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Abstract

This paper studies equilibria of second price auctions in independent private value envi-

ronments with different participation costs. Two types of equilibria are identified: monotonic

equilibria in which a bidder with a lower participation cost results in a lower cutoff for sub-

mitting a bid, and non-monotonic equilibria in which a lower participation cost results in

a higher cutoff. We show that there always exists a monotonic equilibrium, and further,

that the monotonic equilibrium is unique for either concave distribution functions or strictly

convex distribution functions with non-increasing reverse hazard rates. There exist non-

monotonic equilibria when the distribution functions are strictly convex and the difference

of the participation costs is sufficiently small. We also provide comparative static analysis

and study the limiting properties of equilibria when the difference in bidders’ participation

costs approaches zero.

Journal of Economic Literature Classification Number: C62, C72, D44, D61,

D82.

Key Words: Private Values, Differentiated Participation Costs, Second Price Auctions,

Non-monotonic Equilibrium, Existence and Uniqueness of Equilibrium.



1 Introduction

Auctions are efficient ways to allocate resources by increasing the competition among potential

buyers. However, not all bidders can participate in an auction freely. The existence of bidders’

participation costs can substantially change the outcome of an auction.

Generally an auction with participation cost is the one in which an indivisible object is

allocated to one of potential buyers via a second price auction, and in order to participate,

bidders must incur a non-refundable cost that may be the costs of traveling to an auction site,

to pay for the process of learning the rules of auction, to acquire information (Persico (2000),

Cremer, Spiegel and Zheng (2009)), or more generally the opportunity cost of attending an

auction (Lu (2009), Lu and Sun (2007)), etc. Hence the question of whether to participate

in auctions may be more crucial than the standard question of how to bid, suggesting that

such decisions should be modeled and included as part of an equilibrium. This paper studies

(Bayesian-Nash) equilibria of sealed-bid second price auctions with private values and different

participation costs. The entry behavior of potential bidders, in turn, provides a solid foundation

for further analyzing the impacts of participation costs on revenue and welfare.

Different participation costs are important in practice. For example, in China’s leasehold

auctions, city officials provide hidden help to favored bidders, which has been attributed to

corruption, see Cai et al (2010). Bidders from different cities have different transportation costs

to show up on an auction spot. One bidder may have more advantage in acquiring the value of

the object being auctioned than others. All these give rise to different participation costs.

Study of auctions with participation costs is mainly focused on the second price auction due

to its simplicity of bidding behavior.1 In second price auctions, if a bidder finds participating in

this second price auction optimal, he cannot do better than bid his true valuation.

Green and Laffont (1984) studied second price auctions with participation costs in a general

framework where bidders’ valuations and participation costs are both private information. How-

ever, their study is incomplete, having additionally imposed a restrictive assumption of uniform

distributions for both values and participation costs. The difficulty lies in the two-dimensional

random framework. Some recent work studied second price auctions with participation costs

in simplified versions, where either only valuations or participation costs are private while the

other is assumed to be common knowledge.

There are a number of studies of auctions with equal participation costs. Campbell (1998)

considered the equilibria in an independent private value environment with equal participation

1Cao and Tian (2010) studied the equilibria in first price auctions with equal participation costs.

1



costs when bidders’ values are private information and participation costs are common knowl-

edge. He focused on the coordination of equilibrium choice when multiple equilibria exist. Tan

and Yilankaya (2006) considered the same problem as in Campbell (1998) by assuming bid-

ders are asymmetric in the sense that they have different valuation distribution functions while

maintaining identical participation costs. Some others, such as Samuelson (1985), McAfee and

McMillan (1987), Harstad, Kagel and Levin (1990), Levin and Smith (1994), Stageman (1996),

and Menezes and Monterio (2000) studied auctions with participation costs assuming bidders’

participation costs are the same. Kaplan and Sela (2006) studied equilibria of the second price

auction with participation costs when bidders’ participation costs are private information while

valuations are common knowledge.

However, the equal participation costs assumptions are stringent and unrealistic in many

real world situations as we have mentioned above. Another advantage of considering different

participation costs is that it can include the equal participation costs as a special case, which is

interesting from the theoretical point.

Economic environments where bidders have private valuations for the object and different

participation costs that are common knowledge are studied in this paper. Bidders submit bids

if and only if their values are greater than the corresponding cutoffs. We identify two types

of equilibria: monotonic equilibria in which a lower participation cost results in a lower cutoff

to participate in an auction, and non-monotonic equilibria in which a lower participation cost

results in a higher cutoff. We show that there always exists a monotonic equilibrium, and fur-

ther that, the monotonic equilibrium is unique for concave distribution functions and strictly

convex distribution functions with non-increasing reverse hazard rate. When bidders’ distribu-

tion functions are strictly convex and the differences among the bidders’ participation costs are

sufficiently small, there is a non-monotonic equilibrium. There is no non-monotonic equilibrium

for either strictly convex distributions when the difference is sufficiently large or for concave

distributions, which implies that in the land leasehold auctions, the corrupt city officials may

give a bidder sufficient help to make sure the targeted bidder is more likely to participate in the

auction.

Our study on auction with different participation costs is not only more realistic, but also

provides a deeper insight that would help us understand the existence or non-existence of asym-

metric equilibria well in auctions with equal participation costs. This can be seen by investigating

the limit behavior of the monotonic and non-monotonic equilibria when bidders’ participation

costs converge to the same value. We show that, when the distribution function of valuation is
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concave, the monotonic equilibrium converges to the symmetric equilibrium when bidders have

the same participation costs. However, when the distribution is strictly convex, the monotonic

equilibrium converges to the asymmetric equilibrium. In this case one non-monotonic equilib-

rium converges to a symmetric equilibrium, and another non-monotonic equilibrium converges

to an asymmetric equilibrium.

We also provide comparative static analysis. It is shown that the cutoff is increasing in one’s

own participation costs, but decreasing in his opponents’ participation costs, and further, as the

number of bidders increases, the cutoffs of all bidders will increase.

The organization of the paper is as follows. In Section 2, we describe the economic environ-

ments. In Section 3, we focus on two bidders with the same distribution functions and different

participation costs to study the existence, uniqueness, and limit properties of the equilibria and

to make a comparative analysis. In Section 4, we extend our basic results to more general eco-

nomic environments. Concluding remarks are provided in Section 5. All the proofs are presented

in the appendix.

2 The Setup

We consider an independent private value economic environment with one seller and n ≥ 2

potential buyers. The seller is risk-neutral and has an indivisible object to sell to one of the

buyers via a sealed-bid second price auction (see Vickrey, 1961). The seller values the object

as 0. However, in order to submit a bid, bidder i must incur a participation cost ci. Bidder

i’s valuation vi is private information, which is independently distributed with a cumulative

distribution function Fi(v) that has continuously differentiable density fi(v) with full support

[0, 1].2 The participation costs ci ∈ (0, 1] for all i are common knowledge.

Each bidder knows his value and the distributions of the others’ valuations. If participating

in the auction, he incurs a non-refundable participation fee. The bidder with the highest bid

wins the object and pays the second-highest bid. If there is only one bidder in the auction, he

wins the object and pays 0. If the highest bids are equal for more than one bidder, he pays his

own bid and gains nothing.

In this second price auction mechanism with participation cost, the individually rational

action set for any type of bidder is {No}∪ [0, 1], where “{No}” denotes not participating in the

auction. Bidder i incurs the participation cost if and only if his action is different from “{No}”.

2Here “0” denotes the value is zero while “1” is a normalization of the highest possible valuation among all

bidders.
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Let bi(vi, c) denote bidder i’s strategy where c = (c1, ..., cn).

If a bidder finds participating in this second price auction optimal, he cannot do better than

bid his true value.3 All of our results about the uniqueness or multiplicity of the equilibria

should be interpreted accordingly.

Given the equilibrium strategies of all others, a bidder’s expected payoff from participating

in the auction is a non-decreasing function of his valuation. Therefore, we can focus on Bayesian-

Nash equilibria in which each bidder uses a cutoff strategy4 denoted by v∗i (c), i.e., he bids his

valuation if it is greater than or equal to the cutoff5 and does not enter otherwise. Thus the

bidding decision function of each bidder is characterized by

bi(vi, c) =







vi if v∗i (c) ≤ vi ≤ 1

No otherwise.

For notational convenience, we simply denote v∗i (c) = v∗i .

Remark 1 When v∗i ≤ 1, bidder i will participate in the auction whenever his true value

vi satisfies v∗i ≤ vi ≤ 1. However, when bidder i’s expected payoff is always less than his

participation cost ci for any vi ∈ [0, 1], he will never participate in the auction. In this case, his

equilibrium strategy (action) is “{No}”. For notational convenience and simplicity of discussion,

we use v∗i > 1 to denote the equilibrium strategy of “{No}”. This allows us to use a unified

notation v∗i to denote an equilibrium strategy of bidder i, including the strategy of “{No}”.

For the game described above, each bidder’s action is to choose a cutoff and decide how to

bid when he participates. Thus, a (Bayesian-Nash) equilibrium of the second price auctions with

participation costs is composed of bidders’ cutoff strategies and participants’ bidding strategies.

However, note that, once the cutoffs are determined, the game is reduced to the standard second

price auction and each bidder bids his true value. From now on we focus exclusively on cutoffs,

since they are sufficient to describe equilibria.

Definition 1 An equilibrium is a cutoff vector (v∗1, v
∗

2, ..., v
∗

n) ∈ R
n
+ such that each bidder i’s

action is optimal, given others’ cutoff strategies.

3There may exist an equilibrium in which bidders do not bid their true value when they participate. See the

example given in Remark 4.7 below.
4Lu and Sun (2007) showed that for any auction mechanism with participation costs, the participating and

nonparticipating types of any bidder are divided by a nondecreasing and equicontinuous shutdown curve. Thus

in our framework, when participation cost is given, the participating and nonparticipating types of any bidder

can be divided by a cutoff value and the threshold form is the only form of equilibria.
5In Milgrom and Weber (1982), the term of “screening level” is used instead of “cutoff.”
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We then immediately have the following result:

Lemma 1 v∗i ≤ 1 for at least some i.

One may come to the intuitive conclusion that the bidder with smaller participation cost is

always more likely to participate in the auction by choosing a smaller cutoff. However, as we

will show in the paper, it is possible that a bidder with a higher participation cost may actually

have a lower cutoff. For illustration simplicity, we distinguish two types of equilibria: monotonic

equilibria and non-monotonic equilibria which are defined formally as below.

Definition 2 An equilibrium (v∗1, v
∗

2, . . . , v
∗

n) ∈ R
n
+ is called a monotonic equilibrium (resp.

non-monotonic equilibrium) if, for any two bidders i and j, ci < cj implies v∗i < v∗j (resp. there

exist two bidders i and j, ci < cj implies v∗i ≥ v∗j ).
6

Remark 2 The term “monotonic” used here means that two variables ci and v∗i vary in the

same direction: a higher participation cost results in a higher cutoff. When bidders’ distribution

functions are the same, as one will see in Section 3, v∗1 = v∗2 cannot be an equilibrium, provided

bidders’ participation costs are different. Thus, ci < cj implies v∗i > v∗j for every non-monotonic

equilibrium, and ci < cj implies v∗i < v∗j for every monotonic equilibrium. However, when

bidders’ distribution functions are different, v∗1 = v∗2 may be an equilibrium although bidders’

participation costs are different. That is, we have a special non-monotonic equilibrium with

v∗i = v∗j even when ci < cj .

Example 1 We give an example to illustrate the notion of monotonic and non-monotonic

equilibria. Suppose there is one object for sale to two bidders. Valuation distributions are

F1(v) = F2(v) = v+v3

2 and participation costs are c1 = 0.3 and c2 = 0.32. The equilibrium cutoff

vectors are (0.3753, 0.8911), (0.6995, 0.6142) and (0.8301, 0.4564)7. The first one is monotonic

and the latter two are non-monotonic.

As usual, when bidders’ distribution functions and participation costs are the same; i.e.,

F1(·) = F2(·) = . . . = Fn(·) = F (·) and c1 = c2 = . . . = cn, we define the usual symmetric and

asymmetric equilibria.

6The ‘intuitive equilibrium’ in Tan and Yilankaya (2006) is defined based on different valuation distributions

(one distribution first order stochastically dominates another distribution) when participation costs are assumed

to be the same, while our ‘monotonic equilibrium’ is defined based on different participation costs. Therefore,

they are two different equilibrium concepts.
7In the next section, we will show how these equilibria are found.
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Definition 3 An equilibrium (v∗1, v
∗

2, . . . , v
∗

n) ∈ R
n
+ is called a symmetric equilibrium (resp.

asymmetric equilibrium) if v∗1 = v∗2 = . . . = v∗n (resp. there exist two bidders i and j such that

v∗i 6= v∗j ).

3 Two Bidders with Different Participation Costs

In this section we consider an economy with two bidders who have different participation costs

c1 and c2 with c1 < c2, and the same distribution function F (.).

We first assume, provisionally, that a monotonic equilibrium (v∗1, v
∗

2) exists, i.e., v∗1 < v∗2. By

Lemma 1, it must be v∗1 ≤ 1. When bidder 1’s valuation is v1 = v∗1, his expected payoff from

participating is given by v∗1F (v∗2) + 0(1 − F (v∗2)), where F (v∗2) is the probability that bidder 2

does not participate in the auction. Indeed, when bidder 1 participates and bidder 2 does not

participate, bidder 1’s revenue is v∗1. When bidder 2 participates in the auction, it must be the

case that v2 ≥ v∗2. Then bidder 1 cannot win the object since v2 ≥ v∗2 > v∗1 = v1, and thus

his revenue is zero. Therefore, his expected payoff from the auction is v∗1F (v∗2). Zero net-payoff

(equilibrium) condition requires that

c1 = v∗1F (v∗2). (1)

When bidder 2’s participation cost is too large, he may never participate in the auction,

whatever his valuation is. In this case, bidder 1 uses v∗1 = c1 as his cutoff, and bidder 2’s

expected payoff must satisfy

F (c1) +

∫ 1

c1

(1 − v)dF (v) = c1F (c1) +

∫ 1

c1

F (v)dv < c2;

i.e., the expected payoff he obtains from participating even when his value is 1 is less than his

participation cost c2, given bidder 1 uses c1 as his cutoff. In this case, we have a monotonic

equilibrium with v∗1 = c1 and v∗2 > 1.

Now suppose v∗2 ≤ 1. Then, when bidder 2’s valuation is v2 = v∗2, his expected payoff is

v∗2F (v∗1) +

∫ v∗2

v∗1

(v∗2 − v)dF (v),

where the first term is the expected payoff when bidder 1 does not participate, and the second

term is the expected payoff when both bidders participate in the auction. Note that bidder 2

will lose the object if v1 > v∗2. The zero expected net-payoff (equilibrium) condition requires

that

v∗2F (v∗1) +

∫ v∗2

v∗1

(v∗2 − v)dF (v) = c2. (2)
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Integrating by parts in the left side of (2), we have

v∗1F (v∗1) +

∫ v∗2

v∗1

F (v)dv = c2. (3)

Remark 3 Note that, from (1) and (3), one can see the claim in Remark 2 is true. It is

impossible for both bidders to use the same cutoff v∗1 = v∗2 = v∗ when their participation costs

are different. Indeed, suppose not. Then we must have c1 = v∗F (v∗) by (1) and c2 = v∗F (v∗)

by (2). Thus c1 = c2, which contradicts the fact that c2 > c1.

Let vs
1 be the symmetric equilibrium defined by

vs
1F (vs

1) = c1 if both bidders have the same participation cost c1. Similarly define vs
2 as the

symmetric equilibrium if both bidders have the same participation cost c2.

The following lemma shows the relationship between a monotonic equilibrium and symmetric

equilibria.

Lemma 2 Suppose (v∗1, v
∗

2) is a monotonic equilibrium, (vs
1, v

s
1) and (vs

2, v
s
2) are symmetric equi-

libria associated with participation costs c1 < c2, respectively. Then, we have v∗1 < vs
1 < vs

2 < v∗2.

Lemma 2 shows that, when bidders have different participation costs, at a monotonic equi-

librium, the cutoff for the bidder with lower participation cost is lower than the cutoff at the

symmetric equilibrium when both bidders have the same lower participation cost c1 and the

cutoff for the bidder with higher participation cost is higher than the cutoff at the symmetric

equilibrium when both bidders have the same higher participation cost c2.

To find a monotonic equilibrium, we define the following two cutoff reaction function equa-

tions.

xF (y) = c1 (4)

xF (x) +

∫ y

x

F (v)dv = c2 (5)

with x < y, where x corresponds to v∗1, and y corresponds to v∗2. It can be easily seen that we

have x ≥ c1 and y ≥ c2. They can be regarded as cutoff reaction functions because (4) shows

how bidder 1 will choose a cutoff x, given bidder 2’s action y. Equation (5) shows how bidder 2

will choose a cutoff y, given bidder 1’s action x. A monotonic equilibrium (v∗1, v
∗

2) ∈ [c1, 1]×[c2, 1]

is obtained when x and y satisfy these two equations simultaneously.

From (4), we have x = x(y) = c1
F (y) . Then dx

dy
= − c1f(y)

F 2(y)
< 0. This implicitly defines y as a

decreasing function of x, denoted by y = y(x). Substitute y = y(x) into the left side of (5) and

let

h(x) = xF (x) +

∫ y(x)

x

F (v)dv − c2.
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Substitute x = x(y) into the left side of (5) and let

λ(y) =
c1

F (y)
F (

c1

F (y)
) +

∫ y

c1
F (y)

F (v)dv.

To consider the existence of non-monotonic equilibria in which v∗2 < v∗1 whenever c1 < c2,

we follow the above process similarly and at equilibrium get

c2 = v∗2F (v∗1), (6)

and

v∗1F (v∗2) +

∫ v∗1

v∗2

(v∗1 − v)dF (v) − c1 ≤ 0, (7)

where the equality holds whenever v∗1 ≤ 1.

Integrating by parts, we get

c1 ≥ v∗2F (v∗2) +

∫ v∗1

v∗2

F (v)dv. (8)

To find a non-monotonic equilibrium, through (6) and (8), we define the two cutoff reaction

functions

y(x) = c2/F (x)

φ(x) =
c2

F (x)
F (

c2

F (x)
) +

∫ x

c2
F (x)

F (v)dv.

Again, we use x to correspond to v∗1 and y to correspond to v∗2. Note that we have x ≥ y ≥ c2.

When two bidders have the same participation cost c2 and F (.) is strictly convex, there

exists a unique symmetric equilibrium x = y = vs
2 that satisfies y = x = c2/F (x) and an

asymmetric equilibrium (x0, y0) with x0 > vs
2 and y0 < vs

2 (cf. Campbell (1998) and Tan and

Yilankaya (2006)), indicating that φ(x) intersects with c2 when x = vs
2 and x = x0. Also,

by the uniqueness of symmetric equilibrium, v∗1 ≥ vs
2 if it exists. Let cm be the minimum of

φ(x) = c2
F (x)F ( c2

F (x)) +
∫ x

c2
F (x)

F (v)dv in the interval [vs
2, 1].

We then have the following proposition on the existence and uniqueness of equilibrium:

Proposition 1 (Existence and Uniqueness Theorem) For the independent private values

economic environment with two bidders who have different participation costs c2 > c1, we have

the following conclusions:

(1) There always exists a monotonic equilibrium.

(2) Suppose F (.) is concave. Then the equilibrium is unique and monotonic.

(3) Suppose F (.) is strictly convex. Then
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(3.i) the monotonic equilibrium is unique when the reverse hazard rate

of F (.), i.e., when f(.)
F (.) is non-increasing,

(3.ii) the non-monotonic equilibrium is unique when c1 = cm,

(3.iii) there is no non-monotonic equilibrium when c1 < cm, and

(3.iv) there are at least two non-monotonic equilibria when cm < c1 <

c2.

We provide the brief idea about the proof in the appendix. To investigate the existence

and uniqueness of the equilibria, we examine how functions λ(y) and φ(x) intersect with c2 and

c1, respectively, keeping in mind that there may be an equilibrium in which one bidder never

participates. The existence of a monotonic equilibrium can be established by the intermediate

value theorem. The uniqueness of the monotonic (resp. non-monotonic) equilibrium comes from

the fact that λ(y) (resp. φ(x)) intersects with c2 (resp. c1) at most once on the interval y ∈ [vs
1, 1]

(resp. [vs
2, 1]). When F (.) is concave, λ(y) is a monotonically increasing function, and thus the

monotonic equilibrium is unique. When F (.) is strictly convex, we can also show the uniqueness

of monotonic equilibrium and the existence and uniqueness of non-monotonic equilibrium for

some types of convex distribution functions.

Figure 1: Uniqueness for Convex Case

Remark 4 It is worthwhile to point out some remarks on Proposition 1:

1. For any power functions F (.) that are convex, the reverse hazard rate is a non-

increasing function. Thus, the set of such strictly convex functions is not empty.
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To understand why there is a unique monotonic equilibrium for this type of

strictly convex distribution, see Figure 1. λ(y) starts from vs
1 with negative

slope. When λ′(y) equals 0 at most once, λ(y) intersects with c2 at most once,

indicating that the monotonic equilibrium is unique.

2. From the proof in the appendix, one can see c2 > cm. Then, as long as c2 − c1

is sufficiently small, we have c2 > c1 > cm. Thus, we can conclude that when

c2− c1 is sufficiently small, there are two non-monotonic equilibria that are given

by (x1, y1) and (x2, y2) with y1 = y(x1), y2 = y(x2), and y1 < y2 < vs
2 <

x1 < xm < x2 < x0. Thus, when F (.) is strictly convex, the existence of non-

monotonic equilibrium depends on the difference of participation costs, c2 − c1.

For instance, in Example 1, we have one monotonic equilibrium and two non-

monotonic equilibria. However, when c1 = 0.3 and c2 = 0.4, there is only one

equilibrium (0.3003, 0.9994) and it is monotonic.

3. Figure 2 can help us understand the proof in the appendix and the points men-

tioned above. φ(x) starts from y = vs
2 with negative slope. When c2 − c1 is small

enough, it intersects with c1; i.e., a non-monotonic equilibrium exists. When

c2 − c1 is big enough so that c1 < cm, φ(x) and c1 cannot intersect; i.e., no non-

monotonic equilibrium exists. From the figure, when c1 is close to c2, there are

at least two intersection points for y = φ(x) and y = c1, which means there are

at least two non-monotonic equilibria, say, (x1, y1) and (x2, y2).

4. Campbell (1998) and Tan and Yilankaya (2006) showed that there exist asym-

metric equilibria when distribution functions are strictly convex. However, our

result shows that the strict convexity of the distribution function alone is not a

sufficient condition for the existence of a non-monotonic equilibrium, unless the

difference c2 − c1 is small enough, which implies that one can refine equilibria

and always eliminate non-equilibria by making participation costs for bidders

sufficiently different when necessary.

5. In the proof of Proposition 1, the condition that F (.) is concave can be weakened

to F (v)
v

non-decreases for all v ∈ [c1, 1], and the condition that F (.) is strictly

convex can be weakened to F (v)
v

decreases with v for all v ∈ [c2, 1].

6. When multiple equilibria exist and F (.) is non-atomic, there cannot exist mixed

strategies in which a bidder uses different cutoffs with positive probability. In-

deed, if one bidder behaves in this way, the expected payoff from participating of
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his opponent can be uniquely determined, which is still a non-decreasing function

of his valuation and thus there is only one cutoff.

7. A non-truth-telling equilibrium may exist when bidders do not use weakly dom-

inant strategies. Suppose bidder 1 bids zero and bidder 2 bids 1 when they

participate. Bidder 1 wins only when bidder 2 does not enter, hence at equilib-

rium v∗1F (v∗2) = c1. Bidder 2 always wins once he enters and pays nothing. At

equilibrium we have v∗2 = c2. Thus v∗1 = c1
F (c2) . Therefore, if bidders do not use

dominant bidding strategy, we have other cutoff equilibria.

8. Existence of a reserve price r does not affect part (1), (2) of Proposition 1. It can

be easily shown that the condition of strict convexity of F (.) in part (3) needs

to be replaced by F (v′s2 )− (v′s2 − r)f(v′s2 ) < 0, where v′s2 is the revised symmetric

cutoff equilibrium when both bidders have participation cost c2, which is defined

by (v′s2 − r)F (v′s2 ) = c2.

9. Letting H(.) = c2
c1

F (.), we can rewrite Equation (1) as c2 = v∗1H(v∗2). Then,

the technique adopted in Tan and Yilankaya (2006) can be used to show the

existence of monotonic equilibria8. However, when such a technique is used to

show the existence of non-monotonic equilibria, as in Tan and Yilankaya (2006),

one needs to impose a different condition that c1 is sufficiently large. As such, in

our opinion, it is a restrictive assumption.

The intuition for the existence of non-monotonic equilibria when F (.) is strictly convex and

c2 − c1 is sufficiently small is as follows. Rewrite equation (7) as

v∗1F (v∗1) −
∫ v∗1

v∗2

vf(v)dv − c1 ≤ 0, (9)

where the equality holds whenever v∗1 < 1. The first term is the expected gross payoff for bidder

1 with value v∗1, and the second term is the expected payment to the seller. Combine (6) and

(9), to have a non-monotonic equilibrium, we need

(v∗1 − v∗2)F (v∗1) −
∫ v∗1

v∗2

vf(v)dv ≤ c1 − c2 < 0. (10)

When F (.) is concave, (v∗1 − v∗2)F (v∗1) −
∫ v∗1
v∗2

vf(v)dv is strictly positive. Bidder 1 need not

pay much to the seller since relatively bidder 2 has a low valuation. Thus there is no non-

monotonic equilibrium. However, when F (.) is strictly convex, bidder 2 is more likely to have

8We would like to thank an anonymous referee for pointing out such a transformation.
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a high valuation and thus bidder 1’s expected payment to the seller is high and the above

inequality may be satisfied. Indeed, consider the extreme case where c2 − c1 = 0, for any

given v∗2, we can always find v∗1 > v∗2 such that equation (10) holds. To see this, let ρ(v∗1) =

(v∗1 − v∗2)F (v∗1) −
∫ v∗1
v∗2

vf(v)dv be a function of v∗1, holding v∗2 constant. It can be checked that

ρ(v∗2) = 0 and ρ′(v∗2) = F (v∗2)− v∗2f(v∗2) < 0 as F (.) is strictly convex and thus for any given v∗2,

there exists a v∗1 > v∗2, such that ρ(v∗1) < 0. Note that ρ(v∗1) is bounded as a continuous function

in the interval [v∗2, 1]. When c1 differs too much from c2, (10) cannot hold and thus there is no

non-monotonic equilibrium.

Figure 2: Existence of Non-Monotonic Equilibria For Convex Case

One may wonder what would happen at the limits of monotonic and non-monotonic equilibria

as c2 − c1 → 0. Should a monotonic equilibrium converge to a symmetric equilibrium or a non-

monotonic equilibrium converge to an asymmetric equilibrium when c2 → c1?

For instance, suppose c1 is constant at 0.30, and let c2 decrease from some point, say, 0.38,

until c2 = c1 = 0.3. Will there be any convergence for monotonic and non-monotonic equilibria

in this case? Do they converge to a symmetric equilibrium or an asymmetric equilibrium (if it

exists) for a given distribution function? Some numerical experiments are given in Table 1.
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Table 1 Sequences of Monotonic and Non-Monotonic Equilibria

c1 c2 F (v) =
√

v F (v) = v2

0.3 0.3 (0.4481, 0.4481) (0.6694, 0.6694) (0.3425, 0.9358) (0.9358, 0.3425)

0.3 0.31 (0.4387, 0.4675) (0.6845, 0.6616) (0.3327, 0.9426) (0.9318, 0.3570)

0.3 0.32 (0.4303, 0.4861) (0.7000, 0.6530) (0.3237, 0.9627) (0.9271, 0.3723)

0.3 0.33 (0.4226, 0.5038) (0.7162, 0.6434) (0.3155, 0.9751) (0.9216, 0.3886)

0.3 0.34 (0.4156, 0.5210) (0.7332, 0.6323) (0.3079, 0.9870) (0.9150, 0.4061)

0.3 0.35 (0.4091, 0.5376) (0.7517, 0.6193) (0.3009, 0.9985) (0.9068, 0.4256)

0.3 0.36 (0.4032, 0.5537) (0.7725, 0.6038) (0.3000, 1.0000) (0.8963, 0.4418)

0.3 0.37 (0.3976, 0.5694) (0.7984, 0.5804) (0.3000, 1.0000) (0.8805, 0.4773)

0.3 0.38 (0.3923, 0.5847) NA (0.3000, 1.0000) NA

From the table, when F (v) =
√

v, which is concave, we only have the monotonic equilibrium

and it is unique. Tan and Yilanyaka (2006) proved that when F (.) is concave, there is a unique

symmetric equilibrium and no asymmetric equilibrium. Then we naturally conjecture that,

when c2 converges to c1, the unique monotonic equilibrium converges to the unique symmetric

equilibrium, as can be seen from Table 1.

However, when F (v) = v2, which is strictly convex, we can see from the table that when c2−c1

is small enough, there exist one monotonic and two non-monotonic equilibria, but when c2 − c1

is big enough, monotonic equilibrium is the only equilibrium. Somewhat surprisingly, we can

see that unlike the monotonic equilibrium, one sequence of non-monotonic equilibria converges

to the symmetric equilibrium, while the other sequence of monotonic equilibria converges to the

asymmetric equilibrium. Thus, the notion of monotonic/non-monotonic equilibrium is not a

trivial generalization of symmetric/asymmetric equilibria.

Actually, these limiting relationships among monotonic/non-monotonic equilibria and sym-

metric/asymmetric equilibria are true for general concave and strictly convex functions.

Proposition 2 (Limit Theorem) For the independent private values economic environment

with two bidders having participation costs c2 > c1, we have the following conclusions:

(1) Suppose F (.) is concave. The unique monotonic equilibrium (no non-monotonic

equilibrium) converges to the unique symmetric equilibrium as c2 − c1 → 0.
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(2) Suppose F (.) is strictly convex with non-increasing reverse hazard rate. The

unique monotonic equilibrium converges to an asymmetric equilibrium as c2 −
c1 → 0.

(3) Suppose F (.) is strictly convex. When c2 − c1 → 0, there are two non-monotonic

equilibria, of which one converges to the unique symmetric equilibrium and the

other converges to an asymmetric equilibrium.

The intuition can be given for the convergence results of the equilibria. By the continuity

of the reaction function, as the participation costs c1 and c2 converge, the set of equilibria will

converge to the set of equilibria when c1 = c2. In particular, if we focus on the equilibrium

in which bidder 1 uses the smallest cutoff among all bidder 1’s equilibrium cutoffs (which is

necessarily a monotonic equilibrium), this will converge to the equilibrium for c1 = c2 in which

bidder 1 uses the smallest cutoff among all of bidder 1’s equilibrium cutoffs. Thus, if the

equilibrium is unique when c1 = c2, and there is a unique monotonic equilibrium for all c1

and c2 in the sequence, that equilibrium sequence must converge to the symmetric equilibrium.

However, if there are asymmetric equilibria when c1 = c2, then the equilibrium in which bidder

1 uses the smallest cutoff must converge to the asymmetric equilibrium in which bidder 1 uses

the smaller cutoff. Hence, if the monotonic equilibrium is unique, then it will converge to an

asymmetric euqilibrium, and the equilibrium that converges to the symmetric equilibrium must

be non-monotonic.

From Figures 1 and 2, one can see that, as c2 − c1 → 0, any monotonic/non-monotonic

equilibrium converges along the bidders’ reaction curves determined by λ(y) and φ(x) to the

nearest equilibrium, whether it is symmetric or asymmetric.

Before finishing this section, we examine the effects of changes in participation costs on

equilibrium behavior.

Proposition 3 (Comparative Static Theorem) For the independent private values economic

environment with two bidders, suppose the values of bidders are drawn from a distribution func-

tion F (.) and the participation costs c1 and c2 are common knowledge. Then for the monotonic

equilibrium, an increase in participation cost ci increases i’s cutoff v∗i but decreases the oppo-

nent’s cutoff v∗j for j 6= i.

Specially, when F (.) is concave, which gives us a unique and monotonic equilibrium, an

increase in participation cost ci increases i’s cutoff v∗i but decreases the opponent’s cutoff v∗j for

j 6= i.
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In fact, when F (.) is uniform, we can derive and analyze the unique equilibrium explicitly.

The condition for v∗2 > 1 implies c2 > 1
2 + 1

2c2
1. In Figure 3, in the area above the parabola

c2 = 1
2 + 1

2c2
1 and inside the square (the shaded area), bidder 2 never participates (v∗2 > 1) and

bidder 1 uses v∗1 = c1 as his cutoff. In the area between c1 = c2 and the parabola, we have

c1 < c2 ≤ 1
2 + 1

2c2
1. In this case, there is a unique monotonic equilibrium with v∗1 ≤ 1 and v∗2 ≤ 1

that can be solved explicitly.

Figure 3: An Example of Uniform Case

Using (1) and (3) under the uniform distribution, we have v∗1 = 1
2(

√

2(c1 + c2)−
√

2(c2 − c1))

and v∗2 = 1
2(

√

2(c1 + c2) +
√

2(c2 − c1)). Since
∂v∗1
∂c1

= (2
√

c1 + c2)
−1 + (2

√
c2 − c1)

−1 > 0 and

∂v∗2
∂c2

= (2
√

c1 + c2)
−1 + (2

√
c2 + c1)

−1 > 0, the equilibrium cutoffs are increasing functions of

their own participation costs; the higher a bidder’s own participation cost is, the less likely he

will participate in the auction and submit the bid. It can be checked that
∂v∗1
∂c2

= (2
√

c1 + c2)
−1−

(2
√

c2 − c1)
−1 < 0 and

∂v∗2
∂c1

= (2
√

c1 + c2)
−1 − (2

√
c2 − c1)

−1 < 0. The cutoff of each bidder is

a decreasing function of the other’s participation cost.

4 Extensions

The discussions in the previous section can be easily extended to the case in which we have

two types of bidders and bidders in the same type use the same cutoffs. The results are similar

to those of two bidders for the existence and uniqueness as well as the limiting properties of

the equilibria. Beyond that we find when the number of both types of bidders increases, the
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cutoffs for both types of bidders increase. The intuition is that more bidders in the auction will

increase the competition among the bidders, and this will reduce the expected payoff to each

bidder. Thus, bidders will be less likely to participate in the auction, and their value cutoffs

will increase. Detailed analysis and related proofs can be found in supplemental material and

obtained from the authors upon request. In the following we make some other extensions.

4.1 Type Asymmetric Equilibria

In this subsection we give a brief discussion on allowing asymmetric cutoffs within a group. To

allow such a possibility, we consider the simplest economy with three bidders in the two groups,

assuming c1 = c2 < c3 and F1(.) = F2(.) = F3(.) = F (.). Let v∗1 and v∗2 be the corresponding

cutoffs for the two bidders in type 1 and v∗3 be the cutoff for type 2 bidder. Assume v∗1 < v∗2.

There are three cases to be considered.

Case 1: v∗1 < v∗2 < v∗3. Then we have

c1 = v∗1F (v∗2)F (v∗3),

c2 ≥ v∗2F (v∗1)F (v∗3) + F (v∗3)

∫ v∗2

v∗1

(v∗2 − v)dF (v),

c3 ≥ v∗3F (v∗1)F (v∗2) + F (v∗2)

∫ v∗2

v∗1

(v∗3 − v)dF (v) +

∫ v∗3

v∗2

(v∗3 − v)dF (v)2.

The above equations hold with equality whenever v∗i ≤ 1. On the right side of the third equation,

the first term is the revenue bidder 3 receives when the other two bidders do not participate in

the auction. The second term is the revenue he receives when the highest bid of the other two is

less than v∗2, which happens when bidder 2 does not participate in the auction. The third term

is the revenue when the others’ highest bid is greater than v∗2 and less than v∗3.

When F (.) is concave, we cannot have such an equilibrium. To see this, from the first two

equations, we have v∗1F (v∗2)F (v∗3) > v∗2F (v∗1)F (v∗3); i.e., we have
F (v∗2)

v∗2
>

F (v∗1)
v∗1

with v∗2 > v∗1,

which cannot be true when F (.) is concave.

When F (.) is strictly convex, from the first two equations, we treat v∗3 as a constant. Then

it seems as if bidder 1 and bidder 2 possess participation costs c1
F (v∗3) . We know there is an

equilibrium in which v∗1 < v∗2 and the equilibrium is a function of v∗3. Inserting into the third

equation, we can get v∗3. In particular, when v∗3 > 1, bidder 3 never participates in the auction.
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Case 2: v∗1 < v∗3 < v∗2. Then we have

c1 = v∗1F (v∗2)F (v∗3),

c3 ≥ v∗3F (v∗1)F (v∗2) + F (v∗2)

∫ v∗3

v∗1

(v∗3 − v)dF (v),

c2 ≥ v∗2F (v∗1)F (v∗3) + F (v∗3)

∫ v∗3

v∗1

(v∗2 − v)dF (v) +

∫ v∗2

v∗3

(v∗2 − v)dF (v)2.

When F (.) is concave, from the first and third equations above, we have v∗1F (v∗2)F (v∗3) >

v∗2F (v∗1)F (v∗3), which again cannot be true for v∗1 < v∗2. So v∗1 = v∗3. The problem can be reduced

to the type-symmetric equilibrium. When F (.) is strictly convex, we can treat v∗1 in the second

and third equations as a constant. From the discussion in Section 3, we know that when c3−c1 is

sufficiently small, there exists an equilibrium in which v∗2 < v∗3. A limiting case is when c3 = c1.

As Tan and Yilankaya (2006) pointed out, when F (.) is strictly convex but not log-concave,

there may exist equilibria with three or more cutoffs.

Case 3: v∗3 < v∗1 < v∗2. The discussion for this is similar to that for Case 2.

Summarizing our discussion above and the results we obtain in Section 3, we have the

following proposition:

Proposition 4 For the independent private values economy with two groups and three bidders,

when F (.) is concave, we only have the unique type-symmetric monotonic equilibrium. When

F (.) is strictly convex, type-asymmetric equilibria exist.

Remark 5 From the discussions above, it can be easily checked that when there are n bid-

ders with potentially different costs, a sufficient condition for the uniqueness of equilibrium

(necessarily monotone) is that F (.) is concave.

4.2 Bidders with Different Valuation Distributions

We consider an economy where bidders have different valuation distributions F1(.) and F2(.).

Here, we allow both valuation distribution functions and participation costs of bidders to be

different. Again, we assume c1 < c2 and use x and y to denote the cutoffs used by bidders 1 and

2, respectively. We investigate the existence of equilibria and equilibrium behavior.

To find a monotonic equilibrium, consider the following two equations:

c1 = xF2(y)

c2 ≥ xF1(x) +

∫ y

x

F1(v)dv.
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Again, the first equation implicitly defines x as a decreasing function of y, denoted by x(y). We

then have dx
dy

= −xf2(y)
F2(y) . We know x(y) has a fixed point vs

1 6= 0 determined by c1 = vs
1F2(v

s
1).

Since x(y) is monotonically decreasing, we have x < vs
1 and y > vs

1.

Inserting x(y) into the second equation and letting λ(y) = xF1(x) +
∫ y

x
F1(v)dv with x < y,

we have

λ′(y) = F1(y) + xf1(x)
dx

dy
=

F1(y)F2(y) − x2f1(x)f2(y)

F2(y)
.

When F1(.) and F2(.) are both concave, we have

λ′(y) >
F1(y)F2(y) − xyf1(x)f2(y)

F2(y)
>

F1(y)F2(y) − F1(x)F2(y)

F2(y)
> 0,

which indicates that λ(y) is a monotonically increasing function.

For the existence of a non-monotonic equilibrium, consider the following two equations:

c2 = yF1(x)

c1 ≥ yF2(y) +

∫ x

y

F2(v)dv.

From the first equation we have y = c2
F1(x) . Inserting it into the right side of the second equation

and letting φ(x) = yF2(y) +
∫ x

y
F2(v)dv with x ≥ y, by the same reasoning as before, we have

φ′(x) > 0 when both F1(.) and F2(.) are concave. y = c2
F1(x) has a fixed point vs

2 determined by

c2 = vs
2F1(v

s
2). Since x(y) is monotonically decreasing, we have y < vs

2 and x > vs
2.

We then have the following proposition:

Proposition 5 (Existence and Uniqueness Theorem) For a two-bidder economy with dif-

ferent continuously differentiable distribution functions F1(v) and F2(v) and different costs

c1 < c2, we have the following results:

(1) There always exists an equilibrium (v∗1, v
∗

2).

(2) Suppose F1(.) and F2(.) are both concave and F1(v) < F2(v) for all v ∈ (0, 1).

Then there exists a unique equilibrium and it is monotonic.

(3) Suppose F1(.) and F2(.) are both concave and F1(v) > F2(v) for all v ∈ (0, 1).

Let vs
1 and vs

2 satisfy c1 = vs
1F2(v

s
1) and c2 = vs

2F1(v
s
2), respectively. Then, we

have

i) If vs
1 < vs

2, there is a unique equilibrium and it is monotonic;

ii) If vs
1 > vs

2, there is a unique equilibrium and it is non-monotonic,

satisfying v∗1 > v∗2;

iii) If vs
1 = vs

2 = vs, there is a unique equilibrium and it is a special

non-monotonic equilibrium, satisfying v∗1 = v∗2 = vs.

18



Remark 6 Here we give some remarks on Proposition 5:

(1) Tan and Yilankaya (2006) showed that when the “weak” bidders’ distribution is

concave, there cannot exist an equilibrium in which the “weak” bidders choose

a low cutoff. However our results show that depending on the magnitude of

participation costs, the bidder who is “strong” in valuation distribution may

choose a cutoff that is lower than, or higher than, or even equal to that of the

bidder who is “weak” in valuation distribution, which is more general. Their

conclusion is consistent with ours and can be treated as a special case of ours.

To see this, note that when c1 = c2, the only possible case is vs
1 > vs

2 since

F1(v) > F2(v) for all v ∈ (0, 1), which fits (3ii) of the proposition above.

(2) F1(v) < F2(v) for all v ∈ [0, 1] means that bidder 1 is a bidder strong in valuation

distribution in the sense that there is a high probability that his valuation is

higher than bidder 2’s valuation. A higher valuation together with a smaller

participation cost makes bidder 1 choose a lower cutoff. However, when F1(v) >

F2(v) for all v ∈ (0, 1), bidders with higher participation costs may have lower or

identical cutoffs even though their participation costs are higher. Now bidder 2

has an advantage in the value and a disadvantage in the participation cost. When

the advantage is dominant, bidder 2 has a lower cutoff, rather than a higher one,

resulting in the nonexistence of a monotonic equilibrium. We can interpret this

in another way. F1(v) > F2(v) implies that F1(.) is more concave than F2(.) and

bidder 1 is more risk-averse than bidder 2. This reduces his entrance probability

by leading him to choose a higher cutoff.

(3) Here we see another manifestation of the result that the differences in valuations

have the similar role to differences in bidding costs (Baye, Kovenock and Vries

(1996)). The advantage of a bidder’s valuation distribution can be weakened by

his participation cost.

(4) Unlike the results obtained in Section 3, (3.iii) shows that when bidders’ distri-

bution functions are different, v∗1 = v∗2 can be an equilibrium although bidders’

participation costs are different. That is, we have a special non-monotonic equi-

librium with v∗1 = v∗2 even when c1 < c2. When bidders’ distribution functions

are the same, as in Section 3, this is impossible.

Thus, when bidders have different distributions of valuations, some of the previous results no
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longer hold true. The distributions of valuations have substantial effects on types of equilibria.

4.3 Positive Lower Bound of Supports

The support of valuations affects the existence of equilibria. When the lower bound of the

support of the valuation is not zero, there may be an equilibrium in which one bidder always

participates in the auction and the other never participates in the auction.

Suppose the support of the distribution function F (.) is [vl, vh]. There are six cases for

consideration.

Case 1. vl < vh < c1 < c2. It is clear that both bidders never participate in the auction.

Case 2. vl < c1 < vh < c2. Bidder 2 never participates in the auction. Bidder 1 participates

in the auction if v1 ≥ c1 and does not participate otherwise.

Case 3. c1 < vl < vh < c2. Bidder 2 never participates, and bidder 1 always participates.

Case 4. vl < c1 < c2 < vh. The analysis and results are the same as those in Section 3 that

deal with the special case where vl = 0 and vh = 1.

Case 5. c1 < vl < c2 < vh. We may have an equilibrium in which bidder 1 always participates,

and bidder 2 never participates. For this to be true, we need vh − vl < c2; that is, the maximum

revenue bidder 2 gets from participating in the auction must be smaller than his participation

cost. When c2 ≤ vh − vl, bidder 2 will choose a cutoff v∗2 ∈ [c2, vh]. If there is an equilibrium in

which bidder 1 never participates, then bidder 2 uses v∗2 = c2. To have such an equilibrium, we

need

vhF (c2) +

∫ vh

c2

(vh − v)dF (v) = c2F (c2) +

∫ vh

c2

F (v)dv < c1.

A sufficient condition for this is vh + c2F (c2) < c1 + c2.

Case 6. c1 < c2 < vl < vh. It is possible to have an equilibrium in which bidder 1 always

participates in the auction, and bidder 2 never participates. For this to be an equilibrium, we

need vh − vl < c2. Another possible equilibrium is bidder 2 always participates in the auction,

and bidder 1 never participates. For this to be an equilibrium, we need vh − vl < c1. When

both bidders choose a cutoff inside the support of valuations, we can use the same analysis as

in Section 3 to investigate the equilibrium and the corresponding properties.

5 Conclusion

This paper investigates equilibria of second price auctions when bidders have private valuations

and different participation costs that are common knowledge. We identify two types of equilibria:
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monotonic and non-monotonic equilibria. We show that there always exists an equilibrium that

is monotonic, and further that, it is unique when F (.) is concave or strictly convex with non-

increasing reverse hazard rate.

For the non-monotonic equilibria, we show that when the distribution function of valuation

is strictly convex and the difference of participation costs is sufficiently small, there exist non-

monotonic equilibria. One implication is that in the land leasehold auctions, if the favored

bidder gets sufficient help from the land bureau officials, he is more likely to participate in the

auction for sure. We also show that when the difference in participation costs goes to zero, the

monotonic equilibrium of concave valuation distribution converges to the symmetric equilibrium,

while the monotonic equilibrium of convex valuation distributions converges to an asymmetric

equilibrium.

We provide some comparative static analysis. We show that the cutoff is increasing in one’s

own participation cost but decreasing in the opponents’ participation costs. As the number of

bidders increases, the cutoffs for all bidders increase. This is consistent with the idea that more

potential buyers will increase competition among bidders and thus reduce the expected payoff

of each bidder, with the natural consequence of reduced bidder’s participation.

We consider some extensions of our basic model. For example, when bidders are allowed to

have different valuation distributions, some results for the basic model no longer hold. We also

extend the basic model to the one with a positive lower bound of the support. In this case, we

may have an equilibrium in which some bidders always participate and some never participate.
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Appendix: Proofs

Proof of Lemma 1:

Suppose not. All bidders never participate in the auction (i.e., v∗i > 1 for all bidders i). When

bidder n knows the other n − 1 bidders will not participate in the auction regardless of their

valuations, bidder n participates in the auction when his value is greater than or equal to his

participation cost. Then we have v∗n = cn ≤ 1, a contradiction.

Proof of Lemma 2:

First note that vs
1 < vs

2 by the monotonicity of vF (v). When bidder 2 chooses never to partici-

pate, v∗1 = c1 < vs
1 and v∗2 > 1. Lemma 2 holds obviously.

Now suppose v∗2 ≤ 1. We have

v∗1F (v∗1) +

∫ v∗2

v∗1

F (v)dv = c2 = vs
2F (vs

2).

Since v∗1F (v∗1) +
∫ v∗2
v∗1

F (v)dv = v∗2F (v∗2) −
∫ v∗2
v∗1

vf(v)dv, we have

v∗2F (v∗2) −
∫ v∗2

v∗1

vf(v)dv = vs
2F (vs

2).

Then vs
2F (vs

2) < v∗2F (v∗2). We must have vs
2 < v∗2 by the monotonicity of vf(v). Also, since

we have v∗2 > vs
1 and c1 = v∗1F (v∗2) = vs

1F (vs
1), for this equation to be true, we must have

v∗1 < vs
1. Otherwise we have v∗1F (v∗2) > vs

1F (vs
1), a contradiction. So v∗1 < vs

1. Thus, we prove

v∗2 > vs
2 > vs

1 > v∗1.

Proof of Proposition 1:

The proof of Proposition 1 is based on the following five lemmas (from Lemma 3 to Lemma 7).

Lemma 3 For the economic environment with two bidders, there always exists an equilibrium

that is monotonic; i.e., for c2 > c1, there exists a cutoff vector (v∗1, v
∗

2) such that v∗2 > v∗1.

Proof. When c1F (c1) +
∫ 1
c1

F (v)dv < c2, bidder 2 will never participate in the auction and

thus v∗1 = c1 and v∗2 > 1 constitute a monotonic equilibrium. Now we consider the case of

c1F (c1) +
∫ 1
c1

F (v)dv ≥ c2.

Given vs
1 determined by c1 = vs

1F (vs
1), we have x < vs

1 and y > vs
1 by noting that y = y(x)

is a decreasing function. Since h(c1) = c1F (c1) +
∫ 1
c1

F (v)dv − c2 ≥ 0 and h(vs
1) = c1 − c2 < 0,

there exists a v∗1 ∈ [c1, v
s
1) such that h(v∗1) = 0. Thus, v∗1 < vs

1 and v∗2 = y(v∗1) > vs
1 constitute a

monotonic equilibrium.

22



Lemma 4 If F (.) is concave, there is a unique monotonic equilibrium.

Proof. Since F (.) is concave, we have F (v) ≥ vF ′(v) = vf(v) for any v ∈ [0, 1], and by noting

y > x, we have

λ′(y) = F (y) − x2

F (y)
f(y)f(x) > F (y) − F (x)xf(y)

F (y)
> F (y) − F (x)yf(y)

F (y)
≥ F (y) − F (x) > 0,

which indicates that λ(y) is monotonically increasing. First consider the case where λ(1) =

c1F (c1) +
∫ 1
c1

F (v)dv ≥ c2. Since λ(vs
1) − c2 = c1 − c2 < 0, then, by the monotonicity and

continuity of λ and x(y), y = v∗2 ∈ (vs
1, 1] is uniquely determined by λ(y) − c2 = 0, as is

x = v∗1 < vs
1. Thus, the monotonic equilibrium is unique. Now suppose λ(1) < c2. Then bidder

2 will never participate in the auction; thus x = v∗1 = c1 and v∗2 > 1 will again be the unique

monotonic equilibrium.

Lemma 5 If F (.) is concave, there is no non-monotonic equilibrium, and thus the equilibrium

is unique and monotonic.

Proof. We first prove there is no non-monotonic equilibrium in which v∗1 > 1. To see this,

notice that v∗1 > 1 requires c1 > c2F (c2) +
∫ 1
c2

F (v)dv. However, when F (.) is concave, we have

c1 > c2F (c2) +

∫ 1

c2

F (v)dv ≥ c2F (c2) + (1 − c2)F (c2) = F (c2) ≥ c2

by noting that F (c2) ≥ c2 since F (c) = F (c × 1 + (1 − c)0) ≥ cF (1) + (1 − c)F (0) = c. This

contradicts the fact that c1 < c2.

We now show that there does not exist any non-monotonic equilibrium with v∗1 ≤ 1 either.

Suppose not. Then we have

c1 = v∗2F (v∗2) +

∫ v∗1

v∗2

F (v)dv ≥ v∗1F (v∗2)

by noting that F (.) is non-decreasing. c1 < c2 implies that v∗2F (v∗1) > v∗1F (v∗2). Thus we have

v∗2 < v∗1 and
F (v∗1)

v∗1
>

F (v∗2)
v∗2

, which contradicts the fact that F (v)
v

is a non-increasing function

when F (.) is a concave function. Thus, there does not exist any non-monotonic equilibrium in

either case. Consequently, by Lemma 4, the equilibrium is unique, which is monotonic.

Lemma 6 Suppose F (.) is strictly convex and the reverse hazard rate of F (.) is non-increasing.

Then, there is a unique monotonic equilibrium.

Proof. Notice that λ′(y) can be written as

λ′(y) = F (y) − x2

F (y)
f(y)f(x) = F (y)[1 − x2f(x)f(y)

F (y)2
].
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x2f(x)f(y)
F (y)2

is a decreasing function in y. This is true since f(.) is an increasing function by the

strict convexity of F (.) with x = c1
F (y) and the reverse hazard rate of F (.) defined by f(.)

F (.) is

non-increasing. Then 1 − x2f(x)f(y)
F (y)2

is an increasing function in y, so is λ′(y). Thus, there is at

most one y = y0, if any, satisfying λ′(y0) = 0. Notice that, when x = y = vs
1,

λ′(vs
1) = F (vs

1) −
vs
1
2

F (vs
1)

f(vs
1)f(vs

1) < 0

by the strict convexity of F (.). Then λ(y) either decreases over the entire interval [vs
1, 1] (in

this case y0 > 1) or first decreases over [vs
1, y0] and then increases over [y0, 1] if y0 ≤ 1. If λ(y)

decreases over the entire interval [vs
1, 1], then λ(y) < c2 for all y ∈ [vs

1, 1], which means bidder 2

never participates in the auction. Thus we have a unique monotonic equilibrium with v∗1 = c1

and v∗2 > 1. On the other hand, if y0 ≤ 1, λ(y) first decreases over [vs
1, y0] and then increases over

[y0, 1]. Thus λ(y) = c2 > c1 has at most one solution v∗2. If the solution exists, we have a unique

monotonic equilibrium with v∗1 ≤ 1 and v∗2 ≤ 1; otherwise the unique monotonic equilibrium is

given by v∗1 = c1 and v∗2 > 1.

Lemma 7 Suppose F (.) is strictly convex. There exists a non-monotonic equilibrium when

c1 = cm and at least two non-monotonic equilibria when c1 > cm. There is no non-monotonic

equilibrium when c1 < cm.

Proof. Since

φ′(x) = F (x) + y(x)f(y(x))y′(x)

and

y′(x) = −yf(x)

F (x)
,

we have

φ′(vs
2) = F (vs

2) − vs
2f(vs

2)
vs
2f(vs

2)

F (vs
2)

=
F 2(vs

2) − (vs
2f(vs

2))
2

F (vs
2)

< 0

by noting that vs
2f(vs

2) > F (vs
2) by F (v) < vf(v) for all v ∈ [c2, 1] and vs

2 ≥ c2, which indicates

that φ(x) is decreasing at x = xs
2. Then φ(x) has a minimum value cm < c2 in the interval [vs

2, 1]

since φ(vs
2) = c2. Let φ(xm) = cm.

When c1 < cm, we have φ(x) > c1 in the interval [vs
2, 1]. Thus, there is no non-monotonic

equilibrium with v∗1 ≤ 1 since the set {x|φ(x) = c1, v
s
2 ≤ x ≤ 1} is empty. On the other hand,

since φ(1) = c2F (c2) +
∫ 1
c2

F (v)dv ≥ cm > c1, we do not have a non-monotonic equilibrium at

which bidder 1 never participates so that v∗1 > 1 is not an equilibrium strategy for bidder 1.

When c1 = cm, since φ(xm) = cm, then x = xm, y = c2/F (xm) is the unique non-monotonic

equilibrium. Note that when c1 = cm, we do not have an equilibrium at which bidder 1 never

participates since φ(1) ≥ cm = c1.
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When cm < c1 < c2, we have at least two non-monotonic equilibria. To see this, first

notice that there exists an x1 ∈ (vs
2, xm) such that φ(x1) = c1 by the continuity of φ(x) and

φ(xm) = cm < c1, φ(vs
2) = c2 > c1. If φ(1) < c1, we have a non-monotonic equilibrium at

which bidder 1 never participates and bidder 2’s equilibrium strategy is v∗2 = c2. Otherwise if

we have φ(1) ≥ c1, we can find an x2 ∈ (xm, 1] such that φ(x2) = c1 by the continuity of φ(x)

on x2 ∈ (xm, 1], φ(1) > c1 and φ(xm) = cm < c1. Then (x1, c2/F (x1)) and (x2, c2/F (x2)) will

be two non-monotonic equilibria.

Proof of Proposition 2:

2.(1) When F (.) is concave, the monotonic equilibrium and symmetric equilibrium are both

unique, so we have the result.

2.(2) From the proof of Lemma 6, we know that, when F (.) is strictly convex with non-

increasing reverse hazard rate, there is at most one y0 such that λ′(y0) = 0; λ(y) either decreases

over the entire interval [vs
1, 1] or first decreases over [vs

1, y0] and then increases over [y0, 1] if y0 ≤ 1.

Thus, there is a unique monotonic equilibrium, which is either given by v∗1 = c1 and v∗2 > 1

when λ(y) and c2 have no intersection, or given by (v∗1, v
∗

2) with v∗1 < vs
1 < y0 < v∗2 ≤ 1 when

λ(y) and c2 have an intersection. Here v∗2 is determined by λ(v∗2) = c2 and v∗1 = c1/F (v∗2). Thus,

from Figure 1, one can see that, when c2 → c1, we have an equilibrium given by an asymmetric

equilibrium (v∗′1 , v∗′2 ) with v∗′1 < vs
1 < y0 < v∗′2 ≤ 1, where v∗′2 is determined by λ(v∗′2 ) = c1 and

v∗′1 = c1/F (v∗′2 ), so the unique monotonic equilibrium converges to an asymmetric equilibrium.

2.(3) When F (.) is strictly convex and c2−c1 is sufficiently small, there are two non-monotonic

equilibria (x1, y1) and (x2, y2) with y1 = y(x1), y2 = y(x2), and y1 < y2 < vs
2 < x1 < xm <

x2 < x0 as shown in Lemma 7. Thus, from Figure 2, as c1 → c2, the non-monotonic equi-

librium (x1, y1) converges to the symmetric equilibrium (vs
2, v

s
2), and the other non-monotonic

equilibrium (x2, y2) converges to the asymmetric equilibrium (x0, y0).

Proof of Proposition 3:

Suppose we have a monotonic equilibrium (v∗1, v
∗

2) for the costs (c1, c2). Now choose (c′1, c
′

2)

satisfying c′1 ≥ c1 and c′2 ≤ c2. Note that bidder 1’s best response when bidder 2’s cutoff is in

[c2, v
∗

2] must lie in [v∗1, 1] since c1 has weakly increased and bidder 2’s best response when bidder

1’s cutoff is in [v∗1, 1] must lie in [c2, v
∗

2] since c2 has weakly decreased. Thus for costs (c′1, c
′

2),

the sets [v∗1, 1] for bidder 1 and [c2, v
∗

2] for bidder 2 are closed under best response. So there

must be an equilibrium in which each bidder uses a cutoff from his specified set. That is, when
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one bidder’s cost increases and the other’s decreases, there is necessarily a new equilibrium in

which the former uses a greater cutoff and the latter uses a smaller cutoff. Thus an increase in

participation cost ci increases i’s cutoff v∗i but decreases the opponent’s cutoff v∗j for j 6= i.

Proof of Proposition 5:

5.(1) Suppose by contradiction that there does not exist any type of equilibrium. We

then have no monotonic equilibrium. Thus, λ(y) > c2 = vs
2F1(v

s
2) for all y ∈ [vs

1, 1], and

particularly, λ(vs
1) = vs

1F1(v
s
1) > vs

2F1(v
s
2). Then we have

vs
1

vs
2

>
F1(vs

2)
F1(vs

1) . Since there is no non-

monotonic equilibrium either, we have φ(x) > c1 = vs
1F2(v

s
1) for all x ∈ [vs

2, 1], and particularly,

φ(vs
2) = vs

2F2(v
s
2) > vs

1F2(v
s
2). Then

vs
1

vs
2

<
F2(vs

2)
F2(vs

1) . Combining these two cases, we have

F1(v
s
2)

F1(vs
1)

<
vs
1

vs
2

<
F2(v

s
2)

F2(vs
1)

.

Now we prove that these two inequalities cannot hold simultaneously. Indeed, if vs
1 ≤ vs

2, then

1 ≤ F1(vs
2)

F1(vs
1) <

vs
1

vs
2
≤ 1, which is impossible. On the other hand, if vs

1 > vs
2, 1 <

vs
1

vs
2

<
F2(vs

2)
F2(vs

1) < 1,

which is also impossible. Thus, there must exist an equilibrium for any F1(v) and F2(v) under

consideration.

5.(2) First note that λ(vs
1) = vs

1F1(v
s
1) < vs

1F2(v
s
2) = c1 < c2 by F1(v) < F2(v) and λ(y) is

monotonically increasing by the concavity of F1(.) and F2(.). Thus, if λ(y) < c2 for all y ∈ (vs
1, 1],

bidder 2 will never participate (i.e., v∗2 > 1), and bidder 1 uses v∗1 = c1 as the cutoff. Otherwise

bidder 2 will use v∗2 > vs
1 which is determined by λ(y) = c2. Thus, in both cases, (v∗1, v

∗

2)

constitute a monotonic equilibrium. Since λ(y) is monotonically increasing, such a monotonic

equilibrium must be unique.

Finally, we show there does not exist any non-monotonic equilibrium. To do so, we only

need to focus on φ(x) with x > vs
2. Since φ(vs

2) = vs
2F2(v

s
2) > vs

2F1(v
s
1) = c1 and φ(x) is

monotonically increasing, φ(x) > c1 for all x ∈ (vs
2, 1]. Thus we do not have a non-monotonic

equilibrium. Hence, there is a unique equilibrium and it is monotonic.

5.(3.i) Suppose vs
1 < vs

2. We have φ(vs
2) = vs

2F2(v
s
2) > vs

1F2(v
s
1) = c1. By φ′(x) > 0

we have φ(x) > c1 for all x ∈ (vs
2, 1]. Thus no non-monotonic equilibrium exists. We have

λ(vs
1) = vs

1F1(v
s
1) < vs

2F1(v
s
2) = c2. Then by the monotonicity of λ(y), there is a unique

equilibrium and it is monotonic.

5.(3.ii) Suppose vs
1 > vs

2. We have λ(vs
1) = vs

1F1(v
s
1) > vs

1F2(v
s
1) > vs

2F2(v
s
2) = c2. By

λ′(y) > 0 we have λ(y) > c2 for all y ∈ (vs
1, 1], so no monotonic equilibrium exists. On the other

hand, we have φ(vs
2) = vs

2F2(v
s
2) < vs

1F2(v
s
1) = c1. By φ′(x) > 0, if for all x ∈ (vs

2, 1], we have

φ(x) < c1, bidder 1 never participates in the auction (i.e., v∗1 > 1). Thus, v∗1 > 1 and v∗2 = c2
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will be the unique non-monotonic equilibrium. Otherwise v∗2 > vs
2 is uniquely determined by

φ(x) = c1. Then v∗1 < vs
2 and v∗2 > vs

2 is the unique non-monotonic equilibrium. Thus we have

a unique equilibrium and it is non-monotonic.

5.(3.iii) Now suppose vs
1 = vs

2 = vs. We then have c1 = vsF2(v
s) and c2 = vsF1(v

s). Then

λ(vs) = vsF1(v
s) = c2 and φ(vs) = vsF2(v

s) = c1. Thus v∗1 = v∗2 = vs is the equilibrium that is

a special non-monotonic equilibrium. The uniqueness comes from the monotonicity of λ(y) and

φ(x).
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