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Abstract 

This article develops a model to examine the equilibrium behavior of the time 

nconsistency problem in a continuous time economy with stochastic and endogenized 

distortion. First, the authors introduce the notion of sequentially rational equilibrium, 

and show that the time inconsistency problem may be solved with trigger reputation 

strategies for stochastic setting. The conditions for the existence of sequentially 

rational equilibrium are provided. Then, the concept of sequentially rational 

stochastically stable equilibrium is introduced. The authors compare the relative 

stability between the cooperative behavior and uncooperative behavior, and show that 

the cooperative equilibrium in this monetary policy game is a sequentially rational 

stochastically stable equilibrium and the uncooperative equilibrium is sequentially 

rational stochastically unstable equilibrium. In the long run, the zero inflation monetary 

policies are inherently more stable than the discretion rules, and once established, 

they tend to persist for longer periods of the time. 
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1 Introduction 

 

Time inconsistency is an interesting problem in macroeconomics in general, and 

monetary policy in particular. Although technologies, preferences, and information are 

the same at different times, the policymaker’s optimal policy chosen at time t1 differs 

from the optimal policy for t1 chosen at t0 < t1. The study of time inconsistency is 

important. It not only provides positive theories that help us to understand the 

incentives faced by policymakers and provides the 
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natural starting point for attempts to explain the actual behavior of policymakers and actual

policy outcomes, but also requires one to design policy-making institutions. Such a normative

task can help one understand how institutional structures affect policy outcomes.

This problem was first noted by Kydland and Prescott [4]. Several solutions were proposed

to deal with this problem since then. Barro and Gordon [1] were the first to build a game model

to analyze “reputation” of monetary policy.

A second solution is the basis of the incentive contracting approach to monetary policy.

Persson and Tabellini [7], Walsh [12], and Svensson [10] developed models by using this ap-

proach. A third solution is built on the legislative approach. The major academic contribution

in this area was by Rogoff [8].

Among these approaches, the “reputation” problem is the key. If reputation consider-

ation discourages the monetary authorities from attempting surprise inflation, then, legal or

contracting constraints on monetary authorities are unnecessary and may be harmful.

The main questions on reputation are when and how the policymaker chooses inflation

optimally to minimize welfare loss, and, whether the punishment can induce the policymaker

to choose zero inflation. The conclusions of Barro-Gorden models are: first, there exists a

zero-inflation Nash equilibrium if the punishment for the policymaker deviating from zero-

inflation is large enough. However, this equilibrium is not sequentially rational over a finite

time horizon. The only sequentially rational equilibrium is achieved if the policymaker chooses

discretionary inflation and the public expects it. Only over an infinite time horizon one can

get a low-inflation equilibrium. Otherwise, the policymaker would be sure in the last period

to produce the discretionary outcome whatever the public’s expectation were and, by working

backward, would be expected to do the same in the first period. Secondly, there are multiple

Nash equilibria and there is no mechanism to choose between them.

This article develops a continuous time model of central bank at the spirit of Kydland and

Prescott, and Barro and Gordon. The main differences between our model and previous models

are the following two assumptions: (i) the natural rate of output∗∗ is a Brownian motion; (ii)

the distortion of the economy is correlated to the natural rate.

The reason that we use assumption (i) is that the most recent literature shares (see Salemi

[9]) the view that the natural rate changes over time and specifies the natural rate as a random

walk without drift seems a plausible assumption for U.S. unemployment data.

The key aspect of this monetary time inconsistency problem is the distortion which arises

from the labor-market distortions and the political pressure on the central bank. Most often,

some appeal is made to the presence of labor-market distortions, for example, a wage tax.

Because the larger scale of the economy implies the larger wage tax, it seems reasonable for us

to assume that the distortion is an increasing function of the scale of the economy. We use a

linear function to approximate this function.

In this article, we use the optimal stopping theory to study the time inconsistency problem

in monetary policy with the continuous time model. By using the optimal stopping theory and

∗∗The natural rate of output depends on the natural rate of unemployment. Friedman showed that monetary

policy could not be used to achieve full unemployment. Unfortunately, inflation starts accelerating before full

unemployment is reached. The best a nation can do is settle for the lowest level of unemployment that will not

begin accelerating inflation. Friedman called this point the ”natural rate of unemployment”(see Salemi [9]).



introducing the notions of sequentially rational equilibria, we give the conditions under which

the time inconsistency problem may be solved with trigger reputation strategies. We provide

the conditions for the existence of sequentially rational equilibrium.

We argue that the traditional concepts of equilibrium are not satisfactory as a predictor

of long run behavior when the game is subjected to persistent stochastic shocks. The concept

of sequentially rational stochastically stable equilibrium is introduced. Then, we compare the

relative stability between the cooperative behavior and uncooperative behavior, and show that

the cooperative equilibrium in this monetary policy game is a sequentially rational stochasti-

cally stable equilibrium and the uncooperative equilibrium in this monetary policy game is a

sequentially rational stochastically unstable equilibrium.

The results obtained in the article imply that, in the long run, the zero inflation monetary

policies are inherently more stable than the discretion rules, and once established, they tend to

persist for longer periods of the time.

The article is organized as follows. Section 2 will set up the model and provides a solu-

tion for the optimal stopping problem faced by the policymaker. In Section 3, we study the

equilibrium behavior. The stochastic stability of this monetary game is discussed in Section 4.

Section 5 gives the conclusion.

2 Model

2.1 The Setup

We consider a continuous time game theoretical model with two players: the policymaker

and the public. The policymaker’s strategy space is R+×L[0, T ], from which the policymaker is

to choose an action (τ, {πt}t∈T ). Here, τ is the time that the policymaker changes his monetary

policy from the zero-inflation rule to a discretion rule; πt is the inflation rate chosen by the

policymaker at time t; T is the lifetime of the policymaker which can be finite or infinite; and

L[0, T ] is the class of Lebesgue integrable functions defined on [0, T ]. The public’s strategy space

is L[0, T ], from which the public is to choose an action ({πe
t }t∈T ). Here, πe

t is the expected

inflation rate formed by the public at time t.

Suppose that, at the beginning, the policymaker commits an inflation rate π0 = 0, and

the public believes it so that πe
0 = π0 = 0. The policymaker has the right to switch from the

zero-inflation to a discretion rule πt 6= 0 at the time t between 0 and T . However, after he

changes his policy, he loses his reputation.

The policymaker’s loss function is described by a quadratic discounted expected loss func-

tion of the form:

Λ = E

∫ T

0

e−ρ·t
[1

2
θ
(
yt − ȳt − kt

)2

+
1

2
π2

t

]
dt, (1)

where ρ is the discount factor with 0 < ρ < 1, yt is aggregate output, ȳt is the economy’s natural

rate of output, and kt is the distortion, which is equal αȳt, α > 0. θ is a positive constant

that represents the relative weight put by the policymaker on output expansions relative to

inflation stabilization. Here, without loss of generality, the target inflation π is assumed to be

zero. Marco-welfare function (1) has played an important role in the literature, and means that

the policymaker desires to stabilize both output around ȳt + kt, which exceeds the economy’s



equilibrium output of ȳt by kt, and inflation around zero.

Here, we assume that ȳt = Xt and dXt = σdBt, X0 = x, where Bt is 1-dimensional

Brownian motion and σ is the diffusion coefficient.

The policymaker’s objective is to minimize this discounted expected loss function (1) sub-

ject to the constraint imposed by a Lucas-type aggregate supply function, the so-called Phillips

curve, which describes the relationship between output and inflation in each period:

yt − ȳt = a(πt − πe
t ) + ut, (2)

where a is a positive constant that represents the effect of a money surprise on output, and ut is

a bounded random variable with E[ut] = 0, Var[ut] = σ2
u, |ut| ≤ M1 for all t and cov(us, ut) = 0,

for t 6= s, which represents the shock at time t. And we assume that ȳt and ut are independent.

We also assume that the policymaker can observe ut and Xt prior to setting πt.

The public has complete information about the policymaker’s objectives. It is assumed that

the public forms his expectations rationally, and thus, the assumption of rational expectation

implicitly defines the loss function for the public as E[πt − πe
t ]

2. The public’s objective is to

minimize this expected inflation error. Given the public’s understanding of the policymaker’s

decision problem, its choice of πe is optimal.

We first examine the “one-shot” game. The single-period loss function ℓt for the policy-

maker is

ℓt(πt, π
e
t ) =

1

2
θ(yt − ȳt − kt)

2 +
1

2
π2

t =
1

2
θ[a(πt − πe

t ) − αXt + ut]
2 +

1

2
π2

t . (3)

The equilibrium concept in this game is noncooperative Nash. Then, the policymaker minimizes

ℓt by taking πe
t as given, and thus, we have the best response function for the policymaker:

πD
t =

aθ

1 + a2θ
(aπe

t + αXt − ut). (4)

The public is assumed to understand the incentive facing the policymaker so it uses (4) in

forming its expectations about inflation so that

πe
t = EπD

t =
aθ

1 + a2θ
(aπe

t + αEXt). (5)

Solving (5) for πe
t , we get the unique Nash equilibrium πe∗

t = EπD∗

t = aθαEXt. Thus, as

long as EXt 6= 0, the policymaker has incentives to use the discretion rule although the loss at

πe
t = πt = 0 is lower than at πe∗

t = EπD∗

t . This is the problem of time inconsistency.

A potential solution to the above time inconsistency problem is to force the policymaker to

bear some consequence penalties if he deviates from his announced policy of low inflation. One

of such penalties that may take is a loss of reputation. If the policymaker deviates from the low-

inflation solution, credibility is lost and the public expects high inflation in the future. That is,

the public expects zero-inflation as long as policymaker has fulfilled the inflation expectation in

the past. However, if actual inflation exceeds what was expected, the public anticipates that the

policymaker will apply discretion in the future. So, the public forms its expectation according

to the trigger strategy: Observing “good” behavior induces the expectation of continual good

behavior and a single observation of “bad” behavior triggers a revision of expectations.



2.2 The Optimal Stopping Problem for Policymaker

In order to solve the time inconsistency problem by using the reputation approach, we first

incorporate the policymaker’s loss minimization problem into a general optimal stopping time

problem. During any time in [0, T ], the policymaker has the right to reveal his type (discretion

or zero-inflation). Because he has the right but not the obligation to reveal his type, we can

think it is an option for the policymaker. So, the policymaker’s decision problem is to choose

a best time τ ∈ [0, T ] to exercise this option.

The policymaker considers the following optimal stopping problem: find τ∗ such that

L∗(x) = inf
τ

Ex
[ ∫ τ

0

f(t, Xt)dt + g(τ, Xτ )
]

= Ex
[ ∫ τ∗

0

f(t, Xt)dt + g(τ∗, Xτ∗)
]
, (6)

where

f(s, Xt) =
1

2
θe−ρ·s(αXt − ut)

2 (7)

is the instantaneous loss function for the policymaker when he uses the zero-inflation rate, and

g(s, Xτ ) = e−ρsEXτ

[ ∫ T

s

e−ρ(t−s)
[θ

2
[a(πD

t − πe
t ) − αXt + ut]

2 +
πD2

t

2

]
dt

]
(8)

is the expected loss function for policymaker, in which he begins to use the discretion rule at

time s. We assume that g(·, ·) is a bounded function, i.e., g(·, ·) ≤ M for some constant M .

Let {Ft} be a filtration of Bt. We assume that the public’s strategy πe
t for t > τ is {Fτ}-

adapted. This means that when the public forms their expectation at time t, they know the

natural rate at τ .

To compute g(τ, Xτ ), substituting (4) into (8), we have

g(τ, Xτ ) = e−ρτEXτ

[ ∫ T

τ

e−ρ(t−τ)
[θ

2
[a(πD

t − πe
t ) − αXt + ut]

2 +
1

2
πD2

t

]
dt

]

=
1

2

θ

1 + a2θ
e−ρτEXτ

[ ∫ T

τ

e−ρ(t−τ)
(
αXt − ut + aπe

t

)2

dt
]

=
θα2

2(1 + a2θ)
e−ρτ ·

{
EXτ

[ ∫ T

τ

e−ρ(t−τ)X2
t dt

]
+ 2αaπe

t E
Xτ

[ ∫ T

τ

e−ρ(t−τ)Xtdt
]

+(a2πe
t
2 + σ2

u)EXτ

[ ∫ T

τ

e−ρ(t−τ)dt
]}

. (9)

We now calculate the conditional expectation for X2
t and Xt. Let A be the generator of Itô

diffusion dXt = b(Xt)dt + σ(Xt)dB (with b(Xt) ≡ 0). Then,

Af =
∑

i

bi

∂f

∂xi

+
1

2

∑

i,j

(σσT )i,j

∂2f

∂xi∂xj

=
1

2

∑

i,j

(σσT )i,j

∂2f

∂xi∂xj

.

Then, by Dynkin’s formula (cf. Øksendal [6], p. 118), we have

EXτ [Xt] = Xτ + EXτ

[ ∫ t

τ

AXsds
]

= Xτ , (10)

EXτ [X2
t ] = X2

τ + EXτ

[ ∫ t

τ

AX2
sds

]
= X2

τ + σ2(t − τ). (11)



Substituting (10) and (11) into (9), we have

g(τ, Xτ ) =
1

2

θ

1 + a2θ

{
σ2

[ 1

ρ2
(e−ρτ − e−ρT ) − 1

ρ
(T − τ)e−ρT

]

+[(αXτ + aπe
τ )2 + σ2

u]
1

ρ
(e−ρτ − e−ρT )

}
. (12)

Note that, if we define

f1(s, Xt) = −f(s, Xt), g1(s, Xτ ) = −g(s, Xτ) + M ≥ 0,

then, the loss minimization problem in (6) can be reduced to the following maximization prob-

lem: find τ∗, such that

G∗

0(x) = sup
τ∈[0,T ]

Ex
[ ∫ τ

0

[−f(t, Xt)]dt − g(τ, Xτ ) + M
]

= sup
τ∈[0,T ]

Ex
[ ∫ τ

0

f1(t, Xt)dt + g1(τ, Xτ )
]
. (13)

In the following, we will use the optimal stopping approach to solve the optimization

problem (13).

2.3 Solve the Optimal Stopping Problem

In order to solve the policymaker’s optimization problem (13) by using a standard frame-

work of the optimal stopping problem involving an integral (cf. Øksendal [6], p.213), we make

the following transformations. Let

Wτ =

∫ τ

0

f1(t, Xt)dt + w, w ∈ R,

and define the Itô diffusion Zt = Z
(s,x,w)
t in R3 by

Zt =




s + t

Xt

Wt


 ,

for t ≥ 0. Then,

dZt =




dt

dXt

dWt


 =




1

0

− 1
2θe−ρt(Xt − k)2


 dt +




0

σ

0


dBt, Z0 = (s, x, w).

So Zt is an Itô diffusion starting at z := Z0 = (s, x, w). Let Rz = R(s,x,w) denote the probability

law of {Zt} and let Ez = E(s,x,w) denote the expectation with respect to Rz. In terms of Zt

the problem (13) can be written as

G∗

0(x) = G∗(0, x, 0) = sup
τ

E(0,x,0)[Wτ + g1(τ, Xτ )] = supE(0,x,0)[G(Zτ )],

which is a special case of the problem

G∗(s, x, w) = sup
τ

E(s,x,w)[Wτ + g1(τ, Xτ )] = supE(s,x,w)[G(Zτ )],



with

G(z) = G(s, x, w) := w + g1(s, x).

Then, for

f1(s, x) = −1

2
θe−ρ·s(αx − us)

2,

g1(s, x) = −1

2

θ

1 + a2θ

{
σ2

[ 1

ρ2
(e−ρs − e−ρT ) − 1

ρ
(T − s)e−ρT

]

+[(αx + aπe
s)

2 + σ2
u]

1

ρ
(e−ρs − e−ρT )

}
+ M,

and G(s, x, w) = w + g1(s, x), the AZ of Zt is given by

AZG =
∂G

∂s
+

1

2
σ2 ∂2G

∂x2
− 1

2
θe−ρs(x − k)2

∂G

∂w

=
1

2

θ

1 + a2θ
[(αx + aπe

s)
2 + σ2

u]e−ρs − 1

2
θ(αx − us)

2e−ρs

=
1

2

θ

1 + a2θ
[(αx + aπe

s)
2 + σ2

u − (1 + a2θ)(αx − us)
2]e−ρs. (14)

Let

U = {(s, x, w) : G(s, x, w) < G∗(s, x, w)},

and

V = {(s, x, w) : AG(x) > 0}.

Then, by (14), we have

V = {(s, x, w) : AZG(s, x, w) > 0}
= R × {x : (αx + aπe

s)
2 + σ2

u > (1 + a2θ)(αx − us)
2} × R. (15)

Remark 2.1 Øksendal ([6], p.205) shows that V ⊂ U , which means that it is never

optimal to stop the process before it exits from V . If we choose a suitable πe(x), such that

(αx + aπe
s)

2 + σ2
u > (1 + a2θ)(αx − us)

2, then, we have U = V = R3. Therefore, any stopping

time less than T will not be optimal for all (s, x, w) ∈ V , and thus, τ∗ = T is the optimal

stopping time. We will use this fact to study the time inconsistency problem of the monetary

policy game in the following sections.

3 The Equilibrium Behavior of the Monetary Policy Game

In order to study the equilibrium behavior of the game, we first give the following lemma,

which shows that the policymaker will keep the zero-inflation policy when the public uses trigger

strategies and reputation penalties imposed by the public large enough.

Lemma 3.1 Let τ = inf{s > 0 : πs 6= 0}. Then, for all x, any trigger strategy of the

public {πe
t (x)} which has the form

πe
t =





0 if t = 0,

0 if 0 < t < τ,

πe(x) ∈ {h : (αx + aπe
s)

2 + σ2
u > (1 + a2θ)(α|x| + M)2} if t > s and t ≥ τ,

(16)



discourages the policymaker from attempting surprise inflation.

Proof For each x ∈ R, if we choose any πe ∈ {h : (αx+aπe
s)

2+σ2
u > (1+a2θ)(αx−us)

2},
we have

(αx + aπe
s)

2 + σ2
u > (1 + a2θ)(αx − us)

2 for all x ∈ R.

Then, V in (15) becomes V = R3, and thus on any stopping time less then T is not optimal

for the policymaker. Hence, τ∗ = T . Thus, when the public applies this trigger strategy, it is

never optimal for policymaker to stop the zero-inflation policy.

Although there are (infinitely) many trigger strategies given in Lemma 1, that can dis-

courage the policymaker from attempting surprise inflation, most of them are not optimal for

the public in terms of minimizing the public’s expected inflation error (πt − πe
t )

2. To rule

out those non-optimal strategies, we have to impose some assumptions how the public forms

an expectation and what an equilibrium solution should be used to describe the public’s self-

interested behavior. Different assumptions on the public’s behavior may result in different

optimal solutions. In the following, we introduce a concept of sequentially rational equilibrium

solution.

Suppose the policymaker knows the distribution of the natural rate, Xt, exactly, that is,

dP̃G = dP,

where P̃G is the belief of the policymaker for the movement of the shock and P is the measure

of the natural rate.

We suppose that the public does not know the distribution of the natural rate, but it

believes that P̃P is absolutely continuous with respect to P , which means that if an event does

not occur in probability, then the public will believe that this event will not happen.

Then, by Randon-Nikodym Theorem (Lipster & Ahiryaev [5], p.13), there exists Randon-

Nikodym derivative M(t) such that

dP̃P = M(t)dP (a.s.),

and M(t) is a martingale and bounded both from above and below (i.e., M1 ≤ M(t) ≤ M2 for

every 0 ≤ t ≤ T ). This means that, whenever new information becomes available, the belief of

the public is adjusted. We can interprete M(t) to be the information structure of the society,

which is a measurement of how the public knows the real natural rate.

We suppose that M(t) is P -square-integrable and Xt is P̃P -integrable. We also suppose

that 〈Xt, M(t)〉 = 0 heuristically. This assumption can be interpreted as: the history of the

natural rate can’t help the public to predict the movement of the future natural rate in general.

We denote by Ẽ the expectation operator with respect to P̃P .

A strategy (τ, {πt, π
e
t }) is said to be a sequentially rational equilibrium strategy for the

dynamic model defined above if

(i) the belief of the public for the movement of the natural rate Xt, P̃P , satisfying Bayes’

rule

Ẽ[Xt|Fs] =
1

M(s)
E[XtM(t)|Fs], (17)

for all s < t;

(ii) the expectation of the public is rational πe
t = EXsπD

t := Ẽ[πD
t |Fs] for all s < t;



(iii) it optimizes the objectives of the public and the policymaker.

Now, we use this type of sequentially rational equilibria to study the time inconsistency

problem in monetary policy. Proposition 3.1 below shows the existence of such equilibria.

Proposition 3.1 Suppose the shocks {Xt} satisfy the inequality

(αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(α|x| + M)2 for all t ∈ [0, T ] and x ∈ R. (18)

Let (τ, {πs}) be the strategy of the policymaker, where τ is the first time that the policymaker

changes its policy from zero-inflation to discretion rule, i.e., τ = inf{s > 0 : πs 6= 0}. Let the

strategy of the public {(πe
t )} be given by

πe
t =






0 if t = 0,

0 if 0 < t < τ ,

aθαXτ if t ≥ τ .

(19)

Then, (τ∗, {π∗

t , πe∗
t }) with τ∗ = T , π∗

t = 0 and πe∗
t = 0, for all t ≥ 0 is a sequentially rational

equilibrium strategy for the policymaker and the public.

Proof To prove (τ, {πt, π
e
t }) defined above results in a sequentially rational equilibrium,

τ∗ = T , π∗

t = 0, and πe∗
t = 0 for all t ≥ 0, and we need to show that (i) it satisfies Bayes’

rule, (ii) the rational expectation condition holds: πe
t = EXτ πD

t := Ẽ[πD
t |Fτ ], (iii) πe

t ∈ {h :

(αx + ah)2 + σ2
u > (1 + a2θ)(α|x| + M)2}, and (iv) (τ∗, {π∗

t , πe∗
t }) optimizes the objectives of

the public and the policymaker.

We first claim that the public updates its belief by Bayes’ rule. Indeed, because M(t) is a

martingale, and for s < t, Xt is a P̃P -integrable random variable, then, by Lemma of Shreve

& Kruzhilin ([11], p.438), the Bayes’ Rule holds

Ẽ[Xt|Fs] =
1

M(s)
E[XtM(t)|Fs].

To show πe
t = EXτ πD

t , first note that Xt and M(t) are square-integrable martingale,

using the fact that XtM(t) − 〈Xt, M(t)〉 is a martingale (Karatzas & Shreve([3], p.31)) and the

assumption 〈Xt, M(t)〉 = 0, we can get that XtM(t) is a martingale by Bayes’ rule

Ẽ[Xt|Fτ ] =
1

M(τ)
E[XtM(t)|Fτ ] =

1

M(τ)
XτM(τ) = Xτ ,

which means {Xt} is also a martingale under P̃P . Because the policymaker’s best response

function is given by

πD
t =

aθ

1 + a2θ
(aπe

t + αx − us),

{Xt} is a martingale under P̃P , and πe
t = aθαXτ is a complete information at time t, we have

EXτ πD
t = EXτ

aθ

1 + a2θ
(aπe

t + αx − us) =
aθ

1 + a2θ
(aπe

t + αEXτ Xt)

=
aθ

1 + a2θ
(aπe

t + αXτ ). (20)

Substituting πe
t = aθαXτ into (20), we have EXτ πD

t = aθ
1+a2θ

(a2θαXτ + αXτ ) = aθαXτ = πe
t .



Now, if condition (18) is satisfied, then we have (αx + aπe
s)

2 + σ2
u > (1 + a2θ)(α|x| + M)2

and thus, πe
t ∈ {h : (αx + ah)2 + σ2

u > (1 + a2θ)(α|x| + M)2} for all x ∈ R with x 6= k. Then,

by Lemma 3.1, the optimal stopping time is τ∗ = T . Therefore, we must have π∗

t = 0 for all

t ∈ [0, T ].

Because the public only cares about his inflation prediction errors, so πe
t = aθαXt mini-

mizes the public’s expected lost when the policy change occurs at time t in this game. Hence,

if both the policymaker and public believe that future shocks will grow enough to make the

inequality (18) holds, the threat of the public is credible. Hence, we must have πe∗
t = 0 for all

t ∈ [0, T ] because τ∗ = T . Thus, we have shown that the trigger strategies (τ, {πt, π
e
t }) result

in a sequentially rational equilibrium, which is τ∗ = T , π∗

t = 0, and πe∗
t = 0 for all t ≥ 0.

Thus, Proposition 3.1 implies that, as long as natural rate Xt is big enough, the public can

use a trigger strategy to induce a zero-inflation sequentially rational equilibrium. Of course,

the assumption that (αx + aπe
s)

2 + σ2
u > (1 + a2θ)(α|x| + M)2 for all t ∈ [0, T ] and x ∈ R with

x 6= k seems very strong. Proposition 4.1 in the next section shows that this is a reasonable

assumption. As long as this inequality holds for the initial natural rate x, both the public and

the policymaker will have a strong belief that it will be true for all t ∈ (0, T ] and x ∈ R.

4 Stochastically Stable Equilibrium

In this section, we study the robustness of sequentially rational equilibrium. In order to

get the sequentially rational equilibrium in Proposition 3.1, we impose the assumption that

(αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(α|x| + M)2 for all 0 ≤ t ≤ T and x ∈ R. It seems that the

concept of sequentially rational equilibrium is not satisfactory as a predictor of long-run behavior

when the game is subjected to persistent stochastic shocks. So, we introduce the concept of

sequentially rational stochastically stable equilibrium. (In determinate dynamic systems, in

order to analyze the dynamic behavior, the concepts of Lyapunov stable and asymptotically

stable are always used. For stochastic evolution system, Foster and Young [2] and Young [13]

first introduced the concept of stochastic stability. But the concept in their papers is different

from ours.)

Definition 4.1 Let {S : (y, z ∈ R2)} be the set of sequentially rational equilibria of a

dynamic game under the shock Xt, we say S is a sequentially rational stochastically stable equi-

librium set if Ex[τ ] = ∞, where τ = inf{t : (yt, zt) /∈ S}, and S is a sequentially stochastically

unstable rational equilibrium set if Ex[τ ] < ∞.

Loosely speaking, the sequentially rational stochastically stable equilibria of a dynamic

game are those equilibria such that the expected time to depart from them is infinite.

Lemma 4.1 Let B = {Xt : (αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(α|x|+ M)2 for t ≥ 0}, and

let η = inf{t > 0 : Xt /∈ B} be the first time Xt exits from B. Suppose that x ∈ B. Then, we

have

Ex[η] = ∞,

for all x ∈ R.

Proof Solving (αx + a2θαXt)
2 + σ2

u > (1 + a2θ)(x − ut)
2 for Xt, we have

Xt >
1

a2θα
[−σ2

u − αx +
√

1 + a2θ(α|x| + M)],



or

Xt <
1

a2θα
[(−σ2

u − αx −
√

1 + a2θ(α|x| + M)].

Let C = 1
a2θα

[ut − αx +
√

1 + a2θ(α|x| + M)] and D = 1
a2θα

[(ut − αx −
√

1 + a2θ(α|x| + M)].

Because X0 = x ∈ B for all x ∈ R, there are two cases to be considered: 1) x > C and 2)

x < D.

Case 1) x > C. Let ηc = inf{t > 0: Xt ≤ C} and ηn be the first exit time from the

interval

{Xt : C ≤ Xt ≤ n},

for every integer n with n > C. We first show that P x(Xηn
= C) = n−x

n−C
and P x(Xηn

= n) =
x−C
n−C

. Consider the function h ∈ C2
0 (R) defined by h(x) = x for C ≤ x ≤ n (C2

0 (R) means the

functions in C2(R) with compact support). By Dynkin’s formula,

Ex[h(Xηn
)] = h(x) + Ex

[ ∫ ηn

0

Ah(Xs)ds
]

= h(x) = x, (21)

we have

CP x(Xηn
= C) + nP x(Xηn

= n) = x.

Thus,

P x(Xηn
= C) =

n − x

n − C
,

and

P x(Xηn
= n) = 1 − P x(Xηn

= C) =
x − C

n − C
.

Now, consider h ∈ C2
0 (R) such that h(x) = x2 for C ≤ x ≤ n. Applying Dynkin’s formula

again, we have

Ex[h(Xηn
)] = h(x) + Ex

[ ∫ ηn

0

Ah(Xs)ds
]

= x2 + σ2Ex[ηn], (22)

and thus,

σ2Ex[ηn] = C2P x(Xηn
= C) + n2P x(Xηn

= n) − x2.

Hence, we have

Ex[ηn] =
1

σ2

[
C2 n − x

n − C
+ n2 x − C

n − C
− x2

]
.

Letting n → ∞, we conclude that P x(Xηn
= n) = x−C

n−C
→ 0 and ηc = lim ηn < ∞ a.s.

Therefore, we have

Ex[ηc] = lim
n→∞

Ex[ηn] = ∞.

Case 2) X0 = x < D. Define ηD = inf{t > 0; Xt ≥ D}. Let ηn be the first exit time

from the interval

{Xt : −n ≤ Xt ≤ D},

for every integer n with −n < D. By the same method, we can prove that

Ex[ηn] =
1

σ2

[
D2 n + x

n + D
+ n2 D − x

n + D
− x2

]
.



Letting n → ∞, we conclude that P x(Xηn
= n) = D−x

n+D
→ 0 and ηD = lim ηn < ∞ a.s.,

and thus,

Ex[ηD] = lim
n→∞

Ex[ηn] = ∞.

Thus, in either case, we have Ex[η] = ∞.

Lemma 4.1, thus, implies that, because the expected exit time from B is infinite, the

policymaker will believe that the future natural rate will stay in B forever, and consequently

he will likely make decisions and behave according to this belief. As a result, the sequentially

rational equilibrium will likely appear in the game. So, in this sense, we can regard B as an

absorbing class for Xt as long as x ∈ B.

What would happen if the initial shock x is not in B? We have the following proposition:

Lemma 4.2 Define τ = inf{t > 0 : Zt ∈ B}. Then, for x /∈ B, i.e., a(1− θ) ≥ 2, we have

Ex[τ ] =
a(1 − θ) − 2

σ2aθ
(k − x)2.

Proof Because x 6∈ B, we have D ≤ x ≤ C. Define τC = inf{t > 0 : Xt ≥ C}
and τD = inf{t > 0 : Xt ≤ D}. Then, τ = τc ∧ τD := min{τc, τD}. We first show that

P x(Xτ = C) = x−D
C−D

and P x(Xτ = D) = C−x
C−D

. Consider h ∈ C2
0 (R) such that h(x) = x for

D ≤ x ≤ C. By Dynkin’s formula,

Ex[h(Xτc∧τD
)] = h(x) + Ex

[ ∫ τc∧τD

0

Ah(Xs)ds
]

= h(x) = x, (23)

we have

CP x(Xτ = C) + DP x(Xτ = D) = x.

Thus,

P x(Xτ = C) =
x − D

C − D
,

and so,

P x(Xτ = D) = 1 − P x(Xτ = C) =
C − x

C − D
.

Now consider h ∈ C2
0 (R) such that h(x) = x2 for D ≤ x ≤ C. By Dynkin’s formula:

Ex[h(Xτc∧τD
)] = h(x) + Ex

[ ∫ τcΛτD

0

Ah(Xs)ds
]

= h(x) + σ2Ex[τc ∧ τD], (24)

we have

σ2Ex[τc ∧ τD] = C2P x(Xτ = C) + D2P x(Xτ = D) − x2,

and then,

Ex[τc ∧ τD] =
1

σ2

[
C2 x − D

C − D
+ D2 C − x

C − D
− x2

]

=
1

σ2
[(C + D)x − CD − x2]

=
2x

σ2aθ
[(1 + aθ)k − x] − 1

σ2a2θ2
[(1 + aθ)k − x]2 +

1 + a2θ

σa2θ2
(x − k)2 − 1

σ
x2

=
1

σ2a2θ2
{[(1 + aθ)k − x][2xaθ − (1 + aθ)k + x] − a2θ2x2 + (1 + a2θ)(k − x)2}



=
1

σ2a2θ2
{−(1 + aθ)2k2 − (1 + 2aθ)x2 + (1 + aθ)kx + (1 + aθ)(1 + 2aθ)xk

−a2θ2x2 + (1 + a2θ)(x − k)2}

=
1

σ2a2θ2
{−(1 + aθ)2k2 − (1 + aθ)2x2 + 2(1 + aθ)2kx + (1 + a2θ)(x − k)2}

=
1

σ2a2θ2
{−(1 + aθ)2(k − x)2 + (1 + a2θ)(x − k)2}

=
a(1 − θ) − 2

σ2aθ
(k − x)2 ≥ 0, (25)

by noting that a(1 − θ) ≥ 2.

Notice that, the bigger the variance of the natural rate (measured by σ), the faster the

convergence rate. From Lemma 4.2, the expected time of entering B, Ex[τ ] = Ex[τc ∧ τD] is a

finite number. Suppose the public has the same belief as the policymaker. There are two cases

to be considered: 1) Ex[τ ] ≥ T . In this case, the policymaker likely believes that Xt 6∈ B for all

t ∈ [0, T ], and thus a sequentially rational stochastically stable equilibrium will not likely exist.

2) Ex[τ ] < T . In this case, we should not expect the zero-inflation stationary monetary policy

for the time period [0, Ex[τ ]] since Xt 6∈ B for all t ∈ [0, Ex[τ ]]. However, once Xt enters B at

the first time Ex[τ ], we can regard Xτ as a new starting point. Then, by Lemma 4.1, both the

policymaker and the public will believe that Xt will stay in B for all t ∈ [Ex[τ ], T ], and thus,

we can expect to have a zero inflation stationary monetary policy on [Ex[τ ], T ]. This implies

that, although we do not have a time consistency policy on the whole time horizon [0, T ] when

x 6∈ B, we could have a time consistency monetary policy beyond the point Ex[τ ]. In other

words, one will have an nonstationary policy period if the initial shock x 6∈ B; however, after

a certain point τ , the monetary policy may become stationary. Thus, the time inconsistency

may happen at most once.

Summarizing the above discussions, we can draw the following conclusions:

(i) If the initial natural rate x is in B, one can expect all future shocks Xt are in B and

thus, can expect a stationary zero-inflation outcome by the sequentially rational behavior.

(ii) If the initial natural rate x is not in B, whether or not we can expect the monetary

policy to have a tendency to become stable depending on T , the lifetime of the policymaker. If

the expected first entry time to B, Ex[τ ] ≥ T , we do not expect a stationary monetary policy

and thus we have the time inconsistency problem. If Ex[τ ] < T , we may expect a stationary

monetary policy beyond the entry point Ex[τ ], and monetary policy becomes stationary. Thus,

the monetary policy may jump at most once.

Combine Lemma 4.1 and Lemma 4.2, we have the following proposition.

Proposition 4.1 Let (τ, {πs}) be the strategy of the policymaker, where τ is the first

time that the policymaker changes his policy from zero-inflation to discretion rule, i.e., τ =

inf{s > 0 : πs 6= 0}. Let the strategy of the public {(πe
t )} be given by

πe
t =





0 if t = 0,

0 if 0 < t < τ,

aθ(k − Xτ ) if t ≥ τ.

(26)

Then, (τ∗, {π∗

t , πe∗
t }) with τ∗ = T , π∗

t = 0, and πe∗
t = 0 for all t ≥ 0 is a sequentially rational

stochastically stable equilibrium strategy for the policymaker and the public.



Then, we can see that the cooperative equilibrium in this monetary policy game is a

sequentially rational stochastically stable equilibrium and the uncooperative equilibrium is a

sequentially rational stochastically unstable equilibrium. In the long run, the zero inflation

monetary policies are inherently more stable than the discretionary rules, and once established,

they tend to persist for longer periods of time. Thus, for this continuous time dynamic stochastic

game, sequentially rational stochastically stable equilibrium behavior can be predicted for any

initial natural rate.

5 Conclusion

This article develops a model to examine the equilibrium behavior of monetary time incon-

sistency problem in a continuous time economy with stochastic natural rate and endogenized

distortion. First, we introduce the notion of sequentially rational equilibrium and show that

the time inconsistency problem may be solved with trigger reputation strategies in a stochas-

tic setting. We provide the conditions for the existence of sequentially rational equilibrium.

Then, the concept of sequentially rational stochastically stable equilibrium is introduced. We

compare the relative stability between the so called cooperative behavior and the so-called un-

cooperative behavior, and show that the cooperative equilibrium in this monetary policy game

is a sequentially rational stochastically stable equilibrium and the uncooperative equilibrium

is sequentially rational stochastically unstable equilibrium. In the long run, the zero inflation

monetary policies are inherently more stable than the discretion rules, and once established,

they tend to persist for longer periods of time.
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