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____________________________________________________________ 

In this paper a case study is presented to propose an alternative 

mechanism to include the impact of climate change into the hydropower 

projects’ feasibility valuation. We started from an independent engineer 

historical energy generation simulations; therefore, applying mixing 

unconditional disturbance and extreme value theory, a new path that 

satisfies a return level’ specification is created. The new path is used to 

analyze the effect of extreme events on the internal rate of return of the 

project. This mechanism could also be used to execute an educated guess 

as simple sensitivity test.  
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I. Introduction 

 

With a changing climate, the resource potential for hydropower could 

change due to: a) Changes in river flow (runoff) related to changes in local 

climate, particularly in precipitation and temperature in the catchment area; 

b) Changes in extreme events (floods and droughts) may increase the cost 

and risk for the hydropower projects; and c) Changes in sediment loads 

due to changing hydrology and extreme events. More sediment could 

increase turbine abrasions and decrease efficiency; furthermore, increased 

sediment load could also fill up reservoirs faster and decrease the live 

storage, reducing the degree of regulation and decreasing storage services 

(IPCC, 2011). 

 

Moreover, many of the current climate change studies indicate that the 

frequency in the occurrence of extreme events will increase in the future 

(IPCC, 2007). 

 

In this paper, the effect of extreme events on the internal rate of return of 

the project will be analyzed through variations in the annual energy 

generation of hydropower. 
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II. Case Study 

 

The case study refers to a hydropower plant of 20.0 MW installed capacity 

developed in Central America. 

 

The following table summarizes annual energy generation (GWh) 

estimated for an international prestige independent engineer using 

historical daily streamflow  records: 

 

Table 1. Historical Annual Energy Generation Simulations 
 

 

 

II.1. Extreme Events 

 

Extreme events occur when a risk takes values from the tail of its 

distribution (McNeil, 1999). 

 

Let X = (X1, …, Xn) be independent identically distributed random variables 

with a unknown distribution function F. 

 

The sample maximum, Mn, with n the size of the block is defined Mn= max 

(X1, …, Xn).  

 
 

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

88.1 77.9 90.2 84.0 93.5 100.8 97.8 98.9 88.2 89.8 96.1 89.9

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

93.2 83.5 96.8 93.2 105.9 85.3 90.2 77.5 78.3 84.6 102.6 80.1

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

89.4 105.9 110.7 103.9 97.3 107.4 82.9 101.2 122.1 95.5 109.1 95.9

Average: 94.1 St.Dev.: 10.3 Min.: 77.5 Max.: 122.1
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Under the Fisher - Tippett Theorem the sequence of normalized maxima 

converges in distribution: 

 

H(x) =  exp ( -1(1 + ξ (     ))-1/ξ )   for  ξ≠0 

             

where μ is the location parameter, σ is the scale parameter and ξ is the 

shape parameter.  

 

Using the extRemes Toolkit developed by Eric Gilleland, within statistical 

software R, we applied the Block Maxima method and estimated a 

Generalized Extreme Value Distribution (GEV). 

 

As we are interested in the minimum annual energy generation, we must 

first transform the data: −Max(-X1, …, -Xn) = Min(X1, …, Xn). 

 

Estimated   GEV    has   parameters:  µ=-96.5439,   σ=11.06785   and  

(ξ)=-0.50838  

 

II.1.1. Return Level 

 

The return level     is the level expected, on average, to be exceeded in 

one out of k periods of length n.  

 

The return period is the amount of time expected to wait for a particular 

return level to be exceed; return period is the inverse of the probability of 

an event (e.g. a called “100 years event” has a 1% probability of exceed 

the record level in a given year). 
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Return level is simply the calculation of quantiles from the Generalized 

Extreme Events Distribution, specifically: 

  

Pr (Mn  ≥    ) = 1/k 
     ≈          (1 – 1/k) ≈  ̃ - 

 ̃ ̃ ( 1- ( - ln (1 – 1/k))-ξ )   for    ̃≠0 

 
The estimated 100 years return level (R100) is -76.8, with 95% confidence 

interval of (-78.94354,-71.30753); meaning, on average, only once in a 

hundred years the annual generation will be below that level. Figure 1 

shows the return level plot. 

 
 
Figure 1. Return Level Plot for the Historical Annual Energy Generation Simulations 
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II.2. Modeling Impact of Climate Change 

 

The main premise to modeling the impact of climate change is the 

assumption that a “100 years event” turns into a “much lower year event”; 

in this case, the probability of exceeding the record level in a given year will 

increase from 1% to 25%, from 1 event every 100 years to 25 events every 

100 years.   Therefore, we have to create a new annual energy generation 

path that computes a 4 years return level (R4) equal to -77.8. 

 

II.2.1. New Path Construction  

 

Tompkin and D'Ecclesia (2006) introduced the Mixing Unconditional 

Disturbances (MUD) model where simulations of path are obtained by re-

writing history; under this approach parameter estimation and distributional 

assumption are not required and the statistical characteristics of the original 

path are conserved. 

 

Given the historical series returns for a variable Xt, for t = 0,…,T, the 

unconditional mean µ, and standard deviation σ, are estimated. 

 
Normalizing the sequence of the variable yields:   Zt = Xt - µ / σ where Zt is 

the series of standardized “disturbances” from 1 to T.  By design, the 

resulting disturbances have a mean of 0 and standard deviation of 1.  

 

The simulated  variable  ̃t  at  each time t > 0 is obtained by using  the 

standardized disturbances, to generate the new path we “freeze” the Zt and 

use formulation:     ̃t = Zt * σ + µ  
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We are looking for a simulated new path (Figure 2) that searches a lower 

average annual energy generation, a higher standard deviation, and also 

that compute the required return level’ specification.  

 

 

Figure 2. New Historical Annual Energy Generation Simulations Path 

 
 
Table 2  summarizes the new estimated annual energy generation (GWh) 

path: 

 

Table 2. New Historical Annual Energy Generation Simulations Path 
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1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

92.7 81.9 96.5 92.5 106.5 83.6 88.9 74.9 75.7 82.5 102.2 77.4

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

87.5 105.7 110.9 103.3 95.8 106.9 79.9 99.9 123.0 93.4 108.3 93.7

Average: 91.5 St.Dev.: 20.7 Min.: 53.0 Max.: 134.1
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Figure 3 depicts comparative histogram of original and new historical 

annual energy generation simulations paths.  

 

 

Figure 3. Annual Energy Generation Simulations Histogram Plot.  
 

For the new path, estimated GEV has parameters: µ=-97.74382, 

σ=20.98933 and ξ=-0.37610.  

 
The 4 years return level (R4) recorded is -76.8, with 95% a confidence 

interval of (-84.36307,-69.44988).  

 

 

 

 

 

 

 

 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

60 70 80 90 100 110 120 130 140

D

e

n

s

i

t

y

GWh

Original Path New Path



9 

 

Figure 4 presents the return level plot for the new path. 

 
 
Figure 4. Return Level Plot for the New Historical Annual Energy Generation 
               Simulations Path. 

 
 
II.2.2. Internal Rate of Return  

 

To compute the Internal Rate of Return of the project: 

a) We assumed a total investment cost of US$60.0 million. 

b) We used annual energy generation simulations (Table 1 & 2) to 

estimate: 

i.  Annual income as a product of annual energy generation times 

a monomic price of US$120.0/MWh adjusted by an annual 

increase of 1.5% (inflation rate). 

ii. Annual expense as a product of annual energy generation 

times an operating and maintaining cost of US$20.0/MWh. 

c) No capital expenses, taxes and changes in working capital are 

considered. 
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Figure 5 shows annual cash flows for original and new path simulations.  

 

 

Figure 5. Cash Flow Simulations Plot 
 

The impact in the internal rate of return of the project is around 150 bps, 

with a  8.8% decrease from 16.7% to 15.2%. 

 

Similar impact results in the reduction in the IRR single value between 6% 

and 16% was obtained by Harrison et. al. (2003). 

 

Additionally, if we assumed an equity contribution of US$18.0 million (30% 

of total investment cost), and a senior debt of US$42.0 million (70% of total 

investment cost) to be paid under following conditions: 15 years tenor, 8% 

interest rate, and “mortgage style” payments for a annual US$4.9 million 

debt service payment; therefore, the impact in the internal rate of return of 

investors is around 375 bps, with a decrease of 14.5% from 25.9% to 

22.2%. 
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Figure 6 presents annual free cash flows for original and new path 

simulations.  

 

 

Figure 6. Free Cash Flow Simulations Plot 
 

As a result of such approach, climate risk is reflected in a reduction of the 

project’s cash flow and investors’ free cash flow; however, selection of 

discount rate to resolve the feasibility of the project is a final subjective 

decision from risks’ takers. 

  
II.2.3. Stress Testing  

 

Stress results help asses risk taken versus risk appetite by identifying 

major contributors to overall event risk exposure and uncover hidden 

sources of risk (Schachter, 1998).  
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Stress tests are inevitably subjective because they depend on scenarios 

chosen by the stress tester.  As a result, the value of the stress testing 

depends critically on the choice of scenarios and therefore on the skill of 

the modeler (Aragones et al. 2000). 

 

The most common stress tests involve the determination of the impact of a 

move in a particular risk factor. In the case of hydropower projects 

valuation, a simple sensitivity test changing the average annual energy 

generation (e.g. ± 10.0%) is frequently done.  

 

The alternative mechanism proposed to include the impact of climate 

change into the hydropower projects’ feasibility valuation, could be   used 

to execute an educated guess as simple sensitivity test. 

 

 

III. Conclusions and Extensions 

 
In this document, a new approach to include the impact of climate change 

into the hydropower projects’ feasibility valuation by applying mixing 

unconditional disturbance and extreme value theory is proposed. This 

approach is based on the main assumption that a “100 years event” turns 

into “much lower year event” and its impact in the internal rate of return is 

evaluated. The obtained results with this new technique could provide a 

simple sensitivity test, too.  
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We presented here only one particular scenario of the many possible 

climate change impacts, future lines of research could evaluated with 

multiple climate change scenarios and/or multiple return level 

specifications.  
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