
Munich Personal RePEc Archive

Second-price Auction with

Two-Dimensional Private Information on

Values and Participation Costs

Cao, Xiaoyong and Tian, Guoqiang

February 2007

Online at https://mpra.ub.uni-muenchen.de/41224/

MPRA Paper No. 41224, posted 12 Sep 2012 12:54 UTC



Second Price Auctions with Two-Dimensional Private

Information on Values and Participation Costs∗

Xiaoyong Cao

Department of Economics

Texas A&M University

College Station, TX 77843

Guoqiang Tian

Department of Economics

Texas A&M University

College Station, TX 77843

May, 2009

Abstract

This paper studies equilibria of second price auctions when values and participation

costs are both privation information and are drawn from general distribution functions. We

consider the existence and uniqueness of equilibrium. It is shown that there always exists an

equilibrium for this general economy, and further there exists a unique symmetric equilibrium

when all bidders are ex ante homogenous. Moreover, we identify a sufficient condition under

which we have a unique equilibrium in a heterogenous economy with two bidders. Our

general framework covers many relevant models in the literature as special cases.
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1 Introduction

While an auction is an effective way to exploit private information by increasing the competition

among buyers and thus can increase allocation efficiency, it is not freely implemented actually.

One may incur some cost before submitting a bid. This paper studies (Bayesian-Nash) equilibria

of sealed-bid second price, or Vickrey, auctions with bidder participation costs in a general two

dimensional economic environment.
∗Comments from participants in student seminar of Theory and Experimental Economics at Department of

Economics, Texas A&M University are greatly acknowledged. Corresponding authors’ email addresses: Xiaoyong

Cao: yongcx2000@tamu.edu; Guoqiang Tian: tian@econmail.tamu.edu.
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1.1 Motivation

The fundamental structure of an auction with bidder participation costs is one in which an

indivisible object is to be allocated to one of many buyers via the auction and in order to

participate, bidders may have to incur some participation costs1.

There are many sources for participation costs. For instance, sellers may require that those

who submit bids have a certain minimum amount of bidding funds which may compel some

bidders to borrow; bidders themselves may have transportation costs to go to an auction spot;

or they need spend some money to learn the rules of the auction and how to submit bids. Bidders

may even have opportunity costs to attend an auction.

There are some studies on the information acquisition in auctions. A bidder may want to

learn how he/she and the others value the item, and thus he/she may incur a cost in infor-

mation acquisition about their valuations2. A main difference between participation costs and

information acquisition costs is that information acquisition costs are avoidable while partici-

pation costs are not. If a bidder does not want to collect information about her own or others’

valuations, she does not incur any cost, but she can still submit bids. Some researchers, such

as McAfee and McMillan (1987), Harstad (1990) and Levin and Smith (1994), combine the idea

of participation costs and the idea of information acquisition costs. Compete and Jehiel (2007)

investigate the advantage of using dynamic auctions in the presence of information acquisition

cost only. However, information acquisition costs and participation costs can both be regarded

as sunk costs after the bidders submit bids.

With participation costs, not all bidders will be involved in playing the games. If a bidder’s

expected revenue from participating in the auction is less than the participation cost, he will

not participate. Otherwise, the bidder participates and submits a bid accordingly. Even if a

bidder decides to participate in the auction, since he may expect some other bidders will not

participate in the auction, his bidding behavior may not be the same as that in the standard

auction without participation costs.

Addressing the question of participation costs may have important implications. One can

characterize the bidding behavior in an auction with participation costs and see how the equi-

libria will be different from those without participation costs, and then one can derive the

implications to the bidders, to the sellers and to the society which, in turn, may be helpful for

1Some related terminology includes participation cost, participation fee, entry cost or opportunity costs. See

Laffont and Green (1984), Samuelson (1986), McAfee and McMillan (1987) etc.
2Persico (2000) studied the incentives of information acquisition in auctions. He found that bidders have more

incentives for information acquisition in first price auctions than in second price auctions.
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the optimal selling mechanism design.

1.2 Related Literature

The study of participation costs in auctions mainly focuses on second price auctions due to the

simplicity of bidding behavior. In a standard second price auction, bidding one’s true valuation

is a weakly dominant strategy. There are also other equilibria in the standard second price

auction as shown in Blume and Heidhues (2004), for example, the bidder with the highest value

bids his true value and all others bid zero. This is referred as the asymmetric bidding equilibrium

in the standard second price auction. However, in second price auctions with participation costs,

so long as a bidder finds participating optimal, he cannot do better than bidding his true value.

Therefore in this paper we only consider equilibria in which each bidder uses a cutoff strategy;

i.e., bids his true if one finds participating optimal, does not participate otherwise. All of our

results about the uniqueness or multiplicity of equilibria, then, should be interpreted accordingly.

Laffont and Green (1984) studied the second price auction with participation costs in a gen-

eral framework where bidders’ valuations and participation costs are both private information.

However, their proof on the existence and uniqueness of equilibrium is incomplete. They wanted

to show the existence and uniqueness of symmetric equilibrium via contract mapping theorem.

However, the condition for that theorem to hold does not satisfied. Besides, they imposed a

restrictive assumption of uniform distributions for both values and participation costs and only

considered symmetric equilibrium. Recently, some work in the literature has been done on equi-

libria of the second price auction with participation costs in simplified versions where either only

valuations or participation costs are private.

Campbell (1998) and Tan and Yilankaya (2006) studied equilibria and their properties in

an economic environment when bidders’ values are private information and participation costs

are common knowledge and the same. They did find asymmetric equilibria when bidders are ex

ante homogenerous. Uniqueness of the equilibrium cannot be guaranteed. Some other studies,

including Samuelson (1985), Stegaman (1996), Levin and Smith (1994), etc, also assumed that

participation costs are the same across players. While the assumption of equal participation costs

is stringent and unrealistic, Cao and Tian (2008) investigated the equilibria when bidders may

have differentiated participation costs. They introduced the notions of monotonic equilibrium

and neg-monotonic equilibrium.

Kaplan and Sela (2006) simplified the framework of Laffont and Green in another way. They

studied equilibria of second price auctions with participation costs when bidders’ participation
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costs are private information and are drawn from the same distribution function, while valuations

are common knowledge.

Thus, up to now, the problem considered in Laffont and Green (1984) has only been answered

in some special settings: either participation costs are commonly known or values are publicly

known. However, in reality, it is possible that both the valuations and participation costs are

private information. Some participation costs are observable to the seller such as the entry fee;

some are unobservable to the seller such as the learning costs. A natural way to deal with this

is to allow both valuations and participation costs of bidders are private information and their

distribution functions are general and may be different. This paper aims to give an answer to

the question raised in Laffont and Green (1984) in a general framework3.

1.3 Objects of The Paper

This paper studies equilibria of second price auctions with general distribution functions on valu-

ations and participation costs. The special cases of this general specification includes that either

the valuations or participation costs are common knowledge, as those have been investigated in

previous literature.

Under a general two-dimensional distribution of the bidders’ participation costs and valu-

ations we prove that the equilibria always exist. When bidders have the same distributions,

there exists a unique symmetric equilibrium. Moreover, we identify the conditions under which

we have a unique equilibrium in a simple two bidder economy. Special cases in which multiple

equilibria exist are also discussed. There may exist an equilibrium in which one bidder never

participates or an equilibrium in which one bidder always participates.

As compared to the work by Laffont and Green (1984), our general framework can not

only establish the existence of equilibrium and uniqueness of symmetric equilibrium in the two-

dimensional uniform setting, but can also do that in many other two-dimensional settings such as

truncated normal distributions, exponential distributions etc. Not restricted to the symmetric

equilibrium when all bidders are homogenous, our framework can deal with the asymmetric

equilibria which have been seen in literature with one-dimensional private information, like

those in Tan and Yilankaya (2006).

The existence of asymmetric equilibria has important consequences for the strategic behavior

3It should be pointed out that the framework considered can be applied to many other participation costs

related economic issues. For instance, in order to decide whether or not enter an undeveloped market, one needs

to know the possible revenue before he enters the market and compare that with the necessary costs. To do this,

one must also consider the possible entrance behavior of other opponents.
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of bidders and the efficiency of the auction mechanism. When an auction has a participation

cost, a bidder would expect less bidders to submit their bids. When symmetric equilibrium is

unique, every bidder has to follow the symmetric cutoff and has no other choices. However,

when asymmetric equilibria exist, bidders may choose an equilibrium they are more desirable.

In this case, some bidders may form a collusion to cooperate at the entrance stage by choosing a

smaller cutoff point that may decrease the probability that other bidders enter the auction, and

consequently, may reduce the competition in the bidding stage. An asymmetric equilibrium may

become more desirable when an auction can run repeatedly. Also, an asymmetric equilibrium

may be ex-post inefficient. The item being auctioned is not necessarily allocated to the bidder

with the highest valuation.

The remainder of the paper proceeds as follows. In Section 2, we describe a general setting of

economic environments. We establish the existence of equilibrium in Section 3. The uniqueness

of equilibrium is discussed in section 4. In section 5 we give a brief discussion about the existence

of multiple equilibria. Concluding remarks are provided in Section 6. All the proofs are relegated

to the appendix.

2 The Setup

We consider an independent value economic environment with one seller and n buyers. Let

N = {1, 2, . . . , n}. The seller has an indivisible object which he values at zero to sell to one

of the buyers. The auction format is the sealed-bid second price auction (see Vickrey, 1961).

In order to submit a bid, bidder i must pay a participation cost ci. Buyer i’s value for the

object, vi, and participation cost ci are private and independently drawn from the distribution

function Ki(vi, ci) with the support [0, 1]× [0, 1]. Let ki(vi, ci) denote the corresponding density

function. In particular, when vi and ci are independent, we have Ki(vi, ci) = Fi(vi)Gi(ci)

and ki(vi, ci) = fi(vi)gi(ci), where Fi(vi) and Gi(ci) are the cumulative distribution functions

of bidder i’s valuation and participation cost, fi(vi) and gi(ci)
4 are the corresponding density

functions.

Each bidder knows his own value and participation cost before he makes his entrance decision

and does not know others’ decisions when one makes his own. If bidder i decides to participate

in the auction, he pays a non-refundable participation cost ci and submits a bid. The bidder

4When vi or ci takes discrete values, their density functions fi(v) and gi(ci) are reduced to the discrete

probability distribution functions, which can be represented by the Dirac delta function. The density at the

discrete point is infinity.
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with the highest bid wins the object and pays the second highest bid. If there is only one person

in the auction, he wins the object and pays 0. If there is a tie, the allocation is determined by

a fair lottery. The bidder who wins the object pays his own bid.

In this second price auction mechanism with participation costs, the individually rational

action set for any type of bidder is :{No} ∪ (0, 1]5, where “{No}” denotes not participating in

the auction. Bidder i incurs the participation cost if and only if his action is different from

“{No}”.

Bidders are risk neutral and they will compare the expected revenues from participating

and participation costs to decide whether or not to participate. If the expected revenue from

participating is less than the costs, not participate. Otherwise, participate and submit bids.

Further if a bidder finds participating in this second price auction optimal, he cannot do better

than bidding his true valuation (i.e., bidding his true value is a weakly dominant strategy).

Therefore, we can restrict our attention to Bayesian-Nash equilibria in which each bidder uses a

cutoff strategy; i.e., one bids his true valuation if his participation cost is less than some cutoff

point and does not enter otherwise. An equilibrium strategy of each bidder i is then determined

by the expected revenue of participating in the auction c∗i (vi) when his value is vi
6. Let bi(vi, ci)

denote bidder i’s strategy. Then the bidding decision function can be characterized by

bi(vi, ci) =





vi if 0 ≤ ci ≤ c∗i (vi)

No otherwise.

Remark 1 At an equilibrium, c∗i (vi) > 0 is a cost cutoff (critical) point such that individual i

is indifferent from participating in the auction or not. Bidder i will participate in the auction

whenever 0 < ci ≤ c∗i (vi). Note that at equilibrium, we have c∗i (vi) ≤ vi.

The description of the equilibria can be slightly different under different informational struc-

tures on Ki(vi, ci):

(1) vi is a private information and ci is common knowledge to all bidders. In this

case, Ki(vi, ci) = Fi(vi). Campbell (1998), Tan and Yilankaya (2006) and Cao

and Tian (2007) studied this special case. The equilibrium is described by a

valuation cutoff v∗i for each bidder i. Bidder i submits a bid when vi ≥ v∗i .

(2) ci is a private information and vi is common knowledge to all bidders. In this case,

Ki(vi, ci) = Gi(ci). Kalpan and Sela (2006) investigated this kind of economic

5For completeness, we assume a bidder with valuation 0 and participation cost 0 does not participate in the

auction. The strategy of {No} will be denoted by 0.
6In equilibrium, c∗i (vi) depends on the distributions of all bidders’ valuations and participation costs.
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environment. The equilibrium is described by a cost cutoff point cost c∗i for each

bidder i. Bidder i submits a bid when ci ≤ c∗i .

3 The Existence of Equilibrium

Suppose, provisionally, there exists an equilibrium in which each bidder i uses c∗i (vi) as his

entrance decision making. Then for bidder i with value vi, when his participation cost ci ≤ c∗i (vi),

the bidder will participate in the auction and submit his weakly dominant bid, or else he will stay

out7. For bidder i, to submit a bid vi, he should participate in the auction first; i.e., ci ≤ c∗i (vi).

So the density of submitting a bid vi is

fc∗i (vi)(vi) =

∫ c∗i (vi)

0
ki(vi, ci)dci.

Remark 2 When vi and ci are independent, bidder i with value vi will submit the bid vi with

probability Gi(c
∗
i (vi)) and stay out with probability 1 −Gi(c

∗
i (vi)).

fc∗i (vi)(0) refers the probability (density) that bidder i does not submit a bid. Let Fc∗i (vi)(vi)

be the corresponding cumulative probability. Note that there is a mass at vi = 0 for Fc∗i (vi)(vi).

For each bidder i, let the maximal bid of the other bidders be mi. Note that, if mi > 0, at

least one of other bidders participates in the auction. If mi = 0, no other bidders participates

in the auction.

The revenue of participating in the auction for bidder i with value vi is given by
∫ vi

0 (vi −
mi)d

∏
j 6=i Fc∗j

(mi), and thus the zero expected net-payoff condition for bidder i to participate

in the auction when his valuation is vi requires that

c∗i (vi) =

∫ vi

0
(vi −mi)d

∏

j 6=i

Fc∗j
(mi).

If mi = 0, none of the other bidders will participate in the auction, the probability of which

is
∏

j 6=i

Fc∗j
(0) =

∏

j 6=i

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ.

Otherwise, at least one other bidder submits a bid. Then

∏

j 6=i

Fc∗j
(mi) =

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ].

7c∗i (vi) can be interpreted as the maximal amount that bidder i would like to pay to participate in the auction

when his value is vi.
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Thus, the cutoff curve for individual i, i ∈ 1, 2, ...n, can be characterized by

c∗i (vi) =

∫ vi

0
(vi −mi)d

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] + vi

∏

j 6=i

[

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ ].

Now, integrating the first part by parts, we have

c∗i (vi) =

∫ vi

0
(vi −mi)d

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] + vi

∏

j 6=i

[

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ ]

= (vi −mi)
∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] |vi

0 +vi

∏

j 6=i

[

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ ]

+

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi

= −vi

∏

j 6=i

[1 −
∫ 1

0

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] + vi

∏

j 6=i

[

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ ]

+

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi

Since

∫ 1

0

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ +

∫ 1

0

∫ 1

c∗j (τ)
kj(τ, cj)dcjdτ =

∫ 1

0

∫ 1

0
kj(τ, cj)dcjdτ = 1,

we have

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi. (1)

Remark 3 When vi and ci are independent,Ki(vi, ci) = Fi(vi)Gi(ci) and ki(vi, ci) = fi(vi)gi(ci),

we have

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

Gj(cj(τ))fj(τ)dτ ]dmi.

Take derivative of equation (1) with respect to vi, we have

c∗i
′(vi) =

∏

j 6=i

[1 −
∫ 1

vi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]. (2)

Notice that c∗i (0) = 0, thus the above equation is a functional differential equation with the

initial condition. Specially when vi and ci are independent,

c∗i
′(vi) =

∏

j 6=i

[1 −
∫ 1

vi

Gj(c
∗
j (τ))fj(τ)dτ ].

Lemma 1 c∗i (vi) has the following properties:
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(i) c∗i (0) = 0.

(ii) 0 ≤ c∗i (vi) ≤ vi.

(iii) c∗i
′(1) = 1.

(iv)
dc∗i (vi)

dn
< 0.

(v)
dc∗i (vi)

dvi
≥ 0 and

d2c∗i (vi)

dv2

i

≥ 0

(i) means that, when bidder i’s value for the object is 0, the value of participating in the

auction for bidder i is zero and thus the cutoff cost point for the bidder to enter the auction is

zero. Then, as long as the bidder has participation cost bigger than zero, he will not participate

in the auction.

(ii) means that a bidder will not be willing to pay more than his value to participate in the

auction.

(iii) means that, when a bidder’s value is 1, the marginal willingness to pay to enter the

auction is 1. The intuition is that when his value for the object is 1, he will win the object

almost surely. Then the marginal willingness to pay is equal to the marginal increase in the

valuation.

(iv) states that the participation cutoff point is a nondecreasing function in the number of

bidders. As the number of bidders increases, the probability to win the object will decrease,

holding other things constant. More bidders will increase the competition among the bidders

and thus reduce the expected revenue.

(v) states that the marginal willingness to pay is positive and increasing. The intuition is

that when a bidder’s value increases, the probability of winning the auction increases. The

willingness to pay increases and so is the marginal willingness to pay.

Definition 1 Given the economic environment and the properties described above, a cutoff

curve equilibrium is a n-dimensional plane compromised by (c∗1(v1), c
∗
2(v2), ...c

∗
n(vn)) that is a

solution of the following equation system:

(P1)





c∗1(v1) =
∫ v1

0

∏
j 6=1[1 −

∫ 1
m1

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dm1

c∗2(v2) =
∫ v2

0

∏
j 6=2[1 −

∫ 1
m2

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dm2

...

c∗n(vn) =
∫ vn

0

∏
j 6=n[1 −

∫ 1
mn

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dmn,
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or equivalently the following differential equation system problem with initial conditions:

(P2)





c∗1
′(v1) =

∏
j 6=1[1 −

∫ 1
v1

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ] with c∗1(0) = 0

c∗2
′(v2) =

∏
j 6=2[1 −

∫ 1
v2

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ] with c∗2(0) = 0
...

c∗n
′(vn) =

∏
j 6=n[1 −

∫ 1
vn

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ] with c∗n(0) = 0.

We then have the following result on the existence of equilibrium (c∗1(v1), . . . , c
∗
i (vi), . . . , c

∗
n(vn))

for vi ∈ [0, 1], i ∈ {1, 2, ...n}.

Proposition 1 (The Existence Theorem) For the economic environment under consider-

ation, the integral equation system (P1) or the differential equation system (P2) with initial

conditions ci(0) = 0 for all i has at least one solution (c∗1(v1), c
∗
2(v2), ...c

∗
n(vn)), i.e., there is

always an equilibrium in which every bidder i uses his cutoff curve c∗i (vi).

The differential equation system above is a partial functional differential equation system,

but not a partial differential equation system. The derivatives of c∗i (vi) at vi depends not only

on vi itself, but also on the future path of c∗i (vj) with j 6= i and vj ≥ vi. Beyond that, we have

multiple variables in the functional differential equation system which increases the difficulty to

show the existence of equilibrium. However, we can transfer the original differential equation

system to the following differential equation system

(P3)





c∗1(v) =
∫ v

0

∏
j 6=1[1 −

∫ 1
m1

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dm1

c∗2(v) =
∫ v

0

∏
j 6=2[1 −

∫ 1
m2

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dm2

...

c∗n(v) =
∫ v

0

∏
j 6=n[1 −

∫ 1
mn

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ ]dmn.

Lemma 2 Problem (P1) and problem (P3) are equivalently solvable in the sense that

(1), if (c∗1(v1), c
∗
2(v2), ..., c

∗
n(vn)) is a solution to problem (P1), then (c∗1(v), c

∗
2(v), ..., c

∗
n(v)) is a

solution to problem (P3).

(2), if (c∗1(v), c
∗
2(v), ..., c

∗
n(v)) to problem (P3), then (c∗1(v1), c

∗
2(v2), ..., c

∗
n(vn)) is a solution to

problem (P1).

Thus we have reduced the multiple variables functional differential equation system to a

single variable functional equation system.

Remark 4 When vi and ci are independent, the equilibrium is a n-dimensional plane composed
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by (c∗1(v), c
∗
2(v), ...c

∗
n(v)) that is a solution of the following equation system:

(P4)





c∗1(v) =
∫ v

0

∏
j 6=1[1 −

∫ 1
m1
Gj(c

∗
j (τ))fj(τ)dτ ]dm1

c∗2(v) =
∫ v

0

∏
j 6=2[1 −

∫ 1
m2
Gj(c

∗
j (τ))fj(τ)dτ ]dm2

...

c∗n(v) =
∫ v

0

∏
j 6=n[1 −

∫ 1
mn

Gj(c
∗
j (τ))fj(τ)dτ ]dmn,

or equivalently the following differential equation system problem with initial conditions:

(P5)





c∗1
′(v) =

∏
j 6=1[1 −

∫ 1
v
Gj(c

∗
j (τ))fj(τ)dτ ] with c∗1(0) = 0,

c∗2
′(v) =

∏
j 6=2[1 −

∫ 1
v
Gj(c

∗
j (τ))fj(τ)dτ ] with c∗2(0) = 0,
...

c∗n
′(v) =

∏
j 6=n[1 −

∫ 1
v
Gj(c

∗
j (τ))fj(τ)dτ ] with c∗n(0) = 0.

This general model with two-dimensional private values and participation costs with general

distribution functions is very general and contains many existing results as special cases. In the

following, for simplicity, we assume vi and ci are independent to illustrate the generality of our

setting.

Case 1. Suppose there is a subset, denoted by A, of bidders whose valuations are common

knowledge. Then for all i ∈ Ā = N \A, we have

c∗i (v) =

∫ v

0

∏

j∈Ā\{i}

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]

∏

j∈A\{i},vj>v

[1 −Gj(c
∗
j (vj))]

×
∏

j∈Ā\{i},vj<v

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]dmi.

For all i ∈ A,

c∗i (vi) =

∫ vi

0

∏

j∈Ā\{i}

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]

∏

j∈A\{i},vj>vi

[1 −Gj(c
∗
j (vj))]

×
∏

j∈A\{i},vj<vi

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]dmi.

In this case, one needs to distinguish the difference between vi > vj and vj > vi, since under

these two situations the expected revenue has different expressions.

Example 1 Suppose n = 2 and v1 < v2 is common knowledge, we have two bidders. Then for
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the bidder with value v1,

c∗2(v2) =

∫ v2

0
[1 −

∫ 1

m2

G1(c
∗
1(τ))f1(τ)dτ ]dm2

=

∫ v1

0
[1 −

∫ 1

m2

G1(c
∗
1(τ))f1(τ)dτ ]dm2

+

∫ v2

v1

[1 −
∫ 1

m2

G1(c
∗
1(τ))f1(τ)dτ ]dm2

= v1(1 −G1(c
∗
1(v1))) + (v2 − v1),

and

c∗1(v1) =

∫ v1

0
[1 −

∫ 1

m1

G2(c
∗
2(τ))f2(τ)dτ ]dm1

=

∫ v1

0
[1 −G2(c

∗
2(v2)]dm1 = v1(1 −G2(c

∗
2(v2))).

which can be reduced to the formula obtained in Kaplan and Sela (2006) when the cost distri-

bution functions are the same.

Case 2. On the contrary, suppose there is a subset, denoted by B, of bidders whose

participation costs are common knowledge, as discussed in Tan and Yilankaya (2006) and Cao

and Tian (2007). Let Ā = N \A. Then, for all i ∈ N , we have

c∗i (vi) =

∫ vi

0

∏

j∈B\{i}

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]

∏

j∈B̄\{i}

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]dmi

=

∫ vi

0

∏

j∈B\{i}

[1 −
∫ 1

m∗

j

Gj(c
∗
j (τ))fj(τ)dτ ]

∏

j∈B̄\{i}

[1 −
∫ 1

mj

Gj(c
∗
j (τ))fj(τ)dτ ]dmi

=

∫ vi

0

∏

j∈B\{i},mj>v

[1 −
∫ 1

mj

Gj(c
∗
j (τ))fj(τ)dτ ]

∏

j∈B\{i},mj<v

[1 −
∫ 1

mj

Gj(c
∗
j (τ))fj(τ)dτ ]

×
∏

j∈B̄\{i}

[1 −
∫ 1

mi

Gj(c
∗
j (τ))fj(τ)dτ ]dmi,

where m∗
j is determined by c∗j (mj) = cj for j ∈ B. It may be remarked that c∗i (vi) may have

different functional forms when vi is in the different regions of vi > m∗
j and vi ≤ m∗

j .

Example 2 Consider an economic environment with two bidders whose values are drawn from

the same continuous distribution function F (v). Bidders’ participation costs are common knowl-

edge and the same, c1 = c2 = c. This is an economy studied in Tan and Yilankaya (2006) for

n = 2. Let c∗1(m
∗
1) = c∗2(m

∗
2) = c.

Then for bidder 1, we have

c∗1(vi) =

∫ vi

0
[1 −

∫ 1

m1

G(c∗2(τ))f(τ)dm1]dτ.

12



As such, we have

c∗1(v1) =

∫ v1

0
[1 −

∫ 1

m∗

2

G(c∗2(τ))f(τ)dm1]dτ = F (m∗
2)v1

when v1 < m∗
2, and

c∗1(v1) =

∫ m∗

2

0
[1 −

∫ 1

m∗

2

G(c∗2(τ))f(τ)dm1]dτ +

∫ v1

m∗

2

[1 −
∫ 1

m∗

2

G(c∗2(τ))f(τ)dm1]dτ

= F (m∗
2)m

∗
2 +

∫ v1

m∗

2

F (m1)dm1

when v1 ≥ m∗
2.

Similarly, for bidder 2, we have

c∗2(v2) =

∫ v2

0
[1 −

∫ 1

m2

G(c∗1(τ))f(τ)dτ ]dm2.

Then, we have c∗2(v2) = F (m∗
1)v2 when v2 < m∗

1, and c∗2(v2) = F (m∗
1)m

∗
1 +

∫ v2

m∗

1

F (m2)dm2 when

v2 ≥ m∗
1.

We can use these equations to find the cutoff points. It is clear that there is a symmetric

equilibrium in which both bidders use the same cutoff point m∗
1 = m∗

2 = m∗, which satisfies the

equation

m∗F (m∗) = c.

Indeed, by the monotonicity of m∗F (m∗), the symmetric equilibrium exists and is unique.

Now if we provisionally suppose that m∗
1 < m∗

2, then we should have

c∗1(m
∗
1) = m∗

1F (m∗
2) = c,

and

c∗2(m
∗
2) = m∗

1F (m∗
1) +

∫ m∗

2

m∗

1

F (m2)dm2 = c.

Tan and Yilankaya (2006) showed that when F (v) is strictly convex, there exists m∗
1 < m∗

2

satisfying the above two equations.

We can use a graph to illustrate the equilibria in Example 2. There are three curves in the

graph. The middle curve indicates both bidders use the same cutoff point c∗(v), and then they

have the same cutoff point m∗. The highest curve is bidder 1’s reaction curve c∗1(v1). There is

a kink at v1 = m∗
2. Before this point, the curve is a straight line passing through the original

point with slope F (m∗
2). After m∗

2, it is a smooth curve with the slope changing along the curve,

which is F (v). We can see as v → 1, the slope goes to 1, which is consistent with properties of

13



Figure 1: Symmetric & Asymmetric Equilibrium With 2 Bidders

the cutoff curves discribed in Lemma 1. The lowest curve is bidder 2’s reaction curve c∗2(v2).

The equilibrium is the intersection of the horizontal line c and each bidder’s cutoff curve.

Case 3. When all participation costs are zero, Gi(c
∗
i (τ)) = 1 for all τ and all i. Then

c∗i (v) =

∫ v

0

∏

j 6=i

[1 −
∫ 1

mi

fj(τ)dτ ]dmi =

∫ v

0

∏

j 6=i

Fj(mi)dmi > 0,

and thus, a bidder with positive value for the object will always participate in the auction and

submit a bid. Under this circumstance the entrance equilibrium curve is unique.

Case 4. When all participation costs are 1, Gj(c
∗
j (τ)) = 0 for all c∗j (τ) < 1, and thus

c∗i
′(v) = 1. Considering the initial condition, we have c∗i (vi) = vi, i.e., a bidder with value vi

would like to pay at most vi to enter the auction. Now since the designed participation cost is

1 for all bidders, then there will be no one participating in the auction.

4 Uniqueness of Equilibrium

To investigate the uniqueness of the equilibrium c∗(v), we can focus on uniqueness of the solution

of (P3) by Lemma 2. We first consider the case that all bidders are ex ante homogeneous in the

sense that they have the same joint distribuiton functions of valuations and participation costs

and focus on the symmetric equilibrium in which all bidders use the same cutoff curve, and then

study the uniqueness of equilibrium for a more general case. Then (P3) can be simply written

as
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c∗(v) =

∫ v

0
[1 −

∫ 1

m

∫ c∗(τ)

0
kj(τ, c)dcdτ ]

n−1dm, (3)

and correspondingly we have

c∗′(v) = [1 −
∫ 1

v

∫ c∗(τ)

0
k(τ, c)dcdτ ]n−1, c∗(0) = 0. (4)

We first give the uniqueness of the symmetric equilibrium when all bidders are ex ante

homogeneous.

Proposition 2 (Uniqueness of Symmetric Equilibrium) For the economic environment

under consideration in this section, suppose that all bidders have the same distribution func-

tion K(v, c). There is a unique solution c∗(v) to integral equation (3) or differential equation

(4) with initial condition. Consequently, there exists a unique symmetric equilibrium at which

each bidder uses the same cutoff curve for his entrance decision making.

Remark 5 Uniqueness of the symmetric equilibrium has been established in some special cases.

1) In Campbell (1998) and Tan and Yilankaya (2006), when bidders have the same

participation cost and continuously differentiable valuation distribution function,

there is a unique symmetric equilibrium in which each bidder uses a same cutoff

point vs for their entrance decision making.

2) In Kaplan and Sela (2006), when all bidders have the same valuations for the

object and continuously differentiable participation cost distribution functions,

there is a unique symmetric cutoff point c∗.

3) More earlier, Laffont and Green (1984) investigated the existence of equilibria

when both valuation and participation costs are uniform distributed. They got

the uniqueness of the symmetric equilibrium under the simple two-dimensional

economic environment. However their proof is incomplete.

Remark 6 Note that the above proposition only shows that the uniqueness of symmetric equi-

librium when bidders are ex ante homogeneous. It does not exclude the possibility of the

asymmetric equilibrium. As those in Tan and Yilankaya (2006), Kalpan and Sela (2006), there

are some examples where ex-ante homogeneous bidders may use different cutoffs which means

the equilibria are not unique.

Now under the assumption of independence of vi and ci, We consider the uniqueness of the

functional differential equation system (P3). For simplicity we consider a simple economy with

only two bidders. The corresponding functional differential equation system can be written as:
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(P6)





c∗1
′(v) = [1 −

∫ 1
v
G2(c

∗
2(τ))f2(τ)dτ ], c

∗
1(0) = 0,

c∗2
′(v) = [1 −

∫ 1
v
G1(c

∗
1(τ))f1(τ)dτ ], c

∗
2(0) = 0.

Proposition 3 (Uniqueness of Equilibrium) In the two bidder economy with Gi(c) is con-

tinuously differentiable on [0, 1] and δi = maxc gi(c), there is a unique equilibrium when δi
∫ 1
0 (1−

Fi(s))ds < 1.

WhenGi(ci) is uniform on [0, 1], δi = 1 and
∫ 1
0 (1−Fi(s))ds < 1, we have a unique equilibrium.

Specially when bidders are ex ante homogenous, the unique equilibrium is symmetric. To see

this, consider the following examples.

Example 3 This example follows from Example 1. Assume that Gi(ci) is uniform on [0, 1].

Then we have 



c∗1(v1) = v1(1 − c∗2(v2)),

c∗2(v2) = v2 − v1c
∗
1(v1).

There is a unique equilibrium given by c∗1(v1) = v1(1−v2)
1−v2

1

and c∗2(v2) = v2(1−v2)
1−v2

1

. Further we can

check that when v1 = v2 = v, the unique equilibrium is symmetric with c∗1(v) = c∗2(v) = v
1+v

.

Example 4 Now we assume Gi(c) and Fi(v) are both uniform on [0, 1]. At equilibrium we have

c∗1
′(v) = 1 −

∫ 1

v

c∗2(τ)dτ,

c∗2
′(v) = 1 −

∫ 1

v

c∗1(τ)dτ.

Then c∗1
′′(v) = c∗2(v) and c∗2

′′(v) = c∗1(v). Thus we have c∗1
(4)(v) = c∗1(v) and c∗2

(4)(v) = c∗2(v)

with c∗1(0) = 0, c∗1
′(1) = 1, c∗2(0) = 0 and c∗2

′(1) = 1. One can check that the only equilibrium is

c∗1(v) = c∗2(v) = aev − ae−v, where a = e
e2+1

.

5 Discussions

There are in general multiple equilibria in the setting under consideration. Examples can be

found in Campbell (1998), Tan and Yilankaya (2006), Cao and Tian (2007) and Kaplan and Sela

(2006) where either participation costs or valuations are common knowledge. In this section we

provide evidence for the multiplicity of equilibria even when both the participation costs and

valuations are private information.

Suppose the support of vi and ci to be [0, 1]× [ǫ, δ], where [ǫ, δ] is a subset of [0, 1] and ǫ > 0.

To investigate the existence of equilibrium, we construct a new density function k̃i(vi, ci) with
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support [0, 1] × [0, 1] which has the same density as ki(vi, ci) on the interval [0, 1] × [ǫ, δ] and

0 otherwise and K̃i(vi, ci) is the corresponding cumulative density function. The same as in

Section 3, the equilibrium cutoff curve for individual i, i ∈ 1, 2, ...n, is given by

c∗i (vi) =

∫ vi

0
(vi −mi)d

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
k̃j(τ, cj)dcjdτ ] + vi

∏

j 6=i

[

∫ 1

0

∫ 1

c∗j (τ)
k̃j(τ, cj)dcjdτ ].

After integration by parts we have

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
k̃j(τ, cj)dcjdτ ]dmi.

Then

c∗i
′(vi) =

∏

j 6=i

[1 −
∫ 1

vi

∫ c∗j (τ)

0
k̃j(τ, cj)dcjdτ ]. (5)

By the fixed point theorem, an equilibrium exists. However the uniqueness of the equilibrium

cannot be guaranteed. Specially when bidders are ex ante homogenous, asymmetric equilibrium

may exist.

One special type of asymmetric equilibrium is that some bidders may never participate in the

auction. This can happen when the support of participation costs, c, has non-zero lower bound.

Such an equilibrium can be called a corner equilibrium. One implication of such equilibrium is

that in this economic environment, some of the bidders can form a collusion to enter the auction

regressively so that they can prevent some others enter the auction and thus can reduce the

competition among those who participate in the auction which in turn will increase the benefits

from participating.

The expected revenue of participating in the auction is a non-decreasing function of one’s

true value. Thus the sufficient and necessary condition for a bidder to never participate is when

his value is 1, participating in the auction still gives him an expected revenue that is less than

the minimum participation cost, ǫ, giving the strategies of other bidders. Formally, suppose in

equilibrium, a subset A = {1, 2, . . . , k} ⊂ {1, 2, 3 . . . , n} of bidders choose to participate in the

auction when their valuations are big enough and bidders in B = {k + 1, . . . , n} choose never

participating in the auction. Then for all i ∈ A we have

c∗i (vi) =

∫ vi

0

∏

j 6=i,j∈A

[1 −
∫ 1

mi

∫ c∗j (τ)

0
k̃j(τ, cj)dcjdτ ]dmi.

For bidders in B never participate, it is required that for all j ∈ B,

c∗j (1) =

∫ 1

0

∏

i∈A

[1 −
∫ 1

mj

∫ c∗i (τ)

0
k̃i(τ, cj)dcjdτ ]dmj < ǫ,
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which raises a requirement for the lower and upper bound of the participation costs and the

distributions of valuations and participation costs. To see this, we assume that there are only

two bidders and vi and ci are independent. The distribution functions are F (vi) and G(ci)

separately.

Suppose bidder 2 never participates, then bidder 1 enters if and only if v1 ≥ c1 and thus

we have c∗1(v1) = v1. Given this, the expected revenue of bidder 2 when he participates in the

auction is

F (ǫ) +

∫ δ

ǫ

[(1 − v2)G(v2) + (1 −G(v2))]dF (v2) +

∫ 1

δ

(1 − v2)dF (v2)

when v2 = 1. We have three terms in the above equation. When bidder 1’s value is less than ǫ

he will not enter the auction and bidder 2 will get revenue 1, the probability is F (ǫ); the second

term is the revenue when bidder 1’s value is between ǫ and δ. For any v2 ∈ (ǫ, δ), bidder 2’s

revenue is 1 − v2 when bidder 1 participates, and is 1 when bidder 1 does not participate, the

probabilities are G(v2) and 1−G(v2) separately. The third term is the revenue when bidder 1’s

value is greater than δ and in this case bidder 1 participates for sure.

In order to have a corner equilibrium, we need

F (ǫ) +

∫ δ

ǫ

[(1 − v2)G(v2) + (1 −G(v2))]dF (v2) +

∫ 1

δ

(1 − v2)dF (v2) < ǫ. (6)

It can be seen that in the two homogenous bidders economy, when F (·) is concave, there is no

corner equilibrium. To see this, note that when F (·) is concave, we have F (vi) ≥ vi, equation

(6) can not hold; i.e, corner equilibrium does not exist.

Remark 7 if ǫ = δ; i.e., ci is common knowledge to all bidders, (6) can be simplified to

F (ǫ) +
∫ 1
ǫ
(1 − v2)dF (v2) < ǫ; i.e., ǫF (ǫ) +

∫ 1
ǫ
F (v2)dv2 < ǫ.

Example 5 Assume vi and ci to be joint uniform distributed (then they are independent) and

there are only two bidders. Suppose bidder 2 never participates. We have c∗1(v1) = v1.

Then we have

c∗2
′(v2) = 1 −

∫ 1

v2

G(c1(τ))dτ = 1 −
∫ 1

v2

min{1,max{τ − ǫ

δ − ǫ
, 0}}dτ,

which results

c∗2
′(v2) =





1 −
∫ δ

ǫ
τ−ǫ
δ−ǫ

dτ −
∫ 1
δ
dτ = ǫ+δ

2 if v2 < ǫ

δ − δ2−2ǫδ−v2

2
+2ǫv2

2(δ−ǫ) =
δ2+v2

2
−2ǫv2

2(δ−ǫ) if ǫ ≤ v2 < δ

v2 if v2 ≥ δ

.
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Given the above and the initial condition c∗2(0) = 0, we have

c∗2(v2) =





ǫ+δ
2 v2 if v2 < ǫ

v3

2
−3ǫv2

2
−ǫ3+3δ2v2

6(δ−ǫ) if ǫ ≤ v2 < δ

δ2+δǫ+ǫ2+3v2

2

6 if v2 ≥ δ

.

For bidder 2 never participates, we need c∗2(1) = δ2+δǫ+ǫ2+3
6 ≤ ǫ, which is equivalent to ǫ2 +(δ−

6)ǫ+ δ2 + 3 ≤ 0. So when

(6 − δ) −
√
−3(δ2 + 4δ − 8)

2
≤ ǫ ≤ (6 − δ) +

√
−3(δ2 + 4δ − 8)

2
,

the required condition is satisfied. For this to be true, we need
(6−δ)−

√
−3(δ2+4δ−8)

2 < δ and thus

δ2 − 2δ + 1 < 0 which cannot be true.

However when F (·) is strictly convex, given proper ǫ and δ, there may be an equilibrium in

which one bidder never participates while the other enters the auction whenever his valuation

is greater than his participation cost. As an illustration, we assume F (vi) = v2
i and G(ci) is

uniformly distributed on [ǫ, δ]. (6) becomes

δ3 + δǫ2 + δ2ǫ+ ǫ3 + 2

6
< ǫ.

One can check that when ǫ = 0.5 and δ = 0.744, there exists a corner equilibrium. It can be

concluded that if there is a corner equilibrium in the homogenous two bidder economy, there

exists a corner equilibrium in which n− 1 bidders never participate in the homogenous n bidder

economy.

When the lower bound of valuation is positive, there may exists an asymmetric equilibrium

in which one bidder always participates. To see this, suppose the ci is distributed on [cl, ch] with

distribution Gi(ci) and vi is distributed on [vl, vh] with distribution Fi(vi). Assume vh > vl >

ch > cl. Suppose we have an equilibrium in which bidder 1 always enter and bidder 2 never

participates. Then bidder 1 always participates is a best response. For bidder 2’s strategy to be

a best response, we need ∫ vh

vl

(vh − v1)dF1(v1) − cl < 0,

the maximum expected revenue is less than the lowest participation cost. Integration by parts

we have ∫ vh

vl

F1(v1)dv1 < cl.

One sufficiently condition for this to be true is vh − vl < cl.
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6 Conclusion

This paper investigates equilibria of second price auctions with general distribution functions of

private values and participation costs. We show that there always exists an equilibrium cutoff

curve for each bidder. Moreover, when all bidders are ex ante homogeneous, there is a unique

symmetric equilibrium. In a simple two bidder economy, a sufficient condition for the uniqueness

of the equilibrium is identified. This general two-dimensional framework covers many models as

special cases.

We find evidence that multiple equilibria exist. Specifically, when bidders are ex ante homo-

geneous, besides the symmetric equilibrium, there may be an equilibrium at which one bidder

always participates or never participates. Future research may be focused on identifying suffi-

cient conditions to guarantee the uniqueness of equilibrium but not only the uniqueness of the

symmetric equilibrium. Uniqueness of the equilibrium has important policy implications. The

seller can modify the economic environment such that the economy has a unique equilibrium and

thus have more predictable power for the final outcomes. Welfare analysis with participation

costs is another interesting topic to be tackled.
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Appendix

Proof of Lemma 1:

Proof: (i) Letting vi = 0 in the expression of c∗i (vi), we have the result.

(ii) Since

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi 6

∫ vi

0
dvi = vi

by the nonnegativity of
∫ c∗j (τ)

0 kj(τ, cj)dcj and

∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ≤

∫ 1

mi

∫ 1

0
kj(τ, cj)dcjdτ ≤

∫ 1

0

∫ 1

0
kj(τ, cj)dcjdτ = 1,

we have 0 ≤ c∗i (vi) ≤ vi.

(iii) Letting vi = 1 in (5), we have the result.

(iv) Since n is the number of bidders, as n increases, say, from n to n + 1, the prod-

uct term inside the integral will be increased by one more term. Also, note that 0 < 1 −
∫ 1
mi

∫ c∗j (τ)

0 kj(τ, cj)dcjdτ < 1. So given more bidders, c∗i (vi) will decrease.

(v)

dc∗i (vi)

dvi
=

∏

j 6=i

[1 −
∫ 1

vi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ] ≥ 0

by noting that ∫ 1

vi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ≤

∫ 1

0

∫ 1

0
kj(τ, cj)dcjd = 1.

We then have

d2c∗i (vi)

dv2
i

=
∑

k 6=i

∏

j 6=i,j 6=k

[1 −
∫ 1

vi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]

∫ c∗
k
(vi)

0
kj(τ, cj)dcjdτ ≥ 0.

Proof of Proposition 1:

Proof: For i = 1, 2, ...n, let

φi(c
∗(vi)) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi

where c∗(v) = (c∗1(v1), c
∗
2(v2), . . . , c

∗
n(vn)). Then φi(c

∗) is a continuous function and 0 ≤ φi(c
∗) ≤

vi by Lemma 1.(ii). Thus, φ1(.), φ2(.), · · · , φn(.) is a continuous mapping from the non-empty

compact and convex domain [0, v1]×[0, v2]×· · ·×[0, vn] to itself, and therefore, by Brower’s Fixed

Point Theorem, there exists c∗(v) = (c∗1(v1), c
∗
2(v2), . . . , c

∗
n(vn)) such that c∗i (vi) = φi(c

∗(v)), and

consequently, it is a solution to (P2) or (P3) with initial condition.
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Proof of Lemma 2:

Proof: Suppose (c∗1(v1), c
∗
2(v2), ..., c

∗
n(vn)) is a solution to problem (P1), then we have for any

i ∈ {1, 2, ...n},

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi,

then by changing the variable vi to v we have

c∗i (v) =

∫ v

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi

for all i ∈ {1, 2, ...n}. So (c∗1(v), c
∗
2(v), ..., c

∗
n(v)) is a solution to (P3). On the contrary, if

(c∗1(v), c
∗
2(v), ..., c

∗
n(v)) is a solution to (P3), then we have for any i ∈ {1, 2, ...n},

c∗i (v) =

∫ v

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi.

Then by changing the variable v to vi in the ith equation we have

c∗i (vi) =

∫ vi

0

∏

j 6=i

[1 −
∫ 1

mi

∫ c∗j (τ)

0
kj(τ, cj)dcjdτ ]dmi.

Thus (c∗1(v1), c
∗
2(v2), ..., c

∗
n(vn)) is a solution to (P1).

Proof of Proposition 2:

Proof: The existence of the symmetric equilibria can be established by the Brower’ Fixed point

Theorem. Here we only need to prove the uniqueness of the symmetric equilibrium. Suppose

not, by way of contradiction, we have two different symmetric equilibria x(v) and y(v) to the

economic environment we consider. Then we have

x′(v) = [1 −
∫ 1

v

∫ x(τ)

0
k(τ, c)dcdτ ]n−1

y′(v) = [1 −
∫ 1

v

∫ y(τ)

0
k(τ, c)dcdτ ]n−1.

Suppose x(1) > y(1), then by the continuity of x(v) and y(v) we can find a v∗ such that

x(v∗) = y(v∗) = c(v∗) and x(v) > y(v) for all v ∈ (v∗, 1] by noting that x(0) = y(0).

Case 1: if k(v, c) > 0 with positive probabiltiy measure on (v∗, 1) × (c(v∗), 1), then for

τ ∈ (v∗, 1] we have ∫ x(τ)

0
k(τ, c)dc >

∫ y(τ)

0
k(τ, c)dc

for τ ∈ (v∗, 1). Then we have x′(v∗) < y′(v∗) which is a contradiction to x(v) > y(v) for v > v∗.

So we have x(1) = y(1). By the same logic above we can prove that x(v) = y(v) for all v ∈ [0, 1]

and thus the symmetric equilibrium is unique.
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Case 2: if k(v, c) > 0 with zero probabilty measure on (v∗, 1) × (c(v∗), 1), then we have

x′(v) = y′(v) for all v ∈ (v∗, 1]. By x(v∗) = y(v∗) we have x(v) = y(v) for all v > v∗, which is a

contradiction to x(v) > y(v). Thus there is a unique symmetric equilibrium.

Then in both cases we proved that there is a unique symmetric equilibrium.

Proof of Proposition 3:

Proof: Define a mapping

(Pc)(v) =

∫ v

0
ds−

∫ v

0

∫ 1

s


 0 f1(τ)

f2(τ) 0





 G1(c1(τ))

G2(c2(τ))


 dτds,

where c = (c1, c2)
′.

Take any x(v) = (x1(v), x2(v))
′ and y(v) = (y1(v), y2(v))

′ with x(v), y(v) ∈ ϕ where ϕ is the

space of monotonic increasing continuous functions defined on [0, 1] → [0, 1]. Then we have

|(Px)(v) − (Py)(v)| ≤
∫ v

0

∫ 1

s


 0 g1(x̂1(τ))f1(τ)

g2(x̂2(τ))f2(τ) 0


 |


 x1(τ) − y1(τ)

x2(τ) − y2(τ)


 |dτds

=

∫ v

0

∫ 1

s


 0 g1(x̂1(τ))f1(τ)

g2(x̂2(τ))f2(τ) 0


 dτds sup

0<v≤1
|x(v) − y(v)|

≤
∫ 1

0

∫ 1

s


 0 g1(x̂1(τ))f1(τ)

g2(x̂2(τ))f2(τ) 0


 dτds sup

0<v≤1
|x(v) − y(v)|

≤
∫ 1

0


 0 δ1(1 − F1(s))

δ2(1 − F2(s)) 0


 ds sup

0<v≤1
|x(v) − y(v)|, (7)

where the first equality comes from mean value theorem, and x̂i(τ) is some number between

xi(τ) and yi(τ), δi is the maximum of gi(c), i = 1, 2. Thus when δi
∫ 1
0 (1 − Fi(s))ds < 1, the

above mapping is a contraction, there exists a unique equilibrium.
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An Alternative Proof for The Existence of Equilibria:

We give the proof of the existence of equilibrium based on (P3), the transferred single variable

functional differential equation system.

Proposition 4 (The Existence Theorem) For the general economic environment under con-

sideration in the paper, the integral equation system (P3) has at least one solution (c∗1(v), c
∗
2(v), ...c

∗
n(v));

i.e., there is always an equilibrium in which every bidder i uses his own cutoff curve c∗i (v).

To prove the above proposition we introduce the following lemma:

Lemma 3 (Schauder-Tychonov Fixed-point Theorem Cf. Smart (1980, p.15)) Let M

be a compact convex nonempty subset of a locally convex topological space and P : M → M be

continuous. Then P has a fixed point.

Proof of Proposition 4:

Proof: Let hi =
∏

j 6=i[1 −
∫ 1
mi

∫ c∗j (τ)

0 kj(τ, c)dcdτ ] and H = (h1, h2, · · · , hn)′. Define

M = {c ∈ ϕ | |c| ≤ n, |c(v1) − c(v2)| < n|v1 − v2|},

where ϕ is the space of continuous of function φ defined on [0, 1] → Rn with the supremum

norm. Then by Ascoli’s theorem M is compact and M is certainly convex. Define an operator

P : M →M by

(Pc)(v) =

∫ v

0
H(s, c(.))ds

To see P : M →M , note that

|(Pψ)(v1) − (Pψ)(v2)| ≤ |
∫ v1

v2

H(s, c(.))ds| ≤ n|v1 − v2|,

and also it can be easily check that

|(Pψ)(v) − 0| ≤ n.

To see P is continuous, let φ ∈ M and let µ > 0 be given. We must find η > 0 such that

‖φ− ψ‖ < η implies ‖(Pφ)(t) − (Pψ)(t)‖ ≤ µ. Now

|(Pφ)(t) − (Pψ)(t)| = |
∫ t

0
[H(s, φ(s)) −H(s, ψ(s))]ds|

and H is uniformly continuous so for the µ > 0 there is an η > 0 such that |φ(s) − ψ(s)| < η

implies |H(s, φ(s))−H(s, ψ(s))| ≤ µ and thus |(Pφ)(t)− (Pψ)(t)| ≤ µ by noting that 0 < t ≤ 1

as required. Then by Lemma 3, there exists a fixed point; i.e., a solution for the functional

differential equation system, also the solution is continuously differentiable.
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