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A Charaterization of the Top Trading Cyles Mehanismfor the Shool Choie Problem∗Umut Mert Dur†University of Texas at AustinSeptember 14, 2012AbstratThis paper haraterizes the top trading yles mehanism for the shool hoie problem.Shools may have multiple available seats to be assigned to students. For eah shool a stritpriority ordering of students is determined by the shool distrit. Eah student has strit pref-erene over the shools. We �rst de�ne weaker forms of fairness, onsisteny and resouremonotoniity. We show that the top trading yles mehanism is the unique Pareto e�ient andstrategy-proof mehanism that satis�es the weaker forms of fairness, onsisteny and resouremonotoniity. To our knowledge this is the �rst axiomati approah to the top trading ylesmehanism in the shool hoie problem where shools have a apaity greater than one.Key Words: Top Trading Cyles Mehanism, Shool Choie ProblemJEL Classi�ation: C78, D61, D78, I201 IntrodutionIn their seminal paper, Abdulkadiro§lu and Sönmez [2003℄ introdue the shool hoie problem. Be-fore that paper, in some of the major ities students were assigned to publi shools via de�ientmehanisms whih give high inentives to the students to misreport their true preferenes in order toget better alloations. To eliminate the gaming, they propose two ompeting strategy-proof meh-anisms: the Top Trading Cyle (TTC) mehanism and the Deferred Aeptane (DA) mehanism.
∗I owe very speial thanks to ThomasWiseman, Utku Ünver, Onur Kesten and Thayer Morrill for detailed ommentsand suggestions. I would like to also thank Tayfun Sönmez, Marin Peski and Ay³e Kabukçuo§lu for useful disussions.
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The TTC mehanism is not only strategy-proof but also Pareto e�ient. However, it fails to be fair1.On the other hand, the DA mehanism satis�es fairness but fails to be Pareto e�ient. When thepoliy makers deided to adopt one of the two strategy-proof mehanisms, the DA mehanism wasseleted due to its better features in terms of respeting shool distrit priorities.2 However, in 2012New Orleans Reovery Shool Distrit beame the �rst shool distrit to adopt TTC.Adoption of the TTC by New Orleans shool distrit shows us that some shool distrits mayvalue e�ieny over fairness. If Pareto e�ieny and strategy-proofness are the main objetives ofthe shool distrits then TTC an be onsidered one of the andidates. However, it is not the uniquePareto e�ient and strategy-proof mehanism. For instane, the serial ditatorship mehanism alsosatis�es these two axioms.3 In this paper, we try to help the poliy makers who are willing toadopt a Pareto e�ient and strategy-proof mehanism by providing the full haraterization of theTTC mehanism. Our haraterization is based on Pareto e�ieny, strategy-proofness, mutual bestalong with two axioms that we introdue: resoure monotoniity for top-ranked students and weakonsisteny. We show that TTC mehanism is the unique mehanism satisfying Pareto e�ieny,strategy-proofness, mutual best, weak onsisteny and resoure monotoniity for top-ranked students.�Mutual best�4 requires that a student be assigned to the shool at the top of his preferenewhenever he has the highest priority at that shool. A mehanism is �resoure monotoni for top-ranked students� if the assignment of the top-ranked student for a shool is not worsened when thenumber of available seats in that shool inreases. A mehanism is said to be �weakly onsistent� ifthe removal of a set of agents with their assignments does not a�et the assignments of the remainingagents as long as eah agent is the top-ranked student for one of the assignment of the removed agent.Mutual best, weak onsisteny and resoure monotoniity for top-ranked students are weakerforms of fairness, onsisteny5 and resoure monotoniity6, respetively. TTC mehanism does notsatisfy fairness, onsisteny and resoure monotoniity. In partiular, there does not exist a meh-anism that is fair, strategy-proof and onsistent.7 Moreover Pareto e�ieny and fairness are in-1Fairness is the natural ounterpart of the stability in the shool hoie ontext [Balinski and Sönmez, 1999℄. Analloation is fair if there does not exist a student who prefers another shool to his assignment and that shool admitteda student with lower priority.2Shool distrits in Boston, New York City and Denver have adopted versions of the DA mehanism.3Pyia and Ünver [2011b℄ provide a lass of mehanisms satisfying strategy-proofness and Pareto e�ieny in theshool hoie problem.4Morrill [2012℄ uses the same axiom in the haraterization of TTC in a shool hoie problem where eah shoolhas only one available seat.5A mehanism is onsistent if whenever a set of agents are removed with their assignments then all the remainingagents will be assigned to their initial assignment when we run the mehanism only onsidering the remaining agentsand remaining opies of the objets.6Resoure monotoniity requires that if the number of available objets inreases then all agents should be a�etedin the same diretion [Chun and Thomson, 1988℄.7Alalde and Barbera [1994℄ show that DA mehanism is the unique strategy-proof and fair mehanism but it failsto be onsistent. 2



ompatible.8 Therefore, we annot have a mehanism satisfying all of the axioms.9 Kesten [2006℄shows that TTC satis�es fairness, onsisteny and resoure monotoniity if the priority order satis�esstrong ayliity ondition. In this paper, we show that TTC is not totally unsuessful in thesethree dimensions and none of the Pareto e�ient and strategy-proof mehanisms an perform betterthan TTC in all the three dimensions.A mehanism whih fails to satisfy mutual best, resoure monotoniity for top-ranked students andonsisteny may not meet the demands of both students (families) and shool distrits. We onsidermutual best as a must fairness requirement in the shool hoie ontext. For instane, most shooldistrits give highest priority at a shool to a student whose elder sibling is already attending thatshool and most of the families have preferene over keeping their hildren in the same shool [Pathak,2011℄. Therefore, both parents and shool distrits bene�t from the mutually best mehanisms .Similarly, resoure monotoniity for top-ranked students is a must resoure monotoniity requirement.We modify this requirement in two ways. When publi goods are alloated, we should not have aderease in the welfare of any of the agents. Otherwise, providing less and less publi goods willbe a lear solution for the poliy makers. Therefore, we restrit our attention to the mehanismsunder whih the welfare of agents weakly inreases when the number of available objets inreases.10We also modify the resoure monotoniity axiom by only requiring not to have a redution in thewelfare of the top-ranked student for the shool whose number of seats has inreased. Therefore anyresoure monotoni mehanism under whih welfare of the agents weakly inrease with an inrease inthe number of available objets satis�es resoure monotoniity for top-ranked students. Consistenyis a desired property in the shool hoie ontext where the assignment proess for di�erent types ofshools are done separately. For instane, in New York City the assignment of exam and mainstreamshools are done separately [Abdulkadiro§lu et al., 2009℄. Therefore, running a onsistent mehanismwill prevent the request of remaining agents for another run when the other agents are removed withtheir assignments.Although, mutual best and resoure monotoniity for top-ranked students axioms are enough toprove our uniqueness result, the TTC mehanism satis�es stronger forms of these two axioms. TTCrespets the priority of student i for shool s if the number of students with higher priority for shool
s is less than the number of available seats in that shool. Moreover, if the poliy makers and familiesare only sensitive to priority violation in the upper priority groups then TTC an be onsidered tohave a good performane in terms of respeting priorities. Under TTC mehanism, the students whoare ranked at the top q of the priority order of shool s annot be made worse o� due to the inreasein the number of available seats from q to q′.8Balinski and Sönmez [1999℄ show that there does not exist fair and Pareto e�ient mehanism.9Serial ditatorship mehanism satis�es four of them. It fails to be fair.10Kojima and Ünver [2010℄ de�ne resoure monotoniity similarly.3



This is the �rst paper haraterizing TTC mehanism in the shool hoie ontext where eahshool may have more than one available seat. Abdulkadiro§lu and Che [2010℄ and Morrill [2012℄ pro-vide alternative haraterizations of TTC mehanism in the shool hoie ontext where eah shoolis restrited to have only one available seat. Abdulkadiroglu and Che show that TTC mehanism isthe only mehanism that is Pareto e�ient, strategy-proof and reursively respets top priorities.11Morill haraterizes the TTC mehanism in two di�erent ways. He �rst shows that TTC is theunique mehanism whih is strategy-proof, Pareto e�ient, and independent of irrelevant rankings12and satis�es mutual best. He also demonstrates that TTC is the unique mehanism satisfying Paretoe�ieny, independene of irrelevant rankings, weak Maskin monotoniity and mutual best. Resultsof these two papers do not hold in the shool hoie problem where shools may have more thanone available seat [Morrill, 2012℄. Sönmez and Ünver [2010℄ provide the haraterization of the yourequest my house-I get your turn (YRMH-IGYT) mehanisms in the house alloation problems withexisting tenants [Abdulkadiro§lu and Sönmez, 1999℄. They show that YRMH-IGYT mehanism isthe unique mehanism satisfying Pareto e�ieny, strategy-proofness, individual rationality, weakneutrality13 and onsisteny.14 Pyia and Ünver [2011a℄ introdue a lass of mehanism alled trad-ing yles mehanisms and show that in the house alloation problem a mehanism is individuallyrational, Pareto e�ient, group strategy-proof if an only if it is a trading yles mehanism.15 Pyiaand Ünver [2011b℄ also analyze trading yles mehanism in the shool hoie environment whereeah shool may have more than one available seat and show that trading yles mehanisms arePareto e�ient and strategy-proof.The rest of the paper is organized as follows: In Setion 2 we introdue the model and propertiesof mehanisms. In Setion 3 we desribe the TTC mehanism. We present our main results in Setion4. In Setion 5 we show the independene of axioms used in our main results. A brief onlusion isgiven in the �nal setion.2 ModelA shool hoie problem is a list [I, S, q, P,≻] where
• I is the set of students,11A mehanism respets top priorities if an agent is assigned an objet, then the agent that is top-ranked by thatobjet should not be assigned to a worse objet than that objet.12A mehanism is independent of irrelevant rankings if whenever the ranking of an agent at an objet's priorityorder does not a�et the assignment of that agent then it does not a�et the assignment of all the other agents.13If a mehanism satis�es weak neutrality then the outome of that mehanism will not depend on the names of theunoupied objets.14Sönmez and Ünver [2010℄ also onsider a weaker version of onsisteny in the house alloation problem withexisting tenants.15The TTC mehanism belongs to the lass of the trading yles mehanisms.4



• S is the set of shools,
• q = (qs)s∈S is the quota vetor where qs is the number of available seats in shool s,
• P = (Pi)i∈I is the preferene pro�le where Pi is the strit preferene of student i over theshools inluding no-shool option,
• ≻= (≻s)s∈S is the priority pro�le where ≻s is the priority relation of shool s over I.We denote the no-shool option with s∅ and qs∅ = ∞. Let Ri be the at-least-as-good-as relationassoiated with the strit preferene order Pi and for all s, s′ ∈ S ∪ s∅ sRis

′ if and only if s = s′ or
sPis

′. We assume that there are no ties in the priority pro�les of shools.16A mathing is a funtion µ : I → S ∪ s∅ suh that µ(i) = s and µ(i) = s′ if only if s = s′. If
µ(i) = s∅ then student i is unassigned. In a mathing µ, the number of students assigned to a shool
s annot exeed the total number of available seats in shool s. Let M be the set of all possiblemathings.A mehanism is a proedure whih selets a mathing for eah problem. That is, a mehanism
ϕ takes the preferene pro�le of the students, the priority order of students for shools, the quotavetor, then selets a mathing for every problem. The mathing seleted by mehanism ϕ in problem
[I, S, q, P,≻] is denoted by ϕ [I, S, q, P,≻]. Let ϕ [I, S, q, P,≻] (i) denote the assignment of student
i ∈ I by mehanism ϕ for problem [I, S, q, P,≻].Student i stritly prefers mathing µ to mathing µ′ if he stritly prefers µ(i) to µ′(i), µ(i)Piµ

′(i).A mathing µ is Pareto e�ient if there does not exist a mathing µ′ ∈ M in whih eah studentis not worse o� and at least one student is stritly better o�. More formally, mathing µ is Paretoe�ient if there does not exist a mathing µ′ ∈ M where µ′(i)Riµ(i) for eah i ∈ I and µ′(j)Pjµ(j)at least for one j ∈ I. A mehanism ϕ is Pareto e�ient if for all problems it selets a Pareto e�ientmathing.A mehanism ϕ is strategy-proof if it is (weakly) dominant strategy for all students to tell theirpreferenes truthfully. Formally, a mehanism ϕ is strategy-proof if for every preferene pro�le Pand P ′
i ϕ [I, S, q, P,≻] (i)Riϕ [I, S, q, (P ′

i , P−i),≻] (i) for all student i ∈ I. Here, P−i represents thetrue preferene pro�le of students exept i.Let t≻i be the set of shools ranking i over all other students under priority pro�le ≻. Formally,
t≻i = {s ∈ S|i ≻s j ∀j ∈ I \ i}. A mehanism φ is mutually best if whenever there exists s ∈ t≻i suhthat sPis

′ for all s′ ∈ S \ {s} then φ [I, S, q, P, ≻] (i) = s for all i ∈ I.17A mehanism φ is resoure monotoni if for all s ∈ S, all q′s ≤ qs either for all i ∈ I ,
φ [I, S, q, P,≻] (i)Ri φ [I, S, (q

′
s, q−s), P,≻] (i) or for all i ∈ I φ [I, S, (q′s, q−s), P,≻] (i)Riφ [I, S, q, P,≻] (i).1816Shool distrits mostly use random tie breaking rules.17Morrill [2012℄ de�nes mutual best similarly.18See Thomson [2000℄, Ehlers and Klaus [2003℄ and Kesten [2009℄ for related results.5



I use a di�erent version of resoure monotoniity. Intuitively, if student i has the highest priorityfor shool s then his welfare should not be worsened when the number of seats in shool s in-reases. I formally de�ne resoure monotoniity for top-ranked students as follows: A mehanism
φ is resoure monotoni for top-ranked students if for all i ∈ I and all q′s ≥ qs > 0 where s ∈ t≻i

φ [I, S, (q′s, q−s), P,≻] (i)Riφ [I, S, q, P,≻] (i).Before introduing our onsisteny axiom we need additional notation.For any shool s ∈ S, priority order ≻s, and a set of students J ⊂ I, let ≻J
s be the restrition ofpriority order ≻s to students in J . Let ≻J= (≻J

s )s∈S and ≻−J= (≻I\J
s )s∈S.Given a problem [I, S, q, P,≻], a set of students J ⊂ I, and a quota pro�le q̃ ≤ q we say

[

J, S, q̃, P−J ,≻
J
] is the restrition of the problem [I, S, q, P,≻] to students in J and quota pro�le q̃.19A mehanism is onsistent if whenever a set of students are removed with their assignments thenall the remaining students will be assigned to their initial assignment when we run the mehanismonly onsidering the remaining students and objets.20 Formally, a mehanism φ is onsistent if forany problem [I, S, q, P,≻], when we remove a set of students J ⊂ I together with their assignments

φ[I, S, q, P,≻](J), then for any i ∈ I \ J

φ[I \ J, S, q̃, P−J ,≻
−J ](i) = φ[I, J, q, P,≻](i)where q̃s is the number of available seats remaining in shool s.In this paper, we introdue a weaker version of the onsisteny axiom.21 A mehanism satis�esweak onsisteny if whenever we remove a set of students with their assignment suh that the studentwith the highest priority for one of the removed student's assignment is also another removed studentthen the assignments of the remaining students do not hange.A mehanism φ is weakly onsistent if for any problem [I, S, q, P,≻], when we remove a set ofstudents J ⊂ I together with their assignments φ[I, S, q, P,≻](J) satisfying |t≻j ∩φ[I, S, q, P,≻](J)| =

1 for eah j ∈ J , then for any i ∈ I \ J

φ[I \ J, S, q̃, P−J ,≻
−J ](i) = φ[I, J, q, P,≻](i).Our restrition on the set of students and seats removed is simple. It is easy to see that anymehanism whih is onsistent based on the traditional de�nition satis�es the weaker form of it thatwe de�ne here.19Similar notation is used in Sönmez and Ünver [2010℄.20See Thomson [1990℄ and Ergin [2000℄ for related results.21Sönmez and Ünver [2010℄ also modi�es the de�nition of the onsisteny axiom. In that paper, they haraterizeYRMH-IGYT in the house alloation problem with existing tenants. YRMH-IGYT also fails to satisfy the onsistenyaxiom but satis�es the modi�ed version de�ned in that paper.6



3 Top Trading Cyles MehanismIn the shool hoie ontext, the TTC mehanism was �rst introdued by Abdulkadiro§lu and Sönmez[2003℄. It was based on the Gale's top trading yles algorithm [Shapley and Sarf, 1974℄. It is adiret mehanism and for any given problem [I, S, q, P,≻] it works iteratively in a number of steps:Top Trading Cyles Mehanism (TTC):Step 1: Assign a ounter to eah shool and set it to the quota of eah shool. Eah studentpoints to his most preferred shool. Eah shool points to the top-ranked student in its priority order.Shool s∅ points to all students pointing to it. Due to the �niteness there is at least one yle.22Assign every student in the yles to the shool he points to and remove him. The ounter of eahshool in a yle is redued by one and if it redues to zero, the shool is also removed.In general,Step k: Eah student points to his most preferred shool among the remaining ones. Eahremaining shool points to the student with the highest priority among the remaining ones. Shool
s∅ points to all students pointing to it. There is at least one yle. Assign every student in the ylesto the shool he points to and remove him. The ounter of eah shool in a yle is redued by oneand if it redues to zero, the shool is also removed.The algorithm terminates when all students are assigned.We illustrate the dynamis of TTC mehanism in the following example.Example 1 Let S = {s1, s2, s3, s4} , I = {i1, i2, i3, i4, i5} and q = (1, 1, 1, 2). The preferenes ofstudents and priorities are as follows:

i1 :s1Pi1s2Pi1s3Pi1s4 s1 :i5 ≻s1 i3 ≻s1 i4 ≻s1 i2 ≻s1 i1

i2 :s2Pi2s1Pi2s4Pi2s3 s2 :i3 ≻s2 i1 ≻s2 i4 ≻s2 i2 ≻s2 i1

i3 :s1Pi3s3Pi3s4Pi3s2 s3 :i3 ≻s3 i2 ≻s3 i4 ≻s3 i1 ≻s3 i5

i4 :s3Pi4s4Pi4s1Pi4s2 s4 :i1 ≻s4 i3 ≻s4 i2 ≻s4 i5 ≻s4 i4

i5 :s4Pi5s1Pi5s2Pi5s3Step 1: Eah students points to his most preferred shool and eah shools points to the studentwith the highest priority. There is only one yle: (s1, i5, s4, i1). We assign eah student in the yleto the shool he points to and remove him: µ(i1) = s1 and µ(i5) = s4. We also redue the ounter ofeah shool in the yle and remove only s1 sine its ounter redues to zero.Step 2: Eah remaining students points to his most preferred remaining shool and eah remainingshools points to the student with the highest priority among the remaining ones. There is onlyone yle: (s3, i3). We assign the student in the yle to the shool he points to and remove him:22A yle is an ordered list of distint shools and distint students (s1, i1, s2, ..., sk, ik) where s1 points to i1 , i1points to s2 , ... , sk points to ik , ik points to s1 . 7



µ(i3) = s1. We also redue the ounter of the shool in the yle and remove it, s3, sine its ounterredues to zero.Step 3: Eah remaining students points to his most preferred remaining shool and eah remainingshools points to the student with the highest priority among the remaining ones. There is only oneyle: (s2, i4, s4, i2). We assign eah students in the yle to the shool he points to and remove him:
µ(i2) = s2 and µ(i4) = s4. We also redue the ounter of eah shool in the yle and remove onlyboth of them sine their ounter redue to zero.The mehanism terminates sine all students are assigned.4 ResultsIn the following theorem, we show that TTC is Pareto e�ient, strategy-proof, weakly onsistent,resoure monotoni for top-ranked students and mutually best. Moreover, there does not existanother mehanism satisfying all these axioms. We prove it in the Appendix.Theorem 1 In shool hoie problem TTC is the unique mehanism satisfying

• Pareto e�ieny
• Strategy-proofness
• Weak onsisteny
• Resoure monotoniity for top-ranked students
• Mutual best.In the next setion, we show that there always exist another mehanism satisfying only four ofthe �ve axioms.Mutual best an be onsidered as a very weak fairness requirement and satisfying it may not makea mehanism more desirable. In the following proposition, we show that TTC mehanism satis�esmuh stronger fairness requirement.Proposition 1 Under TTC mehanism, eah student weakly prefers his assignment to eah shool

s for whih he is ranked at the top qs portion of that shool's priority order.Proof. Suppose not. Let student i's rank for shool s be r < qs and he be assigned to shool s′suh that sPis
′. Shool s will start pointing student i after r−1 students are assigned to it if i is notassigned in an earlier step. First onsider the ase that i is not assigned before s points him. Shool8



s will keep pointing i until he is removed. Therefore, i will be assigned to s whenever he points tothat shool. Now onsider the ase that i is assigned before s points to him. In this ase, i shouldbe assigned to a better shool and he never points to s.We an also show that TTC mehanism satis�es a general form of resoure monotoniity fortop-ranked student.Proposition 2 When the number of available seats in shool s is inreased from qs to q̃s, keepingeverything else the same, then TTC mehanism assigns top qs students in shool s's priority orderto weakly better shools.Proof. We refer to the proof of Theorem 1. The part that we prove TTC mehanism is resouremonotoni for top-ranked students an be extended for top qs students. It follows from the fat thatthe �rst q ≤ qs seats of shool s annot be �lled before top q students in shool s's priority order areremoved.So far, we show that TTC mehanism outperforms other strategy-proof and Pareto e�ientmehanisms. Some shool distrits onsider fairness as the most important onern and these distritsselet DA mehanism instead of the TTC mehanism. In the rest of this setion, we fous on thefairness and the performane of the TTC in terms of respeting priorities.In the most of the shool distrits, priority struture is determined based on some exogenous rules.For instane, Boston shool distrit gives the highest priority for a shool to the students living in thesame walk zone and having a sibling attending that shool.23 The seond priority is given to studentshaving a sibling attending that shool but living outside the walk zone of that shool. Students whoare only living in the same walk zone have the third priority and the fourth priority is given to theremaining students. Ties between students in the same priority group is broken by random lottery.That is, the priority struture, ≻, in any problem is determined based on the priority groups andrandom draw. Publi poliy makers and families might give more importane respeting priorities inthe upper priority groups [Abdulkadiro§lu, 2011℄. In Proposition 3, we show that TTC is suessfulat respeting priorities in the upper priority groups under some realisti onditions. Before presentingour results we need some notation.Suppose there are n priority groups and respeting priorities in the �rst n∗ priority group is moreimportant. Let Gi : S → N be a funtion and Gi(s) be the priority group that student i belongsto for shool s. We say student i's preferene Pi is perfetly orrelated with the priority groupsif the following ondition holds: if Gi(s) < n∗ and Gi(s) < Gi(s
′) then sPis

′. A preferene pro�le23This priority group is known as sibling-walk zone priority.9



P = (Pi)i∈I is perfetly orrelated with the priority groups if eah student's preferene is perfetlyorrelated with the priority groups. As an example, suppose the �rst priority group (sibling-walkzone) in Boston is given more importane than the others. Then the preferene pro�le of the studentsis perfetly orrelated with the priority groups if eah student having sibling-walk zone priority insome shool ranks one of the shools for whih he has sibling-walk zone priority at the top of hispreferene list.Now we are ready to present our result on the performane of the TTC mehanism in terms ofrespeting priorities.Proposition 3 Let π be the outome of TTC mehanism in problem [I, S, q, P,≻]. There does notexist a student and shool pair (i, s) suh that Gi(s) < n∗, sPiπ(i), there exists another student jassigned to s and i ≻s j if any one of the following onditions holds:(a) The total number of students in the �rst n∗ priority lass of eah shool s is less than or equalto qs.(b) Preferene pro�le P is perfetly orrelated with the priority groups.5 Independene of AxiomsBelow we show the independene of axioms mentioned in Theorem 1.
• Strategy-proof, weakly onsistent, resoure monotoni for top-ranked students, and mutuallybest, but not Pareto e�ient: Consider the following problem. Two shools S = {a, b} withone available seat and two students I = {1, 2}. Let the preferene pro�le P and priority order
≻ be

P1 P2

b a

a b

s∅ s∅

≻a ≻b

1 2

2 1Let mehanism ψ assign 2 to b and 1 to a. Let ψ selet the same assignment in the aboveproblem independent of preferenes. For all other problems, ψ selets the same mathing asTTC mehanism. Mehanism ψ fails to be Pareto e�ient and satis�es other 4 properties.
• Strategy-proof, weakly onsistent, resoure monotoni for top-ranked students, and Pareto e�-ient, but not mutually best: Serial ditatorship mehanism is strategy-proof, (weakly) onsis-tent, and Pareto-e�ient. Moreover, when the number of available seats in a shool is inreaseall students' welfare weakly improve. That is, it satis�es more generalized version of the re-soure monotoniity for top-ranked students. However, it fails to be mutually best.10



• Strategy-proof, weakly onsistent, Pareto e�ient, and mutual best mehanism, but not resouremonotoni for top-ranked students: Consider the following problem: Two shools S = {a, b}with one available seat and three students I = {1, 2, 3}. Let the preferene pro�le P andpriority order ≻ be
P1 P2 P3

b b a

a a b

s∅ s∅ s∅

≻a ≻b

1 3

2 1

3 2Let mehanism ψ assign 3 to a and 1 to b in this problem. If the number of available seatsin shool a is inreased to 2 then ψ assigns 1 and 3 to a and 2 to b. Let ψ selet the sameassignment in the above problem where a has two available seats and 1 ranks a above s∅ andassign 1 to s∅ if he ranks a below s∅. For all other problems ψ selets the same mathing asTTC mehanism. Mehanism ψ fails to be resoure monotoni for top-ranked students andsatis�es other 4 properties.
• Strategy-proof, Pareto e�ient, mutually best mehanism, resoure monotoni for top-rankedstudents but not weakly onsistent: Consider the following problem. Three shools S = {a, b, c}with one available seat and three students I = {1, 2, 3}. Let the preferene pro�le P andpriority order ≻ be

P1 P2 P3

c a a

a b b

b c c

≻a ≻b ≻c

1 1 1

2 2 2

3 3 3Let mehanism ψ assign 1 to c and 2 to b and 3 to a in this problem. Let ψ selet the samemathing as long as 1 and 3 submit the same preferenes and 2 ranks b over s∅. If we remove
1 with his assignment then 2 is assigned to a and 3 is assigned to b. For all other problems ψselets the same mathing as TTC mehanism. Mehanism ψ fails to be onsistent and satis�esother 4 properties.

• Pareto e�ient, mutually best mehanism, resoure monotoni for top priority students andonsistent but not strategy-proof: The Boston mehanism is Pareto e�ient, resoure monotoniand onsistent [Kojima and Ünver, 2010℄. Moreover, in the �rst step of the Boston mehanismwhen a student applies to his most popular shool for whih he has the highest priority he willbe assigned to that shool. Therefore it satis�es mutual best. The Boston mehanism fails tobe strategy-proof (Abdulkadiroglu and Sonmez, 2003) and satis�es other 4 properties.11



6 ConlusionTTC mehanism has been studied extensively in the market design literature. It and its variantshave been proposed as one of the best alternatives in many mathing markets inluding publi shoolhoie systems, on-ampus housing and the kidney exhange programs. However, TTC mehanismhas never been haraterized for the ases where objets have a apaity greater than one, i.e. shoolhoie problem. In this paper, we provide the �rst haraterization of the TTC mehanism in theshool hoie problem. Our haraterization will help the shool distrits hoose between strategy-proof and Pareto e�ient mehanisms. In partiular, TTC mehanism is the unique strategy-proofand Pareto e�ient mehanism satisfying mutual best, weak onsisteny and resoure monotoniityfor top-ranked students.We also fous on the performane of the TTC mehanism in terms of respeting priorities. Weshow that TTC mehanism respets priorities in the upper priority lasses. If the poliy makersand families are only sensitive for the priority violations in the upper priority lasses then TTCmehanism will meet their needs.AppendixProof of Theorem 1.We �rst show that the TTC mehanism satis�es all of the axioms in the theorem. Then, we showthat it is the unique mehanism satisfying all of the axioms. Pareto e�ieny and strategy-proofnessof TTC follows from Abdulkadiro§lu and Sönmez [2003℄.Mutual Best: Suppose TTC does not satisfy mutual best. Then, there exists a student shoolpair, (i, s), suh that student i has the highest priority for shool s and prefers shool s to any othershool and i is not assigned to s by TTC. In the �rst step of the TTC, s will point to i and i willpoint to s. They will form a yle and i will be assigned to s. Therefore, TTC satis�es mutual best.Resoure Monotoniity: To show that TTC is resoure monotoni for top-ranked studentstake a student shool pair (i, s) suh that s ∈ t≻i and qs > 0. Denote the assignment of TTC inproblem [I, S, q, P,≻] with µ. Now onsider the problem [I, S, (q̃s, q−s), P,≻] where q̃s > qs. Weonsider a variant of the TTC mehanism in whih only one yle is removed in eah step.24 Fix theyle seletion rule. In partiular, let Cy(k) be the yle that is seleted in the kth step of the variantof the TTC mehanism when we onsider the problem [I, S, q, P,≻]. Let s be removed in step k ofTTC when we onsider problem [I, S, q, P,≻]. We will also selet Cy(k̃) in step k̃ < k if we observethat yle when we run the variant of TTC for the problem [I, S, (q̃s, q−s), P,≻].24TTC is independent of the order in whih yles are seleted.12



Shool s annot be removed before student i is assigned to a shool in problem [I, S, q, P,≻].Therefore, i is assigned in step k′ ≤ k in the problem [I, S, q, P,≻]. To see this reall that in theTTC mehanism, s will point to i until i is removed. Therefore, none of the seats of s will be assignedto any student before i is removed. Also note that all the yles seleted in step k′′ < k′ in problem
[I, S, q, P,≻] will be observed in step k′′ of TTC when we onsider the problem [I, S, (q̃s, q−s), P,≻]beause none of them inludes a student pointing to s and an inrease in the number of availableseats in s will not a�et their assignments. As a result the set of remaining shools in step k′ of theTTC mehanism in both problem will be the same and we will observe the yle inluding i in bothproblems.Weak Consisteny: We again onsider the variant of the TTC that is de�ned above. Let Jbe the set of students and let µ(J) be their assignments. Due to the requirement in the de�nitionof the weak onsisteny we only hek the ase in whih eah student in J has the highest priorityfor one of the shools in µ(J). Suppose none of the students in J belongs to a Cy(k) where k < k̃.Then, it is lear that the assignment of students in Cy(k) where k < k̃ will not be a�eted by theremoval of students in J with their assignments. Suppose i ∈ Cy(k̃). Let µ(i) be his assignment.Therefore, i1 who is the top-ranked student in the priority order of µ(i) should be in J . This is alsotrue for the top-ranked student of the shool that i1 is assigned. Due to the �niteness we shouldhave a yle. That is, Cy(k̃) ⊆ J and µ(Cy(k̃)) ⊆ µ(J). Therefore, removing these students beforerunning the TTC mehanism or removing them within the mehanism will not a�et the assignmentsof the remaining students.Uniqueness: Suppose there exists another mehanism φ satisfying all these 5 properties andthere exists a problem [I, S, q, P, ≻] in whih φ and TTC selet di�erent mathings. We willonsider the version of TTC mehanism in whih only one yle is removed in a step and if thereare more than 1 yle the one whih will be removed is seleted based on some exogenous rule, i.e.the yle with the shool having the lowest index . Then suppose that eah student removed beforestep k ≥ 1 of the TTC mehanism is assigned to the same shool under φ and TTC. Denote thesestudents with set J . Let i be the student who is removed in the step k of TTC and assigned to adi�erent shool by φ. If we remove students assigned in the �rst step of TTC with their assignmentsthen assignments of the remaining students in the outome of both mehanisms will not hange dueto the weak onsisteny. We an ontinue removing all students in J with their assignments andstill remaining students will be assigned to the same shools.25 Denote the redued problem with
[

Ĩ , S̃, q̃, P̃ , ≻̃
]. Here, Ĩ = I \ J , S̃ = S, q̃s = −

∑

i∈J

1(φ[q, P,≻](i) = s) + qs, P̃ = PĨ and ≻̃ =≻Ĩ . Inthis redued problem student i will be removed in the �rst step of the TTC mehanism. Let s bethe shool pointing student i in the �rst step of TTC mehanism in the redued problem. By the25Here we remove students in the following order: Cy(2)− Cy(3)− ...− Cy(k − 2)− Cy(k − 1).13



de�nition of the TTC mehanism student i should be the top-ranked student in ≻̃s. We onsidertwo ases. In the �rst ase student i is assigned to s and in the seond ase i is assigned to anothershool by TTC.Case 1: Student i points to the shool s in the �rst step of TTC. Shool s should be the mostpreferred shool in Pi among the ones having available seats. Suppose i reports P ′
i : sP

′
is∅. Due tothe strategy-proofness TTC will assign i to s and φ will assign to s∅. Any mutual best mehanismshould assign i to s in the redued problem. Therefore, φ fails to satisfy mutual best.Case 2: In this ase i is assigned to s′ 6= s and there is another student j assigned to shool s.Now suppose student i reports s′P ′

isP
′
is∅. TTC will selet the same mathing. Due to the strategy-proofness φ will assign i to either s where he is top-ranked or s∅.26 First onsider the latter asein whih i is assigned to s∅ by φ when he submits s′P ′

isP
′
is∅. Now onsider the ase that i submits

sP ′′
i s∅ and keeping everything same. Due to the strategy-proofness he will be assigned to s∅ by φ.However this will violate mutual best. Therefore the latter ase is not possible. Therefore, when isubmits P ′

i he will be assigned to s by φ. Now onsider the ase where i submits P ′
i and q̃s = 1.Sine φ is resoure monotoni for top-ranked students, i annot be assigned to his top hoie s′ by

φ. Then he will be assigned to s or s∅. Due to the aforementioned reasons he will be assigned to s.Therefore student j who is assigned to s by TTC will be assigned to an other shool by φ. Given sis the top hoie of j among the shools with available seats j prefers his assignment under TTC to
φ. Note that sine student j is assigned to a shool by TTC in the �rst step there should be anothershool s′′ where j is the top-ranked student. If we repeat the same steps for student j then we willshow that when q̃s′′ = 1 and j submits sP ′

js
′′P ′

js∅ he will be assigned to s′′ by φ. We an keepontinue and show that φ will assign all the students who are assigned in the �rst step of TTC toone of the shools pointing to them in the �rst step of TTC in the redued problem. Thereforethey will be assigned to stritly worse shool by φ and no other student will be assigned to thoseshools sine all shools quota will be equalized to 1 when we keep repeating. Therefore a tradebetween these students will inrease the welfare without worsening any other student and φ fails tobe Pareto-e�ient.Proof of Proposition 3. Part (a) of the proposition is a diret result of Proposition 2. Weprove Part (b) by using the de�nition of the TTC mehanism. In partiular, we use the variant ofTTC mehanism in whih only one yle is removed in eah step (see Proof of Theorem1). Considerthe students who are ranked at the top of the priority order of shools. Then among these students26Here, it is possible that i an be also assigned to another shool that he doesn't inlude to his preferene list.However, we an prove that this will violate either strategy-proofness of mutual best as a similar way that we followfor showing that i annot be assigned to s∅. 14



�nd the students who are pointed by shools that they belong to the kth priority group and theredoes not exist a student pointed by a shool that he belongs to the lth priority group where l < k.If k > n∗ then we are done. If k ≤ n∗ then among these students, selet the one who is favoredin the random draw and denote him by i1. We laim that in this step, i1 is pointed by his mostpopular shool. Suppose not. Then he is pointed by another shool s and his most popular shool s′is pointing another student i′. Given s′Pi1s then Gi1(s) ≥ Gi1(s
′). Moreover, Gi1(s

′) = k > Gi′(s
′)sine i1 is the most favored student in the random draw and i′ ≻s′ i1. This ontradits with thefat that there does not exist a student pointed by a shool that he belongs to the lth priority groupwhere l < k. Then student i1's priority is not violated in any shool beause he is assigned to hismost popular shool.We show in Theorem 1 that TTC mehanism satis�es weak onsisteny. That is, when we remove

i1 with his assignment the remaining students will be assigned to the same shool by TTC mehanismin the updated problem. Therefore, we an onsider the redued problem as a new problem andrepeat the steps above and show that there does not exist a student and shool pair (i, s) suh that
Gi(s) < n∗, sPiπ(i), there exists another student j assigned to s and i ≻s j.
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