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The  Multiple  Discrete-Continuous  Extreme  Value  Model 
(MDCEV) with fixed costs

Abstract

In this paper, we present a model  that can be viewed as an extension of the traditional Tobit model. As 

opposed to that specific model, ours also accounts for the the fixed costs of car ownership. That extension is 

needed since being carless is an option for many households in societies that have a good system of public 

transportation, the main reason being that carless households wish to save the fixed costs of car ownership. 

So far, no existing model can adequately map the impact of these fixed costs on car ownership. The Multiple 

Discrete-Continuous Extreme Value Model (MDCEV) with fixed costs fills this gap. In fact, this model can 

evaluate the effect of policies intended to influence household behaviour with respect  to car ownership, 

which can be of great  interest  to  policy makers.  Our model makes it possible to compute the effect  of 

policies such as taxes on fuel or on car ownership on both the share of carless households and the average 

driving distance. 

We calibrated the model using data on Swiss private households in order to be able to forecast responses to 

policies. One result of particular interest that cannot be produced by other models is the evaluation of the 

impact of a tax on car ownership. Our results show that a tax on car ownership has a much lower impact  on 

aggregate driving demand – per unit of tax revenues – than a tax on fuel.
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Introduction

Being carless is an option for many households in economies having good system of public transportation – 

as it is the case in Switzerland. Thus, a good model should be able to map this option. In particular, it should 

also be able to map how the fixed costs of holding a car affects car ownership. So far, no model can be found 

in the literature that adequately maps this option. This paper presents the theoretical model that fills this gap.

The drawbacks of the existing modelling techniques can be summarized as follows: The OLS fails to map 

carless households. The Tobit model is unable to map the impact of fixed costs. The sample selection model 

fails due to  the lack of an instrumental variable: there is no variable that influences only the choice of 

whether or not to own a car whilst not influencing the demand for driving at the same time. An interesting 

candidate  for  solving  this  problem is  the  Discrete-Continuous  Choice  model  introduced  by  Dubin  and 

McFadden (1984).  This model can be used to explore the ownership of certain car types and their  use. 

Unfortunately,  the  model  only allows  the choice  of  being carless  to  be  captured if  the annual  mileage 

travelled using public transport is given in the dataset. Since this information is not available in most micro-

census datasets, this model cannot be applied.

The  Multiple  Discrete-Continuous  Extreme  Value  Model  (MDCEV)  with  fixed  costs  overcomes  the 

drawbacks of these models. As mentioned above, the proposed model can measure the impact of changes in 

the fixed costs of cars on driving demand and on the probability of households being carless. This ability to 

map the impact of income, fuel price and the fixed costs of car ownership on both car ownership and car use 

could not be found in the literature.1 The MDCEV model makes it possible to compute the effects of policies 

such as taxes on fuel  or car ownership on both the share of carless households and the average driving 

distance. 

The MDCEV model was introduced by Bhat (2005).2 This model consists of a direct utility function and a 

budget restriction. It is assumed that it maps the utility maximisation process of a household and is based on 

1 One exception is the model of De Jong (1990), used later by Ramjerdi and Rand (1992) and Bjorner (1999). In 

contrast to our model, it is based on an indirect utility function instead of a direct function. Unfortunately, De Jong's 

(1990)  model  has  an  assumption  that  violates  its  compatibility  with  a  microeconomic  utility  maximisation 

framework. In addition, it yields rather unrealistic results, particularly with respect to the impact of changes in fixed 

costs on car ownership. We believe that the MDCEV model with fixed costs maps reality much more effectively and 

lead to realistic results.

2 The first application of Bhat's  model  was to  explain the time tourists  spend for  different  activities.  The model 

reflects that each activity can be chosen or not and how many hours are spent for the activities, subject to the time 

restriction  of  24 hours  a  day,  Bhat  (2005).  Later,  Bhat  applied  this  modeling  framework  to  the  case  where 

households can choose to own none, one or several cars of different car types and decide of the driving distances the 

different cars are used for, Bhat (2006). In this model, Bhat ignores the fact that holding cars causes fixed costs and 

thus according to the model it would not be irrational to hold a number of cars even when the preference for car  

driving is low. Thus, we want to overcome this drawback by introducing fixed cost in our MDCEV model.
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the  assumption  that  a  household  chooses  certain amounts  of goods  from a  set  of  goods including  the 

possibility of a household choosing not to consume any good at all. This means that a household may choose 

not to consume any goods at all. In order to adapt the model for examining car ownership and car use, we 

modified this model in two ways: first, we restricted it to the case with only two goods. This means that 

households may only choose whether or not to own and use a car and spend the remaining income for a 

consumption basket containing any other good. Secondly, we extended this model to the case where driving 

a car requires car ownership, incurring fixed costs, which is our contribution to the theory.

Assumption on household behaviour

The basic idea behind the model is described in the following. We assume that all decisions are taken at the 

household level. In the case of non-single households, we do not make any assumptions on who might have 

the most influence on the driving decisions. We also assume that each household compares the utility yielded 

from the following two options: first, it establishes the utility level it would gain if it owned a car. In this 

case, the household income would be reduced by the fixed costs of car ownership. Given that the household 

would then decide what annual distance 2x  it would drive in order to yield maximal utility. Note that the 

household spends its remaining income entirely on good one 1x , which we consider to be a consumer basket 

containing all goods apart from car driving, e.g. housing, food, medical care, holidays, and so on. We assume 

that utility is driven exclusively by the kilometres driven and not by the car ownership. Second, we assume 

that the household establishes the utility in the case that it decides not to own a car. In this case, it would save 

the fixed costs of car ownership and would spend all its income on good one 1x . The household then decides 

which  option  would  give  it  the  highest  utility.  This  behaviour  can  be  mapped  using  a  standard 

microeconomic utility maximisation approach where the utility level can be computed by the direct utility 

function.  The  calculation  of  households'  utility  maximisation   as  described  above  can  be  illustrated  as 

follows:
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Figure 1: Optimum decisions of two households with different preferences

This figure illustrates the optimal consumption plan of two households with identical income but different 

car driving preferences. The solid lined iso-utility curve ( )
21 2, Su x x u=  represents a household with a high 

preference for car driving. It decides to own a car – this choice is denoted by index 2S  – and chooses 
22, Sx∗  as 

its optimal annual driving distance given its income  y, the fixed costs of car ownership  2k  and marginal 

driving costs 2p . We set the price of good one 1p  as numeraire, so the utility of 1x  can also be interpreted as 

the utility of income remaining after having paid all expenses incurred by the car. With this household, the 

consumption vector ( ) ( )
1

1 2 1, ,0
S

x x y p
∗ =  is below the iso-utility curve and therefore yields a lower utility. 

In contrast, the dashed lined iso-utility curve ( )
11 2, Su x x u=  represents the household with a low preference 

for car driving. Since any point on the budget line defined by points ( )( )2 20, y k p−  and ( )( )2 1 , 0y k p−  

yield a lower utility than spending the total income on good one ( ) ( )
1

1 2 1, ,0
S

x x y p
∗ = , the household decides 

not to own a car. This choice is denoted by index 1S .
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Derivation of the MDCEV Model and its Maximum Likelihood function

Our choice of the utility function corresponds to the one in Bhat (2005:686). Since in our model, a household 

can only choose between the good “annual car driving distance” 2x  and  consumption basket 1x  containing 

all other goods, the utility function is then written as:

( ) ( ) ( )1 2

1 1 2 2exp
d d

U X a m X aβ ς= + + + ⋅ ⋅ + , (1)3

with m sγ= ⋅ , (2)

where ς  is a logistically distributed stochastic parameter 

( ) 1
.

1 x
F x

eςς −=
+

∼ (3)

We assume a positive marginal utility that is decreasing in all arguments. Thus 1d  and 2d  are bounded to lie 

between  zero and one:4 0 1, 1,2< < =jd j .  The smaller  jd  is,  the  faster the  marginal  utility  of  good  j 

decreases when jX  increases. Parameters  1a  and 2a  can be considered as shifting parameters, since they 

can move the indifference curves of the utility function along the x- and in the y-axis, respectively. Note that 

the marginal utility of 1X  is infinite if 1X  approaches 1a− , which is also true if 2X  approaches 2a− . The 

values 1a−  and 2a−  therefore define the lower limits of optimal solutions for 1X  and 2X  respectively. Since 

consumption basket  1X  contains essential goods such as food and housing, it must always be consumed. 

Therefore,  1a  is  non-positive in order  to ensure that  the solution for  1X  is  always positive.  Following 

Bhat (2008)5,  we  choose  1 0=a .6 Expression ( )exp m β ς+ ⋅  is  a  weight  on  ( ) 2

2 2

d
X a+ .  The  higher 

( )exp m β ς+ ⋅  is, the stronger is the preference for driving. This weight is determined by socio-demographic 

variables in s that influence the preference for driving, m sγ= ⋅ . This means, for instance, that households in 

rural areas usually have a greater preference for driving than households in urban areas.  If  a household 

3 This utility function is based on the utility function proposed by Bhat (2005:686): 

( ) ( )exp ,id

i i i i
i

U m X aβ ξ= + ⋅ ⋅ +∑

where the random terms are assumed to be iid Gumbel distributed: ( )0,1j iid guξ ∼ , ( ) ( )expx xf x e eξ
− −= ⋅ − .

Transforming the utility function by multiplying by ( ) 1
exp i im β ξ −+ ⋅  yields Equation (1). Note that the stochastic component  ς  

in (1)  corresponds to  2 1ς ξ ξ= −  and is therefore logistically distributed (for a proof see Appendix A1). Note that we use capital 

letters for  1X  and  2X , because these variables are also stochastic since their solution in optimality will depend on the stochastic 

parameter ς .

4 This is to ensure decreasing marginal utility in both goods and the concavity of the utility function, see Appendix A2.

5 “Note  that  there  is  no  translation  parameter  kγ  for  the  first  good,  because  the  first  good  is  always  consumed”

Bhat (2008: 290). Note that kγ , which Bhat uses, corresponds to kα , which we use. 

6 In this case, the so-called INADA-condition ( )
1

1 2 1
0

lim , ,.., J
x

u x x x x
→

∂ ∂ = ∞  is fulfilled for 1x . It ensures that 1x  is greater than zero 

when solving the maximisation problem.
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moves from an urban to a rural area, therefore,  m is expected to increase in line with an increase in the 

household's preference for car driving. The random term ς  represents socio-demographic variables sɶ  that 

cannot be observed by the researcher and that can be interpreted as an unobserved preference for car driving. 

Following Bhat (2005), we assume this random term to be logistically distributed. Note that the preference 

for driving,  m, does not contain any car-specific component, since the model captures only one car type, 

which is assumed to be the same for each household. To allow for a substantial simplification and to avoid 

identification problems, we choose to set: 7

1 2d d d= = . (4)

We assume that the household maximises its utility by selecting optimal values for 1X  and 2X , subject to its 

budget constraint:

( )1 1 2 2 2 20y p X p X I X k= ⋅ + ⋅ + > ⋅ , (5)

where 2k  stands for the fixed costs of car ownership, ( )2 0I X >  is an indicator function that takes the value 

one if 
2 0X >  and zero otherwise, and the non-negativity constraint 2 0X ≥ .8

The household's utility for the case 
1S , where only good one is consumed, is therefore

( ) ( )
1 1 2

1

exp

d
d

S

y
u a m a

p
β ς 

= + + + ⋅ ⋅ 
 

, with 1 0=a . (6)

The household's demand for car-km for the case 
2S , where the households owns a car, is as follows: 

( )
2

2

1
2 2 1 2 2

2

1

, , , ,
1

y k
A a

p
x y k p p A a

p
A

p

−⋅ −
− =

+ ⋅
 and ( )

1

1
1

2

exp
dp

A m
p

β ς
− 

= ⋅ + ⋅ 
 

. (7)9

7 Bhat (2008) even proposes that some parameter values are fixed: “Alternatively, the analyst can stick with one functional form a 

priori, but experiment with various fixed values of ka  for the γk -profile [...]”; Bhat (2008: 282), footnote 9. The term “functional 

form” refers to the three utility functions (32) in Bhat (2008: 290). The so-called “ γk -profile” corresponds to the model based on the 

third utility function of (32) in Bhat (2008: 290). The utility function (1) we use is a positively transformed function of that third 

utility function; we fix its parameter value 1 2= =d d d  and estimate all other parameters.

8 Since 1 0X >  is ensured by the choice of utility function, condition 2 0X ≥  does not need to be stated.

9 This Marshallian demand function is obtained by solving the corresponding Lagrangian function. For details, see appendix A3.
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Using this Marshallian demand function, we can now compute the maximum level of utility the household 

can achieve:

( )
2

2 2
2 2

2 2 1 1
2

2 21 1

1 1

exp
1 1

d d

S

y k y k
A a A a

y k p p p
u m a

p pp p A A
p p

β ς

− −   ⋅ − ⋅ −   −
   = − ⋅ + + ⋅ ⋅ +
   + ⋅ + ⋅   
   

. (8)

By use of the utility functions (6) and (8), the value of the probability of a household choosing to own a car 

can be computed:

( ) ( )2 1 2 20 | , , , , cP X p p y k Fςθ ς= = , (9)

where ( )ςF x  denotes the density function of the logistic distribution and ( )1 2 2, , , ,c c p p y kς ς θ=  corresponds 

to the so-called “critical” unobserved preference given all parameters and economic variables at which the 

household would switch from owning a car to being carless,  
2 1

| 0ς ς≥− ≥
cS Su u  and 

2 1
| 0ς ς<− <

cS Su u .10 

The density of the Marshallian demand can be computed using the first-order conditions of the Lagrangian 

associated with the utility maximisation problem:11

( ) ( )
2 2

1 2 2
1 2 2 10

2 2 1 2
1

1

1 1 1
| , , , , ,with 0X X

V V d p d
f z p p y k s f a

y k p z p z aa
p

ςθ
β β∧ >

 
  − − −
 − = ⋅ ⋅ ⋅ + =  − − +   + 
 

(10)

where

( ) ( ) ( ) 2 2
1 1

1

ln ln 1 ln
y k p z

V d p d
p

 − −= − − − ⋅  
 

, (10a)

( ) ( ) ( ) ( )2 2 2ln ln 1 ln= − − − − ⋅ +V d p m d z a , with = ⋅m sγ , and (10b)

( )
( )2

1

x

x

e
f x

e
ς

−

−
=

+
(10c)

is the density of the logistically distributed random term ς .

10 Note  that  the Marshallian  demand  (7)  at  cς  is  always  greater  than  zero  and  that  cς  is  always  unique.  For  proof,  see 

Appendix A5.

11 For details, see Appendix A3.
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Since we assume that the random terms  ς  are independent across households, the Maximum Likelihood 

function is thus:

( )( )2 2 1 2 1,2,.., 1,2,.., 2 1,2,..,1,2,..,
| , , , , ,MLE n n N n N n Nn N

L X x p p y k sθ = = ==
=

( ) ( )
( ) ( ) ( )2 2

2 2

0 0

2 1 2 2 2 1 2 20
1

0 | , , , , , | , , , , ,n n

N N
I x I x

n n n n n n n nX X
n i n

P x p p y k s f x p p y k sθ θ= >
∧ >

= =

= = ⋅ −∏ ∏ (11)

where ( )0I z >  and  ( )0I z =  are  indicator  functions,  being  one  when  the  argument  is  true  and  zero 

otherwise. Vector θ  contains all parameters, { }2, , ,θ γ β= d a . Probability ( )P i  is defined in (9) and density 

( ) ( )
2 2 0X Xf ∧ > i  in (10). Index n corresponds to the n-th observation in the dataset.

It is important to note that this likelihood function is only defined for values  2 0nx =  and  ( )2 2 ,n c nx x ς≥ , 

since for values 2nx  in interval ( )2 2 ,0 n c nx x ς< <  the probability of observation is zero. Thus as soon as any 

observation belongs to the interval ( )2 2 ,0 n c nx x ς< < , the likelihood function (11) equals zero, which makes 

it impossible to compute optimal parameters θ  using the Maximum Likelihood Estimation routine. We thus 

propose an estimation routine where all observations ( )2 2 ,0 n c nx x ς< <  are removed from the dataset before 

we apply the Maximum Likelihood Estimation routine. Since the value ( )2 ,c nx ς  only depends on parameters 

2a  and  d,12 parameters  γ  and  β  can then be computed by Maximum Likelihood estimation using the 

modified dataset and given parameters 2a  and d. Since both 2a  and d also influence the shape of the density 

function (10) as well as the probability that a household is carless (9), we cannot set them arbitrarily. For this 

reason, we propose minimising the following “penalty function” for choosing optimal values for parameters 

2a  and d:

( ) ( )
( )

( ) ( )
( )

2 2 2

1 2

mean 0 mean # elim. observations

mean 0 mean size of initial observations
sim simP X x E X x

Q c c
x x

   − = −  = + ⋅ + ⋅     =     
, (12)

where 1c  and 2c  weigh the corresponding error components and ( )2 0simP X = and ( )2simE X  are defined as 

follows:

( ) ( )2 2 1 2 2
1

1
0 0 | , , , , ,

N

sim n n n n
n

P X P X p p y k s
N

θ
=

= = ⋅ =∑ , (13)

( ) ( ) ( )
( )

2

2 2

2 ,

2 1 2 20
1

1
| , , , ,

n

c n

z y kN

sim n n n nX X
n z x

E X z f z p p y k s dz
N ς

θ
= −

∧ >
= =

= ⋅ ⋅ −∑ ∫ . (14)

12 For proof, see Appendix A6.
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Therefore, we propose the following estimation routine:

1. Choose values for d and 2a .

2. Eliminate all observations with ( )2 2 ,0 n c nx x ς< <  from the dataset.

3. Estimate parameters γ  by MLE conditional on d and 2a  using (11).

4. Compute the penalty function (12).

5. Repeat steps 1 to 4 for a number of different values for d and 2a  (grid search). 

6. Choose values d and 2a  so that the lowest value of the penalty function is yielded (“optimal values” 

d and 2a ).

Note  that functions (13) and (14) are also used to compute aggregate impacts on driving demand and the 

probability of being carless when the economic variables 2p ,  2k  and y change, e.g. these functions will be 

used to compute the corresponding elasticities. 
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Empirical Results

We obtained results using the micro-census data about travel behaviour in Switzerland collected in 2005 by 

the  Swiss  Federal  Statistical  Office  SFSO.13 We chose  this  data  because  it  contains  a  large  number  of 

observations,  namely  33,000,  and  a  number  of  useful  socio-demographic  variables  concerning  the 

households. Since our model captures only one car type, it is considered to be an “average car”. The fixed 

costs of maintaining a car and the marginal costs of  driving are thus assumed to be equal to those of an 

average car owned by a Swiss household. The values we retain for 2k  and 2p  were taken from the Swiss 

touring club TCS (2007) and comprise:14

2 7033k =  and 2 0.1601+0.0778 ⋅= fuelp p . (15)

Note that the annual fixed costs 2k  mainly consist of depreciation, which is unrelated to the car's use, such as 

rusting, and loss in value due to the technical progress of new cars, capital costs, taxes on car ownership and 

parking costs. Since we neglect such costs as evaluation and registration costs, we assume that owing a car is 

similar to renting a car and that households can switch from owning a car to being carless without any cost. 

The costs dependent on the number of kilometres driven consist of fuel costs  0.0778 fuelp⋅  and non-fuel-

related costs such as the wear of tyres and mechanical components, which account for CHF 0.1601 per 

kilometre. The fuel price fuelp  is the average fuel price from the last twelve months prior to interviewing the 

household  to  which  the  information  on  annual  driving  distance  refers.15 To  explain  the  deterministic 

component of the preference for driving m, we used a dummy “rural” standing for the type of the households' 

location and a the number of people living in the individual households.

Table 1 below shows the results for two cases. In the case denoted as “∞”, expectation value ( )2simE X  is 

computed according to (14); in the case of “60,000 km” the upper limit “ ( )2 2n ny k p− ” is replaced by “

( )( )2 2min ,60,000kmn ny k p− ”.  We  believe  that  the  latter  produces  more  realistic  results  since  the 

theoretical density (10) has some tail above this value, while as the empirical distribution does not,  since 

households simply have not time to drive such long distances. Thus, integrating to an upper limit above 

60,000 km when computing (14) would simply result in too high and therefore unrealistic values.16 Hence, 

13 For details see SFSO (2006a) and SFSO (2006b).

14 According to TCS (2007), the total annual costs of an average car amounted to CHF 11,600 when the annual distance driven was 

15,000 kilometres (km). 17.4% of these costs, namely CHF 2,018.4, were fuel costs. Based on the average fuel price paid for petrol 

98  octane  of  CHF 1.729/litre  in  2007  (SFSO  2009),  it  can  be  computed  that  the  TCS (2007)  based  this  fuel  cost  on  a  fuel 

consumption of 7.7825 litres/100 km: (CHF 2,018.4/15,000 km) / (CHF 1.729/litre)  = 7.7825 litres/100 km. The fuel  costs of an 

average car per kilometre are therefore 7.7825 litres/100 km/100 multiplied by the fuel price per litre paid by households. Non-fuel-

related marginal costs of a car were calculated to be 20.7% of the total  costs, 0.207 ·  CHF 11,600 = CHF 3,312, amounting to 

CHF 3,312/15,000 km = CHF 0.1601/km, see TCS (2007).

15 The computation of fuelp  is based on the monthly average price of petrol 98 octane, as published by the SFSO (2009a).

16 This argument is discussed more in detail in Appendix A7.
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we believe it is justifiable to restrict the upper limit of the integral to this value. For the penalty function (12), 

we choose arbitrarily 1 1c =  and 2 0.5c = .17 However, it is important to note that changing parameters c1 and 

c2  only has a limited impact on the measures of interest, namely elasticities.18 The results processed for the 

aforementioned datasets are as follows:

Upper limit of integrating, ( )2E X ∞ 60,000 km

( )2 2,
εE X p ( )0.0069

1.07−
( )0.0075
0.67−

( )2 , fuelE X pε
( )0.0031
0.49−

( )0.0031
0.28−

( )2 ,
εE X y ( )0.0031

1.17
( )0.0069
0.75

( )2 2,
εE X k ( )0.0030

0.16−
( )0.0029
0.16−

( )2 20 ,
ε =P X p ( )0.0052

0.24
( )0.0049
0.24

( )2 0 ,
ε = fuelP X p ( )0.00005

0.14
( )0.0028
0.11

( )2 0 ,
ε =P X y ( )0.0087

1.42−
( )0.0081
1.41−

( )2 20 ,
ε =P X k ( )0.0102

1.27
( )0.0111
1.33

The values in parentheses “(...)” represent standard deviations computed using the bootstrapping method with 10 random samples of 200 obs. each.

Table 1: Simulated elasticities when using a modified density function to compute the expectation value.19

The results yielded by the model for the fuel price elasticities of travelling demand ( )2 , fuelE X pε  are of major 

interest. Since our model assumes no costs when switching from owning a car to being carless and vice 

versa, our elasticities can be interpreted as long-term fuel price elasticities. These correspond approximately 

to average values determined in international studies (-0.31), such as in Graham and Claister (2004). The 

income elasticity of aggregate driving we obtained (0.77) is also very close to the average values established 

in international studies (0.73) by both Graham and Claister (2005) and Goodwin et. al. (2004). In contrast, 

both values  ( )2 0 ,
0.026

fuelP X pε > =  and  ( )2 0 ,
0.33P X yε > =  that can be computed from ( )2 0 , fuelP X pε =  and  ( )2 20 ,P X kε =  

are quite smaller in absolute value than the elasticities of the car stock determined in international studies.20 

We explain this difference by the fact that our elasticities refer to the case of “at least one car” and the 

17 Note, that choosing arbitrarily 1 1c =  and  2 0.5c =  yields that in the optimum the number of “irrational” observations that are 

removed account for about 9% of the total observations. We propose not to choose values lower than 0.5 for  2c , since this would 

lead  to  a  “dropout-rate”  of  observations  of  more  than  9%,  which  we  would  consider  a  too  high.  Note,  that  removing  these 

observations should not induce a significant change in the elasticities of driving demand we compute, since these households drive a 

very low annual mileage and thus do not contribute much to the aggregate driving distance.

18 We applied values of 0.5, 1.0 and 2.0 in various combinations on both parameters 1c  and 2c . Despite this quite dramatic change 

in the parameters of the penalty function, the resulting values of ( )2 2,E X pε  remained in the region of about 20% of its absolute value, 

meaning  ( )( ) ( )( )( ) ( )( ) ( )( )( )( )2 2 2 2 2 2 2 2, , , ,
max min max min 0.5 0.12E X p E X p E X p E X pε ε ε ε− + ⋅ = ,  while  the same  measure  for  ( )2 2,P X pε  

amounts to 0.2 and for both ( )2 20 ,P X pε =  and ( )2 0 ,P X yε =  to 0.02.

19 The point estimates are based  are based on the complete dataset.
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income elasticity for buying a second or even a third car can be assumed to be greater since the latter can be 

considered a luxury good. In contrast, ( )2 20 ,
0.31P X kε > =  is quite similar to the values determined by Dargay 

(2001) and Johansson and Shipper (1997) for the elasticity of the car stock with respect to the car's fixed 

costs.21 However, it is also important to note that the results found in international studies for the elasticity of 

car ownership vary greatly and thus it is hard to judge whether the values a model yields are plausible. 

Furthermore, our model also yields that both elasticities  ( )2 , fuelE X pε  and  ( )2 ,E X yε  are only weakly driven by 

households that switch to being carless, despite them switching from an annual mileage of about 5,000 km to 

zero – according to the model.22  

Finally, an important result of our model is also that the effect of a tax on car ownership on aggregate driving 

distance is – per unit of tax revenue – more than ten times weaker than the effect of a tax on car ownership.23 

One criticism of calibrating the model and producing these results by using the micro-census dataset of the 

SFSO 2005 is that the fuel price does not vary enough across households. For this reason,we also calibrate 

the model by using stated preference datasets with a large variation in fuel price.24 It is important to note that 

all elasticities with respect to the aggregate driving demand produced by using this dataset differ at most by 

13% in absolute terms from the results produced by the micro-census dataset of the SFSO 2005 as presented 

in table 1. 

20 Note, that ( )
( )

( )
( )

( )
( )
( ) ( )

( )
( )2 2

2 2 2 2

0 , 0 ,
2 2 2 2

0 0 0 0

0 0 0 0fuel fuel

fuel fuel

P X p P X p
fuel fuel

p pP X P X P X P X

p P X p P X P X P X
ε ε> =

∂ > ∂ = = =
= ⋅ = − ⋅ ⋅ = − ⋅ =

∂ > ∂ = > >
 

0.19
1.33 0.31,

81
= − ⋅ =  where  for ( )2 0P X =  we  use  the  value  of  the  dataset  from  which  the  observations ( )2 20 cx X ς< <  and 

2 60,000kmx >  were removed.

21 The only study in which we could find a model where the effect of a tax on car ownership was examined was in Johansson and  

Shipper (1997). In their model, this tax was imposed by a tax on car purchase. Annualising one unit of this tax yields an increase in 

the fixed costs of car ownership of about 2%, yielding a 0.6% decrease in car stock. Thus, a 1% increase in fixed costs would reduce 

the vehicle stock by 0.3%.

22 This effect contributes only about 2.5% to the total effect on aggregate demand in the case of ( )2 , fuelE X pε  and 11.5% in the case of 

( )2 ,E X yε .

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

2, 0 22 2
2 2,

2 2 2 2 2 2 2 2

2 20 ,

0
mean 0.28 13,890km 3889.2km, 

0 0.10 0.1890 5000 94.5km. 94.5/ 3889.2 2.4%.

fuel

fuel

P X effect

cE X p

cP X p

dx dP Xdx dx
x x

dp p dp p dp p dp p

P X x

ε ς

ε ς

=

=

=
= ⋅ = ⋅ = = ⋅ = =

= ⋅ = ⋅ = ⋅ ⋅ = =

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

2, 0 22 2
2 2,

2 20 ,

0
mean 0.80 13,890km=11,112 km, 

0 0.80 0.1890 5000 1275.8km. 1275.8 /11,112 11.5%.

P X effect

cE X y

cP X y

dx dP Xdx dx
x x

dy y dy y dy y dy y

P X x

ε ς

ε ς

=

=

=
= ⋅ = ⋅ = ⋅ = =

= ⋅ = ⋅ = ⋅ ⋅ = =

23 The relative effect can be computed as follows: 

( ) ( ) ( ) ( )( ) ( )( )
2 2 2 2 2 2 2, ,

mean mean 0.1601 0.26 7,033km0.11 13,890km 0 0.1601 10.5. .2745E X p E X k k x pε ε ⋅ ⋅ − = ≈ ≈ ⋅ ⋅ − =

24 We used the same dataset as Axhausen and Erath (2010). We gratefully thank  Prof. Kay Axhausen and Dr. Alexander Erath for 

providing their dataset.

12 13/07/12 11:09:23 Bhat1_Results_ver19.odt



The Multiple Discrete-Continuous Extreme Value Model (MDCEV) with fixed costs                           July 2012

Conclusion

In contrast to currently existing models, ours is able to quantify the effects of a tax on fuel and/or a tax on 

car ownership on both the car ownership and the cars' use. Our model made it also possible to measure the 

effects  of  two mechanisms  leading  to  a  decrease  in  aggregate  driving  distance  when the  fuel  price  is 

increased, namely: The first one is determined by households with a rather high preference for car driving 

that will keep the car, but they will reduce  their annual mileage. The second mechanism is determined by 

households with a rather low preference for car driving will switch form owning a car to become carless and 

therefore reducing their annual mileage form about at least 5,000km per year to zero. Our model shows, that 

the effect of the first mechanism dominates the one of the second, since only a few households will sell their 

car, if fuel prices increase.

Furthermore, the model made it possible to show that a tax on car ownership is – per unit of tax revenue – 

much less effective as a tax on fuel. It is noteworthy that the model adapts the data very well, even though 

we only estimate four parameters.25

The fact that the model contains a utility function opens the way for more applications such as computing the 

Hicksian compensating variation when fuel prices increase for each household or the household's willingness 

to pay for car ownership. 

25 For details see Appendix A7.
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Appendix

A1: The distribution of the random term ς of the utility function

As mentioned in footnote 1, the random term is equal to the difference of the two iid gumbel distributed 

random variables 1ξ  and 2ξ , ( ) ( )1 2, expx xiid f x e eξξ ξ − −= ⋅ −∼ , 
1 2ς ξ ξ= − . 

The cumulative density function (cdf) of ς  can be computed as follows:

First, given that the cumulated density function (cdf) of  ( )F yς  is equivalent to  ( ) ( )1 2F y P X X yς − <= , 

thus ( )F yς  can then be computed as follows:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 1 2 2 1 2

2 1 2 1

2 1 2 2 2

22 2

2 1 2 2

1 2 1 2 1 2 1 2

2 1 1 2

1 2

2 2 2 2

1 2 ,

exp exp

x x y x x x y x

x x x x

x x y x x x
x yx x

x x x x

F y f x x dx dx f x f x dx dx

f x f x dx dx f x F y x dx e

P X X

e e d

y P X y X

x

ς ξ ξ

ξ ξ ξ ξ

=∞ = + =∞ = +

=−∞ =−∞ =−∞ =−∞

=∞ = + =∞ =∞
− +− −

=−∞ =−∞ =−∞ =−∞

= = = ⋅ =

= ⋅ = ⋅ + = ⋅ − ⋅

− < = < +

− =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

( )( ) ( )( ) ( )( )
( )( )

2 2 2

22 2 2 2 2 2

2 2 2

2

2
2

2

ln 1

2 2 2

ln 1

2

exp exp 1 exp

exp .

y

y

x x x
ex yx x x x x xy

x x x

x
x ex

x

e e e dx e e e dx e e e dx

e e dx

−

−

=∞ =∞ =∞
+− +− − − − − −−

=−∞ =−∞ =−∞

=∞
− − +−

=−∞

= ⋅ − − = ⋅ − ⋅ + = ⋅ − ⋅ =

 = ⋅ − 
 

∫ ∫ ∫

∫

This expression can be reformulated by substituting ( ) ( )2 2 2ln 1 , , ln 1y yq x e dq dx x q e− −= − + = = + + : 

( ) ( ) ( ) ( ) ( ) ( )ln 1 ln 1 1 1
exp exp .

1 1

y y
q q q

q e eq q q
y y

q q q

F y e e dq e e e dq f q dq
e eς ξ

− −
=∞ =∞ =∞

− − + − +− − −
− −

=−∞ =−∞ =−∞

= ⋅ − = ⋅ ⋅ − = ⋅ =
+ +∫ ∫ ∫
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A2: Concavity of the utility function

In the following we show that the utility function we use is concave. To do so we show that the Hessian 

matrix is negative (semi-)definite. We first compute its diagonal elements:

( ) ( ) ( )
2

2

2
1 exp 0, if and only if 0 1.

jd

j j j j j j j
j

U
d d m X a d

X
ξ

−∂ = ⋅ − ⋅ + ⋅ + < < <
∂

 

Since the non-diagonal elements are zero, the Hessian matrix is negative (semi-)definite and therefore the 

utility function is concave:

2 2 2

2 2 2 2 2
1 1 2 1

2 2 22 2 2
1 2

2 2
1 2 2 2

0

0 and 0

0 j

U U U

X X X X U U U

X X XU U U

X X X X

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂= = ⋅ > <

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂

,  if  and  only  if  0 1, 1,2jd j< < =  and 

1 1X a> −  and 2 2X a> − .

The term 
2

1 2

U

X X

∂
∂ ∂

 is equal to zero because the utility function is of the additive separable type. 

A3: Derivation of the Marshallian demand function and its probability density function 

The derivation of the Marshallian demand function as well as of its probability density function is based on 

solving the Lagrangian function representing the case, where the households owns a car. 

( ) ( ) ( ) ( )1 1 2 2 2 1 1 2 2exp
d d

L X a m X a y k p X p Xς λ= + + + ⋅ + + − − − , with 1 0a = . (A3.1)

The corresponding first-order conditions are as follows:

( ) 11

1 1

1
0dd p

X a
λ−⋅ − ⋅ =

+
, (A3.2)

( )
( ) 21

2 2

1
exp 0dd m p

X a
ς λ−⋅ + ⋅ − ⋅ =

+
, with m sγ= ⋅ . (A3.3)

We first derive the Marshallian demand function. To do so, we solve (A3.2) for λ , insert the result in (A3.3) 

and reformulate in order to get the resulting expression:

A-2 13/07/12 11:07:18 Bhat1_Append_PartI_ver3.odt



The Multiple Discrete-Continuous Extreme Value Model (MDCEV) with fixed costs                           July 2012

1

1
2 2 1

1 1 2

exp
1

dX a m p

X a d p

ς − + + = ⋅  + −   

. (A3.4)

From the budget restriction follows that

( )1 2 2 2 1X y k p X p= − − ⋅ . (A3.5)

Including this expression in (A3.4) and solving for 2X  yields the Marshallian demand function: 

( )
2

2 1

1
2 2 2 1 2 1 2

2

1

, , , , ,
1

y k
A a A a

p
X x y k p p A a a

p
A

p

−⋅ − + ⋅
= − =

+ ⋅
, (A3.6)1

with  ( )
1

1
1

2

exp β ς
−

= ⋅ + ⋅ 
 

dp
A m

p
.

Note that ( )2 2 1 2 1 2, , , , ,−x y k p p A a a  depends on the random term ς  and there exists a value 0ς ς=   such 

that

( )
02 2 1 2 1 2, , , , , | 0ς ς≤− ≤x y k p p A a a  and ( )

02 2 1 2 1 2, , , , , | 0ς ς>− >x y k p p A a a . (A3.7)2

Secondly, we derive the probability density function of the Marshallian demand function. To do so, we start 

by solving each of the first order conditions (A3.2) and (A3.3) for λ  and then taking the logs:

( )1 lnV λ= , with: ( ) ( ) ( ) ( )1 1 1 1ln ln 1 lnV d p d X a= − − − ⋅ +  and ( )1 2 2 2 1X y k p X p= − − ⋅ (A3.8)

( )2 lnV ς λ+ = , with: ( ) ( ) ( ) ( )2 2 2 2ln ln 1 lnV d p m d X a= − + − − ⋅ + . (A3.9)

Plugging (A3.8) in (A3.9) and solving for ς  yields:

1 2V Vς = − . (A3.10)

From this follows 

( ) ( )1 2 1 2P V V F V Vςς < − = − . (A3.11)

1 Note that in the case of 1 2d d≠  the expression resulting when plugging the expression (A3.5) in (A3.4) could not been solved 

explicitly for 2X .

2 For a proof, see Appendix A4.
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We can now compute the density of driving demand at a given driving distance 
2x  by deriving (A3.11) with 

respect to 
2x :3

( ) ( ) ( )
2 2

2
1 2 1 20

2 1 2
1

1

1 1
| , , , , ,X X

pd d
f z p p y s f V V

y p z p z aa
p

ςθ∧ >

 
 − −
 = − ⋅ ⋅ +− + + 
 

(A3.12)

where  1V  and  2V  are given by (A3.8)  and  (A3.9),  { }2, , ,d a mθ β=  and ( )f xς  is the probability density 

function (pdf) of the logistic distribution, ( ) ( )
( )( )2

exp

1 exp

x

x

e
f x

e
ς

−

−
=

+
.

A4: Boundary solution in the case of the model with fixed costs

In this section, we shall show that there exists a so called critical relative preference expressed by parameters 

ς+m . If the relative preference is below this level, the demand for car driving yields a boundary solution 

that means the driving distance is zero. If the relative preference is above this level, the driving demand will 

be positive. This means, that – given a fixed value for m –  a value 0ς ς=  exists such that

( )
02 2 1 2 1 2, , , , , | 0ς ς≤− ≤x y k p p A a a  and ( )

02 2 1 2 1 2, , , , , | 0x y k p p A a a ς ς>− > , (A4.1)

where

( )
2

2

1
2 2 1 2 1 2

2

1

, , , , ,

1

−⋅ −
− =

+ ⋅

y k
A a

p
x y k p p A a a

p
A

p

 and ( )
1

1
1

2

exp β ς
−

= ⋅ + ⋅ 
 

dp
A m

p
.

Since this is  not obvious when looking only at  the utility function and the budget  restriction, we prove 

(A4.1). Note that the value 0ς ς=  also plays a role when we show in appendix A5 that 0ς  is always smaller 

than the critical preference at which the household switch from owning a car to being carless in the case 

where owning a car is connected with fixed costs. 

3 For this  case, the result can also be computed as follows. From ( ) ( )1 2 1 2P V V F V Vςς ≤ − = −  it follows that:

( ) ( ) ( )
( )

( ) ( )
2 2

1 2 1 2 1 2 2
1 20

1 2 2

X X

F V V V V V X V
f z f V V

V V z X z z
ς

ς∧ >

∂ − ∂ −  ∂ ∂ ∂= ⋅ = − ⋅ ⋅ − ∂ − ∂ ∂ ∂ ∂ 
,  where  1 1 1

1 1 1 2

1
0

V X d p

X z x a p

∂ ∂ − −⋅ = − ⋅ >
∂ ∂ +

,  2

2

1
0

V d

z z a

∂ −= − <
∂ +

 

and 2
1

1

y p z
x

p

− ⋅= . Note that the expression 1 2 2

2

V X V

X z z

∂ ∂ ∂⋅ −
∂ ∂ ∂

 is positive for any value z that is in the feasible range 
20 z y p≤ < . 

Note that this is a necessary condition for the validity of the theorem of densities of transformed variables.
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The proof that (A4.1) is correct follows from these conditions:

i. ( )2 2 1 2 1 2lim , , , , , 0
ς→−∞

− ≤x y k p p A a a ,

ii. ( )2 2 1 2 1 2lim , , , , , 0
ς→∞

− >x y k p p A a a ,

iii.
( )2 2 1 2 1 2, , , , ,

0
ς

∂ − ∂⋅ >
∂ ∂

x y k p p A a a A

A
.

Thus, only conditions i., ii. and iii. need to be verified. 

The proof of condition i. follows from 

( )
1

1
1

2

lim lim exp =0
ς ς

β ς
−

→−∞ →−∞


= ⋅ + ⋅ 

 

dp
A m

p
. This implies that ( )

2
2

1
2 2

2

1

lim lim = 0

1
ς ς→−∞ →−∞

−⋅ −
= − <

+ ⋅
i

y k
A a

p
x a

p
A

p

.

The proof of condition ii. follows from 

( )
1

1
1

2

lim lim exp =
ς ς

β ς
−

→∞ →∞


= ⋅ + ⋅ ∞

 

dp
A m

p
. 

This implies that ( )
2 2

2

21 1
2

2 2 2

1 1

lim lim = = 0

1
ς ς→−∞ →−∞

− −⋅ − ⋅
−= <

+ ⋅ ⋅
i

y k y k
A a A

y kp p
x

p p pA A
p p

.

This result is rather intuitive. If ς → ∞ , this means that the household has a very strong preference for car 

driving, and it is therefore plausible that it spends all income 
2−y k  on car driving.

In order to prove condition iii., the derivative simply has to be computed. This yields:

( )

1

2 2 2 2 2 2
2 2

1 12 1 1 1 1

2

2

1

1 1

= =

1
ς ς

−    −   − −∂ ⋅ − ⋅ + ⋅ ′ ′   ⋅ ⋅ + ⋅ − ⋅ − ⋅ ⋅     ∂      =
∂ ∂ 

+ ⋅ 
 

i

y k p y k p y k pA a A A A A a Ap px p p p p

p
A

p

2 2 2 2 2 2 2 2
2 2

1 1 1 1 1 1 1 1
2 2

2 2

1 1

0

1 1

− − − −+ ⋅ ⋅ − ⋅ ⋅ + ⋅ + ⋅
′ ′= ⋅ = ⋅ >

  
+ ⋅ + ⋅  

  

y k y k p y k p p y k p
A A a a

p p p p p p p p
A A

p p
A A

p p

, with 

( ) ( )
1

1
1 1

1 1 1 1 1

2 2 2 2 2

1 1
exp exp 0.

1 1 1

d

d d
dp p p p p

A m m A
d p p d p p d p

ββ ς β ς
−

− −   ′ = ⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅ ⋅ + ⋅ = ⋅ ⋅ >   − − −   
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A5: Minimal driving distance

As shown in this paper, there is a minimal driving distance 2cx  associated with relative preference cς , so 

that ( )2 2c cx x ς= . We now prove that ς ς= c  exists such that4

2 1
| 0ς ς≥− ≥

cS Su u  and 
2 1

| 0ς ς<− <
cS Su u . (A5.1)

The proof that (A5.1) is correct follows from these conditions:

i. There exists a 
2 1

| 0ς ς=− <
cS Su u ,

ii.
2 1

lim 0
ς→∞

− >S Su u ,

iii.
( )

2 1 0, ( ,.., ]
S S

c

u u
ς ς

ς
∂ −

> ∈ ∞
∂

.

Therefore, only conditions i., ii., and iii. need to be verified. 

We shall start by proving iii.

To compute 
( )

2 1S Su u

ς
∂ −

∂
, we use formula (8):

2 1 2 1 2 12

2

...
ς ς ς

∂ − ∂ − ∂ −∂= ⋅ + =
∂ ∂ ∂ ∂

S S S S S Su u u u u uX

X

( ) ( )
1

12 2 2 2
2 2 2

1 1 1

... exp ...β ς
ς

−
−
   − ∂
= ⋅ − ⋅ ⋅ − + ⋅ + ⋅ ⋅ + ⋅ +    ∂   

d
dy k p p X

d X d m X a
p p p

       ( ) ( ) ( ) ( )2 2 2... exp expβ ς β ς+ + ⋅ ⋅ + − + ⋅ ⋅d d
m X a m a . (A5.1)

We then choose 0ς ς= , which corresponds to ( )2 0=ix .5 It follows from this that

( ) ( )2 1

0

1

12 2 2
2

1 1

| expς ς β ς
ς ς

−
−

=

∂ −   − ∂
= ⋅ ⋅ − + ⋅ + ⋅ ⋅ ⋅   ∂ ∂   

d
dS Su u y k p X

d d m a
p p . (A5.2)

It also follows from the first-order conditions (A3.3) that 

( )
1

1
2 2 1

1 2

exp β ς
−+

= ⋅ + ⋅ 
 

dX a p
m

X p
, (A5.3)

4 This statement is equivalent to (14).

5 For details see Appendix A4.
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which we denote as A; see (A3.6).

Since we chose 2 0=X , it follows that

( )
1

1
1 2 1

2 2

exp β ς
−⋅ = ⋅ + ⋅ −  

dp a p
m

y k p
. (A5.4)

Plugging this into (A5.2) yields

2 1

0
| ...ς ςς =

∂ −
=

∂
S Su u

( ) ( ) ( )
11

1
11 2 2

2 2

2 1

... exp exp 0.β ς β ς
ς

−
−

− −

 
    ∂= ⋅ ⋅ ⋅ + ⋅ ⋅ − + ⋅ + ⋅ ⋅ ⋅ =     ∂       

d

d
dp p X

d a m d m a
p p (A5.5)

If  any value  0ς ς>  that corresponds to  ( )2 0>ix  is plugged into (A5.5), derivative  
( )

2 1S Su u

ς
∂ −

∂
 becomes 

greater than zero. 

Proof:

If 2X  increases, then also both expressions ( ) ( )
1

12 2 2
2 2 2

1 1 1

exp β ς
−

− −− ⋅ ⋅ − ⋅ + ⋅ + ⋅ ⋅ +
 

d
dp y k p

d X d m X a
p p p

 

and ( ) ( ) ( ) ( )2 2 2exp expβ ς β ς+ ⋅ ⋅ + − + ⋅ ⋅d d
m X a m a  increase. 

Since  2 0ς∂ ∂ >X  ‒ as shown in Appendix A4  ‒ and from (A3.5), it follows that  
( )

2 1 0
S Su u

ς
∂ −

>
∂

 for all 

0ς ς> .

We shall now prove i.  The proof is  straightforward: plugging  0ς ς=  that  corresponds to  ( )2 0=ix  into 

(A5.2) yields6

2 1

2

1 1

0
  −− = − <  

  

d d

S S

y k y
u u

p p
. (A5.6)

6 Note that ( ) ( ) ( ) ( )
2 1

2 2
2 2

1 1 1 1

exp exp 0β ς β ς
      − −− = + + ⋅ ⋅ − − + ⋅ ⋅ = − <      

      

d d d d
d d

S S

y k y ky y
u u m a m a

p p p p
.
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The proof of ii. is also straightforward: Plugging ς = ∞  that corresponds to ( ) 2
2

2

−=i y k
x

p
 ‒ as shown in 

Appendix A4 ‒ in (A5.2) yields7

( ) ( )
2 1

2
2 2

2 1

lim lim exp
ς ς

ς
→∞ →∞

   −
− = + ⋅ + − − = ∞      

d d
d

S S

y k y
u u m a a

p p
. (A5.7)

Note that it also follows from i., ii., and iii. that

0ς ς>c . (A5.8)

The proof we have just presented can also be illustrated:

0 1ς 2ς

( )2 2 1 2 1 2, , , , , |ς−x y k p p A a a
2 1
−S Su u

ς

2− a

Figure A5.1: An illustration of the effect of the relative preference on choice.

7 Recall that parameter a2 is always greater than zero. 

( ) ( ) ( )
2 1

2 2 2 2
2 2

1 1 2 2 1

lim lim exp exp ...
ς ς

β ς β ς
→∞ →∞

    − − −− = − ⋅ + + ⋅ ⋅ + − − + ⋅ ⋅ =    
    

d d d
d

S S

y k p y k y k y
u u m a m a

p p p p p

             
( ) ( )2

2 2

2 1

... lim exp .
ς

β ς
→∞

   −
= + ⋅ ⋅ + − − = ∞      

d d
dy k y

m a a
p p
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A 6: The impact of model parameters on the minimal driving distance

In this section, we shall illustrate the impact of changes in model parameters  a2 and  d on  the minimum 

driving distance ( )2 ςcX , since this is one of the key points of this model. These impacts can be illustrated 

by looking at the iso-utility curves corresponding to the critical value cς  in a x1/x2-diagram. 

We start with illustrating the case of changes in the parameter 2a  .

Figure A6.1: Indifference curves and minimum consumption for different parameters a2.

This  diagram shows  that  the  minimum  consumption  levels  indicated  by  the  dashed  lines  increase  if 

parameter a2 increases. It also shows that for a2 = 0.02 the preference where households would be indifferent 

between owing and not owning a car ζc is smaller than in the case a2 = 20. This also explains why probability 

( )2 1 2 20 | , , , , ,P X p p y k sθ=  becomes smaller if a2 decreases. Note that if the indifference curves of the utility 

function were not restricted to x2 ≥ 0, they would approach the horizontal line at value -a2. 

We then illustrate the case of changes in the parameter d.  The following diagram shows that the minimum 

consumption levels indicated by the dashed lines increase if parameter  d increases. It also shows that for 

d = 0.02 the preference where households would be indifferent between owning and not owning a car ζc is 

smaller  than in the case  d = 0.3.  This  also explains  why probability  ( )2 1 2 20 | , , , , ,θ=P X p p y k s  becomes 

smaller if d decreases. Note also that the lower the value of d, the more cornered the indifference curve is. 

Note that if the indifference curves of the utility function were not restricted to x2 ≥ 0, they would approach 

the horizontal line at value -a2. 
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Figure A6.2: Indifference curves and minimum consumption for different parameters d.

This  diagram shows  that  the  minimum  consumption  levels  indicated  by  the  dashed  lines  increase  if 

parameter a2 increases. It also shows that for a2 = 0.02 the preference where households would be indifferent 

between owing and not owning a car ζc is smaller than in the case a2 = 20. This also explains why probability 

( )2 1 2 20 | , , , , ,P X p p y k sθ=  becomes smaller if a2 decreases. Note that if the indifference curves of the utility 

function were not restricted to x2 ≥ 0, they would approach the horizontal line at value -a2. 

The following diagram shows that the minimum consumption levels indicated by the dashed lines increase if 

parameter d increases. It also shows that for d = 0.02 the preference where households would be indifferent 

between  owning  and  not  owning  a  car  ζc is  smaller  than  in  the  case  d = 0.3.  This  also  explains  why 

probability ( )2 1 2 20 | , , , , ,θ=P X p p y k s  becomes smaller if d decreases. Note also that the lower the value of 

d, the more cornered the indifference curve is. Note that if the indifference curves of the utility function were 

not restricted to x2 ≥ 0, they would approach the horizontal line at value -a2.
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A 7: Adaptation of the densities to the empirical values

The following first two diagrams figure A7.1 and figure A7.2 show that even though the probability density 

function (10) adapts the empirical distribution quite well, computing the expectation value by the formula 

(14) leads to too high results, particularly when the income level increases. Since this difference increases 

even over-proportionally with the income, we assume that simulated elasticities with respect to the income 

are too high if the upper limit of the integral in (14) is not bound to 60,000 km.

Figure A7.1: Histogram and density function of households in rural areas with an income of 60,000km

Figure A7.2: Histogram and density function of households in rural areas with an income of 84,000km
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The following figures show that when the model is based on a modified function (14) with the upper boundary 

of the integral bound to 60,000km, the difference between the expectation value to the empirical value does not 

increase with the income. Therefore, we conclude that the model based on the modified function (14) yields 

unbiased values when computing simulated elasticities. 

Figure A7.3: Histogram and density function of households in rural areas with an income of 60,000 CHF 

using the model based on the modified density function

Figure A7.4: Histogram and density function of households in rural areas with an income of 84,000 CHF 

using the model based on the modified density function
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The fact that in the case of the model with the modified computation of the expectation value, the difference 

between the computed expectation value and the empirical value does not increase with the income. This is 

shown by the following figure.

Figure A7.5: Difference between the computed expectation value and the empirical mean when using the 

model with the modified computation of the expectation value 

The figure above shows that  the model's  expectation  value  is  quite  close to the empirical  value and the 

difference between the simulated and the empirical values increases only weakly with the income of urban 

households. In contrast, the difference between the simulated and the empirical values decreases quite strongly 

in the case of the rural households. But since only less than one forth are rural households and the fact that the 

difference between the simulated and the empirical values of urban households is slightly increasing in income 

leads to our conclusion, that the income elasticity of  the aggregate driving demand computed by use of this 

model is unbiased. 

In contrast, the model based on the non-modified expectation function (12) produces too high elasticities, since 

in this case the difference between the simulated and the empirical values increases quite strongly when the 

households' income increase, see figure A7.6.
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Figure A7.6: Difference between computed expectation value using the model based on the non-modified 

density function and the empirical mean value

In the case, a researcher is interested in computing only the elasticity of driving demand of certain households, 

e.g. rural households, we assume that it is better to run a separate model, in this case for the rural households. 

Note that all the diagrams in this appendix A7 are based on a model that includes only the dummy “rural”.
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