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Abstract

In nonlinear pricing environment with correlated types, we characterize optimal selling

mechanisms when buyers could form a coalition to coordinate their reports and to arbitrage

on the goods. We find that when the types of agents are weakly positively correlated, the

optimal weakly collusion-proof mechanism calls for distortions away from efficiency obtained

without arbitrage; when the types are weakly negatively correlated, the monopolist can

achieve the same profit regardless of whether or not buyers can arbitrage on their goods.

Allowing arbitrage within coalitions result in right discontinuity between the correlated and

uncorrelated environment, but the left continuity is still available.
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1 Introduction

The theory of nonlinear pricing studies a monopolist’s optimal pricing scheme when she

has incomplete information about buyers’ individual preferences. It explains how a monopolist

seller who offers a pricing contract to buyers should structure his contract to overcome, at least

partially, the asymmetries of information he faces. The Revelation Principle tells us that, in

the absence of restrictions on contracts, but with decentralized information, any organization
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is equivalent to a centralized organization in which information must be communicated in an

incentive-compatible way to a center that transmits back to the agents instructions about the

actions to be implemented. In accordance with this principle, the principal can maximize her

profit by a incentive compatible and self-selected revelation mechanism. But the Revelation

Principle relies for its validity on the absence of collusion among agents, that is, the agents

behave in a non-cooperative way. 1 It is a rather unrealistic assumption except that the principal

has a complete control over communication between the agents or if the agents’ communication

costs are formidable large. Agents often engage in communication at low cost and this might

open room for collusive behavior to promote their joint interests at loss of that of the principal.

The possibility that some agents may collude is an important concern in mechanism design

theory. Typically, collusion imposes severe limits on what can be achieved. The possibility of

collusion between agents is generally regarded as a factor that reduces the principal’s payoff

in addition to the mere asymmetric information. A notable example is that of auctions, for

which the occurrence of cooperative behavior between bidders is a general and well-documented

phenomenon: see Porter and Zona (1993,1999), Baldwin et al. (1997), Pesendorfer (2000), etc.

When the agents’ types are correlated and there is no collusion between agents, Crémer and

McLean [hereafter CM] (1985, 1988) show that the principal can obtain the complete-information

optimum by fully extracting the information rents of agents. This Full Surplus Extraction (FSE)

result hold for any degree of correlation, even if it is very close to zero. However, when it is zero,

rents are given up by the principal, only the second-best allocation is achievable. Therefore, a

notable discontinuity occurs at the point with zero correlation.

CM’s FSE mechanism is vulnerable to collusion. If the agents may coordinate their reports,

it is impossible for the principal to elicit truthtelling at no cost. Laffont and Mortimort [hereafter

LM] (2000) restor the right continuity of mechanism at zero point by allowing collusion between

agents. They offered a tractable modeling framework for analyzing the role of colluders’ infor-

mation asymmetry in collusion-proof mechanism design. An uninformed third party is assumed

to plays the role of proposer and organizer of collusion between agents. He maximizes the sum

of agents’ utilities under the agents’ incentive and participation constraints. The agents are

offered a side contract 2 which entails manipulation of reports in the mechanism offered by the

principal and balanced side payments between the agents. This side contract has to be such that

1Other assumptions underlying the Revelation Principle include: there is no communication cost, information

processing costs and contract complexity cost; the principal has ability to commit upfront to a mechanism and

will not renegotiate it later, etc.
2In this paper we use “contract” and “mechanism” interchangeably
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the combination of the principal’s mechanism and the third party’s side payment is incentive

compatible for all agents and offers them interim expected utilities larger than what they would

get from playing the principal’s mechanism non-cooperatively. The asymmetric information be-

tween agents imposes transaction costs on their ability to carry out collusive arrangements. In

procurement and public good provision settings, LM (1997, 2000) obtain the following result:

with independent types, collusion imposes no additional distortion on the second best allocation

attained under asymmetric information. That is, optimal outcome can be made collusion-proof

at no cost to the principal if the agent’s types are uncorrelated. Moreover, under asymmetric

information with positive correlated types, preventing collusion imposes strict cost to the mech-

anism designer. The greater the correlation of types, the greater the required distortion of the

allocation. When the positive correlation goes to zero, the allocative efficiency implemented

by a collusion-proof mechanism approaches the second-best one. Therefore, the collusion-proof

mechanism is right continuous at zero point.

Yeon-Koo Che and Jinwoo Kim (2007) unifies several scattered observations made in the

literature and provides a general insight into how the transaction cost associated with agents’

private information can be exploited to overcome collusion. They show that agents’ collusion

can be prevented at no cost in a broad class of circumstances—virtually all circumstances with

uncorrelated agents and a broad set of circumstances with correlated types which satisfies certain

rank conditions. Their result is an extension of CM’s FSE theorem and the weakly collusion-

proof mechanism of LM (1997,2000). Notably, their result is robust to the formation of side

mechanism and can even be extended to a setting in which only a subset of agents may collude.

In monopolist pricing environment, the buyers could form coalitions to conduct arbitrage,

that is, to reallocate the goods they bought among themselves at the loss of the seller’s profit.

Thus, the mechanism designer should make optimal contractual response preventing the agents

from conducting reallocation as well as reports manipulation and side transfers. LM’s result are

partially reproduced by Jeon and Menicucci [hereafter JM](2005) in a nonlinear pricing model.

They modifies the side contract of LM (1997, 2000) by allowing collusive buyers to arbitrage on

their purchase, that is the goods is allowed to be reallocated within the coalition. They show

that with independently distributed types, the monopolist can achieve the same profit regardless

of whether or not buyers can form a coalition. That is, with uncorrelated types, collusion with

arbitrage is preventable at no cost, the buyers cannot gain additional profit from it.

Considering that JM’s result crucially relies on the agents’ types being uncorrelated, we

extend the nonlinear pricing model to the case with correlated types in this paper. Its con-
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tributions are twofold. First, applying the methodology developed by LM (1997,2000), in a

nonlinear pricing setting, we extend JM’s result by showing that when the types of consumers

are weakly correlated, the optimal weakly collusion-proof mechanism calls for distortions away

from allocation efficiency obtained without collusion. Second, we modify the result of LM (2000)

by showing that the reallocation-preventing mechanism is not right but left continuous at zero

point. When the correlation goes to zero from right, the mechanism does not approach that of

JM (2005); but when it goes to zero from left, JM (2005)’s result is approached. We show that

it is the non-arbitrage-constraint that result in this discontinuity.

The rest of this paper is organized as follows. Section 2 introduces the model. Section3

reviews as a benchmark the optimal pricing mechanism without collusion. Section 4 characterize

the coalition incentive compatible constraints which must be satisfied by a weakly collusion-proof

mechanism. Section 5 describes the optimal weakly collusion-proof mechanism. Section 6 gives

conclusions.

2 The model

2.1 Preferences, information, and mechanisms

A monopolist seller can produce any amount of goods at constant marginal cost c and

sells the goods to two buyers whose consumptions are qi, i ∈ {1, 2}. Buyer i obtains utility

θiV (qi) − ti from consuming qi units of goods and paying ti units of money to the seller. V (·)

is a increasing concave function with V ′(·) > 0, V ′′(·) < 0 . In order to obtain the analytical

solution, we assume in this paper that consumers have CRRA (constant-relative-risk-aversion)

utility function: V (q) = q1−γ

1−γ
, with γ ∈ [0, 1).

The consumer privately observes his own type θi ∈ Θ = {θ, θ} , where ∆θ ≡ θ − θ . The

probabilities p(θ1, θ2) of each state (θ1, θ2) for (θ1, θ2) ∈ Θ2 , are common knowledge prior beliefs.

For simplicity, we write

p11 = p(θ, θ), p12 = p(θ, θ) = p(θ, θ), p22 = p(θ, θ).

We also denote by

ρ ≡ det


 p11 p12

p12 p22


 = p11p22 − p2

12

the degree of correlation between the agents’ types.

The monopolist seller designs a grand sale mechanism M to maximize her expected profit.

Considering the Revelation Principle, we can restrict our attention to direct revelation mech-
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anism which maps any pair of reported types (θ̂1, θ̂2) into a combination of consumptions and

payments:

M =
{

q1(θ̂1, θ̂2), q2(θ̂1, θ̂2), t1(θ̂1, θ̂2), t2(θ̂1, θ̂2)
}

, (θ̂1, θ̂2) ∈ Θ2

Since buyers are ex ante identical, without loss of generality, we focus on anonymous mechanism

in which the consumption and payment of a buyer depend only on the reports and not on his

identity. Then we can introduce the following simplified notations:

q11 = q1(θ, θ) = q2(θ, θ); t11 = t1(θ, θ) = t2(θ, θ)

q12 = q1(θ, θ) = q2(θ, θ); t12 = t1(θ, θ) = t2(θ, θ)

q21 = q1(θ, θ) = q2(θ, θ); t21 = t1(θ, θ) = t2(θ, θ)

q22 = q1(θ, θ) = q2(θ, θ); t22 = t1(θ, θ) = t2(θ, θ)

Let q = (q11, q12, q21, q22) ∈ R
4
++ and t = (t11, t12, t21, t22) ∈ R

4 denote the vector of quantities

and transfers respectively.

2.2 Coalition formation

Applying the methodology of LM (1997, 2000), we model the buyers’ coalition formation

by a side contract, denoted by S, offered by a benevolent uninformed third party. The third

party organize the buyers into collusion in order to maximize the sum of their payoffs subject to

incentive compatibility and participation constraints written with respect to the utility a buyer

obtains when the grand mechanism M is played non-cooperatively. The timing of the overall

game of contract offer cum coalition formation is as follows:

• Stage 1: Buyers learn their respective “types”.

• Stage 2: The seller proposes a grand sale mechanism M . If an buy vetoes the grand

mechanism, all buyers get their reservation utility normalized exogenously at zero and the

following stages do not occur.

• Stage 3: The third party proposes a side mechanism S to the buyers. If anyone refuses

this side mechanism, M is played non-cooperatively. If both buyers accept S , they report

their types to the third party who enforce manipulation of report into M and commits to

enforce the corresponding side transfers and reallocation within coalition.

• Stage 4: Reports are sent into the grand mechanism. Quantities and payments specified

in M are enforced. Quantities reallocation and side transfers specified in S , if any, are

implemented.
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Formally, a side mechanism S takes the following form:

S =
{

φ(θ̃1, θ̃2), x1(θ̃1, θ̃2, φ), x2(θ̃1, θ̃2, φ), y1(θ̃1, θ̃2), y2(θ̃1, θ̃2)
}

, (θ̃1, θ̃2) ∈ Θ2.

θ̃i is buyer i′s report to the third party. φ(·) is the manipulated report to the grand mechanism.

yi(θ̃1, θ̃2) denotes the monetary transfer from buyer i to the third party. xi(θ̃1, θ̃2, φ) represents

the quantity of goods buyer i received from the third party when φ is reported to the seller.

Such a reallocation rule maximize the joint surplus of the buyers subject to the total amount

of the goods being allocated to all consumers. Since the third party is not a source of goods or

money, we assume that a side mechanism should satisfy the ex post budget-balance constraints

for the reallocation of goods and for the side transfers, respectively
∑2

i=1 yi(θ̃1, θ̃2) = 0, and
∑2

i=1 xi(θ̃1, θ̃2, φ) = 0,∀(θ̃1, θ̃1) ∈ Θ2,∀φ ∈ Θ2. Let UM(θi) denote the expected payoff of a θi

type in truthful equilibrium of M. The side mechanism must guarantee to an agent an utility

level greater than what he expects from playing non-cooperatively the grand mechanism and

then getting a utility UM(θi).

3 The optimal grand-mechanism without buyer coalition

3.1 The case with correlated types

In this subsection, we study, as a benchmark, the optimal grand-mechanism without side-

contracting with correlated types. The seller’s expected profit is

Π(t,q) ≡ 2p11 (t11 − cq11) + 2p12 (t12 + t21 − cq12 − cq21) + 2p22 (t22 − cq22) .

The following Bayesian incentive-compatibility constraints should be satisfied. For a θ type

buyer

BIC(θ) :p11 [θV (q11) − t11] + p12[θV (q12) − t12]

≥p11[θV (q21) − t21] + p12[θV (q22) − t22];
(1)

for a θ type buyer

BIC(θ) :p12[θV (q21) − t21] + p22[θV (q22) − t22]

≥p12[θV (q11) − t11] + p22[θV (q12) − t12].
(2)

The mechanism should also satisfy the following individual-rationality constraints. For a θ and

θ type,respectively,

BIR(θ) : p11[θV (q11) − t11] + p12[θV (q12) − t12] ≥ 0 (3)
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BIR(θ) : p12[θV (q21) − t21] + p22[θV (q22) − t22] ≥ 0 (4)

The seller maximizes his expected profit Π(t,q) subject to constraints (1) to (4).

We look for the transfers such that the four constraints are all binding, i.e., which satisfy

incentive compatibility without leaving any expected rent at the interim stage to any buyer.3

Indeed, for ρ 6= 0, the equation system of (1) to (4) are invertible since the determinant is ρ2.

Thus, the transfers are determined uniquely.

t11 =

(
p11p22θ − p2

12θ
)
V (q11) − p12p22∆θV (q12)

ρ
(5)

t12 =

(
p11p22θ − p2

12θ
)
V (q12) + p11p12∆θV (q11)

ρ
(6)

t21 =

(
p11p22θ − p2

12θ
)
V (q21) − p12p22∆θV (q22)

ρ
(7)

t22 =

(
p11p22θ − p2

12θ
)
V (q22) + p11p12∆θV (q21)

ρ
(8)

Substituting these transfers into the the seller’s expected welfare Π(t,q) then optimizing this

expression yields the first-best consumptions: qN (ρ) = qFB = (qFB
11 , qFB

12 , qFB
21 , qFB

22 ), where

qFB
11 = qFB

12 =

(
θ

c

) 1

γ

; qFB
21 = qFB

22 =

(
θ

c

) 1

γ

(9)

From the expressions of transfers (5) to (8), we observe that, if ρ is positive and goes to zero,

then t11, t21 go to −∞ and t12, t22 go to +∞. The consumers’ quasilinear utility function suggests

that they are risk neutral on transfers. The selling mechanism exploits the risk neutrality of the

agents by specifying extreme rewards and penalties. A θ− agent faces, when he tell the truth,

an extreme reward if the other agent is a θ type and extreme penalties if the other agent is a θ

type. Similarly for θ− agent. If the correlation ρ is negative, the sign of all the transfers will be

altered, which implies the opposite directions of awards and penalties. Given such a mechanism,

the buyers will always tell the truth. The weaker is the correlation, the larger penalties or awards

are needed to elicit revelation. It may not be surprising that when buyers are very similar, it is

relatively simple to extract their rents by “cross-checking” . The more interesting point is that

the above first-best result hold for any degree of correlation of types, even if it is infinitesimal.

The above analysis is in line with the well known Full Surplus Extraction theorem that

optimal mechanism achieves the first-best outcome in the correlated environment when the

implementation concept is Bayesian-Nash equilibrium, even with interim individual rationality

constraints (CM (1985, 1988)).

3CM (1988) show that incentive constraints can be slack.
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3.2 The case with independent types

For the independent case, we define v = Pr(θi = θ), i = 1, 2. Then

p11 = v2, p12 = p21 = v(1 − v), p22 = (1 − v)2.

The principal’s objective function is:

Π(t,q) = 2v2 (t11 − cq11) + 2v(1 − v) (t12 + t21 − cq12 − cq21) + 2(1 − v)2 (t22 − cq22)

The constraints (1) to (4) can be rewritten as follows:

BIC(θ) :v[θV (q11) − t11] + (1 − v)[θV (q12) − t12]

≥v[θV (q21) − t21] + (1 − v)[θV (q22) − t22] (10)

BIC(θ) :v[θV (q21) − t21] + (1 − v)[θV (q22) − t22]

≥v[θV (q11) − t11] + (1 − v)[θV (q12) − t12] (11)

BIR(θ) :v[θV (q11) − t11] + (1 − v)[θV (q12) − t12] ≥ 0 (12)

BIR(θ) :v[θV (q21) − t21] + (1 − v)[θV (q22) − t22] ≥ 0 (13)

With ρ = 0, the system of binding constraints can no more be inverted. The standard

method for solving single-agent adverse selection model shows that BIC(θ) and BIR(θ) bind

in the optimum. When the transfers in Π(t,q) are replaced with those obtained from BIC(θ)

and BIR(θ) written with equality, the solution of the principal’s program are characterized as

qN (0) = qSB = (qSB
11 , qSB

12 , qSB
21 , qSB

22 ), where

qSB
22 = qSB

21 =

(
θ

c

) 1

γ

; qSB
11 = qSB

12 =

(
θ − 1−v

v
∆θ

c

) 1

γ

. (14)

From the above two results we can see that a striking discontinuity occurs at ρ = 0, since

lim
ρ→0

MN (ρ) 6= MN (0)4. Indeed, for correlated types the seller can exploit yardstick competition

between buyers to induce their revelation at no cost, while for uncorrelated types, he cannot

do that since the report of one consumer is uninformative signal for the other consumer’s type.

The complete information optimum is thus not achievable when ρ = 0. Seller should give up

information rents to the θ buyer and, to decrease those rents, distort the quantities of the θ

buyer downward.

4
M

N (ρ) andMN (0) denote the non-collusion mechanism with correlated and independent types respectively.
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4 Coalition formation under asymmetric information

The above analysis shows that the agents gets zero rent from playing non-cooperatively the

grand mechanism proposed by the buyer with correlated types. So the optimal grand mecha-

nism with a noncooperative behavior creates endogenously the stakes for collusive behavior. In

this section, we study formally the third party’s optimizing problem and derive the coalition

incentive constraints which must be satisfied in the optimal collusion-proof grand mechanism

under asymmetric information.

Definition 1 a A side mechanism

S =
{

φ(θ̃1, θ̃2), x1(θ̃1, θ̃2, φ), x2(θ̃1, θ̃2, φ), y1(θ̃1, θ̃2), y2(θ̃1, θ̃2)
}
∀(θ̃1, θ̃2) ∈ Θ2

is coalition-interim-efficient with respect to an incentive-compatible grand mechanism M pro-

viding the reservation utilities
{
UM(θ), UM(θ)

}
if and only if it solves the following program:

[PT ] : Max
φ(·),xi(·),yi(·)

∑

(θ1,θ2)∈Θ2

p(θ1, θ2)
[
U1(θ1) + U2(θ2)

]

subject to :

U i(θi) =
∑

θj∈Θ

p(θj |θi)

[
θiV

(
xi

(
θi, θj , φ(θi, θj)

)
+ qi

(
φ(θi, θj)

))
+ yi(θi, θj) − ti

(
φ(θi, θj)

)
]

for any θi ∈ Θ and i, j = 1, 2 with i 6= j;

(
BICS

i

)
: U i(θi) ≥ U i(θ̃i | θi)

where

U i(θ̃i | θi) =
∑

θj∈Θ

p(θj |θi)

[
θiV

(
xi

(
θ̃i, θj , φ(θ̃i, θj)

)
+ qi

(
φ(θ̃i, θj)

))
+ yi(θ̃i, θj) − ti

(
φ(θ̃i, θj)

)
]

for any
(
θi, θ̃i

)
∈ Θ2 and i, j = 1, 2 with i 6= j;

(
BIRS

i

)
: U i(θi) ≥ UM(θi)

for any θi ∈ Θ and i = 1, 2;

(BB : y) :
2∑

i=1

yi(θ1, θ2) = 0

(BB : x) :
2∑

i=1

xi(θ1, θ2, φ̃) = 0

for any (θ1, θ2) ∈ Θ2 and φ̃ ∈ Θ2.
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Let

S0 ≡
{

φ(·) = Id(·), x1(·) = x2(·) = 0, y1(·) = y2(·) = 0
}

denote the null contract that implements no manipulation of reports, no reallocation of quan-

tities, and no side transfers. Hence, M is not affected by buyer coalition if the third-party

proposes S0.

Definition 2 An incentive-compatible grand mechanism M is weakly collusion-proof if and only

it is a truthtelling direct mechanism and the null side mechanism S0 is coalition-interim-efficient

with respect to M.

In other words, a truthtelling direct mechanism M is weakly collusion-proof if and only if the

third party’s best response to it is to do nothing but executing it truthfully in a noncooperative

way.

Proposition 1 (Weakly Collusion-Proofness Principle, WCPC). There is no loss of generality

in restricting the seller to offer weakly collusion-proof mechanisms in order to characterize the

outcome of any perfect Bayesian equilibrium of the game of sellers mechanism offer cum coalition

formation such that a collusive equilibrium occurs on the equilibrium path.

Proof. The proof is omitted since it is straightforward adaptation of proposition 3 of LM (2000).

The intuition behind WCPC is similar to that underlying the standard Revelation Principle:

since the uninformed third party has no informational or instrumental advantage over the seller,

any equilibrium of the overall game of grand mechanism offer cum side contracting gives an

allocation that can be replicated with a direct grand mechanism offered by the seller himself.

The next proposition characterize the coalition incentive constraints which must be satisfied

by the weakly collusion-proof grand mechanism.

Proposition 2 A symmetric Bayesian incentive compatible grand mechanism M such that the

θ− type’s incentive constraints is not binding is weakly collusion-proof if and only if there exist

ǫ ∈ [0, 1) such that:

• The following coalition incentive constraints are satisfied:

10



for a (θ, θ) coalition,

CIC(θ, θ; θ, θ) : 2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V (q11) − 2t11

≥ 2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V

(q12 + q21

2

)
− t12 − t21 (15)

CIC(θ, θ; θ, θ) : 2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V (q11) − 2t11

≥ 2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V (q22) − 2t22 (16)

for a (θ, θ) coalition,

CIC(θ, θ; θ, θ) :
(

θ −
p22ǫ∆θ

p12

)
V

(
λǫ(q12 + q21)

)
+ θV

(
(1 − λǫ)(q12 + q21)

)
− t12 − t21

≥

(
θ −

p22ǫ∆θ

p12

)
V

(
λǫ(2q11)

)
+ θV

(
(1 − λǫ)(2q11)

)
− 2t11 (17)

CIC(θ, θ; θ, θ) :
(

θ −
p22ǫ∆θ

p12

)
V

(
λǫ(q12 + q21)

)
+ θV

(
(1 − λǫ)(q12 + q21)

)
− t12 − t21

≥

(
θ −

p22ǫ∆θ

p12

)
V

(
λǫ(2q22)

)
+ θV

(
(1 − λǫ)(2q22)

)
− 2t22 (18)

for an (θ, θ) coalition,

CIC(θ, θ; θ, θ) : 2θV (q22) − 2t22 ≥ 2θV (q11) − 2t11 (19)

CIC(θ, θ; θ, θ) : 2θV (q22) − 2t22 ≥ 2θV
(q12 + q21

2

)
− t12 − t21 (20)

Where (λǫ, 1 − λǫ) =




“

θ−
p22ǫ∆θ

p12

” 1
γ

“

θ−
p22ǫ∆θ

p12

” 1
γ

+θ
1
γ

, θ
1
γ

“

θ−
p22ǫ∆θ

p12

” 1
γ

+θ
1
γ


 is the optimal splitting rule

within a heterogenous coalition.

• The following no-arbitrage-constraint is satisfied:

NAC :
q12

q21
=

(
θ − p22ǫ∆θ

p12

) 1

γ

θ
1

γ

. (21)

• if ǫ > 0, the θ−type’s incentive compatibility constraint is binding in the side-contract. If

it is slack, ǫ = 0.

Proof. See appendix A.

Remark 4.1 If all the coalition incentive constraints hold, the third-party has no incentive to

manipulate the agent’s report. For instance, if CIC(θ, θ; θ, θ) is satisfied, an (θ, θ) coalition
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prefers truthtelling to reporting (θ, θ). If NAC is satisfied, the third party has no incentive to

reallocate the goods in a heterogenous coalition; the symmetric assumption q1(θ, θ) = q2(θ, θ)

and q1(θ, θ) = q2(θ, θ) guarantee that there is generically no arbitrage in homogenous coalitions

(θ, θ) or (θ, θ). Therefore, the symmetric assumption and conditions (15) to (21) characterize

the collusion-proof constraints.

Remark 4.2 The coalition incentive constraints under asymmetric information are written by

replacing the real valuations with virtual valuations. A θ− type’s virtual valuation is always

equal to the real one: θ
v

= θ. A θ− type’s virtual valuation is lower than the real one: θv ≤ θ.

In a (θ, θ) coalition, θv = θ−
p2
12ǫ∆θ

p11p12+ρǫ
; in a (θ, θ) coalition, θv = θ− p22ǫ∆θ

p12
. If ρ = 0, the virtual

valuations in different coalitions are identical.

Remark 4.3 Parameter ǫ is positive if the θ− type’s incentive compatibility constraint is binding

in the third party’s program, it is zero if the constraint is slack. ǫ represents the friction in

coalition formation, the colluding partners often cannot reliably share their private information

with each other. This will create a possible transaction cost in the formation of the coalition

as the individual incentive constraints may become binding. In the absence of any asymmetric

information at coalition formation stage, collusion would be efficient. Letting ǫ = 0 in (15) to

(21), we get the coalition incentive constraints and non-arbitrage constraint under symmetric

information.

In the sequel, we consider the case with weak correlation, only the downward local coalition

incentive constraints (17), (20) or the upward local coalition incentive constraints (15), (18)

are of particular interest. The logic of CM’s Full Surplus Extraction Mechanism described in

subsection (3.1) is to offer large penalties or rewards depending on the states of nature to induce

revelation. For instance, the expressions for transfers (5) to (8) show that when correlation ρ

is positive and goes to zero, t22 → +∞, t11 → −∞, the transfer when both agents announce

θ (resp. θ ) may become extremely large and positive (resp. negative). This suggests that the

coalition incentive constraint (20) (resp. (17)) is likely to be binding in the principal’s problem.

In contrast, if the correlation ρ is negative and goes to zero, t22 → −∞, t11 → +∞, the upward

local coalition incentive constraints (15) and (18) is likely to be binding. These idea will be

confirmed in proposition 4 and 5.
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5 The optimal weakly collusion-proof mechanism

In order to make comparison, we first restate as a benchmark the collusion proof mechanism

with uncorrelated types put forth by JM(2005).

Proposition 3 There exists a transfer scheme t∗ such that MN (0) = (t∗, qN (0)) is an optimal

mechanism in the absence of buyer coalition and is also weakly collusion-proof.

Proof. The proof is omitted since it is the straightforward adaptation of Proposition 4 of JM

(2005).

The above proposition state that collusion with manipulation and arbitrage is preventable

at no cost with uncorrelated types. What will happen in the case with correlated types? We

will answer this question in the following analysis.

The optimal weakly collusion-proof mechanism maximizes the seller’s expected profit subject

to Bayesian individual incentive, interim participation, coalition incentive and no- arbitrage

constraints. The difficulty, as usual, is to determine which are binding constraints. To simplify

the constraints system, it is useful to derive the implementability conditions.

Lemma 1 Under coalition incentive constraints (15) to (20), for a weak correlation, that is,

ρ is close enough to zero, the schedule of implementability consumptions satisfy the following

inequality:

q11 ≤
q12 + q21

2
≤ q22 (22)

for all ǫ ∈ [0, 1).

Proof. See appendix B.

If the weak correlation condition ensuring the implementability condition holds, we will only

consider the two upward local coalition incentive constraints or the two downward local coalition

incentive constraints with the implementability condition which implies the global constraints.

The neglected coalition incentive constraints will be automatically satisfied.

This simplification in the set of incentive constraints being made, all relevant constraints for

the seller reduce to the θ− type’s individual incentive constraint (2); θ− type’s individual ratio-

nality constraint (3); local coalition incentive constraints (15), (18) or (17), (20); non-arbitrage

constraint (21) and the implementability condition (22). Then the optimization program of the

principal can be represented as

(P3)





Max
{t,q,ǫ}

Π(t,q, ǫ)

s.t. (2), (3), (17), (20), (21), (22), ǫ ∈ [0, 1)

.

13



or

(P4)





Max
{t,q,ǫ}

Π(t,q, ǫ)

s.t. (2), (3), (15), (18), (21), (22), ǫ ∈ [0, 1)

The following two propositions state that the solutions to (P3) and (P4) give weakly collusion-

proof selling mechanism with weakly positive and negative correlation respectively.

Proposition 4 If the correlation is weakly positive , that is, ρ is bigger than and is close enough

to zero, constraints (2),(3),(17),(18), (20),(21), and the second inequality of (22) are binding,

ǫ = 0 is the principal’s best choice to weaken constraint, the weakly collusion-proof mechanism

MC(ρ) 5 entails a partial bunching consumptions q11 < q12+q21

2 = q22 where

qC
11 =




θ
(

p12+p22

ρ+p12

)
− θ

(
p2
12

p11(ρ+p12)

)
− ρ(1−p11)

p11(ρ+p12)

(
θ

1
γ +θ

1
γ

2

)γ

c




1

γ

(23)

qC
12 =




θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(24)

qC
21 =

(
θ

θ

) 1

γ




θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(25)

qC
22 =


θ

1

γ + θ
1

γ

2θ
1

γ







θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(26)

Proof. See appendix C.

Remark 5.1 The fact that both coalitions (θ, θ) and (θ, θ) are prevented from misreporting limits

the feasible awards or penalties that could be used by the principal to elicit the agents’ revelation.

t22 cannot be made arbitrary largely positive as it is in the collusion-free mechanism without

5The superscript C denote “collusion”.
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violating the coalition incentives (20). So (20) must be binding for the weakly collusion-proof

mechanism. Similarly, a (θ, θ) coalition could like to mimic a (θ, θ) one to get large reward

requested in the collusion-free mechanism since t11 is large and negative. Hence, (17) must also

be binding.

Remark 5.2 If the third party has no incentive to reallocate goods within the coalition, con-

straint (21) is redundant, the collusion-proof mechanism is as same as the mechanism put forth

by LM (2000). The conflict between (21) and the remained constraints call for a further distor-

tion away from the efficiency obtained by LM’s mechanism. We get a partial pooling mechanism

in which the constraints (20) , (18) and the second inequality of (22) are both binding. The fact

that the third party could conduct arbitrage within coalition exert an additional constraint on the

principal’s program, which makes the optimal mechanism discontinuous from right side.

Corollary 1 The weakly collusion-proof mechanism MC(ρ) is right discontinuous at ρ = 0.

Proof. From Proposition 3 we get: qC
ij(0) = qN

ij (0),∀i, j = 1, 2. (23) implies

lim
ρ→0+

qC
11(ρ) =

(
θ − 1−v

v
∆θ

c

) 1

γ

= qN
11(0) = qC

11(0).

Hence, qC
11(ρ) is right continuous at ρ = 0. But

lim
ρ→0+

qC
12(ρ) =




θp12−p22∆θ
p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

p12

c




1

γ

6= qC
12(0) = qN

12(0),

lim
ρ→0+

qC
21(ρ) 6= qC

21(0), lim
ρ→0+

qC
22(ρ) 6= qC

22(0). Therefore, MC(ρ) is right discontinuous at ρ = 0.

Proposition 5 If the correlation is weakly negative , that is, ρ is smaller than and is close

enough to zero, constraints (2),(3),(15),(18),(21), (22) are binding, ǫ = 1 is the best choice to

weaken constraint, the weakly collusion-proof mechanism MC(ρ) entails a strictly decreasing of

consumptions q11 < q12+q21

2 < q22 with





(
θp12

ρ + p12

)
+




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ

ρ

ρ + p12





q−γ
22 = c (27)
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(
θp12

ρ + p12

)
q−γ
21 +





1 − p11

2

(
θ −

p2
12∆θ

p11p12 + ρ

)
−

p22

2




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ



×
ρ

(ρ + p12)p12

(
q12 + q21

2

)−γ

= c

(28)

(
θp12 − p22∆θ

ρ + p12

)
q−γ
12 +





1 − p11

2

(
θ −

p2
12∆θ

p11p12 + ρ

)
−

p22

2




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ



×
ρ

(ρ + p12)p12

(
q12 + q21

2

)−γ

= c

(29)

{
θ

(
p12 + p22

ρ + p12

)
− θ

(
p2
12

p11 (ρ + p12)

)
−

ρ(1 − p11)

p11(ρ + p12)

(
θ −

p2
12∆θ

p11p12 + ρ

)}
q−γ
11 = c (30)

Proof. See appendix D.

The binding and slack coalition incentive constraints stated in proposition 4 and 5 can be

depicted in figures of Appendix E.

Corollary 2 The weakly collusion-proof mechanism MC(ρ) is left continuous at ρ = 0.

Proof. From lim
ρ→0−

qC
ij(ρ) = qN

ij (0) = qC
ij(0) for all i = 1, 2 and j = 1, 2, the left continuity is

obtained.

6 Conclusion

Using CM’s FSE mechanism , in nonlinear pricing setting, seller may exploit the correlation

between buyers to elicit their private information at no cost. In order to protect their rents,

buyers have incentive to collude at the sellers loss by coordinating their reports and arbitrage

on their purchases. So the seller faces two tasks when designing the sale mechanism: to prevent

both manipulation and arbitrage. This makes the optimal weakly collusion-proof mechanism

distorted away from LM’s mechanism which focus only on the first task. We find that in

the presence of arbitrage the weakly collusion-proof sale mechanism depends crucially on the

degree of correlation. In uncorrelated settings buyer coalitions do not hurt the seller, collusion

and arbitrage are preventable at no cost. When the consumers’ types are weakly correlated,

the allocations will be distorted away from the first-best efficiency in collusion-free case and
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distortion patterns with positive and negative correlations are quite different. If correlation is

weakly positive, the collusion-proof sale mechanism obtained using LM’s methodology is not

arbitrage-preventable. The possibility of arbitrage makes the weakly collusion-proof mechanism

partial bunching and right discontinuous at zero point. If correlation is weakly negative, LM’s

mechanism is arbitrage preventable. Hence, the left continuity between the correlated and the

uncorrelated environment is still available.
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Appendix A: Proof of Proposition 2

Proof. Let us denote

φ11 = φ(θ, θ), φ12 = φ(θ, θ), φ21 = φ(θ, θ), φ22 = φ(θ, θ).

The third-party’s problem can be written as:

Max
φ(·),xi(·),yi(·)

∑

(θ1,θ2)∈Θ2

p(θ1, θ2)





∑

i=1,2

[
θiV

(
xi(θ1, θ2, φ(θ1, θ2)) + qi(φ(θ1, θ2))

)
− ti

(
φ(θ1, θ2)

)]




subject to the following constraints.

• Budget balance:

(BB : y)
∑

k=1,2

yk(θ1, θ2) = 0,∀(θ1, θ2) ∈ Θ2 (31)

(BB : x)
∑

k=1,2

xk(θ1, θ2, φ) = 0,∀(θ1, θ2) ∈ Θ2,∀φ ∈ Θ2. (32)

• Incentive constraints for respectively the θ 1 and 2:

BICS
1 (θ) : p12

[
θV

(
x1(θ, θ, φ21) + q1(φ21)

)
+ y1(θ, θ) − t1(φ21)

]

+p22

[
θV

(
x1(θ, θ, φ22) + q1(φ22)

)
+ y1(θ, θ) − t1(φ22)

]

≥ p12

[
θV

(
x1(θ, θ, φ11) + q1(φ11)

)
+ y1(θ, θ) − t1(φ11)

]

+p22

[
θV

(
x1(θ, θ, φ12) + q1(φ12)

)
+ y1(θ, θ) − t1(φ12)

]

(33)

BICS
2 (θ) : p12

[
θV

(
x2(θ, θ, φ12) + q2(φ12)

)
+ y2(θ, θ) − t2(φ12)

]

+p22

[
θV

(
x2(θ, θ, φ22) + q2(φ22)

)
+ y2(θ, θ) − t2(φ22)

]

≥ p12

[
θV

(
x2(θ, θ, φ11) + q2(φ11)

)
+ y2(θ, θ) − t2(φ11)

]

+p22

[
θV

(
x2(θ, θ, φ21) + q2(φ21)

)
+ y2(θ, θ) − t2(φ21)

]
.

(34)

• Participation constraints for respectively the θ 1 and 2:

BIRS
1 (θ) :p12

[
θV

(
x1(θ, θ, φ21) + q1(φ21)

)
+ y1(θ, θ) − t1(φ21)

]

+p22

[
θV

(
x1(θ, θ, φ22) + q1(φ22)

)
+ y1(θ, θ) − t1(φ22)

]

≥(p21 + p22)U
M
1 (θ)

(35)
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BIRS
2 (θ) :p12

[
θV

(
x2(θ, θ, φ12) + q2(φ12)

)
+ y2(θ, θ) − t2(φ12)

]

+p22

[
θV

(
x2(θ, θ, φ22) + q2(φ22)

)
+ y2(θ, θ) − t2(φ22)

]

≥(p21 + p22)U
M
2 (θ)

(36)

• Participation constraints for respectively the θ agents 1 and 2:

BIRS
1 (θ) :p11

[
θV

(
x1(θ, θ, φ11) + q1(φ11)

)
+ y1(θ, θ) − t1(φ11)

]

+p12

[
θV

(
x1(θ, θ, φ12) + q1(φ12)

)
+ y1(θ, θ) − t1(φ12)

]

≥(p11 + p12)U
M
1 (θ)

(37)

BIRS
2 (θ) :p11

[
θV

(
x2(θ, θ, φ11) + q2(φ11)

)
+ y2(θ, θ) − t2(φ11)

]

+p12

[
θV

(
x2(θ, θ, φ21) + q2(φ21)

)
+ y2(θ, θ) − t2(φ21)

]

≥(p11 + p12)U
M
2 (θ).

(38)

Let us introduce the following multipliers ρ(θ1, θ2), τ(θ1, θ2), δ1, δ2, ν1, ν2, ν1, ν2, associate

with constraints (31) to (38) respectively. We write the Lagrangian function of the above

maximization problem as:

L =E(U1 + U2) +
∑

i=1,2

δiBICS
i (θ) +

∑

i=1,2

νiBIRS
i (θ) +

∑

i=1,2

νiBIRS
i (θ)

+
∑

(θ1,θ2)∈Θ2

ρ(θ1, θ2)(BB : y)(θ1, θ2) +
∑

(θ1,θ2)∈Θ2

τ(θ1, θ2)(BB : x)(θ1, θ2).

• Maximizing with respect to y1(·, ·), y2(·, ·) yields

y1(θ, θ) : ρ(θ, θ) − p12δ1 + p11ν1 = 0 (39)

y2(θ, θ) : ρ(θ, θ) − p12δ2 + p11ν2 = 0 (40)

y1(θ, θ) : ρ(θ, θ) − p22δ1 + p12ν1 = 0 (41)

y2(θ, θ) : ρ(θ, θ) + p12 (δ2 + ν2) = 0 (42)

y1(θ, θ) : ρ(θ, θ) + p12 (δ1 + ν1) = 0 (43)

y2(θ, θ) : ρ(θ, θ) + p12ν2 − p22δ2 = 0 (44)

y1(θ, θ) : ρ(θ, θ) + p22 (δ1 + ν1) = 0 (45)

y2(θ, θ) : ρ(θ, θ) + p22 (δ2 + ν2) = 0. (46)

Expressions (39) and (40) imply

−p12δ1 + p11ν1 = −p12δ2 + p11ν2. (47)
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(41) and (42) imply

δ2 + ν2 = ν1 −
p22

p12
δ1. (48)

(43) and (44) imply

δ1 + ν1 = ν2 −
p22

p12
δ2. (49)

(45) and (46) imply

δ1 + ν1 = δ2 + ν2. (50)

In what follows, without loss of generality, we consider the symmetric multipliers

δ1 = δ2 ≡ δ, ν1 = ν2 ≡ ν, ν1 = ν2 ≡ ν.

• Maximizing with respect to x1(·), x2(·) yields

x1(θ, θ, φ11) : τ(θ, θ) + (p11θ − p12δ1θ + p11ν1θ)V
′(

x1(θ, θ, φ11) + q1(φ11)
)

= 0 (51)

x2(θ, θ, φ11) : τ(θ, θ) + (p11θ − p12δ2θ + p11ν2θ)V
′(

x2(θ, θ, φ11) + q2(φ11)
)

= 0 (52)

x1(θ, θ, φ12) : τ(θ, θ) + (p12θ − p22θδ1 + p12ν1θ)V
′(

x1(θ, θ, φ12) + q1(φ12)
)

= 0 (53)

x2(θ, θ, φ12) : τ(θ, θ) + (p12θ + p12θδ2 + p12ν2θ)V
′(

x2(θ, θ, φ12) + q2(φ12)
)

= 0 (54)

x1(θ, θ, φ21) : τ(θ, θ) + (p12θ + p12θδ1 + p12ν1θ)V
′(

x1(θ, θ, φ21) + q1(φ21)
)

= 0 (55)

x2(θ, θ, φ21) : τ(θ, θ) + (p12θ − p22θδ2 + p12ν2θ)V
′(

x2(θ, θ, φ21) + q2(φ21)
)

= 0 (56)

x1(θ, θ, φ22) : τ(θ, θ) + (p22θ + p22θδ1 + p22θν1)V
′(

x1(θ, θ, φ22) + q1(φ22)
)

= 0 (57)

x2(θ, θ, φ22) : τ(θ, θ) + (p22θ + p22θδ2 + p22θν2)V
′(

x2(θ, θ, φ22) + q2(φ22)
)

= 0 (58)

(51) and (52) imply

V
′(

x1(θ, θ, φ11) + q1(φ11)
)

= V
′(

x2(θ, θ, φ11) + q2(φ11)
)
,∀φ11 ∈ Θ2. (59)

(57) and (58) imply

V
′(

x1(θ, θ, φ22) + q1(φ22

)
= V

′(
x2(θ, θ, φ22) + q2(φ22)

)
,∀φ22 ∈ Θ2 (60)

Since x1(θ, θ, φ11)+x2(θ, θ, φ11) = 0, x1(θ, θ, φ22)+x2(θ, θ, φ22) = 0 from a budget-balance

constraint, we have

x1(θ, θ, φ11) + q1(φ11) = x2(θ, θ, φ11) + q1(φ11) =
q1(φ11) + q2(φ11)

2
,∀φ11 (61)

x1(θ, θ, φ22) + q1(φ22) = x2(θ, θ, φ22) + q1(φ22) =
q1(φ22) + q2(φ22)

2
,∀φ22 (62)
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(53) and (54) imply

(
θ −

p22

p12
θδ1 + ν1θ

)
V

′(
x1(θ, θ, φ12)+ q1(φ12)

)
= (1 + δ2 + ν2) θV

′(
x2(θ, θ, φ12)+ q2(φ12)

)

(63)

Using (48), we obtain

(
θ −

p22ǫ

p12
∆θ

)
V

′(
x1(θ, θ, φ12) + q1(φ12)

)
= θV

′(
x2(θ, θ, φ12) + q2(φ12)

)
,∀φ12 (64)

where

ǫ =
δ

1 + δ + ν
.

Similarly, expressions (55) ,(56) and (49) imply

θV
′(

x1(θ, θ, φ21) + q1(φ21)
)

=

(
θ −

p22ǫ

p12
∆θ

)
V

′(
x2(θ, θ, φ21) + q2(φ21)

)
,∀φ21. (65)

With budget-balance constraints x1(θ, θ, φ12)+x2(θ, θ, φ12) = 0, x1(θ, θ, φ21)+x2(θ, θ, φ21) =

0 and CRRA utility function V (q) = q1−γ

1−γ
, the total quantity available to a heterogeneous

coalition is split according to the following rule:

x1(θ, θ, φ12) + q1(φ12) = λǫ
(
q1(φ12) + q2(φ12)

)
,∀φ12 (66)

x2(θ, θ, φ12) + q2(φ12) = (1 − λǫ)
(
q1(φ12) + q2(φ12)

)
,∀φ12 (67)

x1(θ, θ, φ21) + q1(φ21) = (1 − λǫ)
(
q1(φ21) + q2(φ21)

)
,∀φ12 (68)

x2(θ, θ, φ21) + q2(φ21) = λǫ
(
q1(φ21) + q2(φ21)

)
,∀φ12 (69)

where

λǫ =

(
θ − p22ǫ∆θ

p12

) 1

γ

(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

<
1

2
.

For weakly collusion proof grand mechanism, φ(θ1, θ2) = (θ1, θ2), xi

(
θ1, θ2, φ(θ1, θ2)

)
=

0, i = 1, 2, so (61) and (62) imply q11 = q11+q11

2 and q22 = q22+q22

2 , which is trivially

satisfied. Any one of the four expressions (66) to (69) implies

q12

q21
=

(
θ − p22ǫ∆θ

p12

) 1

γ

θ
1

γ

. (70)

This condition ensures that the third party has no incentive to reallocate the quantities of

agents, so we name it “no-arbitrage constraint (NAC)” .

• The optimal manipulation of report.
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1. Optimizing with respect to φ11 yields

φ∗
11 ∈ argmax

φ11

{
p11

[
θV

(
x1(θ, θ, φ11) + q1(φ11)

)
+ θV

(
x2(θ, θ, φ11) + q2(φ11)

)

− t1(φ11) − t2(φ11)
]

+ p11ν1

[
θV

(
x1(θ, θ, φ11) + q1(φ11)

)
− t1(φ11)

]

+ p11ν2

[
θV

(
x2(θ, θ, φ11) + q2(φ11)

)
− t2(φ11)

]

− p12δ1

[
θV

(
x2(θ, θ, φ11) + q2(φ11)

)
− t1(φ11)

]

− p12δ2

[
θV

(
x1(θ, θ, φ11) + q2(φ11)

)
− t1(φ11)

]}

(71)

Note that at symmetric equilibrium δ1 = δ2 = δ; ν1 = ν2 = ν; ν1 = ν2 = ν, then from

constraints (47) to (49) and (61),(62) we can write the objective function as

(p11 + p11ν1 − p12δ1)
[
θV

(
x1(θ, θ, φ11) + q1(φ11)

)
− t1(φ11)

]

+(p11 + p11ν2 − p12δ2)
[
θV

(
x2(θ, θ, φ11) + q2(φ11)

)
− t2(φ11)

]

−p12∆θδ1V
(
x1(θ, θ, φ11) + q1(φ11)

)
− p12∆θδ2V

(
x2(θ, θ, φ11) + q2(φ11)

)

=(p11 + p11ν − p12δ)

×

{(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)[
V

(
x1(θ, θ, φ11) + q1(φ11)

)
+ V

(
x2(θ, θ, φ11) + q2(φ11)

)]

−t1(φ11) − t2(φ11)

}

=(p11 + p11ν − p12δ)

{
2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V

(
q1(φ11) + q2(φ11)

2

)
− t1(φ11) − t2(φ11)

}
.

(72)

So we have

φ∗
11 ∈ argmax

φ11

{
2

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
V

(
q1(φ11) + q2(φ11)

2

)
− t1(φ11) − t2(φ11)

}
.

(73)

2. Similarly, optimizing with respect to φ12 and φ21 yield respectively

φ∗
12 ∈ argmax

φ12

{(
θ −

p22ǫ∆θ

p12

)
V

(
x1(θ, θ, φ12) + q1(φ12)

)

+ θV
(
x2(θ, θ, φ12) + q2(φ12)

)
− t1(φ12) − t2(φ12)

}

= argmax
φ12

{(
θ −

p22ǫ∆θ

p12

)
V

(
λǫ

(
q1(φ12) + q1(φ12)

))

+ θV
((

1 − λǫ)(q1(φ12) + q2(φ12)
))

− t1(φ12) − t2(φ12)

}

(74)
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and

φ∗
21 ∈ argmax

φ21

{(
θ −

p22ǫ∆θ

p12

)
V

(
x2(θ, θ, φ21) + q2(φ21)

)

+ θV
(
x1(θ, θ, φ21) + q1(φ21)

)
− t1(φ21) − t2(φ21)

}

= argmax
φ21

{(
θ −

p22ǫ∆θ

p21

)
V

(
λǫ

(
q1(φ21) + q1(φ21)

))

+ θV
((

1 − λǫ)(q1(φ21) + q2(φ21)
))

− t1(φ21) − t2(φ21)

}
.

(75)

3. Optimizing with respect to φ22 yields

φ∗
22 ∈ argmax

φ22

{
θV

(
x1(θ, θ, φ22) + q1(φ22)

)
+ θV

(
x2(θ, θ, φ22) + q2(φ22)

)

− t1(φ22) − t2(φ22)

}

= argmax
φ22

{
2θV

(
q1(φ22) + q2(φ22)

2

)
− t1(φ22) − t2(φ22)

}
(76)

• In a weakly collusion-proof mechanism φ(θ1, θ2) = (θ1, θ2), inserting into (73),(74),(75)

and (76) yields constraints (15) to (20) in main text.

• Note that ǫ = δ
1+δ+ν

∈ [0, 1). Moreover, δ > 0 when the Bayesian incentive constraints

(33) and (34) are binding in the third party’s optimizing problem.

• Note that participation constraints (35) to (38) are binding for a weakly collusion-proof

mechanism. Hence the slackness condition obtained from the Lagrangean optimization do

not give any information on ǫ. Therefore, ǫ is a free variable in the principal’s programme.

Appendix B: Proof of Lemma 1.

Proof. Summing constraints (18) and (20) yields








(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

2




γ

− θ





[(
q12 + q21

2

)1−γ

− q1−γ
22

]
≥ 0, (77)

which is satisfied for q12+q21

2 ≤ q22 since

[(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

]γ

− 2γθ < 0.

Summing constraints (15) and (17) yields another revealed preference argument,





(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
−




(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

2




γ



[
q1−γ
11 −

(
q12 + q21

2

)1−γ
]
≥ 0 (78)
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Denote the first term on the left-hand-side of this inequality by

π(ǫ) =

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
−




(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

2




γ

. (79)

It follows from Jensen’s inequality that:

π(ǫ) ≤

(
θ −

p2
12ǫ∆θ

p11p12 + ρǫ

)
−

(
θ − p22ǫ∆θ

p12
+ θ

2

)

= −

[
1 + ǫ

p3
12 − ρ(p12 + p22ǫ)

p12(p11p12 + ρǫ)

]
∆θ

2

(80)

When ρ is close enough to zero, the second line of the above expression is negative, hence,

π(ǫ) < 0 for weak correlation. So we find q11 ≤ q12+q21

2

Appendix C: Proof of Proposition 4

Proof. If ρ > 0, we write the downward individual incentive compatible constraints (2), the

θ type’s participation constraints (3), the downward local coalition constraints (17) and (20) as

binding constraints by introducing nonnegative parameters εi, i = 2, 3, 17, 20 respectively. Then

the constraint equations system can be written as:




p11 p12 0 0

p12 p22 −p12 −p22

2 −1 −1 0

0 1 1 −2




×




t11

t12

t21

t22




=




β3 − ε3

β2 + ε2

β11 + ε17

β14 + ε20




(81)

with 


β3

β2

β17

β20




≡




θp11q
1−γ
11 +θp12q

1−γ
12

1−γ

θp12(q
1−γ
11 −q

1−γ
21 )+θp22(q

1−γ
12 −q

1−γ
22 )

1−γ[(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

]γ
(2q11)1−γ−(q12+q21)1−γ

1−γ

2γθ
[

(q12+q21)1−γ−(2q22)1−γ

1−γ

]




The parameters ǫ, ε2, ε3, ε17, ε20 are free variables to the principal, 0 ≤ ǫ < 1, εi ≥ 0. Constraint

i is binding if and only if the associated parameter εi = 0. Solving the above equations system,

we get the expected transfers:

∑

i=1,2

∑

j=1,2

pijtij =
p12 + p22

ρ + p12
(β3 − ε3) −

p12

ρ + p12
(β2 + ε2)

−
ρ(1 − p11)

2(ρ + p12)
(β17 + ε17) −

ρp22

2(ρ + p12)
(β20 + ε20)

(82)
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Since q11 ≤ q12+q21
2 and ρ > 0, ǫ = ε2 = ε3 = ε17 = ε20 = 0 are the best choices to maximize the

expected transfer
∑

i,j pijtij . Therefore, it can be verified that constraints (2),(3),(17) and (20)

are binding with weakly positive correlation. Substituting expression (82) into the objective

function of (P3), then maximizing with respect to q11, q12, q21, q22 we obtain:



θ

(
p12 + p22

ρ + p12

)
− θ

[
p2
12

p11 (ρ + p12)

]
−

ρ(1 − p11)

p11(ρ + p12)


θ

1

γ + θ
1

γ

2




γ

 q−γ

11 = c (83)

(
θp12 − p22∆θ

ρ + p12

)
q−γ
12 +

ρ

2(ρ + p12)p12


(1 − p11)


θ

1

γ + θ
1

γ

2




γ

− p22θ




(
q12 + q21

2

)−γ

= c

(84)

(
θp12

ρ + p12

)
q−γ
21 +

ρ

2(ρ + p12)p12


(1 − p11)


θ

1

γ + θ
1

γ

2




γ

− p22θ




(
q12 + q21

2

)−γ

= c (85)

q22 = qFB
22 =

(
θ

c

) 1

γ

. (86)

It is obvious that when ρ is close enough to zero, the monotonic implementability condition

q11 ≤ q12+q21

2 ≤ q22 holds. (84) and (85) imply that q12

q21
=

“

θ−
p22∆θ

p12

” 1
γ

θ
1
γ

, it fails to satisfy the

no-arbitrage constraint q12

q21
= θ

1
γ

θ
1
γ

since ǫ = 0.

Substituting (82) and q12 =

(
θ

1
γ

θ
1
γ

)
q21 into the objective function of (P3) then maximizing

with respect to qij , we obtain:



θ

(
p12 + p22

ρ + p12

)
− θ

[
p2
12

p11 (ρ + p12)

]
−

ρ(1 − p11)

p11(ρ + p12)


θ

1

γ + θ
1

γ

2




γ

 q−γ

11 = c (87)


θp12 − p22∆θ

ρ + p12
+

p12θ
(
θ/θ

) 1−γ
γ

ρ + p12


 q−γ

12 +
ρ

2(ρ + p12)p12


θ

1

γ + θ
1

γ

θ
1

γ




×



(1 − p11)


θ

1

γ + θ
1

γ

2




γ

− p22θ





(
q12 + q21

2

)−γ

= c

(88)

q21 =

(
θ

θ

) 1

γ

q12 (89)

q22 =

(
θ

c

) 1

γ

(90)
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It can be verified that when ρ is close enough to zero, q21 > q12 > q22, hence the mono-

tonic implementability condition q12+q21

2 ≤ q22 is violated. Therefore, the monotonic condition

q12+q21

2 ≤ q22 must be binding. Maximizing with respect to qij , i = 1, 2 subject to q21

q12
=

(
θ
θ

) 1

γ

and q22 = q12+q21

2 = θ
1
γ +θ

1
γ

2θ
1
γ

q12, we obtain the partial bunching weakly collusion-proof mechanism

with q11 < q12+q21

2 = q22:



θ

(
p12 + p22

ρ + p12

)
−

θp2
12

p11 (ρ + p12)
−

ρ(1 − p11)

p11(ρ + p12)


θ

1

γ + θ
1

γ

2




γ

 (qC

11)
−γ = c

⇒ qC
11 =




θ
(

p12+p22

ρ+p12

)
− θ

(
p2
12

p11(ρ+p12)

)
− ρ(1−p11)

p11(ρ+p12)

(
θ

1
γ +θ

1
γ

2

)γ

c




1

γ (91)





θp12 − p22∆θ

ρ + p12
+ θ

p12

(
θ
θ

) 1−γ
γ

+ p22

(
θ

1
γ +θ

1
γ

2θ
1
γ

)1−γ

ρ + p12
+

ρ

2(ρ + p12)p12


θ

1

γ + θ
1

γ

θ
1−γ

γ








(
qC
12

)−γ
= c

⇒ qC
12 =




θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(92)

qC
21 =

(
θ

θ

) 1

γ

× qC
12 =

(
θ

θ

) 1

γ




θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(93)

qC
22 =


θ

1

γ + θ
1

γ

2θ
1

γ


×qC

12 =


θ

1

γ + θ
1

γ

2θ
1

γ







θp12−p22∆θ
ρ+p12

+ θ

p12

“

θ
θ

”
1−γ

γ
+p22

 

θ
1
γ +θ

1
γ

2θ
1
γ

!1−γ

ρ+p12
+

ρ

0

B

@

θ
1
γ +θ

1
γ

θ

1−γ
γ

1

C

A

2(ρ+p12)p12

c




1

γ

(94)
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Appendix D: Proof of proposition 5

If ρ < 0, we guess that the downward individual incentive compatible constraints (2); the

θ type’s participation constraints (3); the upward local coalition constraints (15) and (18) are

binding. Then the constraint equations system can be written as:



p11 p12 0 0

p12 p22 −p12 −p22

2 −1 −1 0

0 1 1 −2




×




t11

t12

t21

t22




=




β3 − ε3

β2 + ε2

β15 − ε15

β18 − ε18




(95)




β3

β2

β15

β18




≡




θp11q
1−γ
11 +θp12q

1−γ
12

1−γ

θp12(q
1−γ
11 −q

1−γ
21 )+θp22(q

1−γ
12 −q

1−γ
22 )

1−γ

2γ
(
θ −

p2
12ǫ∆θ

p11p12+ρǫ

)
(2q11)1−γ−(q12+q21)1−γ

1−γ[(
θ − p22ǫ∆θ

p12

) 1

γ
+ θ

1

γ

]γ
(q12+q21)1−γ−(2q22)1−γ

1−γ




,

where

∑

i,j

pijtij =
p12 + p22

ρ + p12
(β3−ε3)−

p12

ρ + p12
(β2 +ε2)−

ρ(1 − p11)

2(ρ + p12)
(β15−ε15)−

ρp22

2(ρ + p12)
(β18−ε18).

(96)

To maximize the expected transfer
∑

i,j pijtij , the best choices are ǫ = 1, εi = 0, i = 2, 3, 15, 18.

After optimizing with respect to qij we get the following expressions




(
θp12

ρ + p12

)
+




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ

ρ

ρ + p12





q−γ
22 = c (97)

(
θp12

ρ + p12

)
q−γ
21 +





1 − p11

2

(
θ −

p2
12∆θ

p11p12 + ρ

)
−

p22

2




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ



×
ρ

(ρ + p12)p12

(
q12 + q21

2

)−γ

= c

(98)

(
θp12 − p22∆θ

ρ + p12

)
q−γ
12 +





1 − p11

2

(
θ −

p2
12∆θ

p11p12 + ρ

)
−

p22

2




(
θ − p22∆θ

p12

) 1

γ
+ θ

1

γ

2




γ



×
ρ

(ρ + p12)p12

(
q12 + q21

2

)−γ

= c

(99)
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{
θ

(
p12 + p22

ρ + p12

)
− θ

(
p2
12

p11 (ρ + p12)

)
−

ρ(1 − p11)

p11(ρ + p12)

(
θ −

p2
12∆θ

p11p12 + ρ

)}
q−γ
11 = c (100)

From (98) and (99), we can verify the no-arbitrage constraint

q12

q21
=

(
θ − p22∆θ

p12

) 1

γ

θ
1

γ

, (101)

since ǫ = 1.

The only work left is to verify the monotonic implementability conditions. Because

lim
ρ→0−

qC
11(ρ) =

(
θ − 1−v

v
∆θ

c

) 1

γ

= qN
11(0) = qC

11(0)

lim
ρ→0−

qC
12(ρ) =

(
θ − 1−v

v
∆θ

c

) 1

γ

= qN
12(0) = qC

12(0)

lim
ρ→0−

qC
21(ρ) =

(
θ

c

) 1

γ

= qN
21(0) = qC

21(0)

lim
ρ→0−

qC
22(ρ) =

(
θ

c

) 1

γ

= qN
22(0) = qC

22(0)

and

qN
11(0) <

qN
12(0) + qN

21(0)

2
< qN

11(0),

it can be verified that when ρ is close enough to zero the implementability monotonic condition

is satisfied strictly: qC
11(ρ) <

qC
12(ρ)+qC

21(ρ)
2 < qC

22(ρ).

29


