEA) approach though the two types of models are not nested since DEA is 

deterministic and does not allow for noise. The last column in Table 3 provides the TE 

scores and rankings based on the DEA approach. There also exists a large difference 

between the two kinds of score rankings. The DEA is essentially a descriptive tool that 

allows the analysis of the observed technology with deterministic but nonparametric 

frontiers where no statistical noise or random disturbance for the data is allowed (Kneip 

and Simar, 1996; Monchuk et al, 2010). However, neither output elasticity of the inputs 



 18 

nor inference is available from DEA.6  

To compare the technical efficiency score rankings from different approaches, we 

calculate the correlation of the rankings between the nonparametric and the other 

models. The correlation coefficients between the nonparametric model and the two 

time-invariant models are only 0.30 and 0.44, respectively, while the correlation 

between the rankings in the nonparametric case and the DEA case is 0.59. This implies 

that the production function form and the time-variant characteristics in the technology 

are important in measuring technical efficiency in China’s post-reform economy. 

 

 

6  Factor Analysis of Technical Efficiency: Tobit Model of Inefficiency 

The calculated technical efficiency scores based on the fully nonparametric 

stochastic frontier production model with individual effects and time effects are not 

affected by the specific function form and allow for time variant, and hence can 

theoretically minimize the loss due to the econometric misspecification of the frontier 

model. The estimates and the specification tests in Sections 4 and 5 justified the 

nonparametric model specification and the corresponding technical efficiency scores for 

the China's economy. These reliable efficiency scores can further be applied in the 

factor analysis of efficiency by investigating the determinants of technical efficiency 

because the results can be used for policy decisions aimed at improving economic 

performance.  

In this study we use the customary two-stage procedure for the factor analysis of 

efficiency (Chilingerian, 1995; Kirjavainen and Loikkanen, 1998). In the first stage, the 

technical efficiency (TE) scores are obtained from the time-variant production 

technology. In the second stage, we explain the technical efficiency by using some 

relevant factors not directly included in the nonparametric Model (1). As defined in (5), 

the efficiency score is essentially bounded between zero and one, making the explained 

variable (namely, TE) a limited dependent variable. Also, as pointed out in Section 4, 

                                                        
6 Monchuk et al. (2010) regard the DEA-measured efficiency score as a sample from the population and specify a 
truncated regression model with this score as the dependent variable to conduct the factor analysis of TE. The 
bootstrap method is then used to construct the confidence interval of the coefficients estimate of the factors. 
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29.7 percent of the observations in our sample attained technical efficiency. That is to 

say, the values of the technical efficiency in these sub-samples are all equal to 1. This 

implies that the Tobit regression model in which the dependent variable is censored is 

more suitable in the factor analysis of technical efficiency.7 Specifically, we transform 

the efficiency scores by taking their reciprocal minus one: 

1
1

it

it

NTE
TE

   

where itTE  is province i ’s technical efficiency in time t  calculated from (5) based 

on the estimation of the nonparametric Model (1), and itNTE  is the corresponding 

inefficiency variable. This normalization is in fact a transformation from efficiency to 

inefficiency, assigning the best provinces (with 1itTE  ) zero and the inefficient 

provinces (with 0 1itTE  ) a positive number. The transformation is only for 

computational convenience since the Tobit model often assumes a censoring point at 

zero. The inefficiency variable, itNTE , valued in [0, ) , will be taken as the dependent 

variable in our Tobit regression. 

There are many factors affecting technical efficiency in the China's economy. For 

the data available from the various issues of the Statistical Yearbook of China, a total of 

seven determinants of efficiency are chosen as the explanatory variables for the 

efficiency analysis.  

  First, inequality in the development between urban and rural areas and the 

urbanization level within a province in China are two important factors which can 

influence efficiency. China is committed to a long-term plan of building a moderately 

well off society for all citizens. This necessarily requires a coordinated development 

between urban and rural areas, a break down in the city-country dualistic structure, and 

a reallocation of surplus rural labor. The urban-rural inequality is expected to induce 

inefficiency and the urbanization is expected to reduce inefficiency. We use the income 

                                                        
7 See Chilingerian (1995) for a detailed discussion about blending efficiency measurement approach with 
Tobit regression. 
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ratio of urban-rural household (URD, denoted as z1) as the proxy variable for the 

urban-rural inequality. The urbanization (URBANIZE, denoted as z2) is approximated 

by the percentage of the urban population in the total population of the province.8  

Second, the extent of privatization that serves as a reform engine in the transition 

from a planned to a market economy in post-reform China could enhance flexibility in 

economic development.9 In our study privatization is represented by the ratio of 

employed persons in non-state-owned units to the total employed (REFORM, denoted 

as z3). The effect of REFORM on efficiency will be tested in our study. 

Third, the factors related to openness in an economy are thought to affect efficiency 

(Wei et al., 2001). Two kinds of important factors on openness are international trade 

and foreign direct investment (FDI) (Li and Zhou, 2010). The ratio of trade (sum of 

import and export) to gross regional product (TRADE/GRP, denoted as z4) serves as a 

proxy for international trade. The ratio of FDI in fixed assets (including the funds from 

Hong Kong, Macao and Taiwan) to gross regional product (FDI/GRP, denoted as z5) is 

used as a proxy for foreign direct investment. Although openness in an economy is 

thought to affect efficiency, there is no clear confirmation of the hypothesis that 

countries with an external orientation benefit from greater efficiency (Iyer et al., 2008). 

We also test the effect of openness on efficiency in China’s economy. 

Fourth, the greater provision of infrastructure is expected to enhance technical 

efficiency. Since available data on transportation reflects the extent of infrastructure 

provision in China's national economy, we use the geometric average of the length of 

railway in operation and the length of highways per squared kilometer in a province’s 

land area (INFRAS, denoted as z6) as a proxy variable for infrastructure.10 Inadequate 

transportation systems would hinder the movement of coal to the users, the 

transportation of agricultural and light industrial products from rural areas and factories 

to urban areas, and the delivery of imports and exports. Therefore, underdevelopment in 
                                                        
8 Due to data limitation, URD is regarded as a proxy variable for the urban-rural inequality. This proxy variable may 
favor Beijing, Shanghai and other city provinces as they have a larger proportion of urban population than other 
non-city provinces. To deal with this discontentedness, we introduce URBANIZE as a control variable to partial out 
the effect of the urban-rural inequality on technical efficiency. We would like to thank the anonymous referee for this 
comment. 
9 Whether or not privatization has increased technical efficiency in developing countries has been debated in Okten 
and Arin (2006). 
10 Wu (2000, 2003) also specified a similar proxy. 
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the transportation system can constrain the pace of economic development.  

Fifth, in contrast to FDI which reflects foreign investments, domestic investment in 

a region should affect the performance and efficiency of the local economy. We 

illustrate the domestic investment by the proportion of domestic fixed assets investment 

to gross regional product (INV/GRP, denoted as z7). 

Finally, the geographic factor may affect technical efficiency. Historically, there has 

been serious unevenness in regional development in China (Huang et al., 2003). The 

geographic factor includes the between-region inequality in development and other 

observable regional heterogeneities. For example, in post-reform China, the coastal 

areas had already become more developed than the interior areas. We define 4 

geographic dummy variables: 

EAST = 1, if the province is from Eastern China; 0, otherwise; 

SOUTH =1, if the province is from Southern China; 0, otherwise; 

WEST = 1, if the province is from Western China; 0, otherwise; 

NORTHEAST= 1, if the province is from Northeastern China; 0, otherwise. 

In the regression, the Northeastern region is taken as the baseline region. The Tobit 

model for technical inefficiency is specified as 

 ' ' 'max{ , 0}it it it i itNTE z Tz D         . 

That is, 

 ' ' ' , if 0;

0, if 0,

it it i it it

it

it

z Tz D NTE
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NTE
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where 1 7( , , ) 'it it itz z z  is the vector of the seven factors illustrated above; 

1 7( , , , ) ',it it itTz t tz tz  ( , , ) 'i i i iD EAST SOUTH WEST ;  is the intercept;  ,   and 

  are parametric vectors. A negative coefficient parameter implies a positive effect of 

the corresponding factor on technical efficiency. The error term itv  satisfies 

2
,| (0, )

it iit z D
v  . The Tobit model can be estimated by the maximum likelihood method 

(Amemiya, 1984; Wooldridge, 2002). Since the data for Tibet and some of the factors 

prior to 1990 are not available, the sub-sample used for the Tobit estimation excludes 
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Tibet and covers the period 1990-2008. A total of 31.2 percent of observations in this 

sample has attained technical efficiency. 

Table 4 reports the maximum likelihood estimation results of the Tobit model when 

the error term is distributed as a normal distribution11. The marginal effect of each factor 

on technical efficiency is equal to the corresponding coefficient estimate times the ratio 

of inefficiency (Wooldridge, 2002). In our sample, the ratio is 100-31.2=68.8%. The 

coefficient estimate of the time variable t is negative but insignificant, which shows that 

the technical efficiency generally increases with time, albeit statistically insignificant. 

However, whether or not the time effects of technical efficiency in China’s post-reform 

economy are positive depends also on the interaction terms of the seven factors with the 

time variable t. Although only two of the seven coefficient estimates of the interaction 

terms are significant at the 5 percent level (or four coefficient estimates are significant 

at the 10 percent level), the joint test for all the seven coefficients equal to zero is 

significant, as shown in Table 5: Row 1. This implies that the time effects on technical 

efficiency are jointly and significantly related with the seven factors. 

Table 5 also presents some other joint tests for the coefficients of time variable and 

their interaction with the other factors Except the effect of REFORM, the estimates of 

the effects of all other factors on technical efficiency with time are jointly significant in 

the usual significant level, as shown in Rows 3 to 10 in Table 5. The last column in 

Table 5 presents the implication for each factor analysis of TE. 

Rows 1 and 2 in Table 5 show that the time effect of TE is jointly significantly 

contingent on the seven factors, though the coefficient estimates of URD, URBANIZE 

and REFORM are marginally significant at the 10 percent or 15 percent significant level, 

as shown in Table 4. The China's economy has been experiencing a transition from the 

original planned economy to a market economy with particular characteristics. The 

technical efficiency path in economic growth should be significantly determined by a 

mixture of miscellaneous factors. Our finding on the time effect of TE among China’s 

provinces is consistent with this fact. 

                                                        
11 The Tobit model is also estimated when the error term is specified as a logistic or extreme value distribution, each 

of which gives the same explanation as in Table 4. 
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The urban-rural inequality (URD) has a significant but negative effect on TE since 

0.0453+0.0043t is always positive, as shown Row 3 in Table 5. This shows that a 

decrease in income difference between rural and urban areas within a province can 

enhance efficiency improvement.12  

 

 

Table 4 Estimation Results of Technical Inefficiency from the Tobit Model 

 coefficient estimate standard error p-value 

URD 0.0453 0.0277 0.1021 

URBANIZE -0.1832 0.1135 0.1066 

REFORM -0.2522 0.1719 0.1423 

TRADE/GRP 0.1982 0.0465 0.0000 

FDI/GRP -1.4807 0.5065 0.0035 

INFRAS 1.5733 0.3746 0.0000 

INV/GRP 0.5566 0.1981 0.0050 

t -0.0184 0.0147 0.2099 

URD × t 0.0043 0.0026 0.0962 

URBANIZE × t 0.0018 0.0127 0.8859 

REFORM × t 0.0074 0.0171 0.6637 

TRADE/GRP × t -0.0180 0.0049 0.0003 

FDI/GDP × t 0.0988 0.0586 0.0917 

INFRAS × t -0.0050 0.0276 0.8557 

INV/GDP × t -0.0315 0.0133 0.0177 

EAST -0.2104 0.0270 0.0000 

SOUTH -0.2064 0.0300 0.0000 

WEST 0.0142 0.0293 0.6263 

INTERCEPT 0.1988 0.1519 0.1908 
SCALE:   0.1386 0.0053 0.0000 

Pseudo R-squared 0. 5051 

Log likelihood 92.4386 

 

 

 

 

 

 

                                                        
12 The inequality indicator URD is only used to express the urban-rural income difference within a province. Hence 
it does not give a full-scale measure of inequality between the rural and the urban in China. The finding should be 
interpreted with caution since the relationship between URD and TE may not be well generalized to the true 
relationship between inequality and TE in China economy. 
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Table 5 Factor Analysis of Marginal Effects on Technical Inefficiency 
 Marginal effect 

on technical 
inefficiency 

Estimate ≈ the following 
formula times 68.8% 

P-value 
for the 

joint test 

Implication on technical efficiency 

1 Interaction 
effect of factors 
and time 

0.0043z1+0.0018z2 
+0.0074z3-0.0180z4 

+0.0988z5-0.0050z6 

-0.0315z7 

0.0000 The time effects on technical 
efficiency are jointly and significantly 
related with the seven factors. 

2 Time Effect -0.0184+0.0043z1 

+0.0018z2+0.0074z3 

-0.0180z4+0.0988z5 

-0.0050z6-0.0315z7 

0.0000 The time effect on TE decreases with 
URD, URBANIZE, REFORM and 
FDI/GRP but increases with 
TRADE/GRP, INFRS and INV/GRP. 
The time effect is significantly 
contingent on these factors jointly.  

3 URD ( z1) 
Effect 

 

0.0453+0.0043t 0.0000 The urban-rural inequality is not 
beneficial to improvement of TE 

4 URBANIZE 
(z2) Effect 

 

 

-0.1832+0.0018t  0.0134 Urbanization is beneficial to the 
improvement of TE, and this positive 
effect decreases with time 
insignificantly.  

5 REFORM (z3) 
Effect 

 
 

-0.2522+0.0074t 0.2235 Privatization is beneficial to the 
improvement of TE, but this positive 
effect decreases with time and it is 
statistically insignificant. 

6 TRADE/GRP 
(z4) Effect 

 

 

0.1982-0.0180t  0.0001 Trade is not beneficial to the 
improvement of TE, but the negative 
effect decreases with time 
significantly. 

7 FDI/GRP (z5) 
Effect 

 

 

-1.4807+0.0988t 0.0037 FDI is beneficial to the improvement 
of TE in the early stage, but this 
positive effect decreases with time 
significantly. 

8 INFRAS (z6) 
Effect 

 

 

1.5733-0.0050t  0.0000 Infrastructure level is not beneficial to 
improvement of TE in the early stage, 
but this negative effect decreases with 
time significantly. 

9 INV/GRP (z7) 
Effect 

 
 

0.5566-0.0315t 0.0194 Domestic investment is not beneficial 
to the improvement of TE, and this 
negative effect decreases with time 
significantly. 

10 Region Effect 
 
 
 

 

(East, South, West) = 
(-0.2104,-0.2064,0.0142) 
compared with 
Northeast 

0.0000 Geographic factors have significant 
effects on TE. The Eastern and 
Southern regions have more TE than 
the Northeastern while the Western 
has less. 

 

 

 

 It can also be seen that URBANIZE is beneficial to the improvement of TE since 
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the estimated effect of urbanization on inefficiency is negative (-0.1832+0.0018t < 0). 

This positive effect of urbanization on technical efficiency is statistically significant (the 

probability value of the joint test is very small, shown in Row 4 of Table 5). Although 

the effect decreases with time, it is both economically and statistically insignificant 

since the coefficient estimate of “URBANIZE × t” is small and statistically 

insignificant (see Table 4). The neoclassical analysis would argue that urbanization 

enhances efficiency in two ways. On the one hand, people migrate to cities and obtain 

better employment or wages, and hence higher savings, which in turn is converted into 

productive investment capital and the technical efficiency can then be improved. On the 

other hand, higher incomes also lead to changes in the composition of demand from 

agricultural to manufactured goods. The demand of manufactured goods increases 

technology and productivity growth. 

As shown in Row 5 in Table 5, the REFORM factor shows a positive, albeit 

insignificant, effect on technical efficiency. The REFORM factor is beneficial to TE 

improvement (-0.2522+0.0074t < 0), but the effect on TE will finally become negative 

with the development of privatization (when t>34, -0.2522+0.0074t >0). Although the 

effect of privatization on efficiency is ambiguous in both theoretic and empirical 

literatures (Okten and Arin, 2006), it is positive in our estimation. In China, 

privatization has emancipated the productive forces which have been fettered by the 

planned economy for a long time. Privatization can induce competition and enhance 

productivity that eventually can contribute to efficiency improvement. However, even 

though the effect is large, it is not statistically significant in our estimation since the 

p-value of the test is 0.2235.  

Trade and foreign investment can give rise to either positive or negative efficiency 

(Loungani and Razin, 2001). Our estimates and tests in Rows 6 and 7 of Table 5 show 

that in the early development stage TRADE/GRP has a negative and significant effect 

on efficiency (0.1982-0.018t>0 when t<12), while FDI/GRP has a positive and 

significant effect (-1.4807+0.0988t<0 when t<15). In the later development stage, the 

effects will drive off in the reverse direction. One can see from Table 4 that the time 

effects of the two influences from the two variables are significant at 1 percent level and 
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10 percent level, respectively. This may be due to two reasons. One is the problem of 

endogeneity in the measurement of openness with the ratio of trade to GRP in the 

growth literature. The other is that trade has been overemphasized in the economic 

transition, while efficiency has artificially been ignored somewhat in China. For the 

China’s economy to sustain a high-speed economic development, reform will have to 

become a long-term policy, whereas international trade can be adjusted to suit for 

growth and efficiency. Foreign direct investment can have an indirect effect on the 

domestic economy via positive spillovers and competition (Blomstrom and Persson, 

1983). Our finding implies that, even though FDI have an important and positive effect 

on TE in the China’s economy, it should be further encouraged to neutralize the 

downward trend of the effect. 

The provision of infrastructure has a negative and significant effect on technical 

efficiency (1.5733-0.005t>0), which implies that regional inequality in infrastructure 

development in China has hindered improvement in technical efficiency. Although this 

is inconsistent with the expectation about the positive effect of infrastructure on TE, it is 

the regional bottleneck that constrains economic growth in China. To keep a balanced 

growth among different regions, China should expand development in the 

underdeveloped regions, especially the underprivileged regions in her western 

provinces.  

As regards to the domestic investment factor, our finding shows that it is only when 

18t   that the effect of domestic investment on technical efficiency will be positive 

(0.5566-0.0315t < 0). Thus, domestic investment is not beneficial to the improvement of 

TE in the early stage of development (t<18). However, the time effect of the negative 

marginal influence will significantly decrease with time (-0.0315<0). As we have found, 

the effect of FDI on TE is contrary to the effect of domestic investment. The two kinds 

of investment have direct and significant effects on TE for capital accumulation of the 

local economy, but the direction of their effects is opposite to each other.  

Finally, the result of Row 10 in Table 5 shows that geographic factors have a joint 

significant effect on TE. The geographical location of a province in China can often 

determine its transport facilities and the availability of information, technology, 
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intermediate inputs and other resources. Thus, different geographic locations among the 

provinces have different effects. When compared to the Northeastern region, the Eastern 

and Southern / Western regions have a higher / lower technical efficiency. Consistent 

with Figure 3, the ranking of technical efficiency for the four regions in China’s 

economy is: East > South > Northeast > West. 

 

 

 

6.  Conclusion 

This study uses a flexible stochastic production function to estimate technical 

efficiency in China’s post-reform economy. A fully nonparametric time-variant 

stochastic frontier model has been specified to allow for province effects and time 

effects to enter the production function with other inputs in a nonparametric way. The 

generalized kernel estimation is applied to smooth both the continuous input variables 

and the categorical unordered provinces and the ordered time periods. The flexibility in 

the production functional form and the manner of individual and time effects that 

entered into the production model can minimize the loss in the measurement of 

technical efficiency, lead to robust estimates of the frontier function and produce a 

reliable measure of technical efficiency. Model specification tests and estimates show 

that the fully nonparametric stochastic model is more suitable for our sample. The 

average output elasticity of labor is larger than those of capital and human capital, 

which are all positive. 

The measure of TE based on nonparametric estimation shows that the average 

technical efficiency in China has declined considerably in the mid-1980s, but has 

increased since 1992. Technical efficiency tends to be higher than the national average 

level in both Eastern and Southern regions. Although China has emphasized a lot on the 

development of the Western region, its technical efficiency has remained low. 

Unexpectedly, Beijing, being the capital of China, shows a lower technical efficiency 

than most other provinces.  

The estimation of the Tobit model of technical inefficiency shows that the time 

effects of technical efficiency in China’s post-reform economy are significantly 
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contingent on the seven factors shown in Table 4. With the exception of privatization, 

the marginal effects of all the other factors also have significant time effects. There 

exists regional difference in technical efficiency. To maintain a sustainable, high-speed 

development, China should continue to reform and adjust its international trade to suit 

growth and efficiency improvement. Foreign direct investments have an important and 

large positive effect on technical efficiency, but it should be further encouraged to 

neutralize the downward trend of the effect. China should attach great importance to its 

infrastructure policy and reappraise the infrastructure development policy to give a 

positive effect on technical efficiency. 

The empirical findings in this paper have improved the discussion on China’s 

productivity analysis, echoed on such recent discussions as regional inequality, disparity 

in growth inputs and human capital development in China’s post-reform economic 

development (Wu, 2008; Li, 2009; Li and Liu, 2011; Chang, 2002; Fleisher and Zhao, 

2010; Liu and Li, 2006; Chi, 2008; Li et al., 2009). Furthermore, the empirical findings 

in this paper provide a reflection on the efficiency in financial issues, such as bank loans 

and corporate bonds development, on economic policy decisions, such as the pace of 

market liberalization and privatization of enterprises, and on infrastructural and civic 

development, such as eradication of informal economic activities.  
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 All China data used in this paper are available from the corresponding author. The 

major sources of national data are obtained from the various issues of Statistical 

Yearbook of China (SYC), the Comprehensive Statistical Data and Materials in 50 

Years of New China (1999) (CSDM) and Statistics on Investment in Fixed Assets of 

China 1950-2000 (SIFAC). The sources of provincial data including employment 

figures come from various provincial statistical yearbooks (PSYC). The sources for 

some individual provinces come from their “fifty years” (50 yrs) yearbooks, including 
Fifty Years of Beijing, Fifty Years of Jilin, Hebei Economic Statistics 1949-2001, Shanxi 

50 Years 1949-1999 and Xinjiang 50 Years 1949-1999. Other sources include Brilliant 

Inner Mongolia, Heibei Economic Yearbook and Tibet Social and Economic Statistical 

Yearbook 1992.  

 Chow and Li (2002), Li (2003) and Liu and Li (2006) applied the following three 

identities to derive China’s national capital stock: GDPt = Ct + GIt + NXt , Kt = Kt-1 + 

RNIt, and RNIt = RGIt [(GIt – Dept )/GIt]. GDPt is Gross Domestic Product, Ct is 

consumption, NXt is the net export of goods and services and GIt is nominal investment. 

Physical capital stock is Kt, RNIt is real net investment, and RGIt is real gross 

investment. Dept is national depreciation figure, and the subscript t represents the time 

period. Real consumption is nominal consumption deflated by the consumption price 

index, while the implicit GDP deflator is used to derive the real value of net exports. 

Provincial depreciation figures are adjusted to derive the depreciation figures. The 

national variables of GDP index, GDP (Production), Consumption Price Index, GDP 

(Expenditure), consumption expenditure and net export expenditure are obtained from 

the latest issue of SYC. Employment figures for all provinces can be found in CSDM. 

The sources of the three provincial variables of GDP index, gross investment and labor 

are collected mainly from the 2007 issue of PSYC and 50 yrs. The steps used to 

construct the national capital stocks are similarly applied to the construction of the 

provincial capital. The provincial GDP deflator is used throughout. Provincial real net 

investment (PRNI) is provincial real gross investment (PRGI) less provincial 

depreciation. 

 Depreciation figures of individual provinces are available in the various issues of 

SYC for the periods 1993-1994 and 1996-2008. Some PSYC provide also the 1995 and 

pre-1993 depreciation figures. Tianjin, Shanxi, Anhui, Qinghai and Hubei have their 

depreciation figures since 1990; Henan, Hunan, Xingjiang and Guangdong have theirs 

since 1984, while Zhejiang and Jilin have theirs since 1987 and 1988, respectively. 

Those provinces (Inner Mongolia, Heilongjiang, Shanghai, Shandong, Hainan, Sichuan 

and Tibet) with missing depreciation figures for 1995 can be estimated by taking the 

average of the 1994 and 1996 figures. The national depreciation data are obtained by 

summing up the provincial data. 

 Population and schooling data are obtained mainly from the 1990 Population 

Census of the People’s Republic of China (1990 Census) and the Tabulation of the 2000 

Population Census of the People’s Republic of China (2000 Census). In the construction 

of human capital, data on the annual graduates of the six schooling levels (Higher 

Education, Specialized Secondary, Vocational Secondary, Senior Secondary, Junior 

Secondary and Primary) are obtained from the 1986 - 2002 issues of SYC. Table 5-1 of 
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the 1990 Census provides the schooling population of all ages. The same figures for 

2000 can be found in Table 5-1 of the 2000 Census. The provincial mortality rates for 

all ages are obtained from CSDM (p. 1). The total death population aging 15-64 of 

different schooling levels in 1990 are obtained from Table 10-13 of the 1990 Census. 

The migration population of different levels of schooling in each province is given in 

Tables 11-1 and 11-2 of the 1990 Census. The migration figures of Senior Secondary in 

2000 can be located from Table 7-6b of the 2000 Census. The total number of persons 

migrated to various provinces in 2000 are found in Table 7-3 of the 2000 Census. Since 

Tibet’s migration figures are not available, its migration adjustment on human capital 
figures is not performed. 

 There was a change of classification in the level of education between 2003 and 

2004 in the China data and the classification since 2004 only showed four levels of 

education, and the transformation is shown in Li (2009, Appendix). Following the 

inventory approach in Wang and Yao (2003) and Liu and Li (2006), the data series for 

the human capital variable used in this paper, similarly adjusted by the number of 

migration and death, has been revised and updated to 2008.  
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Appendix Table A1 Technical Efficiency Based on Fully Nonparametric Estimation (1985-2008) 

 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean 

Beijing 0.8479  0.8392  0.8005  0.7274  0.6696  0.6338  0.5663  0.5597  0.6106  0.6262  0.6982  0.7906  0.8666  0.8720  0.9303  0.8131  0.8413  0.8992  0.8897  0.8733  0.8804  0.9522  0.9876  0.9954  0.7988  

Tianjin 0.8586  0.8560  0.8505  0.8493  0.8395  0.8221  0.7956  0.7806  0.7891  0.8085  0.8074  0.8029  0.8170  0.8446  0.9722  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9231  1.0000  0.8924  

Heibei 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9958  0.9773  0.9564  0.9275  0.8835  0.8701  0.8951  0.9794  

Shanxi 0.8688  0.8406  0.8286  0.8300  0.8340  0.8430  0.8469  0.8511  0.8508  0.8538  0.8535  0.8562  0.8535  0.8344  0.8497  0.8386  0.8435  0.8433  0.8545  0.8592  0.8601  0.8640  0.8442  0.8455  0.8478  

Inner Mongolia 1.0000  1.0000  1.0000  0.9788  0.9896  0.9820  0.9323  0.9211  0.9067  0.9091  0.9059  0.9100  0.9191  0.9213  0.9116  0.9269  0.9139  0.9184  0.9310  0.9482  0.9838  1.0000  1.0000  1.0000  0.9504  

Liaoning 0.7335  0.6958  0.6569  0.6173  0.5827  0.5648  0.5714  0.5752  0.5933  0.5905  0.6039  0.6184  0.6648  0.6852  0.6626  0.6873  0.6879  0.7061  0.7467  0.8043  0.8160  0.8350  0.9006  0.9227  0.6885  

Jilin 0.9447  0.9857  0.9869  0.8965  0.8687  0.8639  0.8354  0.7872  0.7997  0.8051  0.8114  0.8613  0.9170  0.9004  0.9552  0.9927  0.9958  0.9784  0.9979  0.9516  0.9782  0.9925  0.9635  0.8971  0.9153  

Heilongjiang 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Shanghai 0.9212  0.9149  0.9235  0.9358  0.9202  0.9285  0.9140  0.9171  0.9828  0.9994  1.0000  1.0000  1.0000  1.0000  0.9507  0.8635  0.9056  1.0000  0.9917  1.0000  1.0000  1.0000  0.9689  0.9416  0.9575  

Jiangsu 0.9013  0.8880  0.8808  0.8827  0.8873  0.9026  0.9168  0.9292  0.9469  0.9561  0.9667  0.9802  0.9955  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9598  

Zhejiang 0.9842  0.9916  0.9936  0.9926  0.9988  0.9993  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9814  0.9734  0.9993  0.9885  1.0000  1.0000  1.0000  1.0000  1.0000  0.9995  0.9947  0.9933  0.9954  

Anhui 0.9817  0.9837  0.9792  0.9729  0.9766  0.9677  0.9675  0.9884  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9924  

Fujian 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Jiangxi 0.9640  0.9585  0.9546  0.9529  0.9469  0.9552  0.9658  0.9513  0.9457  0.9577  0.9777  0.9618  0.9484  0.9395  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9733  0.9680  0.9807  0.9344  0.9682  

Shandong 0.9213  0.9271  0.9183  0.9021  0.9065  0.9105  0.8884  0.8826  0.8839  0.8922  0.9012  0.9286  0.9341  0.9319  0.9461  0.9337  0.9330  0.9449  0.9638  0.9850  1.0000  1.0000  0.9773  0.9642  0.9324  

Henan 0.8787  0.8722  0.8614  0.8512  0.8618  0.8513  0.8312  0.8203  0.8146  0.8214  0.8275  0.8227  0.8176  0.8455  0.8838  0.8669  0.8816  0.8860  0.8906  0.8983  0.8858  0.8991  0.9249  0.9049  0.8625  

Hubei 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9929  0.9997  

Hunan 1.0000  1.0000  1.0000  0.9988  0.9970  0.9879  0.9784  0.9745  0.9800  0.9882  0.9965  1.0000  1.0000  1.0000  1.0000  1.0000  0.9834  0.9894  0.9943  1.0000  1.0000  1.0000  1.0000  1.0000  0.9945  

Guangdong 0.8848  0.9167  0.9532  0.9693  0.9591  0.9471  0.9416  0.9518  0.9702  0.9911  1.0000  1.0000  1.0000  1.0000  1.0000  0.9967  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9784  

Guangxi 0.8865  0.8853  0.8840  0.8837  0.8871  0.8936  0.8935  0.8910  0.8938  0.9071  0.9134  0.9117  0.9101  0.9134  0.9066  0.9066  0.9134  0.9162  0.9184  0.9253  0.9201  0.9131  0.9029  0.8990  0.9032  

Hainan 0.8499  0.8485  0.8551  0.8615  0.8585  0.8533  0.8687  0.8568  0.8730  0.8642  0.8660  0.8853  0.9028  0.9163  0.7884  0.8490  0.7945  0.8087  0.8530  0.9062  0.8895  0.8828  0.9637  0.9375  0.8681  

Sichuan 1.0000  1.0000  1.0000  0.9992  0.9992  0.9971  0.9956  0.9973  0.9926  0.9955  1.0000  0.9968  0.9971  0.9936  1.0000  0.9906  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9934  0.9950  0.9976  

Guizhou 0.9781  0.9771  0.9661  0.9468  0.9225  0.9084  0.9039  0.9071  0.9121  0.9133  0.9229  0.9315  0.9084  0.8936  0.9098  0.9516  0.9045  0.9045  0.9044  0.9044  0.8965  0.8778  0.8539  0.8702  0.9154  

Yunnan 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9910  0.9905  0.9697  0.9589  0.9392  0.9157  0.8997  0.8850  0.8732  0.8855  0.9014  0.9671  

Tibet 1.0000  0.9990  0.9986  0.9995  1.0000  1.0000  1.0000  1.0000  0.9996  0.9992  0.9991  0.9992  0.9993  0.9991  0.9991  0.9998  1.0000  1.0000  1.0000  0.9893  0.9900  0.9898  0.9958  0.9639  0.9967  

Shaanxi 0.8563  0.8481  0.8462  0.8488  0.8462  0.8411  0.8335  0.8281  0.8251  0.8254  0.8264  0.8287  0.8279  0.8313  0.8472  0.8486  0.8759  0.8685  0.8790  0.8743  0.8691  0.8326  0.7806  0.7817  0.8404  

Gansu 0.9052  0.9111  0.9063  0.9133  0.9229  0.9406  0.9464  0.9368  0.9676  0.9753  0.9832  0.9880  0.9930  0.9824  0.8825  0.8850  0.8722  0.9073  0.8857  0.8920  0.9233  0.9462  0.9617  0.9162  0.9310  

Qinghai 0.9052  0.9074  0.8912  0.8665  0.8559  0.8281  0.8035  0.7809  0.6627  0.6640  0.6661  0.6762  0.6865  0.6789  0.7352  0.7381  0.7375  0.7314  0.7190  0.6833  0.6929  0.7483  0.7699  0.7279  0.7565  

Ningxia 0.9861  0.9837  0.9419  0.8692  0.8157  0.7670  0.7183  0.6906  0.6659  0.6555  0.6693  0.6795  0.7206  0.7101  0.7464  0.7484  0.7245  0.7188  0.7160  0.7117  0.7181  0.6938  0.7168  0.7719  0.7558  

Xinjiang 0.9248  0.9356  0.8995  0.8572  0.8334  0.8433  0.8003  0.7832  0.7709  0.7569  0.7435  0.7515  0.7594  0.8320  0.9171  0.9866  0.9847  0.9834  0.9822  0.9641  0.9581  0.9359  0.9046  0.8679  0.8740  

Mean 0.9328  0.9322  0.9259  0.9134  0.9060  0.9011  0.8905  0.8854  0.8879  0.8919  0.8980  0.9060  0.9140  0.9163  0.9261  0.9261  0.9251  0.9313  0.9337  0.9342  0.9349  0.9362  0.9355  0.9307  0.9173  

 


