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Abstract

Two new properties of a finite strategic game, strong and weak BR-dominance

solvability, are introduced. The first property holds, e.g., if the game is strongly

dominance solvable or if it is weakly dominance solvable and all best responses are

unique. It ensures that every simultaneous best response adjustment path, as well

as every non-discriminatory individual best response improvement path, reaches

a Nash equilibrium in a finite number of steps. The second property holds, e.g.,

if the game is weakly dominance solvable; it ensures that every strategy profile

can be connected to a Nash equilibrium with a simultaneous best response path

and with an individual best response path (if there are more than two players,

unmotivated switches from one best response to another may be needed). In a

two person game, weak BR-dominance solvability is necessary for the acyclicity of

simultaneous best response adjustment paths, as well as for the acyclicity of best

response improvement paths provided the set of Nash equilibria is rectangular.
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1 Introduction

The two strands of game theory listed in the title have two things in common. First,

some dynamic notions are involved in both cases. Second, both can be developed in

a purely ordinal framework although are equally applicable to mixed extensions. They

radically differ in their assumptions about the rationality of the players.

Dominance solvability (Moulin, 1979) presupposes a high degree of sophistication.

Each player is able to analyze the whole game and anticipate the results of similar

analyses by the partners. Actually, there are two versions of the property, strong and

weak ones. The elimination of strongly dominated strategies does not change, say, the

set of Nash equilibria. The elimination of weakly dominated strategies is not at all

innocuous (Samuelson, 1992), but, nonetheless, is often regarded as legitimate.

Individual myopic adaptation, on the contrary, is natural when the players’ rational-

ity is bounded and they have to rely on “local” considerations. Actually, best response

dynamics were considered by A.-A. Cournot long before the expression “game theory”

came into use. Similar processes in various contexts were studied by Topkis (1979),

Bernheim (1984), Vives (1990), Milgrom and Roberts (1990).

Connections between dominance solvability and the convergence of Cournot taton-

nement were examined by Moulin (1984). It turned out that the former usually implies

the latter; in a rather special case, an equivalence was established. Dominance was weak

although the assumption of unique best responses made it “not so weak.” Two scenarios

of tatonnement were considered: simultaneous and sequential (with a fixed order of the

players).

In a sense, this paper returns to the same subject with a newer toolbox. Although

none of the results is strikingly dissimilar to those of Moulin (1984), a much more detailed

picture of “what depends on what” is obtained. For technical convenience, we only

consider finite games, where we can essentially restrict ourselves to finite improvement

(or adjustment) paths; in a continuous game, this would be insufficient. Similarly,

in a finite game dominated strategies can be eliminated one at a time, which gives

considerable technical freedom; in a continuous game, we have to delete strategies en

mass, and even then cannot expect a finite number of eliminations to be sufficient.

Concerning adaptive dynamics, we consider both (best response) improvements as

defined by Monderer and Shapley (1996) and Milchtaich (1996), and simultaneous best

response adjustments. The former cover sequential tatonnement of Moulin (1984); it

should also be noted that sufficient conditions for the convergence of more complicated

scenarios of adaptation or evolution can be formulated in terms of such improvement

paths (Young, 1993; Kandori and Rob, 1995; Milchtaich, 1996; Friedman and Mezzetti,

2001). The language of binary relations, suggested in Kukushkin (1999), proves useful.

Since dominance solvability seems to have no implications for better reply dynamics
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anyway, we introduce an apparently new notion of BR-dominance solvability. A strategy

is called strongly BR-dominated if it is not among the best responses to any profile of

strategies of the partners. A strategy is weakly BR-dominated by another strategy of

the same player if the latter is among the best responses to a profile of strategies of the

partners whenever the former is; thus, a weakly BR-dominated strategy can be dispensed

with rather than is not needed at all. A game is called strongly (weakly) BR-dominance

solvable if iterative elimination of strongly (weakly) BR-dominated strategies produces

a game where all strategy profiles are Nash equilibria. Clearly, a strongly (weakly)

dominance solvable game is strongly (weakly) BR-dominance solvable; both converse

statements are wrong.

The iterative elimination of strongly BR-dominated strategies can be viewed as an

ordinal analogue of the rationalizability concept (Bernheim, 1984). Admittedly, there is

a serious difference between the two situations: If a pure strategy is not a best response to

any profile of mixed strategies of the partners, then it is dominated by a mixed strategy,

hence the latter provides a justification for the elimination of the former. When only

pure strategies are allowed, the fact that a strategy is not a best response to any profile

of strategies of the partners does not make it inferior to any other strategy. On the other

hand, the importance of the difference should not be overestimated either: the question

of which strategies are not needed by a player can only be resolved with a particular

scenario (or a list of scenarios) in view; e.g., the Stackelberg solution of a two person

game may well include the choice of a strongly dominated strategy by the leader. And it

is easy to see that the elimination of strongly BR-dominated strategies does not change

the set of Nash equilibria.

Be that as it may, it is strong BR-dominance solvability that ensures nice behavior of

both sequential and simultaneous tatonnement processes; in particular, if a finite game

satisfies the conditions of Moulin (1984), it is strongly BR-dominance solvable.

A very interesting feature of Moulin (1984) is an equivalence result (Corollary of

Lemmas 1 and 2), even though obtained in a rather special case. From our current

viewpoint, that result is just a fortunate coincidence: Generally, strong BR-dominance

solvability is sufficient for nice best response dynamics, whereas weak BR-dominance

solvability is necessary when there are two players. The latter is only sufficient for the

possibility to reach a Nash equilibrium from every strategy profile with a tatonnement

path. There seems to be no necessity result for more than two players.

Section 2 contains the basic definitions and facts about improvement dynamics in

strategic games; a new version of the acyclicity of improvements in a strategic game

is introduced, “finite inclusive best response improvement property”; some connections

between the convergence of simultaneous best response adjustments and individual best

response improvements are established. In Section 3, standard notions of (strong and

weak) dominance solvability are reproduced, and their “best response” modifications are

defined; the section also contains auxiliary results about the new concepts. Implications
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of strong BR-dominance solvability, Theorems 1–3, are given in Section 4: every simul-

taneous best response adjustment path reaches a Nash equilibrium in a finite number of

steps; every individual best response improvement path does the same unless a player

is never given an opportunity to adapt. Theorems 4 and 5 about the necessity of weak

BR-dominance solvability are proven in Section 5; some “positive” implications of weak

BR-dominance solvability, in Section 6.

2 Improvement paths in strategic games

Our basic model is a strategic game with ordinal preferences. It is defined by a finite

set of players N , and strategy sets Xi and preference relations on XN =
∏

i∈N Xi for

all i ∈ N . We always assume that each Xi is finite and preferences are described with

ordinal utility functions ui : XN → R. For notational simplicity, we assume Xi ∩Xj = ∅

whenever i 6= j. For each i ∈ N , we denote X−i =
∏

j∈N\{i} Xj and

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i)

for each x−i ∈ X−i (the best response correspondence); if #N = 2, then −i refers to the

partner of player i.

We introduce the individual improvement relation ⊲
Ind and best response improvement

relation ⊲
BR on XN (i ∈ N , yN , xN ∈ XN):

yN ⊲
Ind

i xN ⇋ [y−i = x−i & ui(yN) > ui(xN)],

yN ⊲
Ind xN ⇋ ∃i ∈ N [yN ⊲

Ind
i xN ];

yN ⊲
BR

i xN ⇋ [y−i = x−i & xi /∈ Ri(x−i) ∋ yi],

yN ⊲
BR xN ⇋ ∃i ∈ N [yN ⊲

BR
i xN ].

By definition, a strategy profile xN ∈ XN is a Nash equilibrium if and only if xN is a

maximizer of ⊲
Ind, i.e., if yN ⊲

Ind xN is impossible for any yN ∈ XN . In a finite game,

xN ∈ XN is a Nash equilibrium if and only if xN is a maximizer of ⊲
BR.

A (best response) improvement path is a finite or infinite sequence {xk
N}k=0,1,... such

that xk+1
N ⊲

Ind xk
N (xk+1

N ⊲
BR xk

N) whenever k ≥ 0 and xk+1
N is defined; henceforth, we

call such k admissible (for a given path).

As in Kukushkin et al. (2005), we combine the terminology of Monderer and Shapley

(1996), Milchtaich (1996), and Friedman and Mezzetti (2001). A game has the finite

improvement property (FIP) if it admits no infinite improvement path. A game has the

finite best response improvement property (FBRP) if it admits no infinite best response

improvement path. FIP (FBRP) means that every (best response) improvement path

reaches a Nash equilibrium in a finite number of steps. A game has the weak FIP

(weak FBRP) if, for every xN ∈ XN , there exists a finite (best response) improvement
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path {x0
N , . . . , xm

N} such that x0
N = xN and xm

N is a Nash equilibrium. Clearly, FIP ⇒

FBRP ⇒ weak FBRP ⇒ weak FIP.

A Cournot potential is a strict order (irreflexive and transitive binary relation) ≻ on

XN such that yN ≻ xN whenever yN ⊲
BR xN ; a weak Cournot potential is a strict order

≻ on XN such that, whenever xN is not a Nash equilibrium, there is yN ∈ XN such

that yN ⊲
BR xN and yN ≻ xN . By Propositions 6.1 and 6.2 from Kukushkin (2004), a

finite game has the (weak) FBRP if and only if it admits a (weak) Cournot potential.

Henceforth, a best response improvement path will be called just a Cournot path; clearly,

the FBRP is equivalent to the absence of Cournot cycles.

A property intermediate between the FBRP and weak FBRP deserves attention.

We say that a player i ∈ N fully participates in a Cournot path {xk
N}k=0,1,... if for

each admissible m ∈ N there is an admissible k ≥ m such that xk
i ∈ Ri(x

k
−i). A

Cournot path is inclusive if each player i ∈ N fully participates in it; a Cournot cycle

x0
N , x1

N , . . . , xm
N = x0

N (m > 0) is complete if for each player i ∈ N there is k ≤ m such

that xk
i ∈ Ri(x

k
−i).

A game has the finite inclusive best response improvement property (FIBRP) if it

admits no infinite inclusive Cournot path. It is immediately clear that the sequential

tatonnement process as defined by Moulin (1984, p. 87) generates an inclusive Cournot

path. Therefore, the FIBRP implies, in particular, the convergence of such a process in

a finite number of steps.

A preorder is a reflexive and transitive binary relation; with every preorder º, a strict

order ≻ and an equivalence relation ∼ are naturally associated. A Cournot quasipotential

is a preorder º on XN such that for every xN ∈ XN there exists a subset M(xN) ⊆ N

satisfying

yN ⊲
BR xN ⇒

[

yN ≻ xN or [yN ∼ xN & M(yN) = M(xN) 6= ∅]
]

; (1a)

i ∈ M(xN) ⇒ xi /∈ Ri(x−i). (1b)

It immediately follows that yN ≻ xN whenever yN ⊲
BR

i xN and i ∈ M(xN). If ≻

is a Cournot potential, then its reflexive closure º is a Cournot quasipotential with

M(xN) = ∅ for all xN ∈ XN . If º is a Cournot quasipotential, then its asymmetric

component ≻ is a weak Cournot potential.

Proposition 2.1. For every finite strategic game Γ, the following statements are equiv-

alent:

1. Γ has the FIBRP;

2. Γ admits no complete Cournot cycle;

3. Γ admits a Cournot quasipotential.
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Proof. Infinite repetition of a complete Cournot cycle generates an infinite inclusive

Cournot path, hence Statement 1 implies Statement 2.

Let Statement 2 hold. To verify Statement 3, we denote º the reflexive and transitive

closure of ⊲
BR: yN º xN if and only if there is a finite Cournot path x0

N , x1
N , . . . , xm

N such

that x0
N = xN and xm

N = yN (m ≥ 0). Let Y ⊆ XN be an equivalence class of ∼ with

#Y > 1; we denote D(Y ) = {i ∈ N | ∀xN ∈ Y [xi /∈ Ri(x−i)]}. Since all xN ∈ Y can

be arranged into a single Cournot cycle and that cycle cannot be complete, D(Y ) 6= ∅.

Now we define M(xN) = D(Y ) if xN belongs to a non-singleton equivalence class Y ,

and M(xN) = ∅ otherwise. The conditions (1) are checked easily.

Finally, let º be a Cournot quasipotential and {xk
N}k=0,1,... be an infinite Cournot

path; we have to show that a player i ∈ N does not fully participate in the path. Since

XN is finite, at least one strategy profile x̄N must enter into the path an infinite number

of times. Let xm
N = x̄N for the first time; clearly, we must have xk+1

N ∼ xk
N for all k ≥ m.

By (1a), M(xk+1
N ) = M(xk

N) = M0 6= ∅ for all k ≥ m. By (1b), we have xk
i /∈ Ri(x

k
−i)

for all i ∈ M0 and k ≥ m. Thus, each player i ∈ M0 is not fully participating.

Corollary. If a finite two person game Γ has the FIBRP, then it has the FBRP.

Proof. By Proposition 2.1, Γ admits no complete Cournot cycle; on the other hand, best

response improvements by one player cannot form a cycle in any game.

Remark. In the proof of Theorem 3 of Kukushkin (2004), the FBRP was derived from

the presence of a “quasipotential” in an even weaker sense than (1). The point is that

whenever a game satisfies the conditions of that theorem, so do all its reduced games.

Generally, we only obtain FIBRP. In particular, dominance solvability (in any sense)

need not be inherited by the reduced games, hence Theorem 1 below also only asserts

FIBRP.

We introduce the simultaneous best response adjustment relation ⊲
∗BR on XN

(yN , xN ∈ XN):

yN ⊲
∗BR xN ⇋

(

∀i ∈ N [yi = xi ∈ Ri(x−i) or xi /∈ Ri(x−i) ∋ yi] & yN 6= xN

)

.

In a finite game, xN ∈ XN is a Nash equilibrium if and only if xN is a maximizer of

⊲
∗BR. A simultaneous Cournot path is a finite or infinite sequence {xk

N}k=0,1,... such that

xk+1
N ⊲

∗BR xk
N whenever k ≥ 0 and xk+1

N is defined.

Remark. We do not use the term “improvement” here because yN ⊲
∗BR xN is compatible

with ui(yN) < ui(xN) for all i ∈ N .

A game has the finite simultaneous best response adjustment property (FSP) if there

exists no infinite simultaneous Cournot path. FSP implies that every simultaneous

Cournot path eventually leads to a Nash equilibrium. A game has the weak FSP if, for
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every xN ∈ XN , there exists a finite simultaneous Cournot path {x0
N , . . . , xm

N} such that

x0
N = xN and xm

N is a Nash equilibrium.

A simultaneous Cournot potential is a strict order ≻ on XN such that yN ≻ xN

whenever yN ⊲
∗BR xN ; a weak simultaneous Cournot potential is a strict order ≻ on

XN such that, whenever xN is not a Nash equilibrium, there is yN ∈ XN such that

yN ⊲
∗BR xN and yN ≻ xN . By Propositions 6.1 and 6.2 from Kukushkin (2004), a

finite game has the (weak) FSP if and only if it admits a (weak) simultaneous Cournot

potential.

Proposition 2.2. If a finite two person game Γ has the (weak) FSP, then it has the

(weak) FBRP.

Proof. For every xN ∈ XN , we define

ν(xN) = #{i ∈ N | xi ∈ Ri(x−i)}. (2)

If ν(xN) = 2, then xN is a Nash equilibrium. If yN ⊲
BR xN , then ν(yN) ≥ 1. If

x0
N , . . . , xm

N = x0
N (m > 0) is a Cournot cycle, then ν(xk

N) = 1 for all k. If ν(xN) = 1,

then yN ⊲
∗BR xN is equivalent to yN ⊲

BR xN . Therefore, every Cournot cycle is a

simultaneous Cournot cycle, hence FSP implies FBRP.

Let Γ have the weak FSP and x0
N ∈ XN ; then there is a simultaneous Cournot

path x0
N , . . . , xm

N such that xm
N is a Nash equilibrium. If ν(x0

N) = 1, then ν(xk
N) = 1

as well for all k < m, hence the path is also a Cournot path. Let ν(x0
N) = 0 and

ν(xk
N) ≥ 1 for the first time when k = k̄ (0 < k̄ ≤ m). Without restricting generality,

we may assume xk̄
1 ∈ R1(x

k̄
2). We denote yk̄+1

N = xk̄
N , y0

N = x0
N , yk̄−2h

N = (xk̄−2h
1 , xk̄−2h−1

2 )

(h = 0, 1, . . . , 2h + 1 ≤ k̄), and yk̄−2h−1
N = (xk̄−2h−2

1 , xk̄−2h−1
2 ) (h = 0, 1, . . . , 2h + 1 < k̄).

It is immediately clear from the definitions that yk̄−2h
1 ∈ R1(y

k̄−2h−1
2 ), yk̄−2h

2 = yk̄−2h−1
2 ,

yk̄−2h−1
2 ∈ R2(y

k̄−2h−2
1 ), and yk̄−2h−1

1 = yk̄−2h−2
1 for all admissible h. (If k̄ is odd, then

player 1 moves from x0
N = y0

N to y1
N ; if k̄ is even, it is player 2.) For every k = 0, 1, . . . , k̄,

either yk+1
N ⊲

BR yk
N or yk

N is a Nash equilibrium. Therefore, we have obtained a Cournot

path starting at x0
N = y0

N and ending either at a Nash equilibrium or at xk̄
N with

ν(xk̄
N) = 1. In the first case, we are home immediately; in the second, we recall that

xk̄
N , . . . , xm

N is a Cournot path.

When there are more than two players, there seems to be no relation between the

convergence of Cournot paths and simultaneous Cournot paths (see Moulin, 1986).

3 Elimination of dominated strategies

Let Γ be a strategic game, i ∈ N , and xi, yi ∈ Xi. We call yi and xi equivalent, yi ≈ xi,

if ui(yi, x−i) = ui(xi, x−i) for all x−i ∈ X−i. We say that yi strongly dominates xi,

7



yi ≫ xi, if for every x−i ∈ X−i, there holds ui(yi, x−i) > ui(xi, x−i). We say that yi

weakly dominates xi, yi ≫ xi, if ui(yi, x−i) ≥ ui(xi, x−i) for every x−i ∈ X−i, while

ui(yi, x−i) > ui(xi, x−i) for some x−i ∈ X−i. A strategy yi ∈ Xi is strongly (weakly)

dominant if yi ≫ xi (yi ≫ xi) for any xi 6= yi. A strategy xi ∈ Xi is strongly (weakly)

dominated if there exists yi ∈ Xi such that yi ≫ xi (yi ≫ xi).

A fragment Γ′ of Γ is a strategic game with the same set of players N , nonempty

subsets ∅ 6= X ′
i ⊆ Xi for all i ∈ N , and the restrictions of the same utility functions to

X ′
N =

∏

i∈N X ′
i. Let X ′

i contain both yi and xi. Then the relations yi ≈ xi or yi ≫ xi

in Γ imply the same relations in Γ′; if yi ≫ xi in Γ, then either yi ≈ xi or yi ≫ xi in Γ′.

Given a strategic game Γ, an elimination scheme of the length m > 0 is a mapping

ξ : {1, . . . , m} →
⋃

i∈N Xi; we associate with the scheme a sequence of fragments Γk of

Γ: Γ0 = Γ; Xk
i = Xi \ ξ({1, . . . , k}) for each k ∈ {1, . . . , m} and i ∈ N . It is convenient

to allow also an elimination scheme of the length 0, which means just taking Γ0 = Γ.

An elimination scheme of the length m ≥ 0 is perfect if yi ≈ xi in Γm for every i ∈ N

and yi, xi ∈ Xm
i (hence every xN ∈ Xm

N is a Nash equilibrium in Γm).

A game Γ is strongly dominance solvable if it admits a perfect elimination scheme

such that, for each k ∈ {1, . . . , m}, the deleted strategy ξ(k) is strongly dominated in

Γk−1. A game Γ is weakly dominance solvable if it admits a perfect elimination scheme

such that, for each k ∈ {1, . . . , m}, there is κ(k) < k such that the deleted strategy ξ(k)

is weakly dominated in Γκ(k).

Remark. When strongly dominated strategies are iteratively deleted, the result does

not depend on the details of the process. The latter may very much matter in the case

of the elimination of weakly dominated strategies; the presence of κ(k) in our definition

allows for both simultaneous and sequential elimination.

With a slight abuse, we denote R−1
i (xi) = {x−i ∈ X−i | xi ∈ Ri(x−i)}. A strategy

xi ∈ Xi is strongly BR-dominated if R−1
i (xi) = ∅. A strategy xi ∈ Xi is weakly BR-dom-

inated by yi ∈ Xi, yi ºº xi, if yi 6= xi and R−1
i (xi) ⊆ R−1

i (yi); note that the relation ºº

need not even be asymmetric. It is immediately clear that a strongly (weakly) domi-

nated strategy is strongly (weakly) BR-dominated, and that a strongly BR-dominated

strategy is weakly BR-dominated by any other.

An S-scheme (W-scheme) is an elimination scheme ξ of the length m such that,

for every k ∈ {1, . . . , m}, the deleted strategy ξ(k) is strongly (weakly) BR-dominated

in Γk−1. We call Γ strongly (weakly) BR-dominance solvable if it admits a perfect

S-scheme (W-scheme). Since equivalent strategies weakly BR-dominate each other, the

elimination of weakly BR-dominated strategies can be continued until each Xm
i is a

singleton; however, it is technically more convenient to have all definitions as similar to

one another as possible.

Since BR-dominance solvability seems to have never been studied in the literature,

we provide detailed proofs of familiar results in the new context. Two implications
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are obvious: a strongly dominance solvable game is strongly BR-dominance solvable

with the same elimination scheme; a strongly BR-dominance solvable game is weakly

BR-dominance solvable with the same elimination scheme.

Proposition 3.1. If Γ is weakly dominance solvable, then Γ is weakly BR-dominance

solvable with the same elimination scheme.

Proof. At every step k, the deleted strategy ξ(k) ∈ Xk−1
i is weakly dominated in Γκ(k):

yi ≫ ξ(k) with yi ∈ X
κ(k)
i . The strategy yi need not belong to Xk−1

i , but the transitivity

of ≫ implies that there is k′ < k and y′
i ∈ Xk−1

i such that y′
i ≫ ξ(k) in Γk′

. Clearly,

y′
i 6= ξ(k) and either y′

i ≫ ξ(k) or y′
i ≈ ξ(k) in Γk−1; therefore, y′

i ºº ξ(k) in Γk−1, i.e.,

ξ(k) is weakly BR-dominated in Γk−1.

Proposition 3.2. If xN is a Nash equilibrium in Γ and ξ is an S-scheme of the length

m, then xN ∈ Xm
N .

Proof. Supposing the contrary, let k be the first step when xN /∈ Xk
N ; then xi = ξ(k)

and x−i ∈ Xk−1
−i for some i ∈ N . On the other hand, xi ∈ Ri(x−i) in Γ, hence it cannot

be BR-dominated in Γk−1: a contradiction.

Lemma 3.3. Let ξ be a W-scheme of the length m; then Ri(x−i) ∩ Xk
i 6= ∅ whenever

i ∈ N , k ≤ m, and x−i ∈ Xk
−i.

Proof. Supposing the contrary, let h ≥ 0 be the first step when Ri(x−i) ∩ Xh+1
i = ∅.

Then ξ(h + 1) ∈ Ri(x−i); by definition, there is yi ∈ Xh+1
i such that yi ºº ξ(h + 1) in

Γh. Since x−i ∈ Xk
−i ⊆ Xh+1

−i , we obtain yi ∈ Ri(x−i) ∩ Xh+1
i , which contradicts the

definition of h.

Proposition 3.4. If Γ is weakly BR-dominance solvable and xN ∈ Xm
N , then xN is a

Nash equilibrium in Γ.

Proof. For each i ∈ N , we apply Lemma 3.3 to x−i ∈ Xm
−i and pick yi ∈ Ri(x−i) ∩ Xm

i .

By definition, yi ≈ xi in Γm, hence xi ∈ Ri(x−i) as well.

Propositions 3.2 and 3.4 immediately imply that the set of Nash equilibria in a

strongly BR-dominance solvable game is rectangular, and all perfect S-schemes eliminate

the strategies not participating in the equilibria.

4 Strong BR-dominance solvability

First, we show that weak and strong BR-dominance solvability are equivalent under the

uniqueness of best responses as assumed in Moulin (1984).
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Lemma 4.1. If Ri(x−i) is a singleton for every i ∈ N and x−i ∈ X−i, then every

W-scheme is an S-scheme.

Proof. Supposing the contrary, we must have a stage k (1 ≤ k ≤ m) when the deleted,

weakly BR-dominated strategy ξ(k) ∈ Xi is not strongly BR-dominated in Γk−1, i.e.,

is a best response to x−i ∈ Xk−1
−i . Let Ri(x−i) = {yi}; applying Lemma 3.3, we obtain

yi ∈ Xk−1
i , hence yi is a unique best response to x−i in Γk−1. Thus, ξ(k) could be a best

response to x−i in Γk−1 only if ξ(k) = yi; however, yi is not weakly BR-dominated in

Γk−1.

Proposition 4.2. If Γ is weakly BR-dominance solvable and Ri(x−i) is a singleton for

every i ∈ N and x−i ∈ X−i, then Γ is strongly BR-dominance solvable.

Proof. The statement immediately follows from Lemma 4.1.

Let us introduce some useful notations and an auxiliary result. Given an elimination

scheme ξ of the length m, we define µ :
⋃

i∈N Xi → {1, . . . , m + 1} by

µ(ξ(k)) = k; (3a)

µ(xi) = m + 1 if xi /∈ ξ({1, . . . , m}). (3b)

We also define µ− : XN → {1, . . . , m + 1} by

µ−(xN) = min
i∈N

µ(xi). (3c)

As long as µ(xi) ≤ m, µ is injective, hence Argmini∈N µ(xi) is a singleton whenever

µ−(xN) ≤ m.

Lemma 4.3. Let ξ be an S-scheme of the length m and xN ∈ XN be such that µ−(xN) ≤

m; then for every i ∈ N and yi ∈ Ri(x−i), there holds µ(yi) > µ−(xN).

Proof. If µ(yi) = k ≤ µ−(xN) ≤ m, then yi is strongly BR-dominated in Γk−1; since

x−i ∈ X
µ−(xN )−1
−i ⊆ Xk−1

−i , this is incompatible with yi ∈ Ri(x−i).

Theorem 1. If a finite game Γ is strongly BR-dominance solvable, then it has the

FIBRP.

Proof. Fixing a perfect S-scheme ξ, we consider the functions µ and µ− defined by (3).

Let us show that the preorder represented by µ−, i.e., yN º xN ⇋ µ−(yN) ≥ µ−(xN),

is a Cournot quasipotential with M(xN) = Argmini∈N µ(xi) when µ−(xN) ≤ m and

M(xN) = ∅ otherwise. If µ−(xN) = m + 1, then xN ∈ Xm
N , hence xN is a Nash

equilibrium in Γ by Proposition 3.4.

Let yN ⊲
BR

i xN ; then µ−(xN) ≤ m, hence Lemma 4.3 is applicable. If i /∈ M(xN),

then µ−(yN) = µ−(xN) and M(yN) = M(xN); if i ∈ M(xN), then µ−(yN) > µ−(xN)
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because M(xN) = {i}. We see that condition (1a) holds. Finally, if i ∈ M(xN), then

µ(xi) = µ−(xN) ≤ m; if xi ∈ Ri(x−i), then Lemma 4.3 would imply µ(xi) > µ(xi).

Thus, (1b) holds as well.

Theorem 2. If a finite two person game Γ is strongly BR-dominance solvable, then it

has the FBRP.

Proof. The statement immediately follows from Theorem 1 and Corollary to Proposi-

tion 2.1.

The FBRP in the formulation of Theorem 2 cannot be replaced with the FIP: if one

player has a strongly dominant strategy x+
i , then any behavior of improvement paths

with xk
i 6= x+

i is compatible with strong dominance solvability. For the same reason, the

FIBRP cannot be replaced with the FBRP in Theorem 1.

Theorem 3. If a finite game Γ is strongly BR-dominance solvable, then it has the FSP.

Proof. Fixing a perfect S-scheme ξ, we consider the functions µ and µ− defined by (3).

Let us show that the strict order represented by µ−, i.e., yN ≻ xN ⇋ µ−(yN) > µ−(xN),

is a simultaneous Cournot potential. Let yN ⊲
∗BR xN ; then µ−(xN) ≤ m. By Lemma 4.3,

µ(yi) > µ−(xN) for every i ∈ N , hence µ−(yN) > µ−(xN) as well.

If Γ is only weakly dominance solvable, all the three theorems become wrong.

Example 4.1. Let us consider a three person 2 × 3 × 2 game (where player 1 chooses

rows, player 2 columns, and player 3 matrices):
[

(3, 3, 3) (2, 1, 1) (1, 2, 2)

(3, 3, 3) (1, 2, 2) (2, 1, 1)

] [

(0, 0, 0) (2, 1, 1) (1, 2, 2)

(0, 0, 0) (1, 2, 2) (2, 1, 1)

]

.

Nash equilibria fill the left column of the left matrix; however, none of the underlined

strategy profiles could be connected to any equilibrium with an individual improvement

path or with a simultaneous Cournot path. Thus, the game does not have even the weak

FIP or the weak FSP. On the other hand, it is weakly dominance solvable: The choice

of the left matrix weakly dominates the choice of the right matrix; when the latter is

deleted, the left column becomes strongly dominant.

Example 4.2. Let us consider the following bimatrix game:

(0, 1) (1, 0) (0, 1)

(0, 1) (0, 1) (1, 0)

(2, 2) (1, 0) (1, 0)

.

The bottom row and the left column are weakly dominant; the southwestern corner of

the matrix is a unique Nash equilibrium. The underlined fragment is a Cournot cycle

(hence a simultaneous Cournot cycle as well).
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5 On the necessity of BR-dominance solvability

None of the theorems from Section 4 admits a converse. For Theorems 1 and 2, this is

shown by the Battle of Sexes, which has the FIP, but is not even weakly BR-dominance

solvable; for Theorem 3, by the following example.

Example 5.1. Let us consider a two person 2 × 2 game:

(1, 1) (0, 1)

(0, 1) (1, 1)
.

There are two Nash equilibria: the northwestern and southeastern corners. Simultaneous

best response adjustment from any other strategy profile immediately produces a Nash

equilibrium, so the game has the FSP. On the other hand, each strategy of player 1

is the unique best response to a strategy of the partner; each strategy of player 2 is

a best response to each strategy of the partner. Therefore, the game is not strongly

BR-dominance solvable.

Nonetheless, some necessity results can be obtained here.

Lemma 5.1. For every finite two person game Γ, at least one of the following statements

holds:

1. Every strategy set Xi is a singleton.

2. Γ admits a simultaneous Cournot cycle.

3. There is a weakly BR-dominated strategy in Γ.

Proof. Let Statements 1 and 2 not hold. If every strategy profile xN ∈ XN is a Nash

equilibrium, then all strategies of the same player are equivalent, hence Statement 3

holds. Otherwise, there is, at least, one pair of strategy profiles such that yN ⊲
∗BR xN .

Since there is no simultaneous Cournot cycle, we can pick an xN ∈ XN which is not a

Nash equilibrium and for which xN ⊲
∗BR x′

N is impossible for any x′
N ∈ XN .

For each i ∈ N , we denote X ′
−i = R−1

i (xi) ⊆ X−i. If X ′
i = ∅ for an i ∈ N ,

then xi is even strongly BR-dominated and we are home. Let X ′
N = X ′

1 × X ′
2 6= ∅.

Since xN is not a Nash equilibrium, there must be i ∈ N and x0
i ∈ X ′

i such that

x0
i 6= xi. If R−1

i (x0
i ) ⊇ X ′

−i, then x0
i ºº xi and we are home again; otherwise, there is

x0
−i ∈ X ′

−i such that x0
i /∈ Ri(x

0
−i). Since xN ⊲

∗BR x0
N is assumed impossible, we must

have x−i 6= x0
−i ∈ R−i(x

0
i ). Again, if R−1

−i (x
0
−i) ⊇ X ′

i, then x0
−i ºº x−i. Otherwise, there

is x1
i ∈ X ′

i such that x0
−i /∈ R−i(x

1
i ); we denote x1

N = (x1
i , x

0
−i) ∈ X ′

N . Since xN ⊲
∗BR x1

N

is assumed impossible, we must have xi 6= x1
i ∈ Ri(x

0
−i); therefore, x1

N ⊲
∗BR x0

N . Again,

if R−1
i (x1

i ) ⊇ X ′
−i, then x1

i ºº xi; otherwise, there is x2
−i ∈ X ′

−i such that x1
i /∈ Ri(x

2
−i).

We denote x2
N = (x1

i , x
2
−i) ∈ X ′

N ; again, x2
N ⊲

∗BR x1
N ⊲

∗BR x0
N , and so on.
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Since there is no simultaneous Cournot cycle, the simultaneous Cournot path

x0
N , x1

N , . . . cannot be infinite. On the other hand, the next profile xk+1
N cannot be

defined only if xk
i ºº xi for an i ∈ N . Thus, Statement 3 holds.

Theorem 4. If a finite two person game Γ has the FSP, then it is weakly BR-dominance

solvable.

Proof. We apply Lemma 5.1. If XN is a singleton, Γ is even strong BR-dominance

solvable. Statement 2 cannot hold by the FSP assumption. Therefore, there is a weakly

BR-dominated strategy xi. The elimination of xi defines a W-scheme of the length 1

and a fragment Γ1. By Lemma 3.3, we have R1
i (x−i) = Ri(x−i) ∩ X1

i for all i ∈ N and

x−i ∈ X1
−i; therefore, the relation ⊲

∗BR in Γ1 is the restriction of ⊲
∗BR in Γ to X1

N , hence

Γ1 also has the FSP, hence Lemma 5.1 applies again. The process only stops when Xm
N is

a singleton; then the W-scheme will be perfect (it may become so even before that).

For more than two players, Theorem 4 is wrong.

Example 5.2. Let us consider a three person 2 × 2 × 2 game (where player 1 chooses

rows, player 2 columns, and player 3 matrices):

[

(2, 1, 2) (4, 4, 4)

(0, 0, 0) (1, 3, 3)

] [

(0, 0, 0) (3, 2, 1)

(4, 4, 4) (0, 0, 0)

]

.

The two Nash equilibria are not underlined. Each of the three strategy profiles underlined

once is dominated in the sense of ⊲
∗BR only by a Nash equilibrium; each of the three

strategy profiles underlined twice is dominated in the same sense only by a strategy

profile underlined once. Thus, the game has the FSP. On the other hand, each strategy

of each player is a unique best response to a strategy profile of the partners. Therefore,

the game is not weakly BR-dominance solvable.

The Battle of Sexes shows that the FSP in Theorem 4 cannot be replaced with the

FBRP (or even FIP). This becomes possible under an additional assumption that the

set of Nash equilibria is rectangular (Theorem 5 below).

Lemma 5.2. For every finite two person game Γ, at least one of the following statements

holds:

1. Every strategy profile xN ∈ XN is a Nash equilibrium.

2. Γ admits a Cournot cycle.

3. The set of Nash equilibria in Γ is not rectangular.

4. There are i ∈ N and yi, xi ∈ Xi such that R−1
i (yi) ⊂ R−1

i (xi) (hence xi ºº yi).
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Proof. Let Statements 1, 2, and 3 not hold. We have to show that Statement 4 holds.

If there is a strongly BR-dominated strategy in Γ, we are home immediately; suppose

there is none.

For each i ∈ N , there is X0
i ⊆ Xi such that X0

N = X1
N × X2

N is the set of Nash

equilibria of Γ; therefore, R−1
i (x0

i ) ⊇ X0
−i for both i ∈ N and all x0

i ∈ X0
i . We pick an

xN ∈ XN \X0
N 6= ∅ and start a Cournot path from xN ; since Γ has the FBRP, the path

must end at an x0
N ∈ X0

N ; therefore, R−1
i (x0

i ) ⊃ X0
−i for an i ∈ N .

We define a binary relation ⊲ on Xi:

yi ⊲ xi ⇋ ∃x−i ∈ X−i [xi /∈ Ri(x−i) ∋ yi & x−i ∈ R−i(xi) & x−i /∈ R−i(yi)]. (4)

Let us show that ⊲ is acyclic. Supposing to the contrary that x0
i , x

1
i , . . . , x

m
i = x0

i are

such that xk+1
i ⊲ xk

i for each k = 0, . . . , m − 1, we pick, for each k, an xk
−i from (4).

Then we define x2k
N = (xk

i , x
k
−i) and x2k+1

N = (xk+1
i , xk

−i) for each k = 0, . . . , m − 1. It

follows immediately from (4) that x0
N , x1

N , . . . , x2m
N = x0

N is a Cournot cycle in Γ, i.e.,

Statement 2 holds.

Since Xi is finite and ⊲ is acyclic, there is yi ∈ Xi such that yi ⊲ xi does not hold

for any xi ∈ Xi. For every x−i ∈ R−1
i (yi), we consider two alternatives: If x−i ∈ R−i(yi),

then (yi, x−i) is a Nash equilibrium, hence x−i ∈ X0
−i. If x−i /∈ R−i(yi), then we pick

xi ∈ R−1
−i (x−i) 6= ∅; then xi ∈ Ri(x−i) because we would have yi ⊲ xi otherwise; therefore,

(xi, x−i) is a Nash equilibrium, hence x−i ∈ X0
−i again. Thus, R−1

i (yi) ⊆ X0
−i ⊂ R−1

i (x0
i ),

i.e., Statement 4 holds.

Theorem 5. If a finite two person game Γ has the FBRP and the set of Nash equilibria

in Γ is rectangular, then Γ is weakly BR-dominance solvable.

Proof. We apply Lemma 5.2 in the same way as Lemma 5.1 was applied in the proof of

Theorem 4.

Statement 4 of Lemma 5.2 implies that Γ in Theorem 5 is “not so weakly” BR-dom-

inance solvable. Example 5.1 shows that a similar strengthening of Theorem 4 would be

wrong. If weak BR-dominance solvability is replaced with strong one, or if more than

two players are allowed, Theorem 5 becomes wrong.

Example 5.3. Let us consider a two person 2 × 2 game:

(0, 2) (2, 0)

(1, 1) (1, 1)
.

The southwestern corner is a unique Nash equilibrium. The game obviously has the FIP.

On the other hand, each strategy of each player is a best response to a strategy of the

partner; therefore, the game is not strongly BR-dominance solvable.
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Example 5.4. Let us consider a three person 2 × 2 × 2 game (where player 1 chooses

rows, player 2 columns, and player 3 matrices):
[

(3, 4, 3) (0, 0, 0)

(5, 5, 5) (4, 3, 4)

] [

(2, 2, 1) (1, 1, 2)

(0, 0, 0) (2, 2, 1)

]

.

The southwestern corner is a unique Nash equilibrium; the FBRP is easy to check. On

the other hand, each strategy of each player is the unique best response to a strategy

profile of the partners. Therefore, the game is not weakly BR-dominance solvable.

6 Weak BR-dominance solvability

Lemma 6.1. Let ξ be a W-scheme of the length m and xN ∈ XN be such that µ−(xN) =

k ≤ m; then for each i ∈ N there is yi ∈ Ri(x−i) such that µ(yi) > µ−(xN).

Proof. We pick yi maximizing µ over Ri(x−i). Lemma 3.3 implies µ(yi) ≥ k for each i ∈

N because x−i ∈ Xk−1
−i . If µ(xi) > k, then µ(yi) > k because µ is injective; let µ(xi) = k.

If xi /∈ Ri(x−i), we have yi 6= xi, hence µ(yi) > µ(xi) = k. Otherwise, we pick x′
i ∈ Xk−1

i

such that x′
i ºº xi in Γk−1, hence x′

i ∈ Ri(x−i) too, hence µ(yi) ≥ µ(x′
i) ≥ k + 1.

Theorem 6. If a finite two person game is weakly BR-dominance solvable, then it has

the weak FSP.

Proof. Fixing a perfect W-scheme ξ, we consider the functions µ and µ− defined by (3),

and introduce a binary relation on XN :

yN ≻ xN ⇋

[

µ−(yN) > µ−(xN) or

∃i ∈ N [µ−(xN) = µ(xi) = µ−(yN) & xi ∈ Ri(x−i) & x−i /∈ R−i(xi) ∋ y−i]
]

. (5)

The relation is obviously irreflexive; the transitivity is obvious as long as the first disjunc-

tive term in (5) is applicable. Let yN ≻ xN by the second term. Since x−i /∈ R−i(xi), we

have µ−(yN) ≤ m, hence the minimizing i ∈ N is unique and xi = yi. Now if zN ≻ yN ,

then the second disjunctive term in (5) cannot be valid because y−i ∈ R−i(yi), hence

µ−(zN) > µ−(yN) = µ−(xN), hence zN ≻ xN by the first term in (5). Similarly, if

xN ≻ zN , then the second term in (5) cannot be valid because x−i /∈ R−i(xi), hence

µ−(yN) = µ−(xN) > µ−(zN), hence yN ≻ zN .

Let us show that ≻ is a weak simultaneous Cournot potential; let xN ∈ XN . If

xi ∈ Ri(x−i) for both i, then xN is a Nash equilibrium already; otherwise, µ−(xN) ≤ m,

hence µ−(xN) = µ(xi) for a unique i. We define yi = xi if xi ∈ Ri(x−i), and pick yi

maximizing µ over Ri(x−i) otherwise. Clearly, yN ⊲
∗BR xN ; let us show yN ≻ xN .

By Lemma 6.1, µ−(yN) ≥ µ−(xN). If the inequality is strict, the first disjunctive

term in (5) works. Otherwise, we have yi = xi, hence xi ∈ Ri(x−i) by the definition of
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yi; besides, y−i ∈ R−i(xi) by the same definition. Since xN is not a Nash equilibrium,

x−i /∈ R−i(xi). Thus, yN ≻ xN by the second disjunctive term in (5).

Theorem 7. If a finite two person game is weakly BR-dominance solvable, then it has

the weak FBRP.

Proof. The statement immediately follows from Theorem 6 and Proposition 2.2.

In the light of Theorems 4–7, it seems appropriate to show that the weak FSP does

not imply even weak BR-dominance solvability.

Example 6.1. Let us consider a two person 6 × 6 game defined by the left matrix:

(3, 3) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (2, 1) (1, 2) (2, 1) (1, 2) (0, 0)

(0, 0) (0, 0) (2, 1) (1, 2) (2, 1) (1, 2)

(0, 0) (1, 2) (0, 0) (2, 1) (1, 2) (2, 1)

(0, 0) (2, 1) (1, 2) (0, 0) (2, 1) (1, 2)

(1, 2) (1, 2) (2, 1) (1, 2) (0, 0) (2, 1)



















0 4 2 4 4 2

3 4 3 4 5 3

3 4 4 5 4 3

5 5 5 6 5 6

3 4 3 4 4 3

1 5 2 5 4 2



















.

The northwestern corner is a unique Nash equilibrium. The weak FSP is easy to check:

the right matrix shows the length of the shortest simultaneous Cournot path leading to

the equilibrium from every strategy profile. On the other hand, none of the sets R−1
i (xi)

include each other for either i ∈ N , even if non-strict inclusion is taken into account.

Therefore, there is no weakly BR-dominated strategy.

For more than two players, both Theorems 6 and 7 are wrong as Example 4.1 shows;

only a “very weak” FSP, or a “very weak” FBRP, are then ensured. An individual

best response path is a finite or infinite sequence {xk
N}k=0,1,... such that, whenever xk+1

is defined, there is i ∈ N for which xk+1
−i = xk

−i, xk+1
i 6= xk

i , and xk+1
i ∈ Ri(x

k
−i). A

simultaneous best response path is a finite or infinite sequence {xk
N}k=0,1,... such that

xk+1 6= xk and xk+1
i ∈ Ri(x

k
−i) for all i ∈ N whenever xk+1 is defined.

Theorem 8. If a finite game is weakly BR-dominance solvable, then every strategy

profile can be connected to a Nash equilibrium with a simultaneous best response path.

Proof. As above, if µ−(xN) = m+1, then xN is already a Nash equilibrium. Otherwise,

we pick yi maximizing µ over Ri(x−i) for each i ∈ N ; clearly, {xN , yN} is a simultaneous

best response path. By Lemma 6.1, µ−(yN) > µ−(xN). If yN is not a Nash equilibrium,

we make a similar step, and so on. Thus we obtain a simultaneous best response path

along which µ− strictly increases until a Nash equilibrium is reached.

Theorem 9. If a finite game is weakly BR-dominance solvable, then every strategy

profile can be connected to a Nash equilibrium with an individual best response path.
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Proof. The statement immediately follows from Theorem 8 and a straightforward mod-

ification of the proof of Proposition 2.2.
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