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Abstract

We consider two no-show paradoxes, in which a voter obtains a prefer-

able outcome by abstaining from a vote. One arises when the casting of

a ballot that ranks a candidate in first causes that candidate to lose the

election. The other arises when a ballot that ranks a candidate in last

causes that candidate to win. We show that when there are at least four

candidates and when voters may express indifference, every voting rule

satisfying Condorcet’s principle must generate both of these paradoxes.

1 Introduction

A Condorcet winner is a candidate for election who is preferred by a majority in
all pairwise comparisons with the other candidates. Condorcet’s principle says
that a Condorcet winner must be elected whenever there is one (see [2]). This
principle may have undesirable consequences.

Moulin’s [6] no-show paradox arises when the addition of a ballot that ranks
candidate x above candidate y may take victory away from x and give it to y.
Moulin shows that this paradox is generated by every voting rule that satisfies
Condorcet’s principle when there are four or more candidates.1
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1The phrase “no-show paradox” was coined by Brams and Fishburn [1]. They note that
paradoxes of this kind were described in 1910 by the Royal Commission Appointed to Enquire
into Electoral Systems [9] and in 1913 by Meredith [5]. The Royal Commission observes that
under the Single Transferable Vote system a party may win two seats instead of one if some of
its supporters abstain from the vote. Meredith, also discussing that voting system, describes
a paradoxical election:

Suppose that D (Nationalist), M (Ind. Unionist) and Z (Unionist) are three
[candidates] . . . D has 410 votes, M 400, and Z 500. Then M is eliminated, and
his votes may be supposed to be transferred to Z, who is elected. But if D were
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In this paper we consider two special cases of the no-show paradox. One
arises when the casting of a ballot that ranks a candidate in first causes that
candidate to lose the election. The other arises when a ballot that ranks a
candidate in last causes that candidate to win. We call these the strong no-
show paradoxes after Pérez [8] and Nurmi [7]. One or both of these special
cases of the paradox are also considered by Smith [12], Richelson [10], Brams
and Fishburn [1], Saari [11] and Lepelley and Merlin [4].

Pérez [8] demonstrates that voting rules do exist that satisfy Condorcet’s
principle and that never generate either of the strong no-show paradoxes, no
matter the number of candidates.

Moulin [6] and Pérez [8] both consider the aggregation of linear orderings.
Crucially, in this paper we consider instead the aggregation of weak orderings.
In other words, we allow voters to express indifference. We show that, in this
case, both of the strong no-show paradoxes are generated by every rule that
satisfies Condorcet’s principle when there are four or more candidates.

2 Notation

Let A be a finite set of candidates, and let N∞ be a finite or countably infinite
set of potential voters. Every finite subset of N∞ is called an electorate. Let
W (A) be the set of all weak orderings on A. By a weak ordering we mean a
binary relation on A that is transitive, complete and reflexive.

A profile assigns a weak ordering to each voter in an electorate. For every
electorate N there is a set of possible profiles W (A)N . We write u−i to denote
the profile obtained by removing individual i from profile u.

A voting rule is a function S that assigns a candidate to every possible pair
of electorate and profile. So, given an electorate N and a profile u in W (A)N ,
S(N, u) is the winning candidate.

Given electorate N and profile u in W (A)N , let nab be the balance of the
number of voters who prefer a to b to those who prefer b to a. Let ma be the
greatest value taken by nba over all b in A \ {a}. Candidate a is a Condorcet
winner if and only if ma < 0. If ma > 0 then ma is the margin of a’s greatest
pairwise defeat. And ma is zero if a does not suffer any pairwise defeat but does
tie with another candidate in a pairwise comparison.

3 Theorem

We first define Condorcet Consistency.

Condorcet Consistency. For all candidates a, all electorates N and all pro-
files u in W (A)N , if ma < 0 then S(N, u) = a.

eliminated before M, we may easily suppose that his votes would go to M, who
would be elected. The injustice of the result appears even more striking when
we reflect that, if D had had 11 votes less, his supporters would have succeeded
in returning M instead of Z, as they desired to do.
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Next we define Positive Involvement and Negative Involvement. A voting rule
that is free from one of the two strong no-show paradoxes will have one of these
two properties. And a voting rule free from both paradoxes will have both
properties.

Positive Involvement. For all electorates N that contain at least two voters,
all voters i in N and all profiles u in W (A)N , if i weakly prefers S(N \
{i}, u−i) to all other candidates then i weakly prefers S(N, u) to all other
candidates.

The Positive Involvement criterion requires that if a candidate ranked in first
by individual i is elected when i does not participate, then a candidate ranked
in first by i should also be elected when i does participate.

Negative Involvement. For all electorates N that contain at least two voters,
all voters i in N and all profiles u in W (A)N , if i weakly prefers every can-
didate to S(N, u) then i weakly prefers every candidate to S(N \{i}, u−i).

The Negative Involvement criterion requires that if a candidate ranked in last
by individual i is elected when i participates, then a candidate ranked in last
by i should also be elected when i does not participate.

We conclude by stating and proving the theorem.

Theorem. (i) If there are three candidates or fewer then there are Condorcet
Consistent voting rules that satisfy both Positive Involvement and Negative In-
volvement.

(ii) If there are at least four candidates and at least 37 (34) potential voters
then there is no Condorcet Consistent voting rule that satisfies Positive (Nega-
tive) Involvement.

Proof. Following Moulin [6], we prove part (i) by giving the example of a voting
rule that always elect a candidate from the Kramer set (see [3]).

Given (N, u), let K, the Kramer set, be the set of all candidates a that
minimise ma. That is, K = {a ∈ A | ma ≤ mb for all b ∈ A}. If K is a
singleton set then voting rule S elects that candidate in K. And if K contains
more than one candidate then S elects the candidate in K whose name comes
first by lexicographic order.

If there is a Condorcet winner a then it follows that ma < 0 and mb > 0 for
all other candidates b. Then K = {a} and so a will be elected by S. So S is
Condorcet Consistent. This is true no matter how many candidates there are.

We now establish that S satisfies Positive Involvement and Negative Involve-
ment when there are three candidates. Let us label the candidates a, b and c.
These labels mask the names of the candidates so that their lexicographic or-
dering by name is unknown to us. Suppose that S elects a at some profile. It
follows that ma ≤ mb and ma ≤ mc. Let us add a voter to this profile to form
a new profile.

We consider three cases. The first case is that the new voter strictly prefers
a to b and c. The second case is that the new voter weakly prefers b to a, and
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strictly prefers a to c. The final case is that the new voter weakly prefers both
b and c to a.

In the first case ma falls by one. Since we are adding just one new voter,
all margins of pairwise defeat/victory can change by at most one. So mb and
mc cannot fall by more than one. In other words, ma remains equal to or falls
below (or further below) each of mb and mc as a result of the additional voter.
Therefore, the new Kramer set is a subset of the original Kramer set, and must
contain a. Hence, S elects a at the new profile, consistent with both Positive
Involvement and Negative Involvement.

In the second case mc increases by one, and ma cannot increase by more
than one. In other words, mc remains equal to or rises above (or further above)
ma. So c can only be in the new Kramer set if that set also contains a, and c

was in the original Kramer set (implying that candidate a’s name comes before
c’s by lexicographic order). Hence, S elects a or b at the new profile, as required
by both Positive Involvement and Negative Involvement.

In the final case both Positive Involvement and Negative Involvement permit
any outcome at the resulting profile, so no contradiction can arise.

When there are just two candidates then it is clear that simple majority rule
with lexicographic tie-breaking will satisfy Positive Involvement and Negative
Involvement.

We proceed to statement (ii) of the theorem.
Let us now assume that A contains at least four candidates and that S

is Condorcet Consistent. We first prove that (iia) if N∞ contains at least 37
potential voters then S does not satisfy Positive Involvement, and then we prove
that (iib) if N∞ contains at least 34 potential voters then S does not satisfy
Negative Involvement. The proof of (iia) is based on the proof of statement (ii)
in [6].

By way of contradiction, assume that N∞ contains at least 37 potential
voters and S satisfies Positive Involvement. We make the following claim. For
all distinct candidates a and b, every electorate N and every profile u in W (A)N ,

ma + 1 ≤ 37 − |N | and ma + 2 ≤ nab implies S(N, u) 6= b. (1)

To prove (1), take any electorate N , a profile u in W (A)N and candidates
a and b such that ma + 1 ≤ 37 − |N | and ma + 2 ≤ nab and assume that
S(N, u) = b. Since S is Condorcet Consistent, a cannot be a Condorcet winner.
Therefore, ma ≥ 0. Let M and v be an electorate and profile obtained by adding
ma + 1 voters to (N, u), all of whom rank b alone in first and a alone in second.

At (N, u) the greatest margin of defeat suffered by a is ma, and a defeats b

by a margin of at least ma + 2. So the addition of ma + 1 voters who all rank
b alone in first and a alone in second results in all of a’s pairwise defeats being
reversed, while a continues to pairwise defeat b. So candidate a is a Condorcet
winner at (M, v). However, since b is elected at (N, u), Positive Involvement
requires that b is elected at (M, v). This contradiction establishes (1).

To complete the proof of (iia) we construct two profiles. Take any four
candidates a, b, c and d. The first of the two profiles is described in Table 1.
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6 3 8 7
a a d b

d d b c

c b c a

b c a d

Table 1: A profile.

Each number above the horizontal line indicates the number of voters who have
submitted the ranking below that number. All other candidates (if there are
any) are ranked below a, b, c and d by the voters.

The following directed, weighted graph indicates the margins of pairwise
victory and defeat amongst the top four candidates. An edge is directed from b

to a and carries a weight of 6 to indicate that b pairwise defeats a by a margin
of 6, and so on.

a

b
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d
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There are 24 participating voters, and we have ma = 6 and nad = 8 so, by
(1), S cannot elect d. We have md = 8 and mdb = 10 so S cannot elect b. For
every candidate x in A \ {a, b, c, d} we have ma = 6 and nax = 24 so S cannot
elect x. Hence the winner must be a or c.

Now let us add eight voters to that first profile to create a second profile.
All eight of these new voters are indifferent between a and c, and rank those
two candidates in joint first place. Their next most preferred candidate is b,
followed by d, and they rank all other candidates (if there are any) below d.

Now the graph is as follows.
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There are 32 participating voters, and we find that mc = 4 and nca = 6, so,
again by (1), S cannot elect a. We also have mb = 2 and nbc = 4, so S cannot
elect c. However, Positive Involvement implies that S must elect a or c. This
contradiction completes the proof of statement (iia).

Finally, we prove statement (iib).
Let us now assume that N∞ contains at least 34 potential voters and that S

satisfies Negative Involvement (and not necessarily Positive Involvement). Take
any four candidates a, b, c and d. A profile is described in Table 2. Let us
call this profile u. In this table we use Greek letters to label the six weak

α β γ δ ǫ ζ

4 5 1 6 4 6
b a d a d b

c c a d b d

a d b b c c

dx bx cx cx ax ax

Table 2: Another profile.

orderings that appear in the profile. We say that there are four α voters, five
β voters and so on. The x in each column marks the position of all candidates
x in A \ {a, b, c, d} (if there are any), and it is written next to another letter to
indicate indifference. For example, the four α voters are indifferent among the
candidates in A \ {a, b, c}, and rank all of those candidates in last.

The following graph indicates the margins of pairwise victory and defeat
amongst the top four candidates.
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There are 26 participating voters. If three of the four α voters are deleted
from profile u then a’s pairwise defeats to b and c are reversed and a becomes
a Condorcet winner. So, by Negative Involvement, a candidate in {a, b, c} must
be elected at profile u. If instead we delete the five β voters then d becomes a
Condorcet winner. So b (ranked in last by those voters) cannot be elected at
profile u. The winner must be a or c.

Now let us add eight voters to create a final profile v. All eight of these new
voters rank c alone in first, a alone in second, and rank all other candidates in
joint last place.
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Now the graph is as follows (there is a pairwise tie between c and d).

a
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There are 34 participating voters. If we delete the four ǫ voters and five of
the six ζ voters then c becomes a Condorcet winner. So a cannot be elected
at profile v. If instead we delete the single γ voter and the six δ voters then
b becomes a Condorcet winner. So c cannot be elected at profile v. However,
Negative Involvement implies that S must elect a or c.

This contradiction completes the proof of the theorem.
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