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CHAPTER 6

A CLASS OF DYNAMIC DEMAND SYSTEMS*

GUOQIANG TIAN JOHN S. CHIPMAN
Texas A&M University University of Minnesota
Department of Economics Department of Economics
College Station Minneapolis

TX 778434228 MN 55455

ABSTRACT. This paper derives closed-form solutions for the total consumption-expenditure function
(ie., aggregate consumption function), the savings function and the demand functions from a
nonstationary intertemporal utility-maximization problem under uncertainty for a class of demand
systems, including the linear expenditure system (LES) from the Klein-Rubin-Samuelson (KRS) utility
function, the generalized linear expenditure systems (GLES) from the CES and S-branch-tree utility
functions, the Almost Ideal Demand System (AIDS) from the PIGLOG class of preferences, and the
indirect addilog demand system (IADS). We do so by following Hicks’ and Tintner’s method of
maximizing a discounted utility function subject to expected constraints rather than the more fashionable
method of maximizing an expected discounted utility function subject to stochastic constraints.
Furthermore, the preferences are allowed to vary with the time period. Theoretical analyses for these
systems are also given in this paper.

1. Introduction

Since the linear expenditure system (LES) was first studied by Stone (1954), many analyses of
demand systems have been undertaken and many models have been proposed for alternative
specifications and functional forms (see, e.g., Christensen, Jorgenson, and Lau 1975, Deaton and
Muellbauer 1980, Theil 1965, 1976). These models have been widely used in applications of
demand theory as well as in international trade (cf. Powell 1966, Parks 1969, Pollak and Wales
1969, Goldberger and Gamaletsos 1970, Musgrove 1974, Anderson and Browning 1986,
Chipman 1985). A number of generalizations of these models have been provided (Johansen
1969, Wales 1971, Brown and Heien 1972, Lluch 1973, 1974, Howe 1975, and Musgrove 1977).
Estimation methods for these systems have been worked out (Barten 1969, Pollak and Wales
1969, Parks 1971, Powell 1973, Howe 1974, MacKinnon 1976, Blackorby, Boyce, and Russell
1978, Woodland 1979, Ronning 1983, Wales and Woodland 1983, and Chipman and Tian 1988a,
1988b).

Almost all of the above-mentioned studies treat total consumption expenditure as exogenously
given and make no attempt to analyze the consumption-savings decision. The modem
intertemporal utility-maximizing model is usually put at Ramsey’s 1928 article on optimal saving
(1928). Tinter (1938a, 1938b) considered formally the general intertemporal problem of faced
by a consumer with given expectations about prices, income, and interest rate both in discrete
time and continuous time as a theoretical tool (see also Hicks 1935, 1939). However, he did not
attempt to specialize the utility function. Empirical implementation did not appear until the work
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of Modigliani and Brumberg (1954) (who used a one-commodity assumption) and Lluch (1973).
Lluch is the first to extend the LES into an intertemporal maximization problem over continuous
time, subject to an expected-wealth constraint, and to derive the expenditure equations and the
aggregate consumption function. However, Lluch’s approach assumes that the commodity prices
and the interest rate on non-human wealth and the shift-parameters are constant over the time
path. This is clearly not a suitable assumption. Also it is well known that the (dynamic) LES
embodies some undesirable restrictions so that it is necessary to develop alternative dynamic
demand systems (such as the dynamic GLES and the dynamic AIDS) which would be of greater
interest to applied workers.

In order to avoid the assumption of perfect foresight, two quite different approaches have been
followed in the literature. The first — which is the more fashionable one in the current literature
(cf. Hall 1978, MaCurdy 1983, Sargent 1987) — is to maximize an expected utility function (i.e.,
the expectation of the present value of future instantaneous utilities) subject to a set of stochastic
constraints. This approach is based on the axioms of von Neumann and Morgenstern (1947), and
in particular on the crucial ‘independence axiom’ that was later brought out explicitly by
Marschak (1950) and Samuelson (1953). The empirical realism of this axiom has been challenged
by a number of writers, starting with Wold (1952) and Allais (1953), and more recently by
Kahneman and Tversky (1979), Machina (1982), and Yaari (1987), who have proposed alternative
sets of postulates. A further criticism has been raised by Ben-Tal and Ben-Israel (1987), namely
that it allows realized values of decision variables to violate stochastic inequality constraints. A
final, practical, drawback of the expected-utility approach is that closed-form solutions for
decision functions cannot in general be obtained, unless very specific assumptions are made
concerning the instantaneous utility functions and uncertainty (cf. e.g., Epstein and Wolpin 1988).

The second approach is an older one due to Hicks (1935, 1939) and Tintner (1938a, 1938b);
followers are Lluch (1973, 1974), Lluch and Morishima (1973), Powell (1973, 1974), Howe
(1974, 1975), and Musgrove (1974, 1977). In this approach the instantaneous utility functions are
assumed to be nonstochastic in the parameters, and the intertemporal utility-maximization
problem is to maximize a discounted utility function (the expectation of the present value of
future instantaneous utilities) subject to expected constraints, i.e., subject to given expectations
about prices, income, and interest rate over time. It is known (cf. Simon 1956, Theil 1954, 1957)
that a sufficient condition for the von Neumann-Morgenstern approach to reduce to the Hicks-
Tintner approach, i.e., for each random variable to have a ‘certainty equivalent’, is that the
instantaneous utility functions be quadratic and the constraints be linear in the random variables
and decision variables (cf. Sargent 1979, p. 346). Under these conditions the mathematical
expectation can be taken ‘inside’ the marginal utility function, i.e., Eu'(x()) =u'(E,x(t)). Whether
and under what circumstances this condition is also necessary appears to be an open question.
Another condition that would justify the Hicks-Tintner approach is the existence of perfect
markets permitting hedging and insurance; for, if the consumer’s instantaneous utility function
u(x) is concave, Eu(x(1)) g u(Ex(f)) by Jensen’s inequality. We do not pretend in this paper to
have axiomatic foundations for the Hicks-Tintner approach, but follow it for more pragmatic
reasons: (1) it permits closed-form solutions for general classes of preferences, and is thus
amenable to practical application; and (2) the expected-utility approach, which does not permit
closed-form solutions except for special types of preferences and constraints, does not have stron g
empirical support, and indeed has been increasingly called into question in empirical research.

This paper deals with the discrete intertemporal consumption-maximization problem under
uncertainty using the Klein-Rubin-Samuelson (KRS) utility function, the CES utility function, the
Brown-Heien S-branch-tree utility function which is a modification of Sato’s two-level CES
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production function, from which the LES and the generalized linear expenditure systems (GLES)
are derived, and further, the PIGLOG class of preferences resulting in the AIDS (see Deaton and
Muellbauer 1980). The demand functions together with the savings function as well as the
endogenous total consumption expenditure associated with the LES, the GLES, and the AIDS are
called the dynamic linear expenditure system (DLES), the dynamic generalized linear expenditure
systems (DGLES), and the dynamic AIDS (DAIDS) respectively. In addition, we also derive the
dynamic indirect addilog demand system (DIADS) with b;-parameter identical among goods.

In the context of these dynamic demand systems, we can answer questions about the responses
of the consumption, savings, and demand functions to changes in the interest factor, expected
labor income, the expected prices and the last-period savings. The signs of the derivatives of the
minimum expenditure —d(p(¢)) are crucial to determining the signs of the derivatives of the
optimal decision functions with respect to prices. For instance, when ——(E—agp ((:)» is positive, an
increase in the current price of the ith commodity will lead to increases in the current-period
savings and to a decrease in the current total consumption expenditure; an increase in expected
future prices will lead to decreases in current savings and to increases in total consumption

. .o 0d{p(t+5)) . i dd(p(t+s)) . .
expenditure if ————ap‘_ ) is positive (s>0). When s is negative (s > 0), the

conclusions are reversed. Thus we can see that the assumption made by Lluch (1973), that prices
of commodities are constant over the time path, may not be suitable. Also his assumption that the
interest rate is constant over the time path may not be suitable because, as we shall show later, an
increase in the last-period interest rate causes the current-period savings, current demands and
total consumption expenditure to increase only if the consumer had been lending in the last
period.

Our approach presented here has a number of advantages. We know that intertemporal analysis
has been widely used in macro-economic models of the balance of payments in international
trade. Owing, however, to the considerable mathematical difficulties involved, theoretical
contributions (see, e.g., Lucas 1982), have adopted a one-commodity assumption and/or have
neglected production. Even so, empirical applications to international trade or macro models have
been rare. Our approach here offers a way to derive the consumption-savings decision functions
with many commodities so that we can easily carry out the theoretical analysis and empirical
applications. More realistically, we allow the model to be nonstationary in instantaneous
preferences, i.e., the instantaneous preferences of the consumer vary over time periods. In fact, for
any instantaneous utility function, if its indirect utility function is log-linear or is quadratic in total
consumption expenditure, we can easily derive the savings-decision functions by solving the
Euler equation; then we can derive the demand functions by solving the consumer’s static
maximization problem. Since the indirect utility functions associated with these dynamic demand
systems are log-linear in the total consumption expenditure c(¢), the functional forms of the
consumption-savings decision functions for these utilities are the same, while only the demands
are different.

The plan of the paper is as follows. Section 2 sets forth a general form of the consumer’s
intertemporal maximization problem and derives closed-form solutions of the consumption-
savings functions for a class of preferences. In Section 3, the DLES, the DGLES, the DAIDS, and
the DIADS are derived. In Section 4, we carry out a theoretical analysis of the optimal decision
functions. In Section 5, further assumptions are made so that we can simplify the formulas for the
optimal decision functions. In Section 6, some conclusions and remarks are presented.
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2. The General Intertemporal Consumer Problem

The basic variables of the model are indicated by the following notation (¢ denotes time):
m = the number of consumption goods;

x() = (x, (1), . .. ,xn(t)) = m—vector of consumption goods;
pi(t) = the price of the ith consumption good, which is assumed to be random;
p(t) = m—vector of the prices;

b(r) = bondholdings (savings) at the end of period ¢

5() = b(t)-b(t - 1) = saving during period r;

r(t) = the given one-period interest rate on one-period savings;

R(t) = 1+ r() = the interest factor on one-period savings;

y(t) = labor eamings, which are assumed to be random:;

B = the pure time-preference factor or subjective rate of discount;

u() = instantaneous utility function;

v(°) = instantaneous indirect utility function;

c{t) = p(t) - x(r) = the total consumption expenditure at time 7.

Remark 1. In orc'ier 1o avoid the assumption of perfect foresight, we assume that the distribution
of the ra{1d0m prices and labor income are known (this is the rational-expectations hypothesis).
Then at time 1, the expected future prices and labor income are denoted by

Pt t+)=Ep(t+j)
Y t+j)=Ey(t+))

Jor j= I 2,...,e, where E, denotes the mathematical expectation conditional on the information
set available at time 1.

In the following, we adopt the Hicks-Tintner approach to the intertemporal problem of a

consumer faced with given expectations about prices and income. That is, we assume that the
consumer’s problem at ¢ =0 is

max iﬂ‘u(x(t))
=0
subject to
Eol((®)-x()+b() )= Eoly(1)+R(t-1)b (1 -1)] 1
with b(-1) given.! Writing (1) in another way, we have
Eolp(t) x(0)+s()1=Eoly()+r(t-1)b (- 1)1.

This stat.cs t.hat th?t the expected value (conditional on the information at time 0) of consumption
plus saving in period ¢ is equal to the expected value of labor income plus property income at time

£ The.period utility function u(-) is assumed to be twice-continuously differentiable, and
increasing in each argument.
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In addition to the above constraint, the terminal condition (or borrowing constraint)
'lim OU)Y' O+ )b (t+j)=0 )
is needed to prevent the consumer from borrowing arbitrarily large amounts, where
-1
@) =TIR(@)™.
=0
The interpretation for (2) is that the present value of borrowing goes to zero, or equivalently, debt

does not grow at a rate exceeding the interest rate.

Remark 2. The terminal condition (2) and the budget constraint (1) are equivalent to a lifetime
budget constraint which can be written in terms of the following stock balance:

o3 0(0p(1) x(1) = Eo T (1) (1).
=0 =0

This states that the present value of planned expenditures should equal the present value of
earned income (cf. Chipman and Tian 1988c).

Let the indirect utility function be defined by

v(p), c(®))=max{u(x(t)): p(t)-x(t)=c(D)}.
Then the maximization problem at ¢ = 0 becomes

max 3 8v(p(0.1), () 3)
=0

subject to
Eol(c@)+b()1=Eoly(®)+R(-1)b(t-1)].

This is because after we obtain the solution for c¢(¢) and b(r), we can obtain the demand functions
by the Antonelli-Allen-Roy partial differential equation

ov(p(t), c(t))
_ api(t)
w(p@)c@®)
dac(r)

In general, it is very difficult to derive the optimal solution of (3) even though we can analyze its
existence and properties by using discounted dynamic programming. Empirical applications have
been rare for this reason in the discrete-time problem.

In order to discover necessary conditions for (3) it is convenient to consider the finite-horizon
problem:

x(t) =

T
max 3 Vv(Eop(1), Eo[y()+R(t-1)b (¢ -1)-b(1)1) @

t=0

with b(-1) given and ®(T)b(T) =0 ( or equivalently, b(T) = 0). This problem matches our infinite-
horizon problem when T goes to infinity. Then the Euler equation (first-order necessary condition)
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is obtained by differentiating (4) with respect to b(t):
-Bv(p(0), y(O)+R(-1)b (1 -1)-b() ) + ®)

+BM IRV (Ep(r + 1), Ely(t+D)+RObO-b(+1)])=0
fort=0,1,2,...,T-2, and

T v (p(T-1), y(T- 1)+ R(T-2)b(T ~2) - b(T - 1)) +

+BTR(T = 1), (Er_1p(T), Er 4y [ Y(T) + R(T - 1)b(T - nH=0
fort=T-1.
The latter is the terminal condition of the Euler equation (known as the transversality condition)

and is a necessary condition for optimality. To obtain the terminal condition in the infinite-
horizon problem, it is appropriate to take

Jim 871 (v (T~ 1), y(t = 1)+ R(T-2)b(T - 2)-b(T - 1)) + ©6)

+BR(T - v (p(T), y(T) + R(T - 1)H(T-1))] =0.

To obtain closed-form solutions for the optimal decision functions, we assume that the
instantaneous indirect utility function is of the form?

vilp(t), c(t)) = log g p(1) )+ blog [c (1) + d,(p(1))], U]

where d,(p(t)) is a linear homogeneous function of within-period prices. -d,(p(¢)) can be regarded
as the cost of subsistence or minimum-required expenditure.

In the following sections, we will see that several indirect utility functions which are widely
used in the demand-system literature have this form; these include the Klein-Rubin-Samuelson
(KRS) utility function whose maximization leads to the LES, the CES utility and Brown-Heien
S-branch utility tree which are both generalizations of the LES, the PIGLOG class preferences
resulting in the AIDS, and Houthakker's (1960) indirect addilog utility function. Note that we
allow the preferences of the consumer to change with time periods.

In order to guarantee the existence of the solutions, we assume R()>1,BR(t) <1 for
t=0,1,2,...,~0and

Jlim &(1)[di(p () +y (@)1= 0.

Since

ve(p(@), ()= ——2 |

c(0)+d,(p(1))

the Euler equation (5) becomes

_ p'b . () =0

ED+RE-Db(-1)-b() E[E¢+1D)+RObE)-b(t+1)]

or

Eb(1+1)-(1L+B)R()b(1) + BRIDR( - 1)b(t - 1) = EE(r + 1) - BR(E(), ()
where

&0 =d(p())+y().
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The transversality condition (6) becomes
Tli_r)n-BT‘l [-Q+BRT-Db(T-1)+BR(T-1)R(t~2)b(T-2)— )
—§T)+BR(T-DET-1)=0.
The transversali?: , condition holds under the given ass;xgxptions. In fact, from
Tli_{n_ﬂ’b(T) = Tﬁ_lfl_( EBR(‘C)) (®Mb(T))=0 and Tli_l'n_BTf;(t) = Tl'_ll;ﬂ_( gﬂR @) (PMET))=0, we

know that the limit of each term of (9) goes to zero as 1 — . This shows that the transversality
condition holds. In order to solve (8) for b(t), we first assume that R(¢) = R. Then (8) becomes

Eb(t +1)—(1+BRb(1)+BR2b(t - 1) = EE(t + 1)—ARE(). 10)
Define the lag operator L and its inverse operator L~! by

Lb(t)=b(-1)
and

L'b@)=Eb(t+1).

The (10) can be written as

(L“ -1 +B)R+aR2L)>(t)=E,F,(t +1)—BRE(). 43))]
The characteristic equation is

AZ—(1+B)RA+BR2=0
whose roots are A; = R and A, =gR. Therefore we can write (11) as

=M (1-A'L) (1-0,L)b(1) = EE(t + 1) - BRE().

The general solution of the above difference equation is
-1

—A7
(1-2L)b(1) =

1—-7L‘1!,—"—(E'§(” 1)-BRE(1) )+ AR’
M

= —RVYRVE(E(1 + 1+ /)~ BRE( + /) + AR’
j=0

=- YR VVELt+1+))+BTRVEL( +j)+ AR
j=0 j=0

= BE() - (1-B) S RVEE( + ) + AR*
j=0

where A is a constant. However, since R > 1, we must have A =0 in order to satisfy the borrowing
constraint (2), for the above equation can be written as

A =Rb(t)-BR™CVb(t - 1)~ BRE() + (1 -B) R CDEE( + )
j=0

of which each term on the right goes to zero as ¢ goes to infinity. Sefting A = 0, we have
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b(e) = BRb(t — 1)+ BE() — (1~ ) SR TEL( + J).

j=1

Now we consider the general case where R() is not constant. We guess that the solution of (8) is
of the form

e j-1

b(t) =Rt - 1)b(1— 1)+ &N - (1~-B) T [TR( + 1) ' ELE(t + ) (12)
j=1e=0
and thus
b(t+1)=pROb)+REC+1)-(1 —B)iﬁR(t +1 +t)“EM§(t +1+4)) (13)
Jj=lv=0

fort=0,1,2,...,0. Now we verify that (12) is the solution of (8). In fact, using (12) - (13) and
that fact that E,E,,, f(t + j) = Ef(¢ + j) for any integral function f(-) and j > 0, we have

Eb(+1)-(1+pbR()+BR(OR(-1)b(¢-1)

=BR(OL)+BEL(E +1)-(1 —B)ifb(l + 1) P+ 1+ HEE( + 1+ ) -

j=1

BRI -R@)b()+BR(R(-1)b(t-1)

=~RObY+BRORU-Db(t-D+pEL(+1)-(1 —B)i‘b(t + 11O+ 1+ HEL(+1+))
j=1

=-R() (BR(I =Dbe-1)+p5(0)-(1 —li)}.:“.d’(t)'1 O+ HEL(E+]) |+

j=l

+BRORE-Db(-1)+BEE(+1)-(1 —B)id)(l + D)o +1 +YEE(+1+))
j=1

= BEE( + 1) =BROVEW) + (1~ R0t + 1) O + EL( + )

j=l

-(1 -B)id>(t + DO+ 14+ HEE(E+1+))
j=l

=pEE(+1)-BR(OEN)+(1 —B)i‘,d’(t +)7 O+ 1+ PESE+1+))-
j=0

-(1—3)i<1>(z + D) D+ 1+ HEE(E+1+))
j=1
= BEL(t + 1) -BR(DEN + (1 -PEE( + 1)
= E&(t + 1) -BR(1E().

This shows that (12) is the solution of (8). Hence the total consumption function (expenditure
function) is given by
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o) = (1-POE) TR+ HEXE + 1)) -dp(©)) (14)
j=0

=-pd,(p())+(1-B) () + R -1)b(1-1) +

- -]
+ TTIRC+ 0 Eddef(pe + 1)) +y @+ )1,
Let j=1e=0

w({t)=R@-1bt-1)+y()+ iﬁR(: + O Ey(e+1),

j=lv=0
- = j-1
d(t)=d(p(t))+ TTIR( + 1) Edy.j(p(t +))).
j=10=0

w(t) consists of property income plus the expected present value of nonproperty (labor) income.
Thus w(¢) can be considered as the permanent income of the consumer. —d(r) is the expected
present value of minimum-required consumption expenditure; it can be interpreted as the
permarnent necessary expenditure. Thus (12) and (14) can be rewritten in terms of w(¢) and d() as

b()=R(t - 1)b{t—1)+y (1) +d(p()) - (1-B) W) + () ;

c(t)=-d(p(t))+(1-) [w(t) +d(1)).

3. A Class of Dynamic Demand Systems

3.1 THE DYNAMIC LINEAR-EXPENDITURE SYSTEM
The Klein-Rubin-Samuelson (KRS) utility function? is of the form

u(x(e);on 1)) = Toylog (x()+%()) (>0& Yo =1) 15)
i=1 i=1
where o; and y;(¢) are parameters.
Since the demands for the commodities, in general, vary over time, we may assume that the
v:(t)'s vary over time. In Chipman and Tian (1988a, 1988b) the v,(¢) are assumed to have the form

10 = Thabuct)
1=0

which is a very general form and covers the case of linear trend as well as those of Pollak (1970)
and Chipman (1985) as special cases.
The indirect KRS utility function is given by

Y(p(O), c0)) = S oslog ou/pi6) + Iog (p(1) ¥(1) + (1)),
i=l

which has the form specified by (7) with d,(p(t))=p(¢)-¥(¢#). Thus the consumption-savings
functions of the DLES are given by (12) and (14) and the demand functions x;(r) of the DLES are
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given by
50) =~ (PO M0 +e0) ()
= p“‘T) (1-B) [p(O)- ¥+ YO +R(t - Dbt - 1)+
+ ;};ﬁk“ FOIE(p(+ ) 1+ D+ 3+ D=1

= (1-B) —— [w()+ A1) ) - 0).
pi(t)

Thus the expenditure equations for the DLES are
pi)x:(1) = (1B} {p() WO+ y()+ R - Db -1) +

- j-1

+ TTIRE+ O Ep(t+ 1) AW + )+ y(e + ) 1-pileyv(e)

j=le=0
= (1-pos [ w(t) +d(t) 1-pie)¥:(0).

Remark 3. When we let p(t) = p, R(1) = R and (t) =y over time, the ):unctional forms (12)-(14) are
the same as those in Lluch (1973), only the definitions of w(t) and d(t) of Lluch are different. This
is because Lluch uses a continuous time path, while we use a discrete time path.

3.2 DYNAMIC GENERALIZED LINEAR EXPENDITURE SYSTEMS

As we know, the KRS utility function is directly additive, hence there are no specific substitution
effects in the LES. We cannot deal with inferior goods (since o;/p;(r) > 0) and complementary
goods (since the Slutsky term S;j(t) is > 0 for i # j), nor can we deal with price elasticities whose
absolute values exceed unity when -v;(¢) is interpreted as the minimum-required quantities (i.e.,
we need to assume that y;(f) < 0). We can verify that the GLES also has the same restrictions
mentioned above as the LES. Brown and Heien (1972) have modified Sato’s (1967) two-level
CES production to obtain the utility function which they term the ‘S-branch utility tree’. The
demand system associated with this utility has the following properties: Specific substitution
effects do not necessarily vanish. Goods in the system can be complementary under some
conditions. Own-price elasticities are free to vary in the interval (—o,0). Finally, the S-branch
utility tree contains the LES and the CES utility function as special cases.
The CES utility function is of the form

u(x())=—-log [}:o,-[xi(z)w(z)lp} (o<p<l) (16)
i=1

which is of course analogous to the CES production function. The utility function is a

generalization of the KRS utility function because (16) tends to (15) as p tends to zero. The

demand functions implied by (16) are also reasonably simple:
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o
pi(t)
xi(t)= = P} f+c(t)) Y1) an
S| gy
j=t pi(t !

when the budget constraint is given by

p() x()=c(t)
where
oo L
5
Brown and Heien (1972) proposed a further generalization of (15) and (16) which they called the
S-branch utility tree. The consumption gc:_ods are assumed to be divided into S branches, with m,

commodities in the /-th branch where the 3" m, = m, so that the utility function can be written as
=1

s im Pt
Ulx(t)) = %log [IZiou[Zicu.-(xz.-(t)+'n.-(t)"’}p ] (cee<pn-=<p<]) (18)
which is called the Brown-Heien S-branch utility function. (16) is just the special case of (18)
when s = 1; hence some people call the CES utility function the 1-branch utility function. The
parameters o, reflect the importance of the different branches (blocks) in generating total utility;
the oy, on the other hand, reflect the importance (in generating utility) of particular commodities
within given branches. The a;s and ays are all assumed to be positive. The demand functions
implied by (18) which were first derived by Brown and Heien ( 1972) are much more complicated
than those implied by (15) or (16). The demand functions are
Ol

x(1) = —Y(0)+ (W] [a8X, (1) oY) (19)

s m s 1
X {C O+ Xpi® 'Ylj(l)]' {Zafxz(f)(mly(a'-’)I
1=] j=1 1=
fori=1,2,...,mands=1,2,...,5. They satisfy the budget constraint
s m
2 2P0 xy(6) = c(f).

I=1j=1

Here
o.= 1
*ol-p,
and
m(ay !
X(0)= ,§1 [;’;(t—]v pi(0).

A simple derivation can be found in Powell (1974).
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Substituting the demand functions (17) and (19) in (15) and (16) respectively, we obtain

v(p(), c(t)) =log (c() +p(1) - ¥(1))+ %108 [iﬂ:( ;) )"J
i=1

where
A pi0)°
0= — (o /pi(0)
3 (o7 pi(1))°pile)
j=t
and
S o (o-1)(0p-1)
v(p(t), c(£)) = log (c(t) + p(£) - 1)) - log [Za: X\(r) }+
I=1
1 s | m
+-—log Za, EB;,-(I)
p 1=1 Li=t
where

o [ (6-01Y/(0i-1)
Bﬁ((): [;;‘—)T [a?X,(l) G- ]

Thus these indirect utility functions have the form specified by (6). Therefore the consumption-
savings functions of the DGLES are given by (12) and (14) and the demand functions of the
DGLES with the CES utility function and S-branch utility tree are obtained by substituting (14)
in (17) and (19) respectively:
- o, /pi(1))°
x(1) = (- (w()+d()) —,,,——(—p—)—-‘ﬁ(t) (20)
X (/pi(e)°pit)
j=
o (@l pa(t))™afx, ()OO
x5() = (1-P) (w(t) +d(1)) 5

za?XI(')(c-ly(O'-l)
=1

=Ya(t). @n

3.3 THE DYNAMIC ALMOST IDEAL DEMAND SYSTEM

The Almost Ideal Demand System (AIDS) was introduced by Deaton and Muellbauer (1980); it
has many desirable properties such as fumishing an arbitrary first-order approximation to any
demand system, aggregating perfectly over consumers without invoking parallel linear Engel
curves, etc. The preferences resulting in the AIDS are the so-called PIGLOG class which are
represented via the cost or expenditure function

log c(v(r), p(1)) = (1-v()log a(p(1) ) + v(Dlog b(p (1)), (22)

which defines the minimum expenditure necessary to attain a specific utility level at given prices.
Here a(p(r)) and b(p(r)) are linear homogeneous function of within-period prices and given by

smissersss. e st oo
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log a(p()) = ag(®)+ Loslog pit)+ 3 E ZU(O0BAOP,)
i=1

i=lj=1

log b(p()) = loga(p(t)) + 8 [ I ().
i=1
From (22), the indirect utility function is given by
W(p(0), c(r)) = B - 1082(P®)

o)
%8 2o ()

The demand function can be obtained by the Antonelli-Allen-Roy equation

0
, log—-c— , .
a0 | B apu (bie®) @) ,
HOZO) Zo0) " og 22O [b(p(r)) a®) )| @)
a(e)
by 3a@®) 4o o 3b(())
wherea’i(p() =3 1 and (P =3 1y

In order for the indirect utility function to have the form specified by (7), we assume?

b(Ep(t+1
Ep(t+1)=pp(t). Then Ep(t+1)=p"'p(0) and thus log aEE:ﬁin l;; =log Zgigg; so that the
indirect utility function has the form specified by (7). Thus the consumption-savings functions of
the DAIDS are given by (12) and (14) and the demand functions x;(r) of the DAIDS are obtained
by substituting (14) in (23).
The demand functions x;(¢) for the DIADS are

xi(1) = (1-pw(0)

log& ’ ,

a'.-(p(t))+ a(pr) | bip®) a'ip®)

a(p(t)) log b)) | b(p®) alp®) )|
-a(p(1)

3.4 THE DYNAMIC INDIRECT ADDILOG DEMAND SYSTEM

The indirect addilog system can be obtained from the indirect additive utility function

v(e(0), p(0)) =log [}":a.- £, ]; ®:>-1) 24)
ia \pitt)

where the a; and b; are parameters which are called the preference indicators and coefficients

respectively. The resulting demand function is

h. bi oy~ (Bitl)
()= :.b.C(l) pi(t) 25)
Tabic ) py"
j=t

In order to obtain the closed-form solution, we consider a special case b;=b foralli=1,2,...,m
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so that (24) becomes

V(e (), plt)) = blog c(¢) + log ()::'; p::i)" ]

and (25) becomes
) {1\ -B+1)
xi(0) = a.cs)p.(t) .
Tapi)*
j=l

The demand functions x;(r) for the DIADS are
api(ty Y
x(0) = (1-Bw(t) ————.
>
=y 20
Remark 4. From the above discussion, we know that all of the utility functions considered above
can be written in the form v,(p(t), c(t)) = log g.(p(t)) + blog [c(t) + d(p(t))], and the solutions for
the consumption-savings decision are independent of g{p(t)). Furthermore, we can allow the
preferences to change with time periods and the functional forms of the consumption-savings
functions are the same as long as the preferences are represented by the above utility functions.

4. Some Properties of the Dynamic Demand Systems

We know from the last section that the functional forms of the savings decision function and total
consumption expenditures from the DLES, the DGLES, and the DIADS are the same. Only the
demand functions for the consumption goods are different for the DLES, the DGLES, and the
DIADS. In this section, we analyze responses of historical savings, interest factor, the current and
future price to the optimal decision functions, and give elasticities for the DLES, the DGLES and
the DIADS. Take the solution functions b(),c() and x(t) as the functions of
b(t-1), R(t=1), R(t+J), Ey(t+J), Ep(t+)) (j 20), which are denoted &()=5b(), c()= ¢(-), and
x(6)=x0)-

4.1 PROPERTIES OF THE CONSUMPTION-SAVINGS FUNCTIONS

We investigate the properties of the following partial derivatives:
3b()

a_b(t_:l—)=ﬂR(t_l);
B _ape1y:
RE-1) =pb(t-1);

b _ (- o 1 . )
m_R(HS),-ElI;‘ER(HT) E&(t+)) (Vs20);

) _

ay (1) i
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()
ay(t, t+5)

3b() _ . 9d(p(®)
op) ~ oplo)

=—(1—B)ﬁR(t +1) (Vs>0);
=0

ob() 1 1 9dis(p(t, 1 +5)) .
op;(t,t+5) —_(l_a)gk(' ) api(t, t +5) (Vs >0):
() _q_ -
ab(t—l)_(l BR(-1);
90 _ 1 b1
aR(t—l)_(l Bb(-1);

k0 _ (-8 + 4 -1 . )
RGas) R(t+s)j=§,gR(Ht) EEit+j) (Vs>0);

9c()

= 1— ;
FN0) (1-p)
a() _ +1 _1 .
_ay(t,t+s) —(l-B)gR(t+‘t) (Vs >0);

9E() _ . 9d(p(®))

) )
()
op;(t, L +5)

0d,s(p(t, 1 +5))

api(t, 1 +5) (Vs>0).

-1
=(1-p[IR¢ +v)™*
=0
The above derivatives show that an increase in the past-period bondholdings b(t-1) causes the
current-period bondholdings b(r) and the current total consumption expenditure c(¢) to increase.
An increase in the last-period interest factor R(z—1) causes the current-period savings and the
current total consumption expenditure to decrease if the consumer was borrowing the last period
(i.e., b(t-) < 0) or to increase otherwise; an increase in a future interest factor causes the current-
period savings to increase and the current total consumption expenditure to decrease. An increase
in the current labor income y(¢) causes the current-period savings and total consumption to
increase. An increase in the future expected labor income causes the current-period savings to
decrease and the current total consumption expenditure to increase. An increase in the current-
period price of the jth good causes the current-period savings to decrease (increase) and causes the
od,(p(1))
dp;(t)
increase in the future expected price of the ith good causes the current-period savings to increase
ad/(p(t))
ap;(1)
current-period savings to decrease and the current total consumption expenditure to increase if

0d,.(p(1))
ap;(t,t+s)

total consumption expenditure to increase (decrease) if

is negative (positive). An

and the current total consumption expenditure to decrease if

is negative, and causes the

is positive.
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4.2 PROPERTIES OF DEMAND FUNCTIONS OF THE DYNAMIC DEMAND SYSTEMS

Now we study the properties of the demand functions of the dynamic demand systems, and
particularly the vectors of partial derivatives of the demand functions with respect to
b{t-1), R(t=1), R(t+ /), Ey(t+ ), Ep(t+j) (j 2 0). Here we only give the properties of the
demand functions of the DLES and DGLES. The demand functions of the DAIDS and the DIADS
can be similarly studied.

4.2.1 Properties of the DLES. For the DLES, we have

ax;(-) o ‘
m—(l—ﬂ)lf(t—l)m >0;
ox(*) ) o |20 ifb(-1)20
3R(~1) =(-PbC-D2751 <0 otherwise
ox()  (-Poy = i 4 _ .
R +s)  RE+s)p0) ,Elg"(’”) Eg(t+)) <0 (I5>0);
aii(') o;
2 _(1-f)— >0;
0 P
a;,() _ N o; s-1 o )
s P >0
ox;(+) Loy [ 20 020
ap;() =({1-B) pit) | <O otherwise’
FH() __ om0 o v [ <0 %02 () (1-(-pa;)
opi(t) _‘m—[ = —B)Ot;)]m <0 otherwise ;
%(+) = . 20 ify;(t+5)20
apj(t, 1 +5) =(1_BIP,‘(¢) ET(Ht) Y+ 20 otherwise  oranys>0.

The interpretations for the above derivatives is similar to those in Section 4.1. In the following,
we give some elasticity formulae for the GLES. The price elasticities are given by

_ dlog&i() _ 0
Na(t) = FINTI0) =-1-[1-(1-p)ay] 0
a oY (Op;(8)
n;()=(1 _5)——_17.'(‘)%(')
The total expenditure elasticity dlog %.(-)/dlog c(t) is
P S AT _ pr
E(t)= p,-(x)x;(l)[ p(r) W)+ (1 -B)(w(t) +d(r))].
The permanent income elasticity dlog %,(-)/ dlog w(r) is
EL()= o;(1-pw(®)

piOx()
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Denote by %) = k(p(t), c(t)). Then, the Slutsky terms

oh(p(r), c(t)) . ohi(p(1), c(t))
ap;(t) doc(t)

50 = hi(p(0), c())

are given by
5a(t) = — (1 -0 )(x() +%:() )/ pi(t) < 0
o (x; (1) +7;(1)
pi)
which are identically the same in the LES.

:S:,'j(l) = >0

4.2.2 Properties of the DGLES. Since the CES utility function is a special case of the Brown-
Heien utility function (s =1), the demand function determined by (20) is the same as the one
determined by (21) when s =1. So we only investigate the derivatives of the demand function

given by (21).
Let
) Cs ag X‘ (t)(G-C,)/(d,—l)
D.,-<:)=(1—a)[ “a)) . .
Dsi za?Xl(‘)(G-ly(ul—l)
I=1
Then
0xu(*) .
FrY =D (R(t~-1)>0;

0x;(*) 20 ifb(e-1)20
RG-1) (6t -1) L0 otherwise
0% (1) _ Du() it

1 - .
RC1+7) __R(t+v) \:EﬂER(t+I) Ee+j)<0 (Vv>0);

0%4(*) _ .
O (1) >0;
aiﬂ’(‘) _ v_lk _1 0 0
m— ,;(l)g (f""t) > v >0).

Since the %,(-) = k;(p(®), c(t)) for the DGLES have identically the same functional forms as in the
GLES, the total consumption expenditure elasticities EZ(r) and Slutsky terms of the DGLES |
should be the same as those in the GLES. Therefore, we have
(x4(0) +Yal1)) 0]
xi(f) (c(t)+¥(1)
(xa(®) +7:(0) ) (x(0) + 15(1)) o
(c()+¥1)

EZ()=

Eu,,j(l =

forl#s;
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(x(0) + % (1)) (x55(6) + ¥5540))
(c(®)+¥1))
(O + %)) (6-05) (x50 + %i())

(e + Tpalt) 1))
i=1

3;.',1,'(' )=

forl =s, i # j, where s, r denote the blocks,i=1,2,...,m;and j=1,2,...,m
¢s(1) = Lps(Oxa(t) .
i=l

The derivation for these formulas can be found in Brown and Heien (1972).

5. Simplification of the Optimal Decision Functions

To specialize the optimal decision functions, we have to be more explicit about the interest rate,
the prices and labor income. For simplicity, we assume that the expected interest factor is
constant over time, and that the expected prices and labor income obey

Ep(t+1)=pp(t)
Ey(+1)=00()-)+3
or
p+1)y=pp()+e(t+1)
y+ ) =0p(N-F)+y+u+1)

where €(¢+1) and u(t+1) are assumed to be independently, identically distributed and
Eg(t+1)=Eu(+1)=0. Then

Ep(+j)=pp(t) (>0);
Ey(+))=¢GW0)-9+7 (>0).
Therefore, (12) and (14) become respectively

b(r)=BRb(t-1)+BE(")-(1 —B)iR‘j(Pjp(f) A +PG(O)-F)+5)

=BRb(t~1)+p()- Y(t)——P—+y(t) +(1 a)y(R_l_*g_‘;le_ig
c(6)=(1-PRO(~1)-p()- v(:)-—P—+y<f)R<1 =B _
_ R(O-1
~- R g®-1)
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The demand functions of the DLES, the DGLES, the DAIDS, and the DIADS are then given by

X(0)=(-p)—r [b(r—1)+prp(r)~v(r>+kl_ey(t)+ 8= y]_y,.(f);

R-8)R-1)

( ) )0: [a‘ X (t)(o—d.v)’(ﬂ.v-l)]
xﬁ(r)=—v;(z)+(1—a)k "s x
3 (0)O (X, ) e
i=1

<z) v(r) y(z) ©-17 |
x[b(t 1)+ (R DR~ 1)]

c(t)
. a,.<p(x))+‘°g_a(p(,)) bip®) _alp®) |
WO G0 T g 2@ (260 at )
a(p(®))
p@-¥n  yU) ©e-1y |.
X[b(t—1)+ Rp *Ro +(R-9)(R—l)]'
e O )]
(1-PRapi(y l)[b(l l)+(R e)+(R-e)(R-1)]
x(t) = i 2
japi)®

The permanent income and permanent indispensable expenditure are given respectively by

-0 .
®R-D®=-08)"

w(t)=R[b(l—1)+ R‘_ey(:);

e = R"%pd,(p(r)) .

The theoretical analysis can be similarly studied for the simplified decision functions. We omit it
here.

6. Conclusions

In this paper, we have derived the consumption-savings decision functions and demand functions
from the consumer’s intertemporal maximization problem over discrete time for a class of utility
functions, namely the Klein-Rubin-Samuelson (KRS) utility function, the CES utility function,
the Brown-Heien S-branch utility tree, the PIGLOG class of preferences, and Houthakker's
indirect addilog utility function. Theoretical analysis was also provided in this paper. We
generalized the Klein-Rubin linear expenditure system, Wales’s generalized linear expenditure
system, Brown and Heien’s generalization of the linear expenditure system, the Almost Ideal
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Detpand System, and Houthakker’s indirect addilog demand system to include the consumption-
savings decisions. Since the explicit forms for the optimal decision functions were obtained,
these may be easy to use in empirical applications.

Notes

Work supported by NSF grant SES-8607652. The comments and suggestions of an anonymous referee
of this Volume greatly improved the paper.

1. The hpqudiw in the pudget constraint can be removed by assuming preferences to be locally
nonsatiated. Note that if the stochastic budget constraint holds with equality, so must the expected
budget constraint.

2. Exten_sioq to l.he general case where b varies with time is possible but the exposition is simpler if
attention is restricted to the case where b is constant over time,

3. We use this terminology in place of the widespread ‘Stone-Geary utility function’ used by Powell
(1973) and which apparently derives from Brown and Heien (1972), who referred to the LES as the
‘Stone-Geary linear expenditure system’. This attribution is simply not accurate and we do not wish to
perpetuate it. The form (15) was first obtained by Samuelson (1948) upon integrating the LES demand
funcqons first proposed by Klein and Rubin (1948) — who had shown that this system of demand
functions was integrable. Samuelson’s result was subsequently rediscovered — without reference to
Samuelson — by Geary (1949), who expressed (15) in the shifted Cobb-Douglas form exp (4). Stone
(1954) presented his work as an empirical implementation of the Klein-Rubin (1948) LES, and referred
to Samuelson’s (1948) result but not to Geary’s (1949).

i (iAri) was pointed out in footnote 2, we can still obtain closed-form solutions even if this assumption is

[
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