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Abstract

This paper studies equilibria in second price auctions with information acquisition in an

independent private value setting. We focus on the existence and uniqueness of equilibrium in

the information acquisition stage for both homogenous and heterogenous bidders. It is shown

that, when the relative probability gain of information acquisition is increasing, there always

exists an equilibrium and further it is symmetric and unique when bidders are homogenous.

Moreover, we show that different type of bidders must choose different information levels, and

further the advantaged groups with lower marginal information cost have stronger incentive

to acquire information. An illustrative example with two bidders and Gaussian specification

is presented to provide intuition and implications on equilibrium behavior of bidders.

Key words: second price auctions, information acquisition, heterogenous bidders, the

existence and uniqueness of equilibrium.
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1 Introduction

1.1 Overview

The literature on equilibria involving mechanism design studies the behavior of agents in a game

form designed by a principal to achieve a certain goal given that agents may hold private infor-

mation and play strategically. A typical assumption made in this literature is that information

∗We wish to thank Xiaoyong Cao, Chengji Liu, Xianwen Shi and Mingjun Xiao for very helpful comments and
suggestions. The second author thanks the National Natural Science Foundation of China and Private Enterprise
Research Center at Texas A&M University for Financial support.
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held by agents is exogenous.1 However, the private information of agents is acquired costly

rather than endowed in many real world situations. For instance, in an auction where buyers

cannot detect the quality of the objective they are going to bid, the buyers may incur some

cost to assess the objective to avoid the risk of bidding a low-quality objective at a high-quality

price. Even they are endowed with partial initial information about the objective, agents may

have incentive to acquire more accurate information to improve their welfare. This strategy of

privately accessing more information prior to participation is called information acquisition (IA

for short). Basically, an agent may be interested in two types of information: the information

about the objective such as the estimated valuation of the objective in an auction, and the

private information of opponents such as their valuations about the objective. Consequently,

the IA of a bidder can be divided into two types: one is to acquire information about himself

(or the objective); the other one is to acquire information about other agents.

Most papers have contributed to the first type of IA issue, such as Milgrom and Weber

(1981), Matthews (1984), Persico (2000), Bergemann and Pesendorfer (2001), Ganuza (2004),

Rezende (2005), Compte and Jehiel (2006), Larson (2006), Eso and Szentes (2007), and Shi

(2007). There are also some studies on the second type of IA. Fang and Morris (2006) studied

the revenue equivalence and incentives for bidders to acquire costly information about opponents’

valuations. Tian and Xiao (2007) extended the settings of Fang and Morris by endogenizing

information acquisition, and considered the real multidimensional auction problem, where the

type and strategy spaces of the bidder are both multidimensional.

However, most of these studies on the first type of IA are based on symmetric equilibrium

in economic environments with homogenous bidder, in which both prior beliefs on valuations

and information cost are the same among bidders. These assumptions are clearly unrealistic.

For instance, in art auctions, each bidder has essentially a different belief on the art. Even in

auctions such as contract bidding where potential contractors have the same initial information

about the project, they probably have different opportunity costs for any further necessary

information about the project. Thus, both prior beliefs on the true valuations and information

costs can be different among bidders. When this is the case, under what conditions the existence

and uniqueness of equilibrium can be guaranteed? This is the issue we focus on in this paper.

Also, the existing literature involves binary decision of acquiring information—to decide whether

to acquire more information or not.2 However, in many applications, bidders not only have to

decide whether they need more information, but also to choose what level of information they

1For instance, in Hurwicz (1960) and Hurwicz and Reiter (1990), the initial dispersion of information is
represented as a factorization of an exogenous parameter space.

2See Bergemann, Shi and Valimaki (2007).
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should acquire, considering other bidders’ strategic reactions. Therefore, the existence and

uniqueness of equilibrium in auctions allowing bidders to choose information in a continuous

level should be reconsidered.

1.2 Objectives of the Paper

This paper contributes to the auction literature with information acquisition and extend the

existing literature to a more general setting. We focus on individuals’ behavior in second price

auctions with IA in an independent private value environment. While most studies on the

information acquisition assume homogeneity of bidders, we allow for heterogenous bidder whose

valuations are drawn from general distributions and heterogeneous information acquisition cost

(IA cost for short).

Specifically, we consider an second price auction where an indivisible object is to be sold

to one of several potential bidders. Each bidder’s valuation for the object is unknown ex-ante

to other bidders as well as himself. But before participation, bidders can privately acquire

information about their valuations by costly doing experiments in which private signals will

return. The bidders update their estimates of the valuations according to the signals. They

improve the informativeness of the received signals by choosing high levels of information, but

with an increasing cost. The beliefs on the true valuations can be updated but the true valuations

can never be completely revealed.

The timing of the auction is scheduled as a two-stage game: (1) the information acquisition

stage(the IA stage) – bidders decide how much information to acquire after observing the object

and update their valuations about the object based on the acquired information, and (2)the

bidding stage – each buyer submits a report about his private information to the seller and the

bidder with the highest bid is rewarded with the object and pay at the second highest bid.

The auction in the second stage is the standard second price auction format which is invoked

by Vickrey (1961). In fact, after the IA stage, the bidding stage is much alike conventional

exogenous information auctions. While the equilibrium issue of these conventional auctions

has been well studied (cf. Maskin and Riley (2000b), Blume and Heidhues (2004)), studies on

individuals’ behavior in the IA stage have been largely neglected.

We study the existence and uniqueness of equilibrium in the information acquisition stage

in a general setting of second price auctions and economic environments. We maintain the basic

information structure in Shi (2007) but offer a complete perspective of equilibrium in the IA

stage rather than the optimal reserve price. We provide sufficient conditions which are general

enough to cover many applications that literature has considered.
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To provide intuition and understand our results easily, we start with our analysis by con-

sidering an economy with two bidders and Gaussian specification. The true valuations of both

bidders are normally distributed and are ex-ante unobservable to both bidders. However, each

bidder can acquire a costly experiment returning a noisy signal, which is the sum of the true

valuation and a normally distributed error. To increase the informativeness of their signals, the

bidders can reduce the variance of the error but with an increasing cost. The equilibrium is

guaranteed if the mean valuations are the same. For two homogeneous bidders, the equilibrium

must be symmetric and unique. For two heterogeneous bidders, the equilibrium must be intu-

itive: the advantaged bidder with lower marginal cost (or the bidder with less prior precision)

has incentive to require more information, given other factors are the same.

We then extend our analysis to more general settings. We allow general prior distributions

of bidders’ valuations and different IA cost functions. Following the intuition of the two-bidder

case, we provide the notion of the expected marginal value of information, taking into account

of other bidders’ strategies. We show that an equilibrium is guaranteed for convex IA cost

functions and a broad range of posterior distributions. Besides, there is a unique equilibrium

that is symmetric if bidders are homogeneous. And the symmetric equilibrium is unique if the

posterior distribution is rotation ordered. Furthermore, if bidders can be divided into groups

so that bidders are homogeneous in the same group and heterogenous across groups, then the

equilibrium must be type-symmetric which is intuitive: bidders in the same group choose the

same information level; bidders in different groups choose different information levels; and the

incentive to acquire information will be weakened for a higher marginal IA cost in equilibrium.

1.3 Related literature

There is voluminous theoretical literature about equilibrium of auctions with private value.

However, most of the discussions rely on a critical assumption that the private values of bidders

are informed to them at the beginning of the auction. The auctions with heterogenous bidders

are also involved in classical papers, such as Graham and Marshall (1987) and Maskin and Riley

(2000b). However, models with costly information acquisition as an endogenous element of the

bidding process receive less attention.

One of the earliest papers explicitly combining information acquisition with bidding strategy

is Milgrom (1981). In this seminal paper, a bidding model is developed which has the market-like

features that bidders act as price takers and that prices convey information. Our model shares

his model with a similar information structure that bidders may acquire information at a cost

before bidding, but his model devotes to extending the theory of rational expectations market
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equilibrium and ignores the heterogeneity in bidders that we incorporate.

Another model is provided by Schweizer and Ungern-Sternberg (1983), in which they pre-

sented a common-value auction where each bidder draws an estimate of the valuation from an

interval centered on the true value. Bidders can costly narrow the length of the interval to

approach the true value. However, the analysis mainly resorts to simulations for the case of two

bidders. Lee (1984), in turn, developed a two-agent model with incomplete information in the

sense that bidders are not sure whether their opponents are informed. In this model, the poten-

tial valuation of the objective being auctioned can take two values, which can be fully revealed.

Lee characterized a symmetric equilibrium and showed that each bidder acquires information

with a positive probability in the information acquisition stage and uses a randomized strategy

whose distribution depends on the value he discovers in the bidding stage. In Lee (1985), the

model is extended to the case with larger number of bidders.

Matthews (1984) studied information acquisition and discussed a symmetric equilibrium in

a first price auction, in which each bidder shares a common, but unknown value. Hausch and

Li (1993) developed a common-value model much like Lee’s. The objective has two potential

valuations which can be reflected by a signal with a cost. The accuracy of the signal is positively

related to the amount of cost spent on it. The authors characterized a symmetric equilibrium

and the analysis is extended to the private-value case in Hausch and Li (1993a). Nicola Persico

(2000) studied the incentive to acquire information and investigated the value of information

by introducing the notion of risk-sensitivity. He established that the value of information is

higher in decision problems in which bidders are more risk-sensitive. In his model, he obtained

an explicit expression for the marginal value of information. In contrast, our paper specified

the properties of the marginal value of information without giving any explicit expression and

in turn, the general analysis of equilibrium is established by these properties.

The main differences between our model and the existing literature are: First, costly in-

formation acquisition is incorporated as an endogenous element of bidding process. Second,

heterogeneities—a continuum of feasible values, asymmetric IA cost and beliefs on true valuations—

is allowed. Third, the information structure is general—the beliefs on true valuations can be

updated by acquiring information, but the true valuations can never be fully revealed. Finally,

instead of focusing on prevailing issues such as optimal reserve price and revenue equivalence,

this paper devotes to a modest but important issue—the existence and uniqueness of equilib-

rium. In sum, this paper incorporates heterogeneity and endogenous element into conventional

models to analyze the equilibrium issue in the second price auction.

The remainder of the paper is organized as follows. Section 2 introduces a general setup in

which the basic information structure is similar to Shi (2007). Section 3 studies equilibria in
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a simply case with two bidders and Gaussian specification. Section 4 discusses the existence

and uniqueness of equilibrium in economies with many bidders and general distributions. We

conclude in section 5. All proofs are relegated to the appendix, unless otherwise noted.

2 The Setup

In a second price auction, a single object is sold to n bidders, who are indexed by i ∈ {1, 2, . . . , n}.
The buyers’ true valuations about the objective {ωi, i = 1, 2, . . . , n}, unknown ex-ante, are

independently drawn from a family of distributions {Fi, i = 1, 2, . . . , n} with supports [ωi, ωi]

correspondingly. Each Fi has a strict positive and differentiable density fi, with the mean µi.

A bidder with valuation ωi gets utility ui if he wins the object and pays ti:

ui = ωi − ti.

The auction is a two-stage game: the first stage is the information acquisition stage (the

IA stage) and the second stage is the bidding stage. In the IA stage, bidder i can acquire a

costly signal si about ωi, with si ∈ [si, si] ⊂ ℜ. Let αi denote the level of information acquired

by bidder i, and si is the signal received by bidder i conditional on the level of information he

chooses. Signals received by different bidders are private and independent among bidders. In

fact, bidder i acquires information by choosing a differentiable joint distribution of (si, ωi) from

a family of joint distributions Gi(si, ωi|αi) : [si, si]×[ωi, ωi] → [0, 1], given the information choice

αi. The information choice corresponds to a statistical experiment, which returns a private signal

si. The signal with higher αi is more informative because it implies a more precise posterior

belief on the true valuation. The joint distribution Gi(si, ωi|αi) is referred to as the information

structure.

Notice that the beliefs on the true valuations can be updated but cannot be identified com-

pletely. The cost of performing an experiment αi is Ci(αi), which is increasing and convex in

αi. There may be asymmetries in the information structures and cost functions. Bidders may

resort to different experiments to acquire information. Even the information choices are the

same, bidders may also have different (opportunity) costs to implement it. The feasible infor-

mation level of bidder i is [α, α], where α is the endowed information level that the bidder can

receive at no cost, and α is the maximum information level that the bidder is able to afford.

As usual, we use α = (α1, α2, . . . , αn) to denote the information choices of all bidders, and

α−i = (α1, . . . .αi−1, αi+1, . . . , αn) to denote the choices of all bidders except bidder i.

Let Gi(ωi|si, αi) denote the distribution of valuation ωi conditional on si and αi, and
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Gi(si|ωi, αi) denote the distribution of signal si conditional on ωi and αi. With a little abuse

of notations, Gi(ωi|αi) and Gi(si|αi) are used to denote the marginal distribution of ωi and si

conditional on information choice αi, respectively. They are defined in the usual way, that is,

Gi(ωi|αi) = Esi
[Gi(si, ωi|αi)] and Gi(si|αi) = Eωi

[Gi(si, ωi|αi)]. Again, to simplify notations,

we use gαi
(ωi|si), gαi

(si|ωi), gαi
(ωi) and gαi

(si) to denote the corresponding densities.

After observing the signal si from the experiment corresponding to αi, bidder i updates his

prior belief on ωi according to Bayes rule:

gαi
(ωi|si) =

gαi
(si|ωi)fi(ωi)

∫ ωi

ωi
gαi

(si|ωi)fi(ωi)dωi

.

Let vi(si, αi) denote bidder i’s updated estimate of ωi after performing experiment αi and

observing si:

vi(si, αi) ≡ E[ωi|si, αi] =

∫ ωi

ωi

ωigαi
(ωi|si)dωi.

We use vi to denote the updated estimate vi(si, αi), and use v to denote the n-vector

(v1, v2, . . . , vn). Sometimes, v is also written as (vi, v−i), where v−i = (v1, . . . , vi−1, vi+1, . . . , vn).

Assume vi(si, αi) is increasing in si. That is, a higher signal induces a higher posterior estimate

given the information choice. Let Hαi
(vi) denote the distribution of vi with corresponding den-

sity hαi
(vi), given the information choice. Then, Hαi

(vi) is the posterior distribution of the true

value3:

Hαi
(vi) ≡ Pr{E[ωi|si, αi] ≤ x} =

∫ v−1

i (x,αi)

si

gαi
(si)dsi.

Since vi(si, αi) is increasing in si, the upper limit of the integral is well defined. That is,

Hαi
(x) is the probability that the bidder i’s posterior estimate vi is below x, given his information

choice αi. Note that the support [ωαi
, ωαi

] corresponding to the updated distribution Hαi
(vi)

may change with the information choice. However, we suppose throughout the paper that
∂ωαi

∂αi
=

∂ωαi

∂αi
= 0 for all i 4.

After the IA stage, the bidding stage begins, which is a second price auction. In fact, the

behavior of bidders in this stage is the same as those in conventional second price auctions,

considering the information acquired in the IA stage as given. Note that even if the prior beliefs

are ex ante symmetric, after the IA stage, the posterior beliefs may be asymmetric. However,

such asymmetries among bidders do not affect bidding behavior in the second price auction—it is

still a weakly dominant strategy for each bidder to bid his (updated) valuation. For this reason,

3Hαi
(vi) is in fact a distribution function of si, because given αi, vi is a function of si. Thus, Hαi

(vi) can also
be derived by the distribution of si and Bayes rule.

4For prior distributions with support (−∞, +∞), such as Gaussian distribution satisfy this assumption.
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we only need to focus on bidders’ interactions in the IA stage. The equilibrium we analyze in

the paper is specified as below:

Definition 1 (Equilibrium in Auctions with Information Acquisition) The information

choice profile α
∗ = (α∗

1, α
∗
2, . . . , α

∗
n) in the information acquisition stage consists an equilibrium

if and only if, for all i = 1, 2, . . . , n and αi,

Ev,α∗

−i
{ui[vi(si, α

∗
i )]} − Ci(α

∗
i ) ≥ Ev,α∗

−i
{ui[vi(si, αi)]} − Ci(αi).

That is, α∗
i ∈ argmax{Ev,α∗

−i
{ui[vi(si, αi)]} − Ci(αi)}.5

The definition says that in equilibrium, each bidder maximizes his net expected revenue

given other bidders’ information choices. The equilibrium involves strategic interactions in both

interrelated stages. The choice in the IA stage will update the belief on the true valuations

and in turn improves the gross expected revenue in the second stage6; the expected gain from

the second stage also influences the information choice in the IA stage directly. Bidders then

face a trade-off: more gains in the bidding stage resulted from high information choice but high

information choice also implies high cost in the IA stage.

Remark 1 The second price auction format simplifies our analysis to a great extent. In the

second price auction, the asymmetry in beliefs does not affect the symmetric equilibrium bidding

strategies. Consequently, the symmetric equilibrium allows us to concentrate the equilibria in

the IA stage, although a complete equilibrium in such an auction is consisted of the equilibrium

in the IA stage as well as the bidding stage. However, it is difficult to just focus on the IA

stage in other auction formats, since any equilibrium strategy profile in the bidding stage may

be asymmetric and probably depends on the information level acquired in the IA stage. For

example, in the first price auction, even though bidders are homogenous ex ante, the updated

beliefs may be asymmetric after IA stage. And such an asymmetry may lead to many complica-

tions: equilibrium strategies depends on information levels, and different equilibria may imply

different expected payments for each bidder.

Thus, given bidder i’s true valuation, vi, his expected payoff is his payoff minus his payment

if he wins:

Ev−i,α
∗

−i
{ui(vi)} = viQi(vi) −

∫ vi

ωαi

xQi(x)dx =

∫ vi

ωαi

Qi(x)dx

5α∗

−i means the expectation conditions on the opponents’ strategies.
6Shi (2007) indicated that a bidder achieve higher expected payoff for high information level under conditions

compatible with our assumptions in this paper
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where Qi(x) = Πl 6=iHαl
(x) is the expected probability of bidder i to win the object when his

valuation is x.

Then, since the vi is unknown ex ante, then the expected payoff is:

Ev,α∗

−i
{ui(vi)} = Evi

{
∫ vi

ωαi

Qi(x)dx}

=

∫ ωαi

ωαi

∫ vi

ωαi

Qi(x)dxhαi
(vi)dvi

=

∫ ωαi

ωαi

(1 − Hαi
(vi))Qi(vi)dvi.

Therefore, the information choice profile α
∗ = (α∗

1, α
∗
2, . . . , α

∗
n) in the IA stage consists an

equilibrium if and only if

α∗
i ∈ argmax

∫ ωαi

ωαi

(1 − Hαi
(vi))Qi(vi)dvi − Ci(αi)}.

Remark 2 The common knowledge should be emphasized: each bidder’s true valuation is

drawn from a known distribution; acquired information (signals) is private but the way (Bayesian

rule) of using information to update belief is common knowledge; the IA cost for each bidder

is also made public. Thus, while the second stage is an incomplete information game, the first

stage is considered as a complete information game.

3 Two Bidders and Gaussian Specification

We start with a simple economy with two bidders in the second price auction. We focus on a

special information structure in this section: Gaussian distribution and linear cost function. We

first investigate the buyers’ IA decision problem and establish the existence of equilibrium in this

setting. We then show that there is no asymmetric equilibrium and the symmetric equilibrium is

unique when bidders are homogeneous. When bidders are heterogeneous, the equilibrium must

be intuitive equilibrium: the disadvantaged bidder with high marginal information cost resorts

to less information if the only difference between bidders is the information cost, and the bidder

with low precision chooses more information if the only difference between bidders is the prior

beliefs.
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3.1 The Existence of Equilibrium

It is assumed that bidder i’s true valuation ωi is drawn from a normal distribution with mean

µi and precision βi:

ωi ∼ N(µi,
1

βi
).

That is, the true valuation ωi is normally distributed with an expectation µi and a standard

variance 1
βi

. A lower β indicates that the prior distribution is more spread out, yielding more

potential gains from information acquisition.

By doing a costly experiment corresponding to αi, the bidder i can observe a signal si:

si = ωi + εi

where the additive error εi is independent of ωi and εi ∼ N(0, 1
αi

). The higher αi, the more

precise the signal is. Thus, αi is interpreted as the informativeness or precision of bidder i’s

signal. Each bidder is endowed with an initial signal precision, α, which is positive. To increase

the precision, bidder i can require a higher information level, αi. Thus, (αi −α) is the part that

bidder i invests in IA. The IA cost is linear in the incremental precision. That is,

Ci(αi) = ci(αi − α),

where ci is the constant marginal cost of one additional unit of precision. Assume the information

choice set of the bidders is [α, α].

Note that no symmetry is imposed so far. The bidders may have different prior beliefs, and

choose different experiments to acquire information. The IA cost may also be different.

The bidders update their beliefs on their valuations after observing signals. Here we acquire

the posterior valuation distribution conditional on the signal si by the standard normal updating

technique:

ωi|si, αi ∼ N(
αisi + βiµi

αi + βi
,

1

αi + βi
).

It immediately follows that vi(si, αi) ≡ E(ωi|si, αi) = αisi+βiµi

αi+βi
.

Thus, the distribution of the posterior estimate vi, Hαi
(vi) is normal: vi ∼ N(µi, σ

2
i (αi)),

where the standard variance σi(αi) =
√

αi

βi(αi+βi)
.

Then,

Hαi
(vi) =

∫ vi

−∞

1√
2πσi

exp{−(x − µi)
2

2σ2
i

}dx (1)

Remark 3 The variance of the posterior estimate vi is increasing in the information level αi.

This indicates that the distribution is more spread out for a more precise signal. Although
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the variance of the posterior valuation should be smaller after the IA stage (because of the

received private signals), the ex ante variance (prior to the private signals) need not to be

smaller, comparing to the prior distribution. The relationship between the variance and the

informativeness when different information levels are chosen is demonstrated by two graphs in

Shi (2007). It is shown that the higher the information level, the more the expected revenue is.

We first investigate bidders’ IA decision problem. Each bidder chooses αi to maximize his

expected payoff

πi(αi, αj) ≡
∫ ωαi

ωαi

(1 − Hαi
(vi))Hαj

(vi)dvi − Ci(αi). (2)

In the specification of this section, the IA decision problem of bidder i is

max
αi

∫ +∞

−∞
(1 − Hαi

(vi))Hαj
(vi)dvi − ci(αi − αi). (3)

With some algebra, we have

∂πi(α1, α2)

∂αi
=

1

2
√

2π(αi + βi)2
1

√

σ2
1 + σ2

2

exp{− (µ1 − µ2)
2

2(σ2
1 + σ2

2)
} − ci, (4)

Lemma 1 Suppose (µ1 − µ2)
2 ≤ 1

β1
+ 1

β2
. Then πi(α1, α2) is strictly concave in αi, i = 1, 2.

This lemma indicates that when the difference of mean valuations is not too larger, bidder

i’s expected payoff is concave in his own information level. A large difference in mean valuations

may induce an“irregular” payoff function. The intuition is straightforward: for example, given

the valuation of bidder 2, v2, largely exceeds µ1 then the bidder 1 has a great incentive to acquire

more information, since more information implies more expected benefit ex ante. In this case,

the marginal information level is increasing in his information choice. If |µ1 −µ2| is large, which

indicates that the valuation of bidder 2 has a great probability of largely exceeding bidder 1’s

valuation, in the specification of Gaussian. This implies that the marginal information value

may be increasing on some interval.

Proposition 1 When (µ1 − µ2)
2 ≤ 1

β1
+ 1

β2
, there is an equilibrium.

Proof. It is well-known that a Nash equilibrium exists if for (i) each player’s strategy space

is a nonempty, convex, and compact subset of an Euclidean space; (ii) πi(α1, α2) is continuous

in (α1, α2), and concave in αi (cf. Mas-colell, Whinston and Green, 1995). Requirement (i) is

satisfied since the strategy space of bidder i is [α, α], and (ii) is also satisfied by Lemma 1 and

the fact that πi(α1, α2) is continuous in (α1, α2). Thus, there is an equilibrium.
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3.2 Homogeneous Bidders

We now focus on equilibria in a homogeneous environment: µi = µ, βi = β and αi = α for

i = 1, 2. An equilibrium (α∗
1, α

∗
2) is called symmetric equilibrium if α∗

1 = α∗
2, i.e., the bidders

choose the same information level; otherwise, the equilibrium is said to be asymmetric.

The following proposition shows that no asymmetric equilibrium exists in a homogeneous

setting.

Proposition 2 Suppose bidders are homogeneous. If an equilibrium exists, it must be symmetric

and unique.

Proof. The Kuhn-Tucker first order condition for bidder i’s problem is











































∂πi(α1, α2)

∂αi
=

1

2
√

2π(αi + β)2
1

√

σ2
1 + σ2

2

− c = −λi + γi

λi(αi − α) = 0

γi(αi − α) = 0

λi, γi ≥ 0,

(5)

where λi and γi are the Lagrange multipliers for the restrictions αi ≥ α and αi ≤ α, respectively

Suppose, by way of contradiction, that there is an asymmetric equilibrium (α∗
1, α

∗
2). Without

loss of generality, assume α∗
1 < α∗

2. This implies that α∗
1 < α and α∗

2 > α. Then according to

(5), γ1 = 0 and λ2 = 0. Thus,
∂π1(α∗

1
,α∗

2
)

∂α1
= −λ1 ≤ 0 and

∂π2(α∗

1
,α∗

2
)

∂α2
= γ2 ≥ 0.

Then we have

c = C ′
1(α

∗
1) ≥

1

2
√

2π(α∗
1 + β)2

1
√

σ∗2
1 + σ∗2

2

>
1

2
√

2π(α∗
2 + β)2

1
√

σ∗2
1 + σ∗2

2

≥ C ′
2(α

∗
2) = c,

a contradiction. Therefore, the symmetry of equilibrium is established.

Now we show that the equilibrium is unique. To do so, we first show the interior equilib-

rium is unique. According to equation (5), ∂πi(α1,α2)
∂αi

= 0 should be satisfied for the interior

equilibrium. Since the equilibrium is symmetric, this equation reduces to ∂πi(α,α)
∂αi

= 0. That

is, 1
2
√

2π(α+β)2
1√

σ2+σ2
− c = 0. The uniqueness of interior equilibrium is a result of strict mono-

tonicity of function 1
2
√

2π(α+β)2
1√

σ2+σ2
in α.

We then show the uniqueness of corner equilibrium. Note that, since the equilibrium must

be symmetric, there are only two possible corner equilibria: α∗
1 = α∗

2 = α and α∗
1 = α∗

2 = α. The

two equilibria can not both exist. Suppose not. Then equation (5) implies ∂πi(α1,α2)
∂αi

= −λi ≤ 0

at α∗
1 = α∗

2 = α; and ∂πi(α1,α2)
∂αi

= γi ≥ 0 at equilibrium α∗
1 = α∗

2 = α.

12



Then,

c ≥ 1

2
√

2π(α + β)2
1

√

σ2 + σ2
>

1

2
√

2π(α + β)2
1√

σ2 + σ2
≥ c

by noting that α < α and σi(αi) =
√

αi

βi(αi+βi)
is increasing in αi, a contradiction. Thus, the

corner equilibrium must be unique.

Finally we show the equilibrium is unique. That is, it is either an interior or corner equi-

librium, but not both. Suppose not. Without loss of generality, assume there are an interior

equilibrium (α∗
1, α

∗
2) = (α, α) and a corner equilibrium (α̂1, α̂2) = (α, α). From equation (5), we

have ∂πi(α,α)
∂αi

= 0 at interior equilibrium (α, α) and ∂πi(α,α)
∂αi

= −λi ≤ 0 at the corner equilibrium

(α, α). Then we have

c =
1

2
√

2π(α + β)2
1√

σ2 + σ2
<

1

2
√

2π(α + β)2
1

√

σ2 + σ2
= c

by noting that α < α and σi(αi) =
√

αi

βi(αi+βi)
is increasing in αi, a contradiction. Therefore,

the equilibrium must be unique.

This proposition helps to simplify any attempt to analyze equilibria: in a homogeneous

setting, only symmetric equilibrium deserve to be considered, because the ex ante symmetry of

bidders automatically implies the ex post symmetry of information choices. What’s more, it is

shown that there is only one equilibrium: it is either an interior or corner equilibrium.

3.3 Heterogeneous Bidders

Now we consider equilibria for economic environments where either the marginal IA cost or the

prior beliefs are different but the mean valuations are the same, i.e., either c1 6= c2 or β1 6= β2,

and µ1 = µ2.

It is intuitive that if the only difference between the bidders is the variances of the prior

distribution, then the one with less prior precision has incentive to acquire higher level of in-

formation, which is indicated by a higher α. Indeed, a smaller β indicates a larger variance,

yielding more potential gains even if the bidder resorts to the same level of information. Thus,

in equilibrium, he will acquire relatively more information than the one with high prior pre-

cision. That is, β1 > β2 implies α∗
1 < α∗

2 in an equilibrium, and vice versa. Similarly, given

other factors the same between bidders, the one with lower marginal cost has more incentive to

acquire information, i.e., c1 > c2 implies α∗
1 < α∗

2, and vice versa. An equilibrium with either

such property is called an intuitive equilibrium. The following proposition indicates that the

only equilibrium in the heterogeneous environment is the intuitive equilibrium.

13



Proposition 3 For economic environments considered in this subsection, if (α∗
1, α

∗
2) is an equi-

librium, we have:

(i) If β1 = β2, the equilibrium must be intuitive, i.e., α∗
1 ≥ α∗

2 whenever c1 < c2, vise

verse;

(ii) If c1 = c2, the equilibrium must be intuitive, i.e., α∗
1 ≥ α∗

2 whenever β1 < β2,

vise verse.

Proof. To prove (i), suppose c1 < c2 but α∗
1 < α∗

2. We then have α∗
1 < α and α∗

2 > α.

With the same logic of the proof of Proposition 2, equation (5) implies
∂π1(α∗

1
,α∗

2
)

∂α1
= −λ1 ≤ 0

and
∂π2(α∗

1
,α∗

2
)

∂α2
= γ2 ≥ 0. Consequently,

c2 ≤ 1

2
√

2π(α∗
2 + β)2

1
√

σ∗2
1 + σ∗2

2

<
1

2
√

2π(α∗
1 + β)2

1
√

σ∗2
1 + σ∗2

2

≤ c1,

a contradiction. Thus we have α∗
1 ≥ α∗

2 whenever c1 < c2. Similarly, if c1 > c2, we must have

α∗
1 ≤ α∗

2.

To prove (ii), suppose β1 < β2 but α∗
1 < α∗

2. With the same logic, equation (5) implies a

contradiction to c1 = c2:

c2 ≤ 1

2
√

2π(α∗
2 + β2)2

1
√

σ∗2
1 + σ∗2

2

<
1

2
√

2π(α∗
1 + β1)2

1
√

σ∗2
1 + σ∗2

2

≤ c1.

Similarly, we have α∗
1 ≤ α∗

2 if β1 > β2.

If there is no restriction on the means of the true valuations in this heterogenous setting,

that is, µ1 and µ2 can either be the same or different, then there may be multiple equilibria.

However, if we impose the condition µ1 = µ2, then not only the existence is guaranteed by

Proposition 1, but also the uniqueness of interior equilibrium is established.

Proposition 4 If there exists an interior equilibrium, it is unique.

Proof. From equation (5), an interior equilibrium (α∗
1, α

∗
2) must satisfy

∂πi(α
∗

1
,α∗

2
)

∂αi
= 0 for each

bidder i. That is,
∂πi(α1, α2)

∂αi
=

1

2
√

2π(αi + βi)2
1

√

σ2
1 + σ2

2

− ci = 0, (6)

for i = 1, 2.

Comparing the above equation for i = 1, 2, we obtain

√
c1(α1 + β1) =

√
c2(α2 + β2), (7)
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which defines α2(α1) as an increasing function of α1 along the path defined by (7).

Without loss of generality, suppose (α̂1, α̂2) is another interior equilibrium with α̂1 < α∗
1.

Then equation (7) implies α̂2 < α∗
2. Then it is easy to see that the first order condition (6) is

satisfied for (α̂1, α̂2):

1

2
√

2π(α̂i + βi)2
1

√

σ̂2
1 + σ̂2

2

>
1

2
√

2π(α∗
i + βi)2

1
√

σ∗2
1 + σ∗2

2

= ci.

Thus, (α̂1, α̂2) is not an interior equilibrium.

This result also reveals that, as long as the mean valuations are the same for the two bidders,

other asymmetries, such as marginal IA cost, have no influence on the uniqueness of interior

equilibrium.

The following proposition gives a comparative static analysis.

Proposition 5 Suppose c1 = c2 = c. At the interior equilibrium, a larger marginal cost corre-

sponds to a less incentive to acquire information, that is,
∂α∗

i

∂c
< 0 for i = 1, 2.

Proof. For interior equilibrium, the Kuhn-Tucker condition can be simplified as

8πc2
1(α1 + β1)

4(
α1

β1(α1 + β1)
+

α2

β2(α2 + β2)
) = exp{−(µ1 − µ2)

2

σ2
1 + σ2

2

},

with
√

c1(α1 + β1) =
√

c2(α2 + β2)

For c1 = c2 = c and µ1 = µ2, the equation can be reduced to

2
√

2π(α1 + β1)
2

3 (
α1

β1
+

α2

β2
)

1

2 =
1

c

with α1 + β1 = α2 + β2.

The first derivative with respect to c is

2c(
α1

β1
+

α2

β2
)
∂α1

∂c
+ c(α1 + β1)(

1

β1

∂α1

∂c
+

1

β2

∂α2

∂c
) = −2(α1 + β1)(

α1

β1
+

α2

β2
),

with
∂α1

∂c
=

∂α2

∂c
.

Then
∂αi

∂c
= −

2(α1 + β1)(
α1

β1
+ α2

β2
)

2c(α1

β1
+ α2

β2
) + c(α1 + β1)(

1
β1

+ 1
β2

)
< 0.

This proposition indicates that with the same marginal IA cost mean valuation, the incentive

of each bidder to acquire information is weakened by a higher marginal cost.

The above propositions provide a fairly clear description of the case of heterogeneous bidders:

(1) Only intuitive equilibrium can exist in the heterogeneous environment. (2) With the same
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mean valuation, there is only one interior intuitive equilibrium. (3) A higher the marginal IA

cost implies a less incentive to acquire information.

4 Many Bidders and General Distribution Functions

In this section, we consider a more general setting to analyze the existence and uniqueness of

equilibrium in the second price auction with many bidders and general distribution functions.

Most of the insights from the previous section can be carried through under certain assumptions.

For simplicity of exposition, we assume the prior beliefs are the same.

4.1 The Existence of Equilibrium

To start with, we define a term that is used in the following discussions.

Definition 2 (Expected Marginal Value of Information, EMVI) Given information choices

of other bidders, the expected marginal value of information of bidder i, EMVI for short, is de-

fined as Vi(αi, α−i) = −
∫ ωαi
ωαi

∂Hαi
(vi)

∂αi
Πl 6=iHαl

(vi)dvi}.

To understand the meaning of the term, consider the following example.

Example 1 (EMVI for the two-bidder’s case) Suppose there are only two bidders, as dis-

cussed in Section 3, the problem of bidder 1 is

max
α1

{
∫ +∞

−∞
(1 − Hα1

(v1))Hα2
(v1)dv1 − C1(α1)}.

The first term is the expected revenue without considering the IA cost, and it is obviously

that this term is influenced by the level of information acquired by the bidder. Indeed, the

expected revenue will be changed by −
∫ +∞
−∞

∂Hα1
(v1)

∂α1
Hα2

(v1)dv1 if the bidder chooses to rise his

information level by differential amount. Thus, the first partial derivative of the revenue with

respect to α1 is considered as the expected marginal value of information. The EMVI defined

above is a general version of the two-bidder case.

Bidder i’s expected marginal information value in Definition 2 is a function of information

choices of other bidders as well as of himself. The EMVI can be altered by every change

in bidders’ strategies. Thus, all interactions are captured in this expected marginal value of

information.

Let Πi(αi, α−i) denote the expected payoff of bidder i:

Πi(αi, α−i) ≡
∫ ωαi

ωαi

(1 − Hαi
(vi))Πl 6=iHαl

(vi)dvi − Ci(αi) (8)
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The decision problem of bidder i is:

max
αi

∫ ωαi

ωαi

(1 − Hαi
(vi))Πl 6=iHαl

(vi)dvi − Ci(αi).

Then we need the following assumption to characterize the equilibrium in the IA stage.

Assumption 1 (Monotonicity) For each i,
∂Hαi

(v)

∂αi

1
Hαi

(v) is strictly increasing in αi for all v.

Assumption 1 means the relative probability gain from information acquisition,
∂Hαi

(v)

∂αi

1
Hαi

(v) ,

is higher when information acquisition is higher. If the family of distributions can be ranked by

the first order condition, this assumption is satisfied. We use the the truth-or-noise technology

(cf. Lewis and Sappington, 1994; Shi, 2007) with uniform prior distribution as an illustrative

example.

Example 2 The buyers’ true valuations {ωi} are independently drawn from a distribution

Fi(v). Buyer i can acquire a costly signal si about ωi. With probability αi ∈ [α, 1], the signal si

perfectly matches the true valuation ωi, and with probability 1−αi, si is a noise independently

drawn from F . The truth-or-noise technology with uniform prior distribution on [ωi, ωi] and a

noise with the mean ωi satisfies Assumptions 1 and 2.

The proof is relegated in the Appendix.

Before presenting the main results, we need the following lemmas.

Lemma 2 Under Assumption 1, Hαi
(v) is strictly convex in αi.

Lemma 3 Suppose Hαi
(v) is convex in αi. Then, the expected payoff function Πi(αi, α−i) is

concave in αi.

Lemma 4 Suppose Hαi
(v) is strictly convex in αi. Then ∂Vi(αi,α−i)

∂αi
< 0 for all i.

We then have the following result on the existence of equilibrium.

Proposition 6 (Existence of Equilibrium) If Hαi
(v) is convex in αi, there is an equilib-

rium.

This proposition says that when the regularities of information acquisition and posterior

distributions are satisfied, the equilibrium is guaranteed. Assumption 3 is not required in this

proposition. Note that heterogeneities in the the prior beliefs and IA cost are allowed in the

result.
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4.2 Homogeneous Bidders

We first consider bidders have the same distribution and IA cost functions, i.e., Fi(·) = F (·),
Gi(·) = G(·), and Ci(α) = C(α) for all i. The homogeneous prior beliefs have an important

implication: for any two bidders, i and j, their marginal value of information functions have a

special property: Vi(αi, αj , α−i,j) = Vj(αj , αi, α−i,j). For example, V1(α1, α2) = V2(α2, α1) for

two bidders’ case. This property is intuitive but seminal because it excludes any asymmetric

equilibrium in this environment.

Proposition 7 Suppose Assumptions 1 is satisfied and bidders are homogeneous. Then the

equilibrium is symmetric and unique.

This proposition clarifies the essence in the complex situation: the ex ante symmetric en-

vironment implies the ex post symmetry if each bidder has the property that other bidders’

information choices have greater effect on his own EMVI. Also, in many situations, it is possi-

ble that there are multiple symmetric equilibria. However, this proposition indicates that the

symmetric equilibrium is unique in this setting if posterior distributions are rotation ordered.

4.3 Heterogenous Bidders

When the bidders are heterogenous, i.e., they may be different either in prior beliefs or the IA

cost, or both, the analysis of the equilibrium becomes much more complex. However, if the

bidders are ex ante symmetric in a group and the only heterogeneity across groups is the IA

cost, then the analysis becomes much simpler.

Consider there are K types of bidders, who are ex ante symmetric within each type. The

kth type is consisted of nk bidders with the same distribution functions Fk(·) and Gk(·), and

the same IA cost function Ck(α). We focus the situation where distribution functions Fk(·) and

Gk(·) are the same for all bidders, but C ′
k(α) 6= C ′

s(α) for k 6= s and all α. The total number

of bidders is n =
∑K

1 nk. For convenience, we denote the information choice of the bidder i in

type k by αik.

Definition 3 An equilibrium is called the type-symmetric equilibrium, if the information choices

of bidders in the same type are identical, i.e., α∗
ik = α∗

k for each type k and every member i of

this type.

There may be some non-type-symmetric equilibria, in which even bidders in the same type

may choose different information levels. Of course, there also other special equilibria, where not

only the bidders in the same type choose the same information level, but the bidders in different

18



types make the same choice. In an extreme case, all bidders may choose the same information

level despise their differences in the IA cost. However, the following proposition shows that there

are cases where only type-symmetric equilibria exist.

Proposition 8 In the economic environment under consideration, if an equilibrium exists, it

must be type-symmetric.

This proposition predicts that it is impossible for bidders of the same type to choose different

level of information in equilibrium. Every ex ante symmetric bidder has the same behavior in

the IA stage. This result is compatible with the case when bidders are homogeneous. If there is

only one type of bidders, then this proposition indicates that all of them will choose the same

information level in equilibrium.

The following proposition verifies the intuitive relationship of choices among bidders in dif-

ferent types.

Proposition 9 For bidders in any different types k and s in the economic environment under

consideration, the type-symmetric equilibria have the following properties:

(i) Different types of bidders must choose either different information levels, i.e.,

α∗
k 6= α∗

s, or the same information level α or α;

(ii) α∗
k ≤ α∗

s whenever C ′
k(α) > C ′

s(α) for all α.

Therefore, in the second price auction with heterogeneous bidders, if Assumptions 1-3 are

satisfied, then any equilibrium must be an type-symmetric, in which bidders of different types

choose different information levels. Besides, lower information cost implies high information

level in equilibrium.

5 Conclusion

This paper investigated the existence and uniqueness of equilibrium in the second price auction

with information acquisition, which have been usually neglected in the literature. The existence

of equilibrium is valid even for heterogeneous prior beliefs and IA cost. For cases with bidders

being homogeneous in a group but heterogeneous across groups, the existence and uniqueness

of type-(a)symmetric equilibria are examined. This distinguishes our model from the existing

literature on information acquisition where homogeneity of bidders is required.

We first analyzed economic environments with two bidders and Gaussian specification. Then

we extended our results to more general economic environments with heterogenous prior beliefs
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and IA cost functions. For a broad range of posterior distributions, we establish the existence of

equilibrium. It is also shown that the only equilibrium is symmetric if bidders with the rotation

ordered posterior distribution are homogeneous. The equilibrium must be type-symmetric if

bidders can be divided into types: bidders in the same group choose the same information level

while bidders in different groups choose different information levels. Besides, the advantaged

groups with lower marginal information cost have stronger incentive to acquire information.
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6 Appendixes

Proof of Lemma 1: The derivative of the expected payoff in respect of αi is

∂πi(α1, α2)

∂αi
= −

∫ +∞

−∞

∂Hαi
(vi)

∂αi
Hαj

(vi)dvi − ci. (9)

Since

Hαi
(vi) =

∫ vi

−∞

1√
2πσi

exp{−(x − µi)
2

2σ2
i

}dx

and

∂Hαi
(vi)

∂αi
= −(x − µi)

2
√

2π
exp(−(x − µi)

2

2σ2
i

)

√

β3
i

α3
i (αi + βi)

,

then,
∂πi(α1, α2)

∂αi
=

1

2
√

2π(αi + βi)2
1

√

σ2
1 + σ2

2

exp{− (µ1 − µ2)
2

2(σ2
1 + σ2

2)
} − ci, (10)

where σi(αi) =
√

αi

βi(αi+βi)
, which is increasing in αi.

∂2πi(α1, α2)

∂α2
i

= − 1

2
√

2π(αi + βi)4
1

√

σ2
1 + σ2

2

exp{− (µ1 − µ2)
2

2(σ2
1 + σ2

2)
}[2(αi+βi)+

σi

σ2
1 + σ2

2

(1−(µ1 − µ2)
2

σ2
1 + σ2

2

)].

When (µ1 − µ2)
2 ≤ 1

β1
+ 1

β2
, we have (µ1−µ2)2

σ2

1
+σ2

2

< 1, then πi(α1, α2) is strictly concave in αi. ■

Proof of Example 2 For the truth-or-noise technology with uniform prior distribution on

[ωi, ωi] and a noise with the same mean ωi (ωi = ω for all i), we have f(x) = 1
ωi−ωi

on [ωi, ωi]

and f(x) = 0 otherwise. And F (x) =
x−ωi

ωi−ωi
on [ωi, ωi], F (x) = 0 when x < ωi and F (x) = 1

when x > ωi.

We suppose αi ∈ [αi, 1], αi > 0. According to Shi (2007), after observes a realization si with

precision αi, bidder i will revise his posterior estimate as follows:

vi(si, αi) = E(ωi|si, αi) = αisi + (1 − αi)ωi

The distribution and density of the posterior estimate are:

Hαi
(vi) = F (

vi − (1 − αi)ωi

αi
)

and

hαi
(vi) =

1

αi
f(

vi − (1 − αi)ωi

αi
).
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Then we have
∂Hαi

(vi)

∂αi
= −vi − ωi

α2
i

f(
vi − (1 − αi)ωi

αi
) (11)

and thus

∂Hαi
(v)

∂αi

1

Hαi
(v)

= −f(
vi − (1 − αi)ωi

αi
)

1

F (
vi−(1−αi)ωi

αi
)

vi − ωi

α2
i

= − 1

αi
, (12)

which implies
∂Hαi

(v)

∂αi

1
Hαi

(v) is strictly increasing in αi. Therefore, Assumption 1 is satisfied. ■

Proof of Lemma 2: Since
∂Hαi

(v)

∂αi

1
Hαi

(v) is strictly increasing in αi for all v, then

∂

∂αi
{∂Hαi

(v)

∂αi

1

Hαi
(v)

} =
1

H2
αi

(v)
[
∂2Hαi

∂α2
i

Hαi
− (

∂Hαi
(v)

∂αi
)2] > 0

for almost everywhere on [α, α]. Then
∂2Hαi

∂α2

i

> 0 for almost everywhere on [α, α], and thus

Hαi
(v) is strictly convex in αi. ■

Proof of Lemma 3: Note that, given other bidders choose α−i, bidder i chooses αi to

maximize his payoff. The support is independent from the information choice, i.e.,
∂ωαi

∂αi
= 0,

and
∂ωαi

∂αi
= 0. As the discussion is Section 4, the payoff of bidder i is

Πi(αi) =

∫ ωi

ωi

(1 − Hαi
(vi))Πl 6=iHαl

(vi)dvi − Ci(αi).

Then the second partial derivative then is

∂2Πi(αi)

∂α2
i

= −
∫ ωi

ωi

∂2Hαi
(vi)

∂α2
i

Πl 6=iHαl
(vi)dvi} − C ′′

i (αi).

Since C ′′
i (αi) ≥ 0 and

∂2Hαi
(vi)

∂α2

i

≥ 0 by the concavity of Hαi
(vi), we have ∂2Πi(αi)

∂α2

i

≤ 0, which

means Πi(αi) is concave in αi. ■

Proof of Lemma 4: Recall the definition of EMVI for bidder i is

Vi(αi, α−i) = −
∫ ωi

ωi

∂Hαi
(vi)

∂αi
Πl 6=iHαl

(vi)dvi.

We then have
∂Vi(αi, α−i)

∂αi
= −

∫ ωi

ωi

∂2Hαi
(vi)

∂α2
i

Πl 6=iHαl
(vi)(vi)dvi < 0
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by the strict convexity of Hαi
(vi). ■

Proof of Proposition 6: The proof is similar to the proof of Proposition 1. Since the

strategy space is a non-empty convex compact set and πi(αi, αj) is continuous in (αi, α−i) and

concave in αi by Lemma 3, then a Nash equilibrium exists in this setting. ■

Proof of Proposition 7: The Kuhn-Tucker condition for bidder i’s problem is







































∂Πi(αi, α−i)

∂αi
= Vi(αi, α−i) − C ′

i(αi) = −λi + γi

λi(αi − α) = 0

γi(αi − α) = 0

λi, γi ≥ 0.

(13)

We first show the equilibrium must be symmetric. Suppose not. Without loss generality,

assume α∗
1 < α∗

2. This implies α∗
1 < α and α∗

2 > α. Then by (13), we have γ1 = 0 and λ2 = 0.

Thus,
∂π1(α∗

1
,α∗

2
,α−1,2)

∂α1
= −λ1 ≤ 0 and

∂π2(α∗

1
,α∗

2
,α−1,2)

∂α2
= γ2 ≥ 0. Hence we have:

C ′(α∗
1) ≥ V1(α

∗
1, α

∗
2, α

∗
−1,2)

C ′(α∗
2) ≤ V2(α

∗
1, α

∗
2, α

∗
−1,2).

Note that

V1(α
∗
1, α

∗
2, α

∗
−1,2) − V2(α

∗
1, α

∗
2, α

∗
−1,2)

= −
∫ ωi

ωi

[

∂Hα∗

1
(v)

∂α∗
1

Hα∗

2
(v) −

∂Hα∗

2
(v)

∂α∗
2

Hα∗

1
(v)

]

Πn
l=3Hα∗

l
(v)dv

= −
∫ ωi

ωi







∂Hα∗

1
(v)

∂α∗

1

Hα∗

1
(v)

−
∂Hα∗

2
(v)

∂α∗

2

Hα∗

2
(v)






Πn

l=1Hα∗

l
(v)dv.

Also, note that posterior estimated distribution functions are the same for all homogeneous

bidders and
∂Hαi

(v)

∂αi

1
Hαi

(v) is strictly increasing in αi for all v. Then, when α∗
1 < α∗

2, we have

∂Hα∗

1
(v)

∂α∗

1

Hα∗

1
(v)

<

∂Hα∗

2
(v)

∂α∗

2

Hα∗

2
(v)

,
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and thus, V1(α
∗
1, α

∗
2, α

∗
−1,2) > V2(α

∗
1, α

∗
2, α

∗
−1,2). Therefore, we have

C ′(α∗
2) ≤ V2(α

∗
1, α

∗
2, α

∗
−1,2) < V1(α

∗
1, α

∗
2, α

∗
−1,2) ≤ C ′(α∗

1),

which implies α∗
1 > α∗

2, a contradiction. Hence the equilibrium must be symmetric.

We now show the equilibrium is unique. To do so, we first show the interior equilibrium is

unique. For the interior equilibrium, the Kuhn-Tucker condition (13) reduces to

Vi(αi, α−i) − C ′(αi) = 0.

Then for any symmetric interior equilibrium, we have Vi(α)−C ′(α) = 0, where α = (α, . . . , α).

Let Gi(α) = Vi(α) − C ′(α). Then the first derivative is

G′
i(α) =

n
∑

j=1

∂Vi(α)

∂αj
− C ′′(α).

Recall that C ′′(α) ≥ 0, and by Lemma 4, ∂Vi(αi)
∂αi

< 0. Also, when α = (α, . . . , α) and bidders

are homogeneous, we have
∂Hαi

(vi)

∂αi
≡ ∂Hαj

(vi)

∂αj
for all vi, and thus

∂Vi(α)

∂αj
= −

∫ ωi

ωi

∂Hαi
(vi)

∂αi

∂Hαj
(vi)

∂αj
Πl 6=i,jHαl

(vi)dvi

= −
∫ ωi

ωi

(

∂Hαi
(vi)

∂αi

)2

Πl 6=i,jHαl
(vi)dvi

≤ 0 ∀j 6= i.

Thus Gi(α)′ < 0. Therefore, the strict monotonicity implies the uniqueness of symmetric equi-

librium.

We then show the uniqueness of corner equilibrium. Since it must be symmetric, there are

only two possible corner equilibria: (α, . . . , α) and (α, . . . , α).

By the Kuhn-Tucker condition (13), we have Vi(α, . . . , α) ≤ C ′(α) for the equilibrium

(α, . . . , α); and Vi(α, . . . , α) ≤ C ′(α) for the equilibrium (α, . . . , α).

Since Vi(·) is strictly decreasing in αi by Lemma 4, we have Vi(α, . . . , α) > Vi(α, . . . , α) and

thus the two possible equilibria cannot exist simultaneously.

We last show that the interior equilibrium and the corner equilibrium cannot exist simulta-

neously. Suppose not. Without loss generality, there are an interior equilibrium (α, . . . , α) and

a corner equilibrium (α, . . . , α). Then, the above discussion implies V(α, . . . , α) = C ′(α) and
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V(α, . . . , α) ≤ C ′(α). This indicates

C ′(α) = V(α, . . . , α) < V(α, . . . , α) ≤ C ′(α)

and consequently, we have α < α, a contradiction.

Therefore, the equilibrium must be symmetric and unique. ■

Proof of Proposition 8: By Proposition 7, symmetric bidders of the same type must

choose the same information level. This indicates that equilibrium must be type-symmetric. ■

Proof of Proposition 9: To show the first part of the proposition, one only has to recall

that, for any two homogeneous bidders, their updated distributions have a special property:

if αi = αj , then Vi(αi, α−i) = Vj(αj , α−j). Suppose that bidder ik and js are in different

groups, with IA cost function Ck(α) and Cs(α) respectively. If they choose the same information

level other than α and α, then by equation (13) we must have Vik(αi, α−i) = C ′
k(αk) and

Vjs(αj , α−j) = C ′
s(αs).

Then,

C ′
k(α

∗
k) = Vik(α

∗
i , α

∗
−i) = Vjs(α

∗
j , α

∗
−j) = C ′

s(α
∗
j )

by noting that, by assumption, distribution functions Fk(·) and Gk(·) are the same for all bidders.

However, since C ′
k(α) 6= C ′

s(α), we have α∗
k 6= α∗

s, a contradiction. Thus, when bidders’ cost

functions are different, bidders must choose different information levels in equilibrium.

We now show the second part. We need to show that α∗
k ≤ α∗

s provided C ′
k(α) > C ′

s(α).

Suppose not. From the proof of Proposition 7, we know that C ′
k(α

∗
k) = Vk(α

∗
k, α

∗
−k) ≤

Vs(α
∗
s, α

∗
−s) = C ′

s(α
∗
s). But this can not be true because α∗

k > α∗
s and C ′

k(α) > C ′
s(α). Thus

α∗
k ≤ α∗

s. ■
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