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Abstract

Modeling fractional cointegration relationships has become a major topic in

applied time series analysis as it steps back from the traditional rigid I(1)/I(0)

methodology. Hence, the number of proposed tests and approaches has grown over

the last decade. The aim of this paper is to study the nonparametric variance ratio

approach suggested by Nielsen for the case of fractional cointegration in presence

of linear trend and trend breaks. The consideration of trend breaks is very impor-

tant in order to avoid spurious fractional integration, so this possibility should be

regarded by practitioners. This paper proposes to calculate p-values by means of

gamma distributions and gives response regressions parameters for the asymptotic

moments of them. In Monte Carlo simulations this work compares the power of

the approach against a Johansen type rank test suggested, which is robust against

trend breaks but not fractional (co-)integration. As the approach also obtains an

estimator for the cointegration space, the paper compares it with OLS estimates in

simulations. As an empirical example the validity of the market expectation hypoth-

esis is tested for monthly Treasury bill rates ranging from 1958-2011, which might

have a trend break around September 1979 due to change of American monetary

policy.
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1 Introduction

The use of cointegration has reached the rank of a standard econometric tool since the

seminal work of Engle and Granger (1987). This method has the great advantage that

nonstationary unit root process can be examined without differencing. The existence of

a cointegration relations leads to the interpretation that there is stationary equilibrium

between nonstationary time series, which is attractive for empirical research in economics

and especially in finance. In this view, it seems to be natural, that the concept of frac-

tional cointegration has attracted more attention than it can be seen as a generalization

of the standard cointegration concept. The fractional methodology has the great advan-

tage, that the integration order is not stucked to an integer digit anymore and opens up a

very wide range of modeling empirical specifics like long range dependencies. This leads

to the interpretation of fractional integrated processes for long memory property as the

coefficients of an infinite moving average representation is decaying in a hyperbolic way.

It should be regarded, that for most time series, the hypothesis d = 1 can’t be rejected

even if fractional integration is taken into account. The concept is more interesting to

model cointegration error processes as it shows the persistence of exogenous shocks to a

system of time series. The possibility of fractional integrated errors can also be seen as a

reason for rejecting cointegration in classical approaches.

The consideration of deterministic components is important as it affects the distribution

of the most test statistics and also the consistency of integration order estimating. The

allowance for breaks in deterministic processes goes back to the seminal work of Perron

(1989), who founds, that the negligence of breaks leads to over-rejection of stationarity.

In the fractional literature Sibbertsen (2004) mentioned, that changes in the determinis-

tic components might endow spurious long memory as it causes additional persistence if

it is not regarded. Therefore, the possibility of breaks should be taken into account by

practitioners.

An interesting approach dealing with fractional cointegration was proposed by Nielsen

(2010) who considered nonparametric Variance Ratio (hereinafter: VR) tests for the

cointegration rank. The idea of the test was already written in Nielsen (2008) in the

univariate case and was thought as nonparametric unit root test. The test could also

been adopted in the fractional context as a test for the integration parameter d, as it

doesn’t assume the knowledge of d to calculate the test statistic. As the nature of the

test is nonparametric, there is no need to specify the autocorrelation structure like in the

Dickey-Fuller type tests with a lag parameter or a bandwidth parameter like in the most

existing fractional cointegration methods, e.g. Nielsen and Shimotsu (2007) or Shimotsu
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(2010). Another advantage of the approach is, that there is no need to estimate the

cointegration relationship itself, but gives the possibility of a consistent estimator of the

cointegration space.

Through simulations we determine the moments of the VR statistic according to the di-

mension of the examined system p and its hypothetical cointegration rank r. For these

we give response regression parameters to calculate critical values and p-values using

gamma distributions. In Monte Carlo simulation we show first the effects of neglecting

a trend break in cointegration analysis. Furthermore, we compare the VR approach in

broken trend situations with Johansen type rank test proposed by Johansen, Mosconi

and Nielsen (hereinafter JMN: 2000), which takes also trend breaks into account, but

neglects the possibility of fractional (co-)integration. As the VR approach also delivers a

consistent estimator for the cointegration space, we compare it also with OLS estimates

under fractional cointegration.

In empirical economic analysis, cointegration is applied in many fields to prove theoretical

models e.g. the market expectation hypothesis. It states that nonstationary interest rates

with different maturities incorporate a stationary equilibrium as Campbell and Shiller

(1987) imposed. Hence, we choose monthly Treasury bill rates ranging from December

1958 to December 2011. The rates are supposed to have a trend break in September 1979

due to the regime switch in US monetary policy and we wish to take this into account in

our analysis.

The paper is organized as follows: the following section introduces first the fractional

integration methodology and the VR testing. Then estimated response surface param-

eters for critical values are presented and some Monte Carlo simulations are conducted

to show power of the test and benefits of the approach in the third section. The fourth

section demonstrates an empirical application of the approach to test the implications of

the market expectation hypothesis for Tbill rates and finally the paper is closed with a

conclusion.

2 Methodology

As a first step we want to introduce the concept of fractional integration. Consider we

observe a time series yt, which is integrated of a non-integer order d. Then we can motivate
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an infinite moving average process through a power series expansion

yt = ∆−dεt = εt + dεt−1 +
d(d + 1)

2!
εt−2 +

d(d + 1)(d + 2)

3!
εt−3 + . . .

=
t
∑

k=0

Γ(d + k)

Γ(d)Γ(k + 1)
· εt−k (1)

We assume d > 1/2 for the process yt, which means that the process is not stationary.

Then we can formulate its fractional partial sum

ỹt = ∆−d1yt = ∆−(d+d1)εt for d1 > 0 and t = 1, . . . , T (2)

Under some regularity conditions on the error term εt and for d > 1/2, a fractional

functional central limit theorem can be obtained for yt and analogous for ỹt

T 1/2−dy⌊sT ⌋ ⇒ σyWd(s), 0 < s ≤ 1 (3)

From this theorem, a limit for T → ∞ on the second uncentered moment of yt and ỹt can

be stated with

T 2d
T
∑

t=1

y2
t

D
→ σ2

y

1
∫

0

Wd(s)2ds and T 2d+d1

T
∑

t=1

ỹ2
t

D
→ σ2

y

1
∫

0

Wd+d1
(s)2ds (4)

Dividing these moments yields a variance ratio test statistic

ρ(d1) = T 2d1

∑T
t=1 y2

t
∑T

t=1 ỹ2
t

D
→

∫ 1
0 Wd(s)2ds

∫ 1
0 Wd+d1

(s)2ds
(5)

which is free from the nuisance parameter σ2
y , which could be left out estimating. Only

the parameter d1 has to be specified and indexes the family of the test. Nielsen (2008)

found out through simulations, that the choice d1 = 0.1 yields highest power of the test.

Another also interesting choice would be d1 = 1, because then the test is equivalent to

Breitung’s statistic (2002) to test for a unit root against nonlinear alternatives.

Nielsen (2010) extended the variance ratio test for multivariate p−vector time series yt in

purpose to test the presence of fractional cointegration, which is a generalization of the

classical cointegration concept defined by Engle and Granger (1987). Consider we observe

the following triangular system of time series

∆d−b(y1t − γ ′y2t) = ε1t

∆dy2t = ε2t, t = 1, . . . , T (6)
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supposing that all p components of yt = {y1t, y2t}
′ are sharing the same order of in-

tegration d and all r cointegration relations the same strength of cointegration b. The

r-dimensional vector y1t forms r number of cointegration relations integrated by order d−b

with the p − r-dimensional vector y2t, which contains the stochastic trends integrated of

order d driving the system. It should be noted, that we have only (fractional) cointegra-

tion when the cointegration strength parameter b > 0. When we set d = b = 1 we have the

classical cointegration setup defined by Engle and Granger (1987) and hence, fractional

cointegration is a generalization of classical cointegration. Alternatively, a cointegrated

system can be represented with the cointegration relations yielding with β′yt where β is

the cointegration space matrix defined as β = (Ir, −γ)′. The error terms ε1t and ε2t are

integrated of order zero and might be autocorrelated of an unknown structure with zero

mean.

Defining the matrices AT =
T
∑

t=1
yty

′
t and BT =

T
∑

t=1
ỹtỹ

′
t we can calculate analogously to

the univariate the statistic

RT (d1) = AT B−1
T , (7)

Let λ1 ≤ λ2 ≤ . . . ≤ λp be the ascending ordered eigenvalues of RT (d1) and η1, η2, . . . , ηp

the according eigenvectors resulting from solving the eigenproblem

|λBT − AT | = 0 (8)

These are used to calculate the nonparametric variance ratio trace statistic

Λp−r(d1) = T 2d1

p−r
∑

i=1

λi, r = 0, 1, . . . , p − 1 (9)

The distribution of the test statistic (9) depends on the presence of deterministic com-

ponents. Consider the processes in yt are generated by the following data generating

process

yt = µ0 + µ1 · t + µ2 · DTt + ∆−dεt (10)

where DTt =
t
∑

i=1

DUi with DUi =







1 when i > Tb

0 else.
(11)

and Tb = τT a possible break-date of the trending component of yt. This kind of de-

terministic process was proposed by Perron (1989) and was named the changing growth

model corresponding to the break in the slope of the trending component. Nielsen (2010)

was able to establish the asymptotic distribution of the VR statistic by fractional Brow-

nian motions, possibly detrended or demeaned. In line with his work we assume, that
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Λp,r(d1, τ) is distributed for T → ∞ by

Λp−r,τ (d1)
D
→ tr

[

∫ 1

0
B

p−r
τ,d (s)Bp−r

τ,d (s)′ds
(∫ 1

0
B

p−r
τ,d+d1

(s)Bp−r
τ,d+d1

(s)′ds
)−1

]

(12)

where Bτ,d denotes a fractional Brownian motion integrated of order d and corrected by

a broken trend with break in τ according to the assumed DGP in (10).

A consistent estimator of the cointegration space β, when the system yt is cointegrated

of rank r can be formulated with η(r) =
(

ηp−r, . . . , ηr

)

, which is p × r matrix of the

eigenvectors ηi belonging to r biggest eigenvalues. The estimator is then

β̂r = η(r)
[

(Ir, 0r×(p−r)) · η(r)
]−1

(13)

with 0m×n as a m × n-dimensional null matrix. Nielsen (2010) also shows that the esti-

mator is consistent in the sense that the angle between the true and the estimated space

converges to zero asymptotically, but the framework gives no closed distribution and,

hence, the estimated space can’t be tested against theoretical assumptions.

3 Critical Values and Simulations

Since the asymptotic distribution in (12) has no analytical closed form it is necessary to

obtain critical values for the statistic (9) through Monte Carlo simulations in dependence

of d and τ . In figure 1 we have the estimated density of the VR statistic for d = 1

and τ = 0.5 and compare it with a approximated gamma distribution, which indicates a

moderate fit. When we focus on the relevant critical quantiles of the statistic in figure 2,

then we have a quite good fit. The approximation gets worse while d decreases, but it is

still acceptable as later Monte Carlo simulations show. Hence, we decide to approximate

the test distribution with gamma distributions and model the relevant first two moments

of these instead of approximating the critical quantiles.

Figures 3 and 4 show the structure of the moments of simulated VR statistic for p−r = 1

in dependence of τ and d. It can be seen that the moments are symmetric around τ = 0.5

which allows us to abstain simulations for τ > 0.5. When we observe a trend break

at τ , then we can divide the sample in two parts with relative sample duration τ and

1 − τ . Hence, let υ be the smallest length of these and we use this parameter for possible

response regressions for the moments of approximated test distribution. For these we

choose polynomials of d, υ and T and have the form for each moment and situation p − r.
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Figure 1: Density of VR statistic for τ =

0.5 and d = 0.8
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Figure 3: Simulated log(mean) Figure 4: Simulated log(var)

This type of modeling of the moments bases on Doornik (1998) and JMN (2000), who did

response regressions for related cointegration trace and eigenvalue statistics. We deviate

from their work by modeling the moments for each p − r separately, because we could not

find any adequate fitting equation.

log(momentp−r) =
9
∑

i=0

6
∑

j=0

3
∑

k=0

δijkdiυjT −k + ǫmoment,p−r (14)

This model sums up to 162 regressors for 1848 observations for each simulated moment

and situation p − r. The moments were simulated for p − r = 1, . . . , 8 and various values

of d, υ and T . The setup was as follows:
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• d ∈ [0.5, 0.55, . . . , 1.45, 1.5]

• υ ∈ [0, 0.05, . . . , 0.45, 0.5]

• T = int(500/j) for j = 1, . . . , 8

Each simulation was replicated 100.000 times. Afterwards regressions for the moments

according to equation (14) were conducted by using ordinary least squares. The number

of regressors could be reduced by sequential elimination of insignificant variables. The

asymptotic moments were then computed by letting T → ∞. The estimated coefficients

δ̂ij0 are reported in table 1 and 2.

Figure 5 illustrates that there is a small sample problem for the VR approach, when d is

rather low. In this figure we have simulated 5% critical values in dependence of sample

size T and for d = 0.8, 1 and 1.2. Especially for the case of d = 0.8 we have hardly any

asymptotic convergence. For the other cases d = 1 and d = 1.2 there is a convergence

already with smaller sample sizes like T = 250 and so we might expect that the VR

approach performs better than with rather low values of d. Thereby, we consider also

bootstrapping as a way to determine p-values.

For the following Monte Carlo studies we consider a bivariate cointegration system of the

form

y1,t = µ1t + µ2DTt + ∆−du1t

y2,t = y1,t + ∆−(d−b)u2t (15)

with the broken trend variable DTt defined in equation (11) and two different types of
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Table 1: Estimated response surface parameters for log(mean)

p − r 1 2 3 4 5 6 7 8

Constant 0.8329 1.5440 1.9725 2.2754 2.5089 2.7025 2.8657 3.0067

d 4.4911 4.2643 4.0481 3.8745 3.7473 3.6194 3.5052 3.4021

d2 −16.844 −16.004 −15.315 −14.706 −14.250 −13.798 −13.376 −12.980

d3 23.710 22.494 21.649 20.842 20.267 19.686 19.123 18.579

d4 −16.682 −15.800 −15.324 −14.813 −14.486 −14.138 −13.783 −13.425

d5 5.8981 5.5762 5.4645 5.3139 5.2366 5.1433 5.0391 4.9256

d6 −0.8376 −0.7901 −0.7847 −0.7690 −0.7651 −0.7572 −0.7463 −0.7327

υ2 −0.2481 −0.1517 −0.0794 −0.0208 0.0253 0.0650 0.0980 0.1261

υ3 0.7745 0.4886 0.2795 0.1269 0.0195 −0.0605 −0.1212 −0.1689

υd2 1.1609 1.0554 0.9782 0.9237 0.8892 0.8646 0.8473 0.8342

υd3 −2.0533 −1.7687 −1.5599 −1.4138 −1.3247 −1.2613 −1.2184 −1.1883

υd4 1.2655 1.0294 0.8592 0.7453 0.6820 0.6401 0.6151 0.6005

υd5 −0.2629 −0.2027 −0.1597 −0.1319 −0.1177 −0.1092 −0.1049 −0.1032

υ2d 1.0570 0.8054 0.5914 0.4051 0.2461 0.1025 −0.0237 −0.1352

υ2d4 −0.4044 −0.1555 0.0186 0.1246 0.1817 0.2120 0.2248 0.2277

υ2d5 0.1178 0.0266 −0.0368 −0.0744 −0.0937 −0.1033 −0.1065 −0.1062

υ3d −5.5378 −4.2837 −3.2482 −2.4724 −1.9049 −1.4764 −1.1464 −0.8844

υ3d2 3.5405 2.3113 1.3566 0.7293 0.3551 0.1485 0.0499 0.0174

υ4d 3.3883 2.9412 2.4664 2.0981 1.8187 1.6132 1.4586 1.3409

υ4d2 −2.8170 −1.9794 −1.2480 −0.7571 −0.4617 −0.3101 −0.2528 −0.2554

R2 0.99988 0.99988 0.99987 0.99986 0.99985 0.99984 0.99983 0.99982

σ̂ǫ 0.00099 0.00095 0.00092 0.00089 0.00088 0.00087 0.00087 0.00086

error terms

Type A: u1,t, u2,t ∼ IID(0, 1) (16)

Type B: uj,t = 0.5uj,t−1 + εj,t with εj,t ∼ IID(0, 1) for j = 1, 2. (17)

The conducted Monte Carlo studies are two folds. First we examine the case, where

there is actually no cointegration (i.e. b = 0) relation between y1,t and y2,t, but they

incorporate a trend break at the relative break location τ . We assume throughout the

study that µ1 = 0, which means that we have no trending behavior until τ and afterwards

a linear trend with slope µ2. The decision µ1 6= 0 doesn’t change the results at all and is

therefore arbitrary. Now we want to apply the VR approach on the two not cointegrated

processes with the two assumptions:

1. there is no trend and detrend both series linearly (LT)
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Table 2: Estimated response surface parameters for log(var)

p − r 1 2 3 4 5 6 7 8

Constant −5.8240 −5.2782 −4.9958 −4.8915 −4.7755 −4.6879 −4.5715 −4.5925

d 2.0742 3.8523 5.2889 7.3369 8.2834 9.1756 10.370 11.459

d2 37.060 28.627 21.685 12.332 7.9363 3.6878 −3.3627 −7.6987

d3 −104.01 −88.392 −75.450 −57.849 −50.124 −42.565 −28.044 −20.692

d4 108.40 94.230 82.390 65.960 59.386 52.956 38.750 32.655

d5 −51.012 −44.728 −39.443 −31.929 −29.217 −26.595 −19.865 −17.426

d6 9.1235 8.0320 7.1091 5.7639 5.3290 4.9182 3.6722 3.2958

υ2 −3.5062 −3.4946 −3.0766 −3.1474 −3.1199 −3.3232 −3.4860 −3.6886

υ3 2.5145 2.0922 2.3948 3.8281 4.4130 4.8964 5.0084 5.2076

υd2 −3.9006 −2.8010 −1.5414 −0.3353 0.2163 0.7137 0.8194 0.6978

υd3 13.366 11.072 7.9744 4.7691 2.9786 1.4078 0.6490 0.3886

υd4 −12.691 −10.778 −7.9718 −5.0841 −3.3624 −1.9570 −1.1804 −0.8244

υd5 3.4798 3.0006 2.2430 1.4664 0.9881 0.6153 0.3909 0.2820

υ2d 2.8525 −0.2090 −2.8546 −3.8687 −4.3865 −4.3728 −3.8970 −2.9310

υ2d4 8.8503 8.0542 5.6164 2.9707 1.4016 0.5671 0.2666 0.1475

υ2d5 −3.2873 −3.0022 −2.0892 −1.1191 −0.5428 −0.2404 −0.1080 −0.0497

υ3d 0.1346 18.169 21.588 18.895 18.515 19.504 20.912 20.944

υ3d2 −29.715 −37.0820 −27.2990 −14.8500 −7.8594 −4.9007 −5.1160 −6.1350

υ4d 14.493 −7.8908 −14.526 −16.995 −19.729 −23.103 −25.878 −27.462

υ4d2 15.918 30.162 23.574 14.307 8.9029 6.8545 7.3664 8.8588

R2 0.99943 0.99947 0.99946 0.99946 0.99953 0.99958 0.99963 0.99965

σ̂ǫ 0.00881 0.00896 0.00960 0.00995 0.00950 0.00901 0.00856 0.00832

2. there is a trend break at τ and detrend both series with knowledge of the actual

break location (TB)

We assume that the degree of integration is unknown and estimate the parameter d of

the detrended two processes with the Exact Local Whittle (ELW) estimator proposed by

Shimotsu (2010) fixing the bandwidth with m = T 0.78, which is optimal in absence of

autocorrelation. With the mean of the maintained two estimates of d we calculate the

5% critical values by the Gamma distribution obtained by the moments of the response

surface regression.

Figure 6 shows the results of this simulation with sample size T = 500 and 100.000

replications. In the left graphic we vary the break strength parameter µ2 with fixed τ = 0.5

and in the right the break location τ with fixed µ2 = 1. For (LT) we have the problem,

that d can’t be estimated anymore consistently and so we have to use heavily biased
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Figure 6: Effect of negligence of a trend break

d-estimates to calculate critical values and encounter severely distorted test decisions.

In our next simulation we compare the VR approach with Johansen type rank tests,

which takes also trend breaks into account, as proposed by JMN (2000). We chose for

the integration parameter the empirical most relevant cases d = 0.8, d = 1 and d = 1.2.

We also want to analyse simple bivariate systems as in our first simulation, but take also

into account, that the system might be cointegrated of rank r = 1 with cointegration

strength b > 0. For the deterministic component of the simulated series we set µ2 = 1

and τ = 0.5 and the integration parameter d is assumed to be known. VRresp denotes the

rejection frequency of no cointegration using critical values calculated with the response

surface parameters reported in table 1 and 2. VRboot stands for the decision by using

the bootstrapping technique. Therefore, we choose block-of-blocks bootstrapping and did

only 10.000 replications as bootstrapping is quite CPU time consumptive. In order to

apply the JMN approach we have to determine a lag parameter k, which is shown in the

index of JMNk. As expected, the power of the VR approach lacks for d = 0.8 and seems to

be undersized for T = 250 and T = 500. The situation gets better for bigger sample sizes

like T = 1.000. The classical approach, which doesn’t allow fractional integration, seems

to have big problems detecting cointegration relations as it highly rejects the null of no

cointegration, when b = 0. This might be explained, that when the system is integrated

of order d = 0.8, the nonstationarity of the system may often not be detected. So we

might expect, that the JMN approach also rejects r = 2 with a high probability. The

power of the JMN approach is better, when d = 1 and the lag parameter is not highly

over-selected. The VR approach has obviously better properties for d = 1.2. The benefits

of bootstrapping exists only for d = 0.8 and performs actually worse for the other cases.

For the situation with autocorrelated errors (type B) there is a bigger problem with the
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Table 3: Size-corrected power for fractional cointegration models with type A errors

T = 250 T = 500

b VRresp VRboot JMN0 JMN1 JMN4 VRresp VRboot JMN0 JMN1 JMN4

d = 0.8

0 1.0% 3.3% 91.0% 62.7% 33.3% 2.9% 4.5% 98.7% 87.1% 58.7%

0.2 14.6% 15.8% 100.0% 96.7% 68.3% 34.3% 27.5% 100.0% 100.0% 96.1%

0.4 68.1% 54.2% 100.0% 100.0% 96.3% 96.2% 87.0% 100.0% 100.0% 100.0%

0.6 98.9% 92.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

0.8 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

d = 1

0 4.3% 4.2% 5.9% 5.9% 6.2% 5.1% 4.8% 5.2% 5.5% 5.3%

0.2 21.7% 14.9% 52.0% 30.1% 16.9% 26.7% 20.8% 74.8% 47.6% 27.1%

0.4 69.5% 50.3% 99.5% 87.1% 49.6% 84.2% 73.3% 100.0% 99.5% 85.6%

0.6 99.3% 93.7% 100.0% 100.0% 91.4% 100.0% 99.8% 100.0% 100.0% 100.0%

0.8 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0%

1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

d = 1.2

0 4.6% 4.2% 3.2% 1.4% 1.9% 5.3% 4.9% 5.9% 2.2% 1.4%

0.2 19.2% 12.7% 3.1% 2.7% 3.5% 20.6% 15.6% 4.7% 2.6% 2.7%

0.4 53.2% 37.6% 36.8% 18.3% 10.6% 59.8% 49.7% 62.7% 33.6% 17.7%

0.6 92.8% 83.2% 98.6% 78.3% 39.7% 97.5% 94.7% 100.0% 98.7% 78.5%

0.8 100.0% 99.8% 100.0% 100.0% 86.8% 100.0% 100.0% 100.0% 100.0% 100.0%

1 100.0% 100.0% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0%

1.2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

size than with type A errors. This also vanishes for growing sample sizes, but is still

inherent for T = 500. Bootstrapping helps to solve this problem as the power increases

for d = 0.8 and d = 1 with low cointegration strengths. For d = 1.2 it has no positive

effect.

We want to close this section with a last Monte Carlo study, when we compare the

estimator for the cointegration space defined in (13) with simple OLS estimation. For

this simulation we chose also a simple bivariate cointegrated system (excluding the trivial

case b = 0) with d = 1 and T = 250 fixed. In table 5 we give the bias and root mean

squared error of the estimated cointegration space parameters in simulations with 100.000

replications, which shows that OLS is dominant over VR when there is no correlation

between the error term of the stochastic trend and the cointegration error (i.e. ε1,t and
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Table 4: Size-corrected power for fractional cointegration models with type B errors

T = 250 T = 500

b VRresp VRboot JMN0 JMN1 JMN4 VRresp VRboot JMN0 JMN1 JMN4

d = 0.8

0 0.0% 1.3% 1.8% 25.0% 21.2% 0.1% 2.0% 2.8% 49.6% 40.4%

0.2 0.1% 5.4% 10.5% 58.1% 43.7% 1.7% 11.8% 44.3% 93.0% 81.7%

0.4 1.7% 18.7% 78.5% 93.8% 77.4% 24.5% 49.5% 100.0% 100.0% 99.7%

0.6 18.8% 53.2% 100.0% 100.0% 97.6% 89.3% 95.1% 100.0% 100.0% 100.0%

0.8 73.3% 89.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

d = 1

0 0.6% 2.0% 4.2% 6.4% 6.7% 1.6% 2.9% 4.4% 6.0% 5.9%

0.2 2.5% 6.9% 3.1% 14.0% 12.4% 8.2% 10.7% 3.3% 22.2% 19.6%

0.4 13.8% 21.0% 8.1% 40.7% 30.2% 38.9% 43.6% 28.6% 79.8% 62.3%

0.6 52.9% 54.9% 66.9% 87.5% 65.2% 90.4% 89.3% 99.9% 99.9% 98.2%

0.8 95.1% 92.3% 100.0% 99.9% 95.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0%

d = 1.2

0 2.5% 3.2% 15.5% 3.1% 2.9% 4.3% 4.7% 21.0% 1.8% 1.9%

0.2 7.3% 7.4% 9.1% 4.4% 4.1% 11.8% 12.1% 11.9% 2.9% 3.0%

0.4 21.2% 18.5% 7.3% 10.3% 8.8% 34.3% 34.2% 12.2% 15.5% 12.2%

0.6 53.0% 46.6% 13.2% 35.0% 24.0% 78.1% 75.4% 37.1% 71.6% 53.3%

0.8 92.0% 86.0% 67.0% 83.6% 58.7% 99.5% 99.0% 99.8% 99.9% 97.4%

1 100.0% 99.7% 100.0% 99.8% 92.7% 100.0% 100.0% 100.0% 100.0% 100.0%

1.2 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0%

ε2,t). If there is a correlation between them, the VR approach is behaving better in terms

of bias and RMSE for b ≥ 0.6. The VR approach has big distortions for low cointegration

strength b.

4 Empirical Application

As an empirical exercise we apply the VR approach to monthly Treasury bill rates covering

a time range from December 1958 to December 2011, which contains 637 observations. In

figure 7 it can be seen that Tbill rates with three month (M3), six months (M6), one year

(Y1) and three years (Y3) have an upward trend to September 1979 and then decrease to

the end of the observation period. So we assume exogenously a trend break at τ = 0.3909.
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Table 5: Simulation results for estimated cointegration space with d = 1 and T = 250

applying VR approach and OLS

Type A errors Type B errors

VR OLS VR OLS

b Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.2 -0.5191 10.413 -0.0031 0.2090 -0.4612 12.414 -0.0001 0.2235

0.4 -0.0836 3.6442 0.0001 0.1048 -0.1364 9.0575 -0.0009 0.1122

0.6 -0.0066 0.0932 0.0004 0.0561 -0.0093 0.2504 0.0009 0.0589

0.8 -0.0011 0.0380 0.0002 0.0309 -0.0028 0.0425 -0.0006 0.0315

1 -0.0004 0.0198 -0.0002 0.0181 -0.0005 0.0211 0.0000 0.0185

with correlated errors (ρ = 0.75)

0.2 0.0921 15.745 0.4133 0.4385 0.1991 25.194 0.4010 0.4297

0.4 0.0718 1.3024 0.2225 0.2379 0.0769 1.4689 0.2026 0.2189

0.6 0.0485 0.0714 0.1155 0.1269 0.0430 0.1036 0.0948 0.1060

0.8 0.0167 0.0318 0.0596 0.0682 0.0145 0.0326 0.0385 0.0467

1 -0.0003 0.0146 0.0304 0.0371 -0.0003 0.0151 0.0106 0.0179

Looking at the detrended Tbill rates gives us some evidence of mean reverting behavior,

which implies an integration parameter d < 1. Table 6 shows the results of the univariate

analysis of the Tbill rates. As a first step we estimate the integration parameter d for

the rates by applying the ELW estimator. The estimates don’t differ significantly from

each other over the reported bandwidths. All estimates are lower than unity and for some

bandwidths this seems even to be significant. Applying the univariate VR test for the

rates gives also evidence that the rates share an integration parameter lower than 1. The

p-values are calculated under the hypothesis H0 : d ≥ 1 with τ = 0.3909 and all of them

are lower than 5%. Bootstrapping yields exactly the same p-values.

For the following multivariate analysis we have to decide which estimate of d we want

to use for calculating the p-values of the VR rank tests. For that reason we choose the

estimates of the lowest bandwidth m = 48 as the estimated don’t differ significantly

from the other bandwidths. For every data vector in table 7 we calculate the mean of

the estimated d presented in table 6 and use it to determine the p-values of the VR

statistics. Bootstrapping the VR statistic yields the same results and is therefore left out

from the table. For the bivariate case p = 2 we can mostly confirm the implication on

the cointegration rank on a 5% error level. Surprisingly, for the couple M3 and M6 the

hypothesis of r = 2 can also be rejected on 10% level. The p = 3 case is also inline with

the theory, while the data vector of M3, Y1 and Y3 have only a significant rejection of
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Figure 7: Time series plot with nominal Tbill rates and detrended with a trend break in

Sep 79. Phases of recessions are shaded.

Table 6: ELW estimation and univariate VR tests of Tbill rates

Bandwidth m = ⌊T 0.6⌋ = 48 m = ⌊T 0.65⌋ = 66 m = ⌊T 0.7⌋ = 91 VR stat p-value

M3 0.8755** 0.9071* 0.8729*** 2.1657 0.0110

M6 0.9002* 0.8968** 0.8840** 2.1575 0.0129

Y1 0.8883* 0.8817** 0.8835** 2.1387 0.0186

Y3 0.9209 0.8816** 0.9032** 2.0940 0.0410

aSD 0.0722 0.0615 0.0524

Average 0.8962 0.8918 0.8859

Note: One, two and three asterisks denote rejection of the hypothesis H0 : d ≥ 1 basing on the ELW

estimate of d on 10%, 5% and 1% error level.

r = 1 on a 10% level. This might be explained by the fact of the longest spread time

between all involved rates. Finally the full system of p = 4 including all maturities is also

only significant for r = 3 on a 10% level, although a weak evidence, but it confirms the

implications of the market expectation hypothesis.

Table 8 shows the estimated spaces by applying the VR approach and the strengths

estimated by ELW as the difference of the mean integration parameter of the data vector

and the estimated cointegration strengths. The errors are produced by multiplying the

estimated rotated spaces with the datavectors. Therefore, every row of the reported

spaces stands for one cointegration relation. The cointegration strength parameter b is

calculated as the difference of the average d of the components of the datavector and the

estimated integration order of the cointegration error process by using ELW.

The market expectation hypothesis states, that the cointegration relation itself should be
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Table 7: VR testing for cointegration rank

p − r = 1 p − r = 2 p − r = 3 p − r = 4

Datavector VR stat p-value VR stat p-value VR stat p-value VR stat p-value

(M3, M6) 2.1570 0.0826 4.8733 0.0000 - - - -

(M3, Y1) 2.1364 0.1154 4.6931 0.0001 - - - -

(M3, Y3) 2.0872 0.1640 4.4201 0.0070 - - - -

(M6, Y1) 2.1258 0.1110 4.5488 0.0010 - - - -

(M6, Y3) 2.0712 0.1699 4.3335 0.0161 - - - -

(Y1, Y3) 2.0551 0.2135 4.2737 0.0407 - - - -

(M3, M6, Y1) 2.1099 0.1442 4.4865 0.0037 7.2212 0.0000 - -

(M3, M6, Y3) 2.0286 0.2873 4.2611 0.0541 6.9825 0.0000 - -

(M3, Y1, Y3) 2.0229 0.3116 4.2246 0.0869 6.8424 0.0001 - -

(M6, Y1, Y3) 2.0434 0.2422 4.2458 0.0580 6.7670 0.0002 - -

(M3, M6, Y1, Y3) 2.0180 0.3206 4.2186 0.0897 6.7267 0.0006 9.4736 0.0000

the spreads between the different maturities. So, the coefficients of the rows of the rotated

spaces should add up to zero. The estimated spaces itself differ from the expected form,

which might be explained by the reason that the cointegration strength is lower when the

spread time gets longer and therefore we face higher variances in estimating the spaces.

5 Conclusion

In this paper we presented response surface parameters to determine critical values and p-

values for the VR test of fractional (co-)integration, when the underlying processes inhibit

a linear trend with the possibility of a structural break. Further work might be done to

take a second break into account. Modeling more than two breaks in empirical analysis

might not be relevant as it is difficult to determine and to test. More interesting can be

the approach by Johansen and Nielsen (2011), who stated a fractional error correction

model, which also allows to test restrictions on the cointegration space. Practitioners

should also be aware that the order of fractional integration might not be stable over a

longer time. So models, which can take a changing b into account might be interesting

and opens a wide field for further research.
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Table 8: Estimated cointegration spaces and strengths

estimated rotated space estimated strength b̂

Datavector β̂
′

m = 48 m = 66 m = 91

(M3, M6)
(

1 −1.0245
)

0.5454 0.6021 0.4692

(M3, Y1)
(

1 −0.9565
)

0.4029 0.4539 0.3326

(M3, Y3)
(

1 −0.9433
)

0.1902 0.1991 0.1829

(M6, Y1)
(

1 −0.9256
)

0.1962 0.3236 0.2385

(M6, Y3)
(

1 −0.8620
)

0.0893 0.1152 0.1164

(Y1, Y3)
(

1 −0.9134
)

0.0811 0.0816 0.0976

(M3, M6, Y1)

(

1 0 −0.9343

0 1 −0.9174

)

0.3816

0.1803

0.4304

0.3145

0.3218

0.2272

(M3, M6, Y3)

(

1 0 −0.7975

0 1 −0.7861

)

0.1520

0.0635

0.1435

0.0951

0.1459

0.0925

(M3, Y1, Y3)

(

1 0 −0.7584

0 1 −0.8609

)

0.1364

0.0654

0.1225

0.0760

0.1352

0.0797

(M6, Y1, Y3)

(

1 0 −0.7710

0 1 −0.8830

)

0.0651

0.0762

0.0817

0.0783

0.0926

0.0880

(M3, M6, Y1, Y3)







1 0 0 −0.7587

0 1 0 −0.7470

0 0 1 −0.8645







0.1378

0.0541

0.0671

0.1243

0.0794

0.0786

0.1346

0.0830

0.0798
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