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Abstract

Firms can exploit consumers’ mistakes when facing complex purchasing decision problems

but Gaudeul and Sugden (2012) argue that if at least some consumers disregard offers that

are difficult to compare with others then firms will be forced into adopting common ways

to present their offers and thus make choice easier. We design an original experiment to

check whether consumers’ indeed favor those offers that are easy to compare with others in

a menu. A sufficient number of subjects do so with sufficient intensity for offers presented in

common terms to generate higher revenues than offers that are expressed in an idiosyncratic

way.

Keywords: Bounded Rationality, Cognitive Limitations, Standards, Consumer Choice, Ex-

perimental Economics, Heuristics, Pricing Formats, Spurious Complexity.
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Behavioral economics finds that consumers have “inconsistent, context dependent pref-

erences” and may not have “enough brainpower to evaluate and compare complicated prod-

ucts” (Spiegler, 2011). They “may fail to choose in accordance with what, after sufficient

reflection, they would acknowledge to be their own best interests” (Gaudeul and Sugden,

2012). Low levels of consumer literacy and numeracy even in advanced economies make it

very difficult for broad swathes of the population to understand how to make adequate deci-

sions in many situations, such as when choosing how much to save for retirement, when

selecting healthcare insurance, when investing in stock markets, when comparing car or

computer models, etc. (Agarwal and Mazumder, 2010; Ayal, 2011; Bar-Gill and Stone, 2009;

Lusardi, 2008; Miravete, 2003; Wilson and Price, 2010). Marketing research (Morwitz et al.,

1998; Nunes, 2000; Viswanathan et al., 2005; Zeithaml, 1982) and research from behavioral

economics (Ariely, 2008; Iyengar and Lepper, 2000; Iyengar et al., 2004) also give examples

of how badly consumers deal with products choices in realistic purchasing scenarios. Ex-

periments on this topic include Huck and Wallace (2010), Choi et al. (2010) and Shestakova

(2011) among others.

The consumers’ biases, limitations and inconsistencies may be exploited by firms. They

may for example benefit from introducing spurious complexity in their contract offerings so

as to deliberately obfuscate consumer choice (Carlin, 2009; Chioveanu and Zhou, 2009; Elli-

son, 2005; Gabaix and Laibson, 2006; Piccione and Spiegler, 2012). Sectors in which firms do

so may be called “confusopolies” (Adams, 1997). Those are “a group of companies with simi-

lar products who intentionally confuse consumers instead of competing on price”. Sectors in

which this might be the case include telephone services, insurance, mortgage loans, bank-

ing, financial services, electricity, etc. In all those sectors, firms sell a relatively homogeneous

product and so would make low profits if they did not introduce spurious differentiation

in their offerings and thus undermine consumers’ ability to make informed choices about

their services and products. Recent research does find empirical evidence that firms might

design their offers to exploit consumers (DellaVigna and Malmendier, 2006; Ellison and Elli-

son, 2009; Miravete, 2003, 2011). Kalaycı and Potters (2011) and Shchepetova (2012) also find

experimental evidence that more complex offers increase firms profits.

Faced with such issues, libertarian paternalists (Camerer et al., 2003; Thaler and Sun-

stein, 2008) suggest regulatory intervention to impose that consumers’ decision problems

be framed in such a way that they reach the “correct” decision, that is, the decision they
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would take absent their limitations. However, determining what decision that would be is

difficult, not to mention that even experts may not know what is best (Freedman, 2010). A

complementary option is to introduce measures to educate consumers and provide them

with information so they have the tools to make better choices in a wide variety of settings

(Agarwal et al., 2010; Garrod et al., 2008). However, as far as possible, one would want to leave

consumers free to choose as they wish and the market free to fulfill their needs as they occur

(Sugden, 2004).

Gaudeul and Sugden (2012) argue that if at least some consumers disregard offers that

are difficult to compare with others then firms will be forced into adopting common ways

to present their offers and thus make choice easier. Consumers who discard offers that are

difficult to compare with others are said to follow the common standard rule (“CS rule”). An

example of how it operates goes as follows: a consumer wants to buy a fruit and is faced

with the choice between two oranges and one apple. Oranges are priced at $0.45 and $0.55

respectively, while the price of the apple is $0.70. Suppose the consumer cares only about

calories and estimates the oranges to contain 35 calories each while he thinks the the apple

contains 55 calories. The consumer discards the higher priced orange from his consideration

set and compares the lower priced orange with the apple in terms of price per calories. From

the price and calorific content of each fruit, he calculates that the lower priced orange costs

$1.29 per 100 calories, while the apple costs $1.27 per 100 calories. The lower priced orange

appears to cost more than the apple, but the consumer still chooses it under the CS rule. We

will see this makes sense as long as the consumer is not sure about how different fruits com-

pare in terms of calorific content (he knows he might have made mistakes in his evaluation),

there is little intrinsic differences between products (he cares only about calories), and the

consumer does not hold prior beliefs on the value of each product (he does not believe for

example that apples are always the best deal). This rule derives strength from its simplic-

ity, has strong behavioral foundations and can be applied in many settings, thus ensuring its

evolutionary robustness. Contributing to the later, we will see that there is no need for others

to follow it for it to be optimal.

To clarify our meanings, what we call a “standard” here is what others have called a

“frame”, that is, to paraphrase Spiegler (2011, p.151), an aspect of a product’s presentation

that is of no relevance to a consumer’s utility and yet affects his ability to make comparisons

among alternatives. This can be a price format, the language in a contract clause, but also a
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unit of measurement, a way of packaging a product, a technical standard, etc. . . Expressing

an offer in terms of a common standard does not inherently make that offer less complex to

understand. That is, a CS offer when standing on its own will not be easier to evaluate than

an offer that is presented in terms of an individuated standard (“IS”). It is only when put in

relation with other offers that a CS offer will be easier to evaluate than an IS offer. To take an

example, the switch by Apple from PowerPC processors to Intel x86 processors in 2006 did

not make the performance of Apple computers easier to evaluate, but it did make it easier

to compare with the performance of most other computers. The CS rule does not therefore

involve considerations of complexity, but of comparability.

Our goal in this paper is to check in an experimental setting whether consumers indeed

make use of common standard information, whether being offered menus of offers with a CS

improves their payoffs, whether they tend to favor offers that are easier to compare and how

much they penalize non-standard offers. We focus in particular on whether their behavior is

affected by the number of offers that are proposed to them or by how close offers are in terms

of price. This contribution to the experimental literature on consumer decisions in complex

settings is motivated, as argued above, by its implications within the field of behavioral in-

dustrial organization (Ellison, 2006; Spiegler, 2011).

We rely in this paper on data generated from a controlled laboratory setting because em-

pirical data is not well suited for our purpose. Relying on product sales, for example, intro-

duces various confounds: the presence of real along with spurious product differentiation;

regulations that impose standards for a variety of reasons; economies of scale and network

effects that encourage the convergence to a technological standard; reputation concerns that

lead firms not to wish to confuse consumers; framing other than the standard adopted by

the offer that may influence choice as well; habits such that the consumer chooses a product

based on past purchasing behavior, and so on. Doing an experiment in the laboratory allows

us to create genuine spurious complexity, that is, complexity that all consumers would agree

should be irrelevant to their choice. We kept the laboratory experience close to a purchasing

act by framing the experiment as a real buying decision in which the participants were asked

to buy a product out of menus of offers with the aim of minimizing expenditure. This means

that even though the task was cognitively complex and making correct choices was difficult,

our subjects were still able to easily understand the task they were asked to perform.

We find that our subjects generally obtain better payoffs when a menu includes some
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offers that are expressed in terms of a common standard, that is, when some offers within

a menu are easy to compare. We also observe that a number of consumers favor the Lower

Priced of the CS offers (“LPCS”). The intensity of their preference for the LPCS ensures that

products expressed in terms of a common standard generate higher revenues than others.

1 Experimental design

Our subjects were first faced with a purchasing tasks, which constitutes the core of our ex-

periment, and then had to complete a set of control tasks and fill out a questionnaire. The

next section describes the main task.

1.1 The main task

In order to explore consumer behavior when faced with a problem that is both simple to

understand but complex to solve, we designed a novel purchasing task with a simple struc-

ture in which complexity was introduced in a natural way. Subjects were given a budget B

to buy gray paint in order to cover a fixed, square area A. They were presented with menus

consisting of a number of offers, each offer being expressed in terms of its price and a visual

representation of the area that the paint could cover for that price. Formally, each offer was

a triple (s, a, p) in which s is a shape, a is the area of the shape s, expressed as a fraction of

the total area A, and p is the price of the offer. Participants were told that paint quality did

not differ across offers. The subjects’ payoff was what remained from their budget B once

all the paint needed to cover A had been bought at the cost implied by the chosen offer. The

overall price paid for the chosen offer was calculated as p/a, and the payoff for the subject

was B − p/a.

While the task is conceptually very simple and relates to everyday activities - subjects

must minimize expenditure when buying a product of standardized quality - it is also cog-

nitively quite hard, as evaluating hidden unit prices and comparing areas of different shapes

can be difficult. Presenting offers in terms of a combination of a shape and a size allowed

us to introduce a relatively high level of spurious complexity in an intuitive way while draw-

ing on an existing body of research on shape perceptions (Krider et al., 2001). The concept

of a standard was also easily introduced within our design: two offers within a menu that

shared the same shape and size were easy to compare in terms of price, as price was then the
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only remaining differentiating factor. We therefore denote in our setting an offer as being a

common standard offer if it has an equivalent in terms of size and shape in the menu.

Since the basic task (choosing an offer within a menu) was repeated several times, we

wanted to exclude by design the possibility for our subjects to learn some specific pattern

in the offers. Our offers could thus take three different shapes, each of twelve possible sizes,

meaning that there were 36 possible distinct standards. Prices were randomly generated,

meaning that it was almost impossible for consumers to rely on past purchasing experiences

within our experiment to inform their present purchasing task.

The offers’ three dimensions varied in the following way:

1. The shape s could be a circle, a square, or an equilateral triangle. We considered only

those three shapes so as to be able to build on the existing literature on shape com-

parisons (Krider et al., 2001). Broad based offers such as triangles will be preferred to

squares covering the same area and those will be preferred to the compact circle offers.

2. The area a took one of 12 possible values. Normalizing A to 100, these values ranged

from 10 to 43, in steps of 3.1 The step was chosen to be big enough to allow our subjects

to determine easily whether an offer was bigger than another of the same shape within

a menu, while being small enough to yield a sufficient number of steps and therefore a

sufficient number of different (s, a) pairs in order to minimize learning from compar-

isons across menus.

3. The price information conveyed to the subjects, p, was computed from randomly drawn

unit prices (up, the cost to cover 1% of A) as p = up · a. Unit prices were drawn from a

normal distribution of mean 0.5, while standard deviation σ2 was equal to either 0.05,

which generated more distance between offers and hence an easier problem, or 0.01,

which generated closer offers and thus made it harder to identify the best one. Easy

menus are meant to mimic conditions when there is little competition among firms,

while hard menus translate closer competition.

The offers were displayed as a gray area centered on a white background representing the

total area to be painted. The triangular offers rested on their base while square offers rested

on a side. The white background allowed participants to visually appreciate the size of the

1The size was limited to 43 as an equilateral triangle resting on a base cannot cover more than 5×
√
75/100 =

43.3% of a 10× 10 square.

5



shape with respect to the total area to be painted. This background was overlaid with a grid

of thin light blue lines to ease comparison and made it possible for participant to assess if

two offers of the same shape were indeed of the same size.

The offers were displayed in menus, that varied in length (3 or 6 offers per menu). This

is done to assess the impact of increasing the number of competing firms, which introduces

an additional source of complexity for consumers that may actually lead to a decrease in the

strenght of competition among firms (Carlin, 2009).

Menus were randomly generated under the constraint that no offer was to give a negative

payoff to the participant. With respect to CS, menus could feature no common standard,

such that a given (s, a) combination would appear only once within the menu; one common

standard, such that two (and only two) offers featured the same (s, a) combination; or two

common standards (only possible for menus of six offers), whereby one (s, a) combination

occurred twice while another occurred thrice.

An example of a menu with three elements and a common standard (the triangle) is

shown in figure 1. An example of a menu with six elements and no common standard is

shown in figure 2.

Figure 1: Screen shot of a menu with three offers and a common standard.
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Figure 2: Screen shot of a menu with six offers and no common standard.

Each individual was faced with 80 menus, the same set for everyone but presented in a

subject-specific random order. 36 menus showed three options (“3-menus”), of which 18

with one CS. 44 showed six options (“6-menus”), of which 18 with one CS and 8 with two CS

(one CS with two members, the other CS with three). In each case, half of the menus were

hard (σ2 = 0.01) while the other half were easy (σ2 = 0.05). The distribution of menus is

summarized in table 1.2

Table 1: Distribution of menus by CS and difficulty of the problem.

Hard menus Easy menus

(σ2 = 0.01) (σ2 = 0.05)

3-menu
No CS 9 9

One CS 9 9

6-menu

No CS 9 9

One CS 9 9

Two CS 4 4

Given the random process governing unit price generation, the lowest priced common

standard offer had a theoretical chance of being the optimal choice in 2
3 of our 3-menus with

a CS, in 1
3 of our 6-menus with one CS and in 3

6 of our 6-menus with two CS (considering only

the lowest priced of the CS with 3 options). The actual realization of these chances was 56%

in 3-menus, 39% in 6-menus with one CS and 63% in 6-menus with 2 CS.

The participants had up to two minutes to choose an offer from each menu and were

2The menus are available for visual inspection at https://people.econ.mpg.de/∼crosetto/Shapes/Menus.html.
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forced to spend a minimum time of 10 seconds on each menu. The choice was performed

by clicking on an offer - in which case it would be highlighted with a light green frame - and

could be revised as many times as one wanted within the two minutes limit. The choice was

finalized by clicking on a ’Submit’ button at the bottom of the screen. If no final choice was

submitted within the time limit the last highlighted offer was submitted as the final choice;

if no offer had been highlighted, then the participant received a payment of 3 euros for that

trial, which was less than the minimum payment a participant could get even if he made the

worst choice out of all our menus.3

The participants were given feedback after each menu. This feedback reminded them of

the price of their chosen offer, told them the resulting expenditure to paint A, as well as their

payoff in terms of budget minus expenditure. The participants were not given the possibility

to automatically store and retrieve their payoffs from previous rounds, but were provided

with pencil and paper and some did record their payoffs. After the feedback dialog, they were

given a new budget B and shown the next menu. The participants knew the total number of

menus was 80 and were reminded of their progress along the experiment.

1.2 Control tasks

Once finished with the main task, the participants were exposed to a set of non-incentivized

visual perception and computational skills tasks to control for their ability to perform the

main task. No minimum time was enforced and the participants could skip any question

within each task.4 Three different set of tasks were chosen:

1. Shape size comparisons: The participants were asked to give their estimate of the rela-

tive size of a shape (rectangles, circles and triangles) with respect to another. Each of

four comparison had to be done within a time limit of one minute.

2. Mathematical operations. The participants were asked to solve three sets of 10 oper-

ations (sum, subtraction, multiplication, divisions).5 Each set had to be completed

within one minute.

3. Simple problems: The participants were asked to solve four simple problems, testing

3Only one participant failed to submit a decision within the time limit, and this only once, in that case high-
lighting no offer.

4Only one participant did so.
5The sets were generated using Mail Goggles’s GMail Labs app by Jon Perlow and were graded in terms of

difficulty. See http://gmailblog.blogspot.com/2008/10/new-in-labs-stop-sending-mail-you-later.html
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their understanding of the concept of area, of how an area relates to its dimensions,

and how a number can be translated from one standard to another (here, a currency).

Each problem had to be solved within two minutes.

Once done with the control tasks, the participants filled in a short demographic question-

naire. They were finally asked to guess what the experiment was about - to check for demand

effects - and to rate their level of motivation during the experiment. Finally, each participant

individually drew a number from 1 to 80 from an urn and was paid according to the result of

her purchasing decision in the period corresponding to that number.

Our whole experiment was computerized. The experimental software, the menu genera-

tor and the script we used to collect and organize the raw data were programmed in Python

(van Rossum, 1995).6 The German instructions, as well as their English translation, are avail-

able upon request.

2 The common standard rule and its generalization

In his choice, the consumer may take into account a number of criteria involving the per-

ceived unit prices of offers, their shape, their position and their belonging to a CS. Let us

consider how a consumer might go about a “covert sequential elimination process” as per

Tversky (1972), based on perceived unit price and belonging to a CS. Denote ˆupij = upi + eij

the perceived unit price of offer i by consumer j (the “signal”). upi is the unit price of offer

i, while eij is an error term, which is independent across offers in a menu and across con-

sumers. How large the error term will be on average will depend on the consumer’s accuracy

and on how difficult it is to compare offers across standards. As for whether an offer belongs

to a CS or not, this matters because prices are directly comparable within a standard, so the

consumer can identify the Lowest Priced Common Standard offer (“LPCS”) with high accu-

racy.7 A consumer who only considers signals for his choice will choose the offer with the

lowest signal and will not consider whether that offer may be dominated by another offer

expressed in terms of the same standard. This is what we call the Naive rule. A variant on

6Different python modules were needed to develop the experimental software: wxpython was used for the
graphical user interface, and two community-contributed packages, svgfig and polygon, were used for creating
and managing the shapes. The experimental software (menu and shape generators and analyzers, user interface)
and its documentation, as well as the raw data and the script used to collect and organize them are available upon
request.

7We will consider the possibility that a consumer may make mistakes in choosing among CS even if he is
aware of their existence, though one may alternatively argue that choosing a higher priced CS offer means the
consumer does not take account of CS information.
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the Naive rule adds a second step whereby the consumer checks if the offer he chose after

the first step based on signals may not be dominated by another offer expressed in the same

standard, and if so, revises his choice to the dominant offer. This is what we call the Signal

First heuristic. The reverse steps, i.e. first eliminate dominated offers within a standard, and

then compare the dominant CS offers with those expressed in terms of an IS based on their

signal, is called Dominance Editing. Finally, a rule based only on belonging to a CS, which

we call the CS rule, consists in choosing argmin
i∈CS

pi (the LPCS) if a CS exists and revert to the

Naive rule otherwise. The consumer not only avoid the higher priced of the common stan-

dard offers but choose the LPCS and disregard individuated standard (“IS”) offers. There are

many reasons why we would expect consumers to follow such a rule:

1. Statistically, if one assumes that prices are i.i.d. across offers and offers are assigned to

a CS at random, then the LPCS is lower priced in expectation than other offers. As in

the Monty-Hall problem (Friedman, 1998), there is information gained from being told

that an option is dominated.

2. Behaviorally, consumers have been shown to be subject to the asymmetric dominance

effect (Ariely, 2008, Chapter 1), so that when faced with three offers, one being domi-

nated by another, that other will be chosen more often than if the dominated offer was

not present. Another way to call this effect in the field of decision theory is the “attrac-

tion effect”, which is a type of context effect (Huber and Puto, 1983).

3. From learning : Gaudeul and Sugden (2012) argue that consumers are better off choos-

ing among CS offers when firms are strategic agents in a competitive setting, subject to

at least some agents following the CS rule. This learning is made easier by the appli-

cability of the common standard rule to many environments, so that consumers who

learned from one environments that CS offers are lower priced than other offers will

apply this insight generally. Consumers ought therefore to learn to choose CS offers

over time (Sugden, 1986; Fudenberg and Levine, 1998).

4. For simplicity, as agents faced with complex choices tend to follow simple heuristics,

often with good results (Gigerenzer and Brighton, 2009). In this case, an offer being un-

ambiguously better than another provides “one good reason” to choose it (Gigerenzer

and Goldstein, 1999).
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The CS rule, based on multiple foundations, can thus be generalized across many settings

and is likely to be more robust than rules that hold only in some settings (Sugden, 1989) or

that can be justified in only one way. We believe this rule is at work in a wide variety of con-

sumer choice problems. Its simplicity and intuitive appeal make it particularly interesting for

economists interested in consumer behavior and heuristics, marketing, consumer protec-

tion and the competitive process. Note that we are not wedded to one particular explanation

for why consumers might prefer CS offers: we are only interested in determining if they do so

and if so, to what extent. Indeed, the main reason we are interested in this possible consumer

bias is that we believe that it could drive firms into making their offers less difficult to com-

pare and thus encourage the efficient working of competitive markets. Our setting provides

a lower bound for the CS effect, in so far as any competitive effect justifying the use of the

rule is excluded by design since offers are not determined through a competitive process.

The Threshold rule. Following the CS rule is strictly optimal in the context of Gaudeul and

Sugden (2012) as IS offers are systematically higher priced than CS offers in a competitive

setting where firms can choose their standard, so that even an IS offer with a very good

signal should be rejected. However, the CS rule is not optimal in the context of our ex-

periment as offers are randomly generated rather than the result of a competitive process.

It is better for a consumer to follow a more general Threshold rule, which we present be-

low, in our setting. The Threshold rule functions as follows: determine the LPCS, denoted

k ≡ argmin
i∈CS

pi if there is a CS and then choose l(vj) = arg min
i/∈CS

(ûpk, ûpi × vj), i.e. the price of

all IS options is multiplied by vj , with vj depending on consumer j’s preference for (vj > 1)

or against (vj < 1) the LPCS. We will call vj a threshold and the optimal choice of thresh-

old is v∗j = argmin
vj

E(upl(vj)). Its level depends on the consumer’s accuracy in assessing the

unit price of offers in a menu, with less accurate consumers benefiting from adopting higher

thresholds vj . Threshold vj = 1 corresponds to eliminating dominated offers and choosing

based on the signals from the remaining offers (this is Dominance Editing), while threshold

vj → ∞ corresponds to the CS rule.

To put this in behavioral terms, the consumer who adopts a threshold vj > 1 does not

reject IS offers out of hand, but penalizes them, that is, he does not follow his first impres-

sion (ûpij) of the price of the IS offer, but rather revises it upwards when comparing it to his

perception of the price of common standard offers. In other terms, the consumer applies a
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certain dose of skepticism to his evaluation of an offer that is expressed in uncommon terms,

and will choose to buy it only if it seems sufficiently better than the best of those offers that

are expressed in common terms – that is, if its unit price appears to be lower by a factor of at

least 1− 1/vj compared to the apparent unit price of the LPCS.

To make this clearer, let us come back to the example on page 2. We saw that under the CS

rule, the consumer would always choose the orange. Under the Threshold rule, the consumer

will choose the orange only if his threshold v is more than 1.29/1.27 = 1.016.

A consumer’s optimal threshold depends on his accuracy in assessing offers, with less

accurate consumers being better off adopting higher thresholds. For example, a consumer

who makes considerable mistakes obtains B − E(a) in expectation under the Naive rule (he

chooses essentially at random), which is less than B−E(min(a, b)), his expected payoff under

the CS rule.

We performed simulations with Octave (Eaton, 2002) to determine the optimal threshold

v to use under the Threshold rule as a function of consumers accuracy.8 We modeled eij as

following a normal distribution with mean zero and variance σ2, which we varied between 0

and 0.2. In the same way as in our experiment, products unit prices upi followed a normal

distribution with mean 0.5 and variance 0.01 (hard menus), and 0.05 (easy menus) and B was

set to 60. Consumer choice was simulated according to the Naive rule as well as according

to the Threshold rule, with the optimal threshold v calculated for every level of σ2 — less

accurate consumers benefit from adopting higher thresholds. Their average payoff for each

rule was calculated over 2 million menu draws so as to achieve good accuracy.9

The following graphs show payoffs in the four situations in our experimental setting, that

is depending on whether the consumer has a choice among three or six options, and whether

menus are easy or hard. Also shown on a separate scale is the optimal threshold v∗ for each

value of the error term.

8Program available upon request.
9The ranking of payoffs by rules is quite robust as differences in payoffs are significant even for much smaller

draws.
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Figure 3: Consumer payoffs by choice rules and optimal thresholds, by menu length and

difficulty.

As can be seen in figure 3, payoff decreases as consumers become less accurate in their

choice (higher σ2), except for the CS rule since consumers always choose correctly among CS

offers and thus obtain B − E(min(a, b)). The Threshold rule outperforms the CS and Naive

rules and converges towards the CS rule for less accurate consumers as can be seen from the

rising level of the optimal threshold v as σ2 increases. Following the CS rule obtains higher

payoffs than the Naive rule as long as consumers are not too accurate. This is so especially

when menus are hard as then even high levels of accuracy may result in mistakes. From this

graph, one can infer a consumer’s accuracy from the average payoff he attained when facing

menus with no common standard, and from this accuracy determine the threshold he ought

to use when facing offers with a CS.

Other possible influences on consumer choice. Consumers may be subject to other influ-

ences in their choices and we will need to control for those. Biases may come from following

alternative possible rules as follows:

• The budget rule chooses arg min pi. This is a rule that favors small packages, or equiva-
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lently lower priced items. While this does not make sense in our setting, this rule may

be imported from other settings where for example the consumer faces a binding bud-

get constraints (Viswanathan et al., 2005). Alternatively, a bulk purchasing rule would

favor big packages, as offers in big packages are usually better deals than those in small

packages.

• The lexicographic rule may favor the first offers in the lexicographic order in the menu

– maybe because the consumer is satisficing rather than optimizing (Simon, 1955) or

simply because he does not have time to consider all offers. Alternatively, a consumer

may also favor the last offers in the menu if he tends to remember (and choose) the last

option he read from a list.

• Finally, consumers may favor some shapes over others because they appear larger, as

evidenced in Krider et al. (2001). As evoked before, broad based offers such as triangles

will be preferred to squares covering the same area and those will be preferred to the

compact circle offers.

3 Results

Our experiment took place at the laboratory of the Max Planck Institute in Jena in June 2011.

The experiment involved 202 students over 8 sessions, each with 24 to 27 subjects. Our sub-

jects were asked for their age, gender, field of study, year of study, motivation in completing

the tasks, and also what they thought the experiment was about (in order to control for de-

mand effects). All subjects were students. When asked what they thought the experiment

was about after going through it, most subjects guessed we wanted to assess their abilities

to take account of both price and area to identify the best offer in our menus. Some won-

dered if we wanted to identify what shapes were perceived as more attractive, but no subject

mentioned that some offers were expressed in terms of a common standard.
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Table 2: Summary statistics.

Variable Mean Median Std Dev. Skewness Min Max N

Age 23.65 23.00 3.69 2.31 18.00 47.00 202

Gender 0.65 1.00 0.48 -0.64 0.00 1.00 202

Score in shape comparisons 0.25 0.25 0.10 0.35 0.05 0.58 201

Score in simple problems 2.78 3.00 0.96 -0.27 1.00 4.00 202

Score in mathematical tasks 20.92 21.50 2.93 -1.45 6.00 25.00 202

Reported motivation 6.29 7.00 2.28 -0.67 0.00 10.00 202

Payoff 11.44 11.48 0.41 -0.80 9.88 12.28 202

Time spent per menu 19.67 18.34 6.36 1.30 11.66 46.27 202

The average age of our subjects was 24, ranging from 18 to 47 (Table 2). 65% of our sub-

jects were women. The average motivation of our subjects, on a scale from 0 to 10, was 6,

with a median motivation of 7 and 75% of our subjects having motivation more than 5, the

middle point. The monotony of the tasks did not therefore result in noticeable discontent.

Speed of choice for each menu and each subject was also recorded. Subjects took 20 sec-

onds on average to make each choice (they could not make a choice before 10 seconds had

elapsed). Time spent on each menu was longer for menus with more options and declined

over time (from an average of 36 seconds for the first choice to 16 for the last).

There were three control tasks. In the shape comparison task, we computed individual

performance as the average of |guess − true value|/true value. On average, people were 25%

off the true value, with a minimum of 5% and a maximum of 58%. In the mathematical tasks,

we coded answers as either right or wrong. On average, subjects got 21 of the 25 calculations

right, with only two obtaining less than half of the calculations right, and 7 of them obtaining

all of them right. Finally, in the simple problems, only about 62% answered more than half

of the questions correctly. Performance in the different control tasks were significantly and

positively correlated, though not highly (correlation coefficients were around 0.35). Women

performed less well than men in all control tasks.

3.1 Did individuals benefit from the presence of a common standard?

Overall, consumers made about 39% of their choices optimally, that is, choosing the offer

with the lowest unit price. In only 21 of the 80 menus did a majority of the consumers make
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the optimal choice. In other terms, most consumers were wrong for most menus.10 Table 3

shows how often consumers made the optimal choice depending on the length of the menu,

its difficulty and whether the menu included one CS, two CS or no CS. The presence of a CS

significantly improved accuracy in consumer choices, except in the case of hard 6-menus.

Consumers were also more likely, as designed, to choose the best option when the menu was

easy.

Table 3: Optimal choices by menu length, difficulty and presence of a CS.

Hard menus Easy menus

Mean Std Dev N Mean Std Dev N

3-menu
No CS 35.48% 47.86% 1818 45.27% 49.79% 1818

One CS 46.42%∗ 49.89% 1818 64.63%∗ 47.82% 1818

6-menu

No CS 27.89% 44.86% 1818 24.70% 43.14% 1818

One CS 21.45%∗ 41.06% 1818 38.44%∗ 48.66% 1818

Two CS 40.97%∗(∗) 49.21% 808 41.34%(∗) 49.27% 808

* Difference significant at 5% level vs. one row above, Wilcoxon rank-sum test.

(*) Difference significant vs. two rows above.

We did not find any effect of the presence of a CS in a menu on the speed with which

consumers took a decision, except in the case of easy 3-menus where the presence of a CS

reduced time spent from 18 to 16 seconds on average. Subjects took on average 5 seconds

more to reach a decision among 6-menus than among 3-menus, but did not reach faster

decisions when the menu was easy (except again in the case of easy 3-menus).

Let us now consider whether higher accuracy in choices led individuals to obtain higher

payoffs when a menu included CS offers. The following table displays individual payoffs by

menu length, difficulty and presence of a CS (Table 4).

10Looking at menus where consumers performed particularly badly, one finds that they mistakenly chose
smaller size options, triangles, options to the end of the lexicographic order, or the LPCS when the IS was ac-
tually better. This last point underlines an important fact about the CS rule: while following it maximizes average
payoffs for a consumer that is prone to making mistakes, it does not lead to the correct choice for each individual
choice instance.
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Table 4: Payoffs by menu length, difficulty and presence of a CS.

Hard menus Easy menus

Mean Std Dev N Mean Std Dev N

3-menu
No CS 10.41 0.92 1818 11.02 4.56 1818

One CS 10.45 0.96 1818 13.34∗ 3.96 1818

6-menu

No CS 10.14 0.81 1818 11.97 4.11 1818

One CS 10.04∗ 0.98 1818 13.84∗ 5.48 1818

Two CS 10.78∗(∗) 0.87 808 12.78(∗) 4.34 808

* Difference significant at 5% level vs. one row above, Wilcoxon rank-sum test.

(*) Difference significant vs. two rows above.

This table can be read in conjunction with another table that indicates how those pay-

offs translate in terms of how close they are to the maximum available payoff in each menu.

Table 5 thus reports the average of the ratio (upmax − upchosen)/(upmax − upmin) over

individuals and menus in each category. We normalize the difference between the worst

choice and the consumer’s choice as shown because we want to be able to compare perfor-

mance between easy and hard menus, where the difference between the worst and the best

choice within a menu will be smaller on average. We call this the performance ratio. A value

of 0 would indicate the consumers always made the worst choice, while a value of 1 would

indicate they always made the best choice.

Table 5: Performance ratio by menu length, difficulty and presence of a CS.

Hard menus Easy menus

Mean Std Dev N Mean Std Dev N

3-menu
No CS 0.597 0.447 1818 0.607 0.448 1818

One CS 0.592 0.419 1818 0.794∗ 0.324 1818

6-menu

No CS 0.683 0.353 1818 0.682 0.321 1818

One CS 0.545∗ 0.364 1818 0.735∗ 0.299 1818

Two CS 0.735∗(∗) 0.323 808 0.759∗(∗) 0.365 808

* Difference significant at 5% level vs. one row above, Wilcoxon rank-sum test.

(*) Difference significant vs. two rows above.

Subjects obtained a payoff of 11.44 ECU on average (1 ECU=0.8 =C), and their performance

ratio was 0.66. No participant obtained payoffs that were significantly less than 10.22, which

is what they would have obtained had they chosen at random within our menus, and only

8 obtained payoffs that were not significantly greater than this. Subjects therefore seem to

have made considered choices. As could be expected from statistical arguments, individuals
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obtained higher payoffs with 6-menus and with easy menus.

Participants obtained significantly higher payoffs and performed significantly better when

a menu was easy and included a CS, while the effect of the presence of a CS in hard menus

was either not significant or slightly negative. The presence of a CS did not therefore bene-

fit consumers when prices were already close together, but worked to the advantage of con-

sumers when prices varied more widely among options, which would be the case when firms

are not in close competition. The CS effect would therefore be at play when it matters most.

Panel regressions of payoffs on individual and menu characteristics are shown inTable 11

on page 36. A Breusch and Pagan Lagrange multiplier test for random effect indicates that

there are no significant difference across units so that one can rely on the results of a pooled

regressions (OLS). Compared to the base case (Easy 3-menus with no CS), individuals ob-

tained higher payoffs when the menu displayed 6 options and when the menu included CS

offers. Payoffs were smaller when the menu was hard. Looking at cross-effects, one sees that

making a 6 menus harder negates the benefit of having more choice, and making a menu with

a CS harder negates the benefits of having a CS. Finally, the gain from including CS offers in

a 6-menu are mainly due to the presence of a CS rather than from having more options. In-

dividuals improved their payoffs with experience (“order” variable). Older people obtained

lower payoffs, while those with higher scores in the mathematical and practical consump-

tion problems, or with higher motivation, obtained higher payoffs. Time spent choosing an

offer within each menus did not appear to have a significant effect overall, though individu-

als who spent more time on average obtained higher payoffs (cf. between effects regression)

while they obtained lower payoffs on those tasks on which they spent more time than their

average (cf. fixed effects regression).11 There was no sign of a significant individual effect,

that is, no individual seemed to perform better than others above and beyond what could be

predicted from their gender and scores in control tasks. We also checked that there was low

correlation between residuals and variables in the model.

11We checked also if there was some quadratic effect in terms of time spent. Indeed, time spent could increase
payoffs but fastest times (inattention) and slowest times (difficulty) could obtain lower payoffs. While coefficients
were of the correct sign, they were not significant.
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3.2 Did individuals favor the lower priced of the common standard offers?

Table 6 shows that the LPCS was chosen about 57% of the time within our 3-menus,12 about

as often as the LPCS was the lower priced product (56%). This was less often than if con-

sumers followed the CS rule, whereby the LPCS would always be chosen. However, the IS

was disfavored as it was chosen less often than if consumers always chose the lowest priced

product (37% of the time while it was the lowest price in 44% of the menus). In the case of

6-menus with one CS, the LPCS was chosen about 26% of the time in 6-menus with only one

CS, which was less often than optimal (39%). The IS on the other hand was chosen more of-

ten than optimal (18% vs. 15%). Finally, the lower priced of the larger CS (the one with three

members) was chosen more often than the lower priced of the smaller CS in 6-menus with

two CS, (40% vs. 33%), but less often than optimal (62%), and the IS was chosen more often

than optimal.

Table 6: Choice frequencies by menu length and presence of a CS.

LPCS HPCS IS LPSCS HPSCS MPLCS

3-menu
No CS 33.33%

One CS 56.71% 5.86% 37.40%

Lowest priced 55.56% 0.00% 44.44%

6-menu

No CS 16.67%

One CS 25.55% 3.52% 17.73%

Lowest priced 38.89% 0.00% 15.28%

Two CS 40.41% 2.35% 17.33% 32.67% 2.97% 4.27%

Lowest priced 62.50% 0.00% 12.50% 25.00% 0.00% 0.00%

Notes: In the case of 6-menus with two CS, the LPCS is the Lower Priced of the Larger CS (the one with three members), the

HPCS is the Higher Priced of the Larger CS, and the MPLCS is the Middle Priced of the Larger CS. The LPSCS is the Lower Priced

of the Smaller CS (the one with two members) and the HPSCS is the Higher Priced of the Smaller CS. In 6-menus with one CS,

the IS choice frequency is calculated by averaging across the four IS offers.

In the aggregate, consumers do not appear to follow a Naive rule since most of them took

account of the presence of a CS by discarding higher priced CS offers. The LPCS was chosen

more often than any other offer. A number of consumers appear to have avoided IS offers

in 3-menus although higher sales by the LPCS in 6-menus appear to have occured mainly

because of diversion away from the dominated CS offer rather than because consumers con-

sistently avoided IS offers. All the same, even in that case, diversion was mainly towards

lower priced common standard offers rather than sales being equally distributed across IS

and LPCS.

12Differences across hard and easy menus are not significant and are therefore not reported.

19



Figure 5 on page 37 displays the distribution of the frequency with which individuals in

our sample chose the lower priced of the common standard offers. This is disaggregated by

menu length and difficulty, and by whether the menu included one or two CS in the case of

6-menus. In each graph, the first reference line to the left indicates the proportion of choices

of the LPCS that would be consistent with consumers following a Naive rule, i.e. choosing

among options as if there was no CS. In the case of 3-menus, this corresponds to 33%, and

in the case of 6-menus to 17%. The second reference line corresponds to the proportion of

choices of the LPCS that would be consistent with consumers doing Dominance Editing, that

is, eliminating the dominated CS offer and comparing the LPCS with the IS offers. This would

lead the LPCS to be chosen 50% of the time in 3-menus, 20% of the time in 6-menus with one

CS and 33% of the time in 6-menus with two CS. The third reference line corresponds to the

proportion of choices of the LPCS that would be consistent with consumers following the

Signal First heuristic, that is, first assessing options based on their signal, and then trans-

ferring their preliminary choice of a dominated CS offer onto the LPCS. This would lead the

LPCS to be chosen 67% of the time in 3-menus, 33% of the time in 6-menus with one CS and

50% of the time in 6-menus with two CS (for the CS with more options). Like the CS and the

Threshold rule, the Signal First heuristic thus results in the LPCS gaining a large advantage on

IS offers. Anybody to the left of the first reference line can be said to disfavor CS offers, those

between the two first reference lines do not either favor or penalize CS offers while those to

the right of the last reference line can be said to favor CS offers vs. IS ones. One sees that a

significant proportion of subjects favor the LPCS vs. the IS offer in 3-menus, especially if the

menu is easy. However, the proportion of such consumers is smaller in 6-menus with a CS.

Preference for the LPCS in 6-menus with two CS is more pronounced.

One cannot however rely on such descriptive statistics to assert with certainty that a por-

tion of consumers favored CS offers, since the results we showed could be due to chance. Our

random draw of offers, their price, shape, size, position in the menu, could be the driver be-

hind our results. This is why we perform regressions that are designed to correct for possible

biases due to the elements mentioned above.

Predicting consumer choice when there is a common standard. We perform maximum

likelihood estimation with three different models of consumer choice among option: the

alternative-specific conditional logit and probit models and the mixed logit model which al-
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lows for preference heterogeneity for all the attributes. The probit model is fitted by using

maximum simulated likelihood implemented by the Geweke-Hajivassiliou-Keane (GHK) al-

gorithm (Greene and Hensher, 2003). The Halton sequence is used to generate the point sets

used in the quasi-Monte Carlo integration of the multivariate normal density, while opti-

mization is performed using the Berndt-Hall-Hall-Hausman procedure (Berndt et al., 1974).

The mixed logit model is fitted by using maximum simulated likelihood (Train, 2003) and the

estimation was performed with the user-written mixlogit command for Stata (Hole, 2007).

Estimation makes use of the sandwich estimator of variance, except when performing the

probit regressions with 6-menus as convergence was not achieved otherwise.

The outcome for each menu is one of 3 or 6 options. Options are identified by their posi-

tion in the menu, and by whether they are the LPCS, HPCS or an IS in menus with a CS. The

dependent variable is the choice of the consumer among alternatives and the independent

variables include the unit price of the option, its shape, its size and its position. Since shapes

that extend more broadly in space are preferred (see Krider et al., 2001), we create a variable

coding shapes from most to least attractive: a triangle is assigned a value of 1, a square a

value of 2 and a circle a value of 3.13 The variable “position” is coded by lexicographic posi-

tion in the menu, from 1 if the option is in the top left corner to 6 if it is in the bottom right

corner in a 6-menu, otherwise to 3 for the option to the right in a 3-menu. As per a remark in

Hole (2007), we include no alternative-specific constants in our models, which is “common

practice when the data come from so-called unlabeled choice experiments, where the alter-

natives have no utility beyond the characteristics attributed to them in the experiment.” We

will also cross unit price with case specific variables such as gender and scores in the control

tasks to determine whether individual characteristics make our subjects more or less sensi-

tive to price signals (other individual characteristics such as age and educational background

do not vary sufficiently in our sample). We also consider a menu specific variable (whether

the menu was “hard” or “easy”) and variables that are both menu and case specific (the order

in which a specific menu was presented to an individual and the time that individual spent

deciding on this menu).

Whether a subject avoids the HPCS or prefers the LPCS vs. the ISs may depend on their

individual characteristics so that we introduce case-specific variables (here, a case is an in-

dividual) along with alternative-specific variables to determine choice among alternatives.

13We also ran the same regressions with each shape being a dummy variable. This did not influence the results.
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Our case specific variables are scores in the mathematical, shape comparison and simple

problems, along with gender, time spent choosing within a menu and motivation. We also

consider whether facing a hard menu makes it more likely to favor the LPCS as following a

simple heuristic may be more likely if there appears to be little difference in prices between

options. Finally, we consider whether the LPCS was next to the HPCS on the same row in the

menu since it is easier to notice there is a CS if CS options are close together.

Formally, denote yoijm the utility of option j in menu m for individual i, and denote yijm =

1 if that option is chosen. We will have yijm = 1 if yoijm > yoitm for all t 6= j in menu m, 0 else.

Latent utility yoijm takes the form yoijm = αupjm +ω× upjm ×Ωi + µ× upjm ×Mm + λj ×Ωi +

θj ×Mm+β shapejm+γ sizejm+φpositionjm+uijm. An option is coded in terms of whether

it is the LPCS, the HPCS or an IS offer. Ωi is a q × 1 vector of case-specific variables, the same

variables being assumed to influence the choice for each option, ω is a 1× q vector of param-

eters, Mm is a h× 1 vector of menu-specific variables while µ is a 1× h vector of parameters.

λj is a 1 × q vector of parameters, different for each alternative as case-specific variables are

assumed not to influence the choice of each alternative in the same way. Similarly, θj is a

1 × h vector of parameter translating the influence of menu characteristics on the choice of

an alternative. uijm is a random variable of mean 0 that follows either a logistic or a normal

distribution. We constrain λj and θj to be the same for all four IS options in 6-menus with

a CS. Model selection using the AIC finds that all of the alternative specific variables ought

to be used, while only score in the shape comparison and in the mathematical tasks, along

with gender and whether a menu is hard or easy, ought to be used as case-specific variables.

Results are reported in table 7.
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Table 7: Regressions with a CS, 3 and 6-menus.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Logit 3-menus Probit 3-menus MixLogit 3-menus Logit 6-menus Probit 6-menus MixLogit 6-menus Logit 6-m 2 CS Probit 6-m 2 CS MixLogit 6-m 2 CS

main unit price (up) −14.5806 ∗ ∗∗ −9.5842 ∗ ∗ −15.5821 ∗ ∗∗ −19.2308 ∗ ∗∗ −6.9231 ∗ ∗∗ −19.6781 ∗ ∗∗ −11.6973 ∗ ∗∗ −1.9796 −12.2147 ∗ ∗∗

(−4.99) (−2.71) (−4.65) (−11.03) (−4.85) (−9.62) (−4.09) (−0.28) (−3.63)
up × shape task −5.0589 −4.1344 −5.2897 17.5590 ∗ ∗ 5.8729∗ 18.0310∗ 6.4474 1.0936 7.1735

(−0.48) (−0.61) (−0.45) (2.85) (2.53) (2.49) (0.64) (0.27) (0.59)
up × hard menu 16.4312 ∗ ∗∗ 10.9950 ∗ ∗ 16.8252 ∗ ∗∗ 15.0242 ∗ ∗∗ 4.7505 ∗ ∗∗ 16.0361 ∗ ∗∗ 8.8646 −1.2748 10.2190

(3.90) (3.29) (3.44) (4.72) (3.44) (5.17) (0.88) (−0.25) (0.99)
position −0.0543+ −0.0463+ −0.0489 0.0696 ∗ ∗∗ 0.0325 ∗ ∗∗ 0.0656 ∗ ∗∗ 0.0205 0.0028 0.0303

(−1.75) (−1.94) (−1.59) (6.42) (3.94) (6.08) (0.84) (0.21) (1.16)
shape −0.2062 ∗ ∗∗ −0.1465 ∗ ∗ −0.2333 ∗ ∗∗ −0.3682 ∗ ∗∗ −0.1332 ∗ ∗∗ −0.4286 ∗ ∗∗ −0.6777 ∗ ∗∗ −0.0766 −0.7630 ∗ ∗∗

(−5.21) (−2.61) (−4.96) (−14.56) (−4.84) (−10.18) (−9.49) (−0.28) (−10.17)
size −0.0007 −0.0004 0.0009 −0.0058 ∗ ∗ −0.0019∗ −0.0062+ −0.0447 ∗ ∗∗ −0.0036 −0.0370 ∗ ∗∗

(−0.21) (−0.16) (0.20) (−3.21) (−2.04) (−1.70) (−5.87) (−0.28) (−3.73)

HPCS score shape task 1.9492∗ 1.4973 ∗ ∗ 1.9687∗ 2.7203∗ 1.1523 ∗ ∗ 2.7527∗ −0.1989 0.0525 −0.2176
(2.44) (2.73) (2.12) (2.48) (2.78) (2.45) (−0.12) (0.04) (−0.12)

score math −0.0096 −0.0113 −0.0090 0.0675+ 0.0239 0.0689+ −0.0776+ −0.0508 −0.0756
(−0.41) (−0.69) (−0.30) (1.87) (1.61) (1.85) (−1.71) (−0.97) (−1.41)

gender −0.4832 ∗ ∗ −0.2882 ∗ ∗ −0.4819∗ −0.8498 ∗ ∗∗ −0.3015 ∗ ∗∗ −0.8506 ∗ ∗∗ −1.3970 ∗ ∗∗ −0.8411∗ −1.3944 ∗ ∗∗

(−3.24) (−2.74) (−2.43) (−4.30) (−3.43) (−3.66) (−4.06) (−2.45) (−3.71)
hard menu −0.1681 −0.1401 −0.1995 −0.5105∗ −0.0970 −0.5341 ∗ ∗ −0.3825 0.2909 −0.4529

(−1.03) (−0.90) (−1.34) (−2.55) (−1.08) (−2.58) (−0.94) (0.61) (−1.10)
close CS −0.4200+ −0.1512 −0.4122∗ −0.1289 0.0471 −0.1133 −0.2745 −0.4255 −0.2341

(−1.95) (−0.97) (−1.98) (−0.50) (0.46) (−0.45) (−0.78) (−1.03) (−0.61)
constant −1.5065∗ −1.7151 ∗ ∗∗ −1.4918∗ −2.9550 ∗ ∗ −1.7752 ∗ ∗∗ −2.9806 ∗ ∗ 0.2745 −1.1791 0.2397

(−2.42) (−3.67) (−1.97) (−3.25) (−3.40) (−3.23) (0.22) (−0.73) (0.16)

IS score shape task −0.2998 −0.3094 −0.4166 0.0294 0.1489 0.0205 0.1574 0.0123 0.1212
(−0.77) (−1.07) (−0.94) (0.06) (0.87) (0.04) (0.18) (0.11) (0.15)

score math 0.0248+ 0.0188+ 0.0284 0.0054 0.0016 0.0062 0.0078 0.0004 0.0103
(1.84) (1.74) (1.54) (0.37) (0.27) (0.36) (0.29) (0.13) (0.30)

gender −0.2679 ∗ ∗∗ −0.1628∗ −0.3129 ∗ ∗ −0.2517 ∗ ∗ −0.1132 ∗ ∗ −0.2657 ∗ ∗ −0.3562∗ −0.0368 −0.3590∗
(−3.45) (−2.23) (−3.18) (−2.80) (−2.78) (−2.69) (−2.30) (−0.28) (−2.25)

hard menu 0.0105 −0.0190 −0.0386 −0.4933 ∗ ∗∗ −0.1580 ∗ ∗∗ −0.4923 ∗ ∗∗ 0.6969 ∗ ∗ 0.0083 0.5104∗
(0.13) (−0.34) (−0.45) (−5.46) (−3.43) (−5.51) (3.03) (0.15) (1.96)

close CS −0.7851 ∗ ∗∗ −0.5384 ∗ ∗ −0.8847 ∗ ∗∗ 0.2557∗ 0.0519 0.2872 ∗ ∗ 0.4785 ∗ ∗ −0.0070 0.6749 ∗ ∗

(−6.39) (−2.94) (−7.38) (2.36) (1.16) (2.65) (2.65) (−0.22) (3.21)
close SCS −0.2762 0.0985 −0.2752

(−0.69) (0.27) (−0.71)
constant 0.0291 −0.0573 0.0736 0.1316 0.0202 0.0741 −1.2370+ −0.0573 −1.3206

(0.08) (−0.23) (0.15) (0.35) (0.13) (0.17) (−1.73) (−0.25) (−1.53)

SD shape 0.3763 ∗ ∗∗ 0.4722 ∗ ∗∗ 0.2567∗
(7.63) (10.60) (2.38)

size 0.0363 ∗ ∗∗ −0.0428 ∗ ∗∗ 0.0650 ∗ ∗∗

(8.18) (−11.42) (7.39)

N 10851 10851 10851 21708 21708 21708 9648 9648 9648
ll −2919.5938 −2917.2251 −2850.6984 −5617.2643 −5564.1585 −5450.2711 −2078.6207 −2057.6991 −2055.1065

t statistics in parentheses + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
Base outcome is the LPCS. Not reported in the table are coefficients on case specific variables for the higher and lower priced of the options that are part of the CS with two options and for
the middle priced of the CS with three options in 6-menus with two CS. Whether CS options were close within a CS was deemed to influence choice only within that CS and vs. the IS option.



In terms of alternative-specific variables, subjects tend to prefer lower priced options,

“broader” shapes, and smaller sized options (equivalently, those with lower displayed prices).

One can notice that prices being close together (hard menus) makes consumers less sensitive

to price. Case-specific variables show that consumers tend to avoid the HPCS: the parameter

on the constant term for that option is negative and highly significant. Individuals that are

worse at the shape comparison tasks are more likely to choose the HPCS, maybe because

they find it difficult to compare the area and shape of all options and thus do not notice the

presence of a CS. It is however only women who display an aversion to the IS vs. the LPCS.

Aversion to the IS is encouraged when the presence of a CS is more obvious, i.e. when the CS

options are next to each other – there is a negative impact of the dummy variable taking value

one if CS options are close in 3-menus (the impact is not consistent across logit and probit

regressions in the case of 6-menus). Whether the menu is hard also encourages individuals

in rejecting the IS option, at least in 6-menus with one CS (results in the case of 6-menus with

two CS are not consistent across logit and probit regressions).

In conclusion, only women appear to favor the LPCS when choosing among options. This

might explain why women managed to obtain higher payoffs than men in this experiment

even though they were less good at those control tasks that predicted higher payoffs.

3.3 How strong was the common standard effect?

It is difficult to quantify the strength of the Common Standard effect from the results pre-

sented up to now. We seek to know how much of an advantage a LPCS offer gains compared

to an offer expressed in terms of an individuated standard. We simulate in this part how con-

sumers would make choice among menus with a CS based on their choices when there is no

CS. We first perform regressions to explain consumer choice when there is no CS, and then

apply predictions from that setting to the case where there is a CS, assuming consumers ap-

ply the Threshold rule. We determine what thresholds best predicts consumer choice, which

can be interpreted as the price penalty applied to non-standard offers.

3.3.1 Consumer choice when there is no common standard

We adopt the same model as for predicting choice when there is a CS. Latent utility yoijm

takes the form yoijm = αupjm + ω × upjm × Ωi + µ × upjm × Mm + β shapejm + γ sizejm +

φpositionjm + uijm with uijm a random variable of mean 0 that follows either a logistic or a
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normal distribution. Ωi is a q × 1 vector of case-specific variables while ω is a 1 × q vector

of parameters. Mm is a h × 1 vector of menu-specific variables while µ is a 1 × h vector of

parameters. As before, j is the option, m is the menu and i is the individual.

We find that a model that takes into account all the alternative specific variables (price,

position in menu, shape, area size) minimizes the Akaike Information Criterion (“AIC”). In

addition to those, one menu specific variable was consistently significant across menu length

(whether the menu was easy or hard) and one case specific variable turned out to be signif-

icant for 3-menus (performance in the shape comparison task). Results are shown in table

8. Subjects tend to prefer options that have a lower unit price, “broader” shapes, and smaller

sized options (equivalently, those with lower displayed prices). There is no consistent ten-

dency for consumers to favor either options at the beginning or at the end of the menu. Sub-

jects with low performances in the shape comparison task were understandably less affected

by unit price in their choice, and subjects were more sensitive to unit price in hard menus.

The log-likelihood is much lower in 6-menus than in 3-menus, which means that the

choices from 6-menus are considerably less accurately predicted with our model than from

3-menus (there was the same number of choices to make from within each menu type). This

means there is more randomness in consumer choice within 6-menus, probably because it

is more difficult to compare 6 offers than 3 offers as this requires holding more information

into one’s working memory.

Results from the mixed logit model indicate there is significant variation in the extent to

which an option’s shape and size influenced consumers. However, the influence of an op-

tion’s position did not appear to vary across subjects. We can conclude that our participants

have some bias that may be explained by their use of a budget rule (choose lower priced, that

is, smaller sized, options) and of a shape rule (prefer triangles to square to circle). However,

the marginal effect of an increase in unit price is much higher than that of any other variables

(not reported).

3.3.2 What threshold best describes aggregate behavior?

We use the estimation results from the mixed logit regressions done for the case where there

is no CS to predict choice when there is a CS. If the consumer is Naive, his choice will be

predicted by applying parameter estimates from the model with no CS to the data with CS,

which obtains estimates (pNa
LPCS , p

Na
HPCS , p

Na
IS ) for the probabilities to choose the LPCS, HPCS
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Table 8: Regressions with no CS, 3 and 6-menus.

(1) (2) (3) (4) (5) (6)

Logit 3-menus Probit 3-menus MixLogit 3-menus Logit 6-menus Probit 6-menus MixLogit 6-menus

main

unit price (up) −18.7200 ∗ ∗∗ −16.2710 ∗ ∗∗ −20.2468 ∗ ∗∗ −16.2815 ∗ ∗∗ −6.6052 ∗ ∗∗ −17.4617 ∗ ∗∗
(−6.89) (−6.87) (−6.91) (−8.49) (−6.19) (−7.67)

up × hard menu −9.7361 ∗ ∗ −11.7958 ∗ ∗∗ −10.2537 ∗ ∗ −24.3972 ∗ ∗∗ −9.6439 ∗ ∗∗ −26.9113 ∗ ∗∗
(−2.86) (−3.50) (−3.14) (−6.63) (−4.77) (−7.19)

up × score shape task 20.7627∗ 14.2704+ 20.9114∗ 10.8997 4.1976∗ 13.4579
(2.24) (1.77) (2.23) (1.53) (1.96) (1.61)

position 0.0656∗ −0.0916+ 0.0671 ∗ ∗ 0.0053 0.0240 0.0046
(2.56) (−1.95) (2.63) (0.53) (1.22) (0.44)

shape −0.3621 ∗ ∗∗ −0.3705 ∗ ∗∗ −0.3961 ∗ ∗∗ −0.3339 ∗ ∗∗ −0.1509 ∗ ∗∗ −0.3958 ∗ ∗∗
(−12.05) (−11.55) (−9.21) (−14.52) (−6.58) (−9.54)

size −0.0121 ∗ ∗∗ −0.0108 ∗ ∗∗ −0.0137 ∗ ∗∗ −0.0019 −0.0002 −0.0019
(−5.28) (−4.19) (−4.03) (−0.92) (−0.23) (−0.41)

SD

shape 0.3836 ∗ ∗∗ 0.4549 ∗ ∗∗
(9.81) (9.48)

size 0.0352 ∗ ∗∗ 0.0537 ∗ ∗∗
(8.39) (11.81)

N 10854 10854 10854 21708 21708 21708
ll −3757.4104 −3747.6265 −3689.0559 −6103.5141 −6042.2092 −5881.8136

t statistics in parentheses

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

Note: One subject did not perform the shape comparison task, so the regressions are based on 201 subjects choosing among 18 menus with no CS.
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and IS respectively. If he follows the CS rule, he will choose the LPCS. If he follows the Thresh-

old rule then the probability he chooses the LPCS is pTh
LPCS = pNa

LPCS(LPCS, IS × v), which

is to be interpreted as the probability a Naive consumer would choose the LPCS if his choice

was restricted to either the LPCS or the IS and the price of the IS was multiplied by a factor

v. We computed for each consumer the threshold vj that maximizes their maximum like-

lihood. Behavior of subjects with a high value of vj is close to following the CS rule, while

that of those with low vj is close to Dominance Editing, that is, eliminating dominated offers

from one’s consideration set and comparing remaining offers based on their signals.14 One

can similarly predict the choices made by a consumer following the Signal First heuristic.

Compared to predictions based on the Naive rule, the Threshold rule makes use of two

additional degrees of freedom as it requires information about what is the CS and requires

estimating the threshold used by the subjects. This will be taken into account by comparing

rules using the Akaike Information Criterion.

In mathematical terms, the likelihood function is f(y, θ) =
N∏

t=1

M∏

j=1
p
ytj
tj with t denoting the

menu, N the total number of menus presented to consumers, j denoting the option, M the

number of options, and ytj = 1 iff yt = j, 0 otherwise, whereby yt is the consumer’s choice.

ptj = Pr(yt = j) is the predicted probability, which depends on the rule we assume for con-

sumers’ choice, so for example ptj = 1 iff j is the LPCS and the consumer is assumed to follow

the CS rule. y is the vector of choices and θ are the parameters determining the choice among

options.

Table 9 reports the log-likelihood, the values of the AIC and of the Bayesian information

criterion (“BIC”) for each rule, for 3 and 6-menus.15 The last column contains the value of

threshold v that maximizes the log-likelihood for the Threshold rule. The number v reported

there is to be interpreted as “consumers appear to consider IS options as v times more ex-

pensive when they are presented next to CS options than when they are presented next to

other IS options”. This measures the price penalty applied to IS options when compared to

the LPCS. For more interpretation of this number, see the detailed explanation in section 2.

14The rules above predict that the HPCS will never be chosen. However, as we saw, this is not the case in our
data. One therefore has to take account that some consumers choose the HPCS. We therefore do a separate
regression so as to determine the probability pLPCS with which the LPCS is chosen among CS offers. Note that in
this case, only the offer’s position and its price may determine the choice, along with some case-specific variables,
since both shape and area are the same in a CS. One then modifies the formulas above as follows: In the case
of the CS rule: pCS

LPCS = pLPCS and pCS
HPCS = 1 − pLPCS and in the case of the Threshold rule: pTh

LPCS =
pLPCSp

Na
LPCS(LPCS, IS × v), pTh

HPCS = (1 − pLPCS)p
Na
HPCS(HPCS, IS × v) and pTh

IS = 1 − pTh
LPCS − pTh

HPCS .
Formulas are slightly longer in the case of 6-menus but can be inferred from the above.

15We only study 6 menus with one CS.
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Table 9: Rules scores, aggregate behavior.

Naive Signal Dominance Threshold v
First Editing Heuristic

3-menus LL −3 484 −2 994 −3 073 −2 984 1.05

df 8 9 9 10
AIC 6 984 6 006 6 164 5 988
BIC 7 034 6 062 6 220 6 050
N 3 618 3 618 3 618 3 618

6-menus LL −5 954 −5 769 −5 788 −5 762 1.04

df 8 9 9 10
AIC 11 924 11 556 11 594 11 544
BIC 11 974 11 612 11 650 11 606
N 3 618 3 618 3 618 3 618

The Threshold rule gives the best predictions for both menu lengths. In terms of thresh-

old, an IS offer suffers a 4 to 5% price penalty compared to the LPCS offer, which is a con-

siderable amount. Assuming consumers follow the Signal First heuristic or do Dominance

Editing does not either attain better values in the AIC or BIC criteria. The Naive rule is clearly

rejected in all cases so consumers clearly do take CS information into account.

When mapping payoffs by menu length and difficulty in the case with no CS (table 4)

to the predictions from our simulations (Graph 3), the standard error of the consumers’ er-

ror term when assessing unit prices appears to have been be about 0.15, in which case the

optimal threshold vj would be between 1.2 and 1.4, which is a lot more than the 1.04-1.05

threshold determined above. This indicates perhaps that they were over-confident in their

ability to make accurate choices. We check this in the following by determining thresholds

individual by individual and comparing this to optimal thresholds given individual accuracy

determined from choice among menus with no CS.

3.3.3 What threshold did consumers use individually, and did they choose their thresh-

old rationally?

The above techniques were used to determine what thresholds is consistent with behavior of

our subjects and what rule best predicted consumers choice (based on the AIC), individual by

individual. The following graph relates average payoffs obtained by subjects in menus with

no CS to the threshold that best predicted their choice (based on the log-likelihood) when

choosing within menus with a CS. Sujects whose behavior was best predicted by the Thresh-
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old rule (based on the AIC) are represented with squares, by the Naive rule with circles, by

Dominance Editing with exes and by the Signal First heuristic by crosses. We super-impose

on this graph the optimal choice of threshold for a consumer with the accuracy implied by

his average payoff when faced with menus with no CS.16 The graph for 3-menus can be read

as follow: Consider point (105,11), which represents a consumer who obtained a payoff of 11

in 3 menus with no CS and used a threshold of 1.05 in 3 menus with a CS. The curve indicates

that a threshold of 1.20 would have been the optimal choice for this consumer.
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50 100 150 200

3-menus
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11
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Signal First
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6-menus

Figure 4: Optimal vs. best predicting threshold in 3 and 6-menus.

In terms of payoffs, and whether considering 3-menus or 6-menus with a CS, we find that

consumers whose behavior is best predicted by the Naive rule tend to obtain significantly

lower payoffs than consumers whose behavior was consistent with Dominance Editing, and

consumers who were assigned to the Threshold rule (and adopted a positive threshold) ob-

tained significantly higher payoffs than all others.

In terms of thresholds used by individuals, theory presented in this paper would predict

16We computed the optimal threshold to be used when the consumer knows the distribution of price variances
across menus but does not know, when presented with a menu, whether the menu has high or low price variance,
as this seems more reasonable to us. That is, with reference to part 2, expectation in the formula determining v∗j
is taken over all menus of a specific length.
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that a rational consumer who is beset by an inability to assess offers accurately ought to be

using higher thresholds than those used by subjects that are more accurate. Accuracy can

be estimated by the payoffs consumers obtained when faced with menus with no CS. Those

who obtained higher average payoffs in those menus are more accurate. As can be seen in

the graph, we find no relation between payoffs when faced with menus with no CS and the

threshold used by the consumer. Furthermore, almost all points on the graph above are be-

low the optimal line, meaning that thresholds were lower than optimal. This is the case even

for those consumers whose behavior is best predicted by the Threshold rule. Assuming they

indeed consciously followed the Threshold rule, it may be that they chose thresholds that

were too low because they were overconfident in their own ability to choose the best offers

based on signals alone, or they did not make the link between their accuracy and the thresh-

old they ought to be using. We checked whether behavior was consistent with consumers

using higher thresholds over the course of the experiment by re-running estimates of the

threshold they used excluding the first 20 menus each consumer was faced with. We did not

find significant change. We also confirmed that our classification by rules used was consis-

tent across 3 and 6-menus (based on the Pearson χ2).

4 Conclusion

We found that menus with a common standard improved the ability of our subjects to make

optimal choices among offers in a menu. Our subjects also obtained higher payoffs when a

menu featured a common standard as long as price differences across offers were relatively

large. The presence of a CS thus benefited consumers most when prices varied more widely

among options, which would be the case when firms are not in close competition. The CS

effect would therefore be strongest at play when it matters most. Subjects took into account

the presence of common standard offers by avoiding dominated CS offers. Most of the sales

that would have gone to dominated CS offers if consumers relied only on price information

went to the lowest priced of the common standard offers. Even though the presence of a CS

effectively meant higher priced CS offers were discarded from the consumers’ consideration

set, thus lowering competition among remaining offers, offers expressed in terms of an in-

dividuated standard did not gain sales compared to a situation with no CS. We showed that,

everything else being equal, a number of our subjects favored the lower priced of the com-
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mon standard offers over offers expressed in individuated terms. However, this effect was

driven by the choice of women against offers expressed in terms of an individuated stan-

dard. The effect was more pronounced when common standard offers were presented close

to each other. Very few consumers were savvy enough to penalize IS offers to a sufficient

extent. They should have given a higher penalty to offers that were not easily comparable

with others given their inability to make accurate choices. However, consumers’ aggregate

behavior still favored offers that were expressed in terms of a common standard. Indeed, of-

fers expressed in terms of an individuated standard suffered an overall price penalty of 4 to

5% compared to common standard offers.

Preference for the lowest priced of the common standard offers was less robust in 6-

menus than in 3-menus, as the LPCS was chosen less often than would be optimal in 6-

menus (see discussion of table 6). It might be that “too much choice” worked towards negat-

ing the common standard effect, either because it made it more difficult for consumers to

identify offers that were expressed in terms of a common standard, or because they were less

confident in the logic of favoring just one offer, the lower priced of the CS offers, when that

meant disregarding many IS options. From this, one can infer that the common standard ef-

fect which is hypothesized in Gaudeul and Sugden (2012) may be effective in fighting against

the introduction of spurious complexity by those firms that wish to confuse consumers, but

it may not be effective in counteracting the introduction of spurious variety, whereby firms

would pursue what we could call frame proliferation when faced with the threat of the emer-

gence of a common standard. For a common standard effect to work in markets where firms

multiply the options to choose from, firms ought therefore to be able to advertise their use

of a common standard. This is where complications occur since the claim to be following

a “common standard” may be difficult to verify and there are myriads of ways in which a

standard can be debased. For example, if the common standard is in terms of the dimension

of the product’s packaging, then firms might decide not to fill it properly. If it is in terms of

weight, and in the case of food, then managers may lower the quality of the product and mask

this by adding more spices. There is therefore a role for regulatory authorities that promote

and monitor the use of standards and mandate the disclosure of the information that enters

into the definition of that standard.
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Lead towards future work. We would like to examine in future work whether the extent of

consumers’ preference for CS offers is enough to drive a process of convergence towards the

adoption of common standards by firms in a competitive market. Our data is encouraging

in that respect (Table 10). The lower priced of the CS offers in our menus generated signif-

icantly higher revenue than offers expressed in terms of an individuated standard. Indeed,

revenue from a LPCS offer was 0.27 on average when there were three options, much more

than revenue of 0.18 for IS offers, and 0.12 on average when there were six options and one

CS, much more again than revenue of 0.09 for IS offers. Those differences were significant in

a statistical sense as well.

Table 10: Revenue by menu length and presence of a CS.

LPCS HPCS IS LPSCS HPSCS MPLCS

3-menu
No CS 0.1643

One CS 0.2725 0.0298 0.1786

6-menu

No CS 0.0816

One CS 0.1190 0.0176 0.0860

Two CS 0.1891 0.0121 0.0875 0.1570 0.0154 0.0212

Note: See table 6 for the meaning of the headers in the case of 6-menus with two CS.

Since the lower priced of the CS offers generated significantly higher revenues than oth-

ers, a firm would prefer to adopt a CS and undercut its rivals rather than maintaining an

individuated standard. Furthermore, consumers who favored CS offers gained higher pay-

offs than others. While this may not necessarily translate into a process of convergence to a

CS as hypothesized in Gaudeul and Sugden (2012), the conditions are therefore in place for

this to be so.

Nomenclature

CS Common Standard

HPCS Higher Priced Common Standard Offer

IS Individuated Standard

LPCS Lowest Priced of the Common Standard offers
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Table 11: Regression of payoffs on menu and individual characteristics.

(1) (2) (3) (4)
OLS Between effects Fixed effects Random effects

6-menu 0.9452∗∗∗ 0.9849∗∗∗ 0.9452∗∗∗

(9.35) (9.59) (9.35)

hard menu −0.6188∗∗∗ −0.6200∗∗∗ −0.6188∗∗∗

(−10.15) (−10.19) (−10.15)

CS 2.3045∗∗∗ 2.2896∗∗∗ 2.3045∗∗∗

(26.30) (26.14) (26.30)

6-menu×hard −1.2046∗∗∗ −1.2055∗∗∗ −1.2046∗∗∗

(−11.75) (−11.83) (−11.75)

6-menu×CS −0.7680∗∗∗ −0.7625∗∗∗ −0.7680∗∗∗

(−5.44) (−5.43) (−5.44)

hard×CS −2.2658∗∗∗ −2.2519∗∗∗ −2.2658∗∗∗

(−23.08) (−23.01) (−23.08)

6-menu×hard×CS 0.8466∗∗∗ 0.8407∗∗∗ 0.8466∗∗∗

(5.59) (5.60) (5.59)

order 0.0027∗ 0.0016 0.0027∗

(2.20) (1.27) (2.20)

gender 0.0780 0.0693 0.0780
(1.24) (1.24) (1.24)

age −0.0272∗∗ −0.0233∗∗ −0.0272∗∗

(−2.88) (−3.25) (−2.88)

shape task −0.1948 −0.0987 −0.1948
(−0.68) (−0.36) (−0.68)

score problems 0.0884∗∗ 0.0680∗ 0.0884∗∗

(2.91) (2.25) (2.91)

score math 0.0181+ 0.0184+ 0.0181+

(1.72) (1.91) (1.72)

motivation 0.0207+ 0.0212+ 0.0207+

(1.67) (1.89) (1.67)

time −0.0011 0.0221∗∗∗ −0.0091∗∗∗ −0.0011
(−0.52) (5.47) (−3.51) (−0.52)

Constant 10.8294∗∗∗ 10.8288∗∗∗ 11.1272∗∗∗ 10.8294∗∗∗

(30.70) (34.43) (127.67) (30.70)

N 16080 16080 16080 16080
ll −4.192e+ 04 −73.4482 −4.180e+ 04
df 15.0000 7.0000 8.0000 15.0000

t statistics in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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