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Abstract  

Over the periods 1998-2002 and 2009-2011, the S&P-500 Index went from persistence to anti-persistence mode, as 

measured by the Hurst index H. To uncover the reasons that characterize such a change, this paper uses a simple 

method that consists in treating quasi self-similar segments of the Index as initiators, and then finding appropriate 

generators with two intervals each to asymptotically model the strange attractor. The multifractal formalism shows 

that the change in persistence implies a corresponding change in the multifractal spectrum, and an enlargement of 

the invariant equilibrium set, making a market crash more likely, most probably due to a collapse of investors’ ex-

pectations. This also means that all statistical predictions made in one mode would have been off by an amount pro-

portional to change in any element of the generalized set of dimensions in the other.     

Key words: Persistence, Strange Equilibrium sets, Scaling Exponents, Multifractal Spectra, Generalized Dimen-

sions of order q, Statistical-prediction-error.    

1. Introduction      

A Gaussian noise, Xt
H, indexed by the Hurst’s exponent H 

 

(0, 1), may alternate between anti-persistence (H < 

1/2) and persistence (H > 1/2). Financial time series do frequently undergo such a change, but the reasons have not 

been identified and studied. To be more specific, consider the available evidence. The computed values of H vary 

with methods and/or with time windows (Greene and Fielitz, 1977; Cutland et al., 1993; Kaplan and Jay Kuo, 1993; 

Dominique and Rivera, 2011, among others), or else, values vary over time (Baraktur et al., 2003; Alvarez-Ramirez, 

et al., 2008; Preciado and Morris, 2008). This variability has led theorists to assume that the monofractality of Xt
H 

might not be sufficient to characterize random market processes. Consequently, the multifractal formalism was 

adopted in finance and since has shed much light on the complexity of these processes. But neither have the causes 

of the alternateness been explored nor has there been so far any policy conclusions drawn from the switch to multi-

fractality.     

    Multifractality emerged first in statistical physics following on a suggestion of Mandelbrot (1974) to the effect 

that multifractality might be the best approach to model turbulence so as to account for experimental deviations in 

the Kolmogorov theory of homogenous and isotropic turbulence. Subsequently, it was shown that indeed many 

physical processes or quantities do not obey conventional scaling laws. Today the concept of multifractality is rou-



  
tinely used in quantum physics, electrical engineering, meteorology, ecology, geology, medicine, etc. That is to say 

that it is now well established that these processes exhibit non trivial scaling behavior for different values of the 

scaling exponent q 

 
; implying in the same vein that, differently from monofractals, these processes are generated 

by multiplicative cascades of random processes.   

.   It is important to note that the study of multifractals on fractal supports is in fact the analysis of invariant sets and 

measures with multifractal structures. The singularity spectrum of a non-linear process generating an output f (x), 

say, with different fractal properties depend on the input conditions. But the output of a dynamical system contains 

hidden information that is revealable by its multifractal spectrum in the forms of, say, a set of dimensions. Ð(q) = 

{D0, D1, D2, D3, …, D  , D-1 …, D-  }. D0 is the Hausdorff dimension that measures the exponent of a power law. D1 

measures how the average information needed to identify an occupied bin scales with a radius size (e) and a prob-

ability (p). D2 (due to Grassberger and Procaccia, 1983) examines the number of points needed to generate a repre-

sentation of a fractal and the number of pairs of points closer than e to each other, etc., up to the Renyi’s (1955) gen-

eralized dimension of order q that reflects the nature of singularities. Put differently, D0 is a metric indicating how 

orbits fill up space; D1 and D2 are probabilistic measures assessing the frequency with which orbits visit different 

parts of an attractor and, in addition, D2, distinguishes between “strange” and “chaotic” attractors. In other words, 

the set of dimensions allows the reconstruction of the hidden dynamics in conformity with Takens’ (1981) Theorem. 

Thus, detailed analyses of the multifractal structure of an “invariant” set (to be defined shortly) of a chaotic dynami-

cal system provide a more refined description of the chaotic behavior  than a description based purely on stochastic 

characteristics.   

    The successes of the multifractal formalism in physics and in the other disciplines just mentioned have encour-

aged its adoption in the study of market price evolution (Halsey, et al., 1986; Fisher, et al., 1997; Muller, et al., 

1997; Gopikrishan, 1999; Genyuk, 1999).  However, one must bear in mind that invariant sets of most dynamical 

systems are not self-similar in the strict sense. These sets must be decomposed into subsets supporting a Borel prob-

ability measure having some sort of scale symmetry. It is scale symmetries that can reproduce copies of the set on 

arbitrarily small scales up to a given precision. In such cases, it is important to have on hand processing techniques 

such as the wavelet transform modulus maxima (WTMM) that can estimate the renormalization parameters from the 

output as it reveals phase transitions in the singularity spectrum. The absence of WTMM represents a limitation. In 

applying the multifractal formalism to economics and finance, one should therefore be aware of not only that limita-

tion but of one other caveat. The fact that financial time series are not exactly self-similar is not surprising; no 

known man-made process is but, in addition, the more uncompetitive financial markets are the noisier are their time 

series. The consequences of the failure of global self-similarity will be discussed later in our examination of the 

S&P-500 Index, and the impacts of noise will be taken up in Appendix A. Our main concern for now, however, is to 

stress the benefits to be had from the application of the formalism. The most important one for the present purpose is 

to uncover the characteristics of attractors, which should be important inputs into the decision-making process (vide 

infra).  



   
    The main purpose of this paper is to show that shifts in investors’ expectations or behavior might be a compelling 

factor begetting shifts in persistence of financial time series, which begets shifts in loci of multifractal spectra, which 

in turn beget errors in statistical predictions. The paper is divided into five parts. Part II is devoted to definitions of 

terms, concepts, and methodological considerations. Part III discusses the data. Part IV presents the results, which 

are discussed in Part V.     

2.  Definitions and Terms       

The application of the multifractal formalism to financial time series presupposes that the equilibrium sets of pric-

es are closed attracting invariant sets, which are Cantor-like point sets that are either strange or chaotic. But, in dis-

cussing such matters, often the differences between deterministic chaos and randomness, for example, or between 

strange and chaotic attractors, etc., are not always clear or are sometime used as synonyms. Because of the ambigui-

ties associated with definitions of many fractal concepts, it might therefore be useful to begin by defining their 

meanings in the present context.    

    Consider a vector field: 

 

= dx/dt = f (x), where f  C1 (E), E 

 

n; t (x) is the flow of f; and Nx(B) is a neighbor-

hood of a set B 

 

E.  B is invariant with respect to the flow of f if t (x) 

 

Nx (B) at t 

 

0 and t (x) 

 

B as t 

 

. 

In this case, B is positively invariant with respect to the flow, but B is negatively invariant with respect to the flow if 

t (x) B for t  0. Then:   

2.1 Definitions   

Definition 1 (Strange attractor). The attracting set B, just defined, is a strange attractor if it contains: 

i) A countable set of periodic orbits ( p) of large periods;  

ii) A countable set of non-periodic orbits ( np), and;  

iii) A dense orbit.   

The flow t (.): E E or, equivalently a map h : E 

 

E, is a diffeomorphism of a smooth Riemanian maniforld E, 

and B 

 

E is a compact hyperbolic attractor for h. It can then be shown that the evolution of the Lebesque measure 

on B converges to the Bowen-Ruelle-Sinai measure, which describes the orbit distribution of points in Nx (B) that 

are typical with respect to the Lebesque measure.   

    Further, if any two arbitrarily close points (x, y) in Nx (B) at t  0 become exponentially distant as t

 

, then sen-

sitive dependence to initial conditions (SDIC) exists. Then:   

Definition 2 (Chaoticity). If the strange attractor of Definition 1 has SDIC, then it is chaotic.    

Definitions 1and 2 are in the sense of Eckmann, and Ruelle, (1985).   



  
    If now we consider price index as the observable output or an observable signal, Zt, we have:   

Definition 3 (The Process): Zt = i
n 

(bi Xt
Hi 

), where b 

 
, i 

 
n, is a combination of observed Gaussian processes, 

each with its own H index, while Xt
H 

are unobservable inputs into Zt, arriving as “cars” or as “trains” 

in the sense of Sottinen (2003).   

In the literature, Zt is termed: Mixed Fractional Brownian Motion (MfBm) (see, Zili, 2006; Maio, et al., 2008; Thale, 

2009). While Xt
Hi is the Mandelbrot- van Ness (1968) process (fBm). In general, Xt

Hi has the following properties:   

Property 1 (Self-Similarity). Xt
Hi

 and m
Hi

( Xt
Hi

), where m 

 

, i  n, have the same probability distribution;   

Property 2 (Stationary Increments).  Over the interval [t, s], Xt
Hi 

has a normal distribution with zero mean and vari-

ance given by E[ Xt
Hi

, Xs
Hi

] = 

 

t – s 

 

2Hi.     

The Process of Definition 3, being man-made, lacks global self-similarity, but it has fractal properties including 

property 2. Xt
Hi, on the other hand, is statistically self-similar, has property 2 and determines the value of Hi. The 

lack of global self-similarity is carried over to B and can easily be demonstrated by comparing the values of various 

elements of the dimension set, Ð(q). The failure of Zt on Property 1 is not complete for it is statistically self-similar 

on segment i. That in itself is not an impediment for the wavelet transform is a function that is equivalent to decom-

posing the function into elementary space scale. It can be shown that the variance of wavelet coefficients can suffi-

ciently characterize the index Hi from the slope of the variance plotted as a function of scale in log-log plot (for de-

tails, see Flandrin, 1992, 911); Halsey, et al., 1986). The important point to note is that the variability of H over time 

is viewed as an indication of the multifractality of Zt.    

2.2 The Method    

     The connection between non-integer fractal dimension and chaos in dissipative continuous dynamical systems 

results in complex dynamics resulting from the continuous stretching and folding of a bundle of orbits under the 

action of the flow. In multi-dimensional systems, the geometrical image of their attractors has been shown experi-

mentally to have fractal dimensions between 2 and 3. In the present case, the set B occupies a small fraction of the 

embedding space. If we consider its singularity spectrum as its image, then we can work on a one hump map; for the 

spread of the spectrum ( max - min) 

 

[0, 1] and its height is D0 = f ( ). Hence, the procedure adopted for this paper 

focuses on the image of B, and first considers an output of an unknown system as an “initiator” with a known char-

acteristic, which can either be a generalized “generator” or a measure such as the Hausdorff dimension. The initiator 

is next divided into two constant bins, while the generator is assigned line segments ei and probabilities pi. In the 

third step, the exponent q is assigned to the probabilities and the exponent  is assigned to the support intervals.   



  
    Now it is possible to construct the set Ð(q). Its elements are computed according to Renyi’s generalized dimen-

sions. If the above procedure is defective in any way, the magnitudes of the elements of Ð(q) may be trivial. If, on 

the other hand, it is correct, then Ð(q) must be an ordered set with D  as its minimum element. To be specific:   

                                       Ð(q) = {S1  S2}, where S1= {D(q  0)}, S2 = {D(q  0)}.   

If Ð(q) is divided into two subsets, S1 and S2 then D

 

is the minimum element of S1 and D0 is the minimum element 

of S2. From this line of reasoning, a simple test can be devised in terms of the multifractal spectrum, f ( ), to check 

the validity of the procedure. That is:    

Test 1:                           i) the function f ( ) must have a convex hypograph, and  

                                                        Dmax  for q  0, q 

 

   

                                     ii) D0 =                                                           

                                                        Dmin  for q  0, q 

 

.                                                                   

As in the case of the logistic parabola, the Hausdorff dimension (D0) can be computed with reasonable precision 

theoretically and experimentally for each segment i (henceforth Zt
i). Assuming that Zt

i is a multifractal, we will se-

lect two representative segments that will next be characterized by the two scaling exponents each. This means that 

the attractor will be asymptotically modeled by the rule of the recursive construction which is a known generator ( ) 

with two interval lengths (e1, e2) for each segment, or moving backward from D0 to determine the unknown genera-

tor.   

    Recalling, in passing, that the rate of return 

 

(P) = f (P) is characterized by a one hump map. Then the logistic 

parabola, which is prototypical fractal attractor, provides a clue as to the relation between the two interval lengths. 

From the partition function:   

                                i (pi
q ei

 

) = 1, positing e1 = ( -1), e2 = (

 

-1) 2 and 

 

(q) = (1 – q) Dq,   

we can derive two equations in quadratic form:   

(1)                                                                      e1
2Do  +  e1

Do  – 1 = 0   

(2)                                                                      e1
2   +   e1

  

--  1 = 0.   

Equation (1) is derived from positing q = 0, Dq = D0, and p1 = p2 = 1/2. Then,    

                                                       e1
Do  = [(5)1/2 – 1] / 2 = G ,  where G is the Golden Mean;  

  hence,    

(3)                                                         D0 = log G / log e1.  



   
From (2), we have:  

                                                                e1

  
= {[(1 + 4 (2)q ]1/2  – 1} / 2;    

then:   

(4)                                                        = log [ (1 + 4 (2)q )1/2  – 1] / 2} / log e1.   

As the exponent  (q) describes the same aspect of the multifractal spectrum, denoted f ( ), we have           ;   

(5)                    / (1 – q) = Dq = log {[(1 + 4 (2)q )1/2  – 1] / 2 } / (1 – q) log e1, for q  1.   

                                            lim q 0   

Equation (5) is Renyi’s (1955, 1970) generalized dimensions of order q, which handles every portion of the support 

of the attractor in a uniform manner and describes the nature of singularities at the same time. It works for all q’s, except of course q = 

1.  

For D1, we have  

                                                           D1 = 2 log 2 / 1
2 log (1/ ei);    

but for D  and D- , it is easier to expand the numerator of (5). That is,   

                                                   Dq = - log 2 [log 2 (1 + q) ] / (1 –q) log e1;   

using log 2 and letting q 

  

or (- ), we have:   

                                   D   = (- 1 / log2 ei) ;                       D-    = [- 1 / log2 ( e1)
2 ] 

                                   lim q  

 

                                                                 lim q 

 

- 

 

                                                       e1  0                                                                       ( e1)2  0  

    The numerator of (3) is a well-known natural sequence. Then if it is D0 that is known instead of , one may ask 

what is the implicit generator of any Gaussian process whose Hausdorff dimension is D0? Then:   

(6)                                                    e1 = log-1 [log G / D0],   

where e1 is  from  (3). All the D’s (except D1) can be computed using (5).  

    The computed values of Dq, q must pass Test 1 above. Also, as noted above, the logistic parabola is a prototypi-

cal strange attractor that is well-studied. Its Hausdorff dimension derived analytically and numerically, is 0.538… 

(see Grassberger, 1981; Medio, 1992; Falconer, 2003). In Appendix A, the validity of this method is double-checked 

against it.   

        

3. The Data       

The data is the grand Microsoft Excel data set of closing prices of the S&P-500 Index, sampled daily from Janu-

ary 3rd, 1950 to February 28th, 2011, from which two appropriate segments were selected for the analysis. The first 

consists of 210 data points, covering the period 1998-2002, when the Index was persistent. The shorter segment con-



  
sists of 29 observations over the period 2009-2011, when the Index was anti-persistent. Both segments were de-

trended using logarithmic differences and filtered for white noise and extra noise due to the segmentation, and both 

met the recommended minimum length (  29) for the Wavelet system.      

    The analysis is done with the Excel SS and the BenoîtTM Wavelet system. The Hausdorff dimension, D0, of seg-

ment 1 is 1.390 (Hi.= 0.610 

 

0.0612); for segment 2, D0 = 1.857 (Hi = 0.143 

 

0.0339). As already noted, one seg-

ment shows persistence; while the other indicates that the Index became anti-persistent in recent times. As we will 

deal with asymptotic values, our calculations will be carried out up to six decimal places for consistency, without 

however making any claim for accuracy beyond that of the exogenously determined Hausdorff dimension. Our re-

sults are given below.    

4. The Results    

     The Legendre transform does take one from q and 

 

to 

 

and f( ), where 

 

is the Lipshitz-Holder mass exponent 

and f( ) is the multifractal spectrum. Thus, f( ) describes the fractal dimension of a subset having a mass exponent 

, and gives the same information as (q), since (q) =- d (q) / dq, df( ) /d

 

= q, and f(a) = dt / dq – t (q). Put dif-

ferently, the span of  describes the different subsets of singularities; 

 

is the singularity strength or the local Holder 

exponent; and f( ) gives the fractal dimension of the set having Holder exponent ; and at q = 0, one obtains the 

fractal dimension of the support of the measure. The multifractal information can be presented in more than one 

form. For the present purpose, however, it is given in terms of q and Dq to save space. .    

    Our results are given in Table 1 at the end of the paper. As it can be seen, the right side of Table 1 describes the 

attractor in anti-persistence mode, while the left side describes it in persistence mode. If the Hurst exponent varies 

over time, then moving from persistence to anti-persistence, say, implies a rightward translation of the multifractal 

spectrum. And this has important consequences for market stability, as will be discussed further in the nest section.    

    Moreover, suppose Dq
i is a given value in anti-persistence for a given q, while Dq

j is a persistence value for the 

same q. Then Dq
i > Dq

j or Dq
i / Dq

j = 

 

> 1. Therefore, the unknown value Dq
j 

  

-1 Dq
i, q 

 

. This information 

represents an economy of time and effort in the assessment of impacts of changes in H.  

    Having the meaning of these dimensions in mind, it is easily seen that that knowledge increases our understanding 

of the geometrical structure of the attractor (or the set B) as well as the level of complexity of the flow ( t); a good 

example is that D2 distinguishes between deterministic chaos and pure randomness. Moreover, Table 1 shows that 

despite the Wavelet correction, the self-similarity of the S&P-500 Index is limited to a given range since D0 

 

D1 

 

D2, implying that the covering of the attractor is neither complete nor quite uniform. As to whether this strange at-

tractor is chaotic or not depends on values of the tuning factor well beyond r8 (see Appendix A).     

     Table 1 also shows that a move from persistence to anti-persistence implies an enlargement of the attracting set B 

of Definition 1 and a rightward translation of the multifractal spectrum curve. Surely, such changes have important 



  
implications for policy decisions. That is, even with an empty noise subset, all statistical predictions made in persis-

tence mode, say, would off by a certain amount when the Index moves to anti-persistence.    

    Finally, Table 1 shows that the procedure satisfies Test 1 and gives results similar to those of the logistic parabola 

asymptotically modeled with two different generators with two intervals each. The multifractal spectra of the latter 

are shown in Appendix A.     

5.  Conclusions and Recommendations   

     The multifractal formalism is applied to two segments of the S&P-500 Index. The first segment consists of 210 

daily observations from 1998 to 2002, while the second examines 29 daily observations from 2009 to 2011. Over the 

first window, the series showed persistence, while the second showed anti-persistence, as measured by their Haus-

dorff dimensions. The results appear in Table 1. The main findings are the following:   

1)    Over the two segments examined, the S&P-500 Index was not exactly self-similar as evidenced by differ-

ences in metric and probabilistic dimensions. This is not surprising. Natural processes are self-similar only over a 

given range; man-made processes are even less so.    

2)     Despite its monofractals appearance, the finer structures of the Index reveal it to be a multifractal charac-

terized by a multitude of scaling exponents, demonstrating that the multifractal formalism is richer in terms of in-

formation.   

3)     The Index was asymptotically modeled by two generators ( ) with two intervals each. The results show 

that a decrease (increase) in the generator implies an enlargement (compression) and a rightward (leftward) transla-

tion of the multifractal spectrum. In other words, when the index shifts from persistence to anti-persistence, the at-

tracting set B of Definition 1, which is a small fraction of the embedding space, increases in size. Amplitudes and 

orbital periods of both periodic and non-periodic orbits increase. This is consistent with a 1/f noise regime, which is 

an indication of complexity that makes market crashes more likely.   

4)  Any changes in persistence imply a shift in the multifractal spectrum curve that is proportional to the ratio 

of the dimensions Dq, q 

 

. Our results show that over the two periods examined the shift from persistence to 

anti-persistence increases the attracting set by approximately 33.6 per cent. As noted before, the fractal dimensions 

provide qualitative and quantitative information about both the geometry of the attracting set and the complexity of 

the flow.  Accordingly, all future statistical predictions made during persistence mode (1998-2002) would have been 

off by 33.6 per cent in anti-persistent mode (2009-2011).    

5)     We apply the present procedure to the logistic parabola. The comparison shows that all the fractal dimen-

sions can be derived from an exogenously determined Hausdorff dimension, and that the change in the multifractal 

spectrum is equal to the change in dimensions.  



   
6)     As to why an index would swing from, say, persistence to anti-persistence is left for further research. 

However, there seems to be a positive correlation between periods of economic growth and persistence. One may 

argue ex hypothesi that the jump from persistence to anti-persistence is due to a collapse of investors’ expectations. 

That assumption is based on the fact that in persistence mode, investors arrive in the market as ‘trains’ because they 

hold positive expectations of the immediate and long-terms. The reverse seems to characterize the anti-persistence 

mode. Under that hypothesis, it is not at all surprising that the Index was strongly anti-persistent over the period 

2009-2011, demonstrating thereby that the capital market is after all a reflexive construct.   
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Table 1:The multifractal spectrum of the S&P-500: : 

     e1 = 0.70736        e2 = 0.500358                        e3 = 0.77172            e4 = 0.595551 

         q             

 
           Dq             q                                            Dq 

 

         0 

  0= 1.5017       1.3900              0  0= 2.005709     1.8570 

         1            ----       1.334713         1            ----    1.783247 

         2            ----       1.287319         2            ----    1.719921 

         3            ----       1.247567          3            ----    1.666641 

            :                       :             :             :             :          :     

        

 

min= 1.0014      1.0014 00            

 

min=1.336900    1.336900 

       - 1             ----          1.451489         - 1                         ----        1.937063 

       - 2                        ----                     1.515938 

-2 

            ----    2.024859 

       - 3                       ----        1.578455           - 3             ----    2.108875 

         :              :               :             :               :          : 

       - 

 

  max=2.00200             2.00200           - 

 

max=2.674614    2.674614 

 Initiator1:1998-2002, generator1 of 1.413707 with two intervals e1 and e2 .Initiator2:2009-2011, generator2 of 

1.295806 with intervals e3 and e4. The left side of the table shows the Index in persistence mode; the right side 

shows the Index in anti-persistence mode.  

Appendix A   

    Consider the quadratic map:   

    (1A)                                 f (x) = xt+1 = r xt (1 – xt), where x  [0, 1], and r  ( 0, 4].               

Equilibrium values are denoted x*= (1 – 1/r), and stability criteria are df (x) /d x = f’(x) = r (1 – 2x*)  [-

1, 1], but f’(x) = 0 implies a super-stable orbit of the recursive form of (1A). For r < 1, x* = 0. At r 

 

1, non- zero 

orbits appear. At 1 < r < 3, there are orbits - 2k, k = 0. For the purpose, we are interested the behavior of (1A) as the 

parameter r takes on the following values:   

                                                                  r  [1 + (5) 1/2 ] 

 

p- 2 k , k = 1;     

                                                                  r  [ 1 + (6) 1/2 ] 

 

p – 2 k , k = 2.   



  
As r is increased further, there are periodic orbits p -2

 k , k = 3, 4, 5, 6,…. At:   

                                                                  r

  
 [ 1 + (6.602052) 1/2 ] 

 
np -  2  ;   

orbits become aperiodic, yielding a Cantor set. However, r

 

does not form an interval. The Lyapunov characteristic 

exponent (LCE) is zero. Consequently, there is no SDIC and therefore aperiodicity does not imply chaotic behavior 

as per Definition 2.      

The interval r

 

< r 

 

4 is referred to as the chaotic regime. However, Medio (1992, 162) has shown that, in that 

window, there exist unstable and stable orbits and chaotic intervals. Even in the interval [1 + (8) 1/2]  

  

r  

 

[1 + 

(8.0738…) 1/2 -3k, k = 1, 2, 3,…., termed chaotic by Li and Yorke (1975), there are stable orbits (i. e., LCE < 0), 

but Medio has also shown that the addition of a small noise is sufficient to change LCE’s from negative to positive. 

Over the window [1 + (8.0738) 1/2 < r 

 

4, there are only unstable orbits, but unstable orbits or positive LCE’s are 

insufficient to characterize chaos. At r = 4, all orbits tend to - , hence there is SDIC and chaos in our sense. How-

ever, the lesson here is that in the presence of noise, all quantitative assessments are invalid.   

            Period-doubling is asymptotically self-similar with a universal scaling factor of 2.5029. But the map (1A) is 

not exactly self-similar. Schroeder (2009) has found that by the fifth iteration, orbits migrate toward a super-stable 

orbit given by r

 

so that the left half of the unit interval is shrunk by a factor of about 2.5, while the right half is 

shrunk by ( 2.5) 2. Therefore, the generator is 5 /2. On the other hand, analytical and numerical analyses determine 

the Hausdorff dimension of the quadratic map to be 0.538…. (Grassberger, 1981; Medio, 1992; Falconer, 2003). 

This presents an opportunity to test our procedure.       

Schroeder models the attractor with a generator of 5 /2. His values, extended to six decimal places by us, appear 

on the left side of Table 1A below. On the other hand, if the exogenously determined value of D0 is 0.538…., what is 

the implicit generator in this case? Using (6) in the text, 

 

= {[1 + (6)1/2 ] – 1}. That is the distance between the first 

non-zero value of x* and the beginning of period 2 orbit. All other D’s (for q 

 

1) are given by Equation (5) in the 

text. Our results appear on the right side of Table 1A. As it can be seen, Schroeder’s value for D0 is 0.525…., com-

pared with D0 = 0.538…., all D’s on the right of Table 1A are  2.4 percent larger.           



  
Table 1A: The Multifractal Spectrum of the Logistic Map 

                     = 0.4000             e2 = 0.1600                                             e3 = 0.408836         e4 = 0.167146  

             q              

  
             D               q              

  
            D 

             0 0 =  0.567331      0.525172               0 0 = 0.581042         0.538… 

             1     0.504312      0.504312               1       0.516632      0.516632 

             2            ----      0.486394               2           ----      0.498278 

             3            ----      0.471385               3           ----      0.482901 

             :               :              :               :              :             : 

            

 

min= 0.378234       0.378234              

 

min = 0.387491      0.387491 

           - 1            ----       0.548434             - 1            ----      0.561834   

           - 2            ----       0.572787             - 2            ----      0.586782 

           - 3            ----       0.596409             - 3            ----      0.610970 

             :             :               ;                  :             :             : 

           - 

 

max = 0.756429       0.756429              - 

 

max= 0.774594      0.774594 

Schroeder’s values with a generator of 2.5 and intervals e1 and  (e1)
2 on the left side. And an Implicit Generator of 

2.445968 for a Hausdorff Dimension of 0.538 with two intervals e3 and (e3)
2 on the right for an attracting fractal set 

larger by  2.44 per cent.     


