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Abstract

We analyzed the volatility dynamics of three developed markets (U.K., U.S. and Japan), during the period 2003-2011,

by comparing the performance of several multivariate volatility models, namely Constant Conditional Correlation

(CCC), Dynamic Conditional Correlation (DCC) and consistent DCC (cDCC) models. To evaluate the performance

of models we used four statistical loss functions on the daily Value-at-Risk (VaR) estimates of a diversified portfolio in

three stock indices: FTSE 100, S&P 500 and Nikkei 225. We based on one-day ahead conditional variance forecasts.

To assess the performance of the abovementioned models and to measure risks over different time-scales, we proposed

a wavelet-based approach which decomposes a given time series on different time horizons. Wavelet multiresolution

analysis and multivariate conditional volatility models are combined for volatility forecasting to measure the comove-

ment between stock market returns and to estimate daily VaR in the time-frequency space. Empirical results shows

that the asymmetric cDCC model of Aielli (2008) is the most preferable according to statistical loss functions under

raw data. The results also suggest that wavelet-based models increase predictive performance of financial forecasting

in low scales according to number of violations and failure probabilities for VaR models.
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1. Introduction

Measuring market risk is the most interest of financial managers and traders. The most widely used measure of

risk managment is the Value-at-Risk (VaR), which was introduced by Jorion (1996). Forecasting VaR is based on

the volatility models. The well-known volatility model is the generalized autoregressive conditional heteroskedas-

ticity (GARCH) model of Engle (1982) and Bollerslev (1986). The success of this model has subsequently led to a

family of univariate and multivariate GARCH models which can capture different behavior in financial returns. The

development of this family of models has led to the development of conditional VaR forecasts.
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The literature on multivariate GARCH models is large and expanding. Engle and Kroner (1995) defined a general

class of multivariate GARCH (MGARCH) models. The popular ones are diagonal VECH model of Bollerslev et al.

(1988), the BEKK model of Engle and Kroner (1995). While, popular, these models have limitations.1 In particular,

diagonal VECH lacks correlation between the variance terms, BEKK can have poorly behaved likelihood function

(making estimation difficult, especially for models with more than two variables), and VECH has a large number of

free parameters (which makes it impractical for models with more than two variables). To deal with the curse of

the dimensionality Engle (2002) proposed the dynamic conditional correlations (DCC) model which generalizes the

specification of Bollerslev (1990) by assuming a time variation of correlation matrix. Tse and Tsui (2002) defined a

multivariate GARCH model which includes time-varying correlations and yet satisfies the positive-definite condition.

Ling and McAleer (2003), McAleer et al. (2009) and Caporin and McAleer (2009, 2010) proposed another family of

multivariate GARCH models which assume constant conditional correlations, and do not suffer from the problem of

dimensionality, by comparison with the VECH and BEKK models. The convenient of these models is that modeling

conditional variances allows large shocks to one variable to affect the variances of the other variables.

Another important topic in the financial econometrics is the asymmetric behavior of conditional variances. The

basic idea is that negative shocks have a different impact on the conditional variance evolution than do positive shocks

of similar magnitude. Cappiello et al. (2006), Aielli (2008) and Palandri (2009) extended the DCC model of Engle

(2002) to an asymmetric DCC model which is a generalization of the DCC model (authors develop a model capa-

ble of allowing for conditional asymmetries not only in volatilities but also in correlations). Authors used several

asymmetric versions of the DCC model. In our article, we based on version which allows asymmetry in conditional

variance. This phenomenon was raised by Nelson (1991) in introducing the Exponential GARCH (EGARCH) model,

and was also considered by Glosten et al. (1993) (GJR-GARCH models), Rabemananjara and Zakoian (1993) and

Zakoian (1994) (Threshold GARCH models) for the univariate case. More recently, in the area of finance, several em-

pirical studies based on symmetric and asymmetric multivariate GARCH models have been employed. For instance,

Cappiello et al. (2006) used the asymmetric generalized-DCC (AG-DCC) specification to investigate asymmetries in

conditional variances and correlation dynamics of three groups of countries (Europe, Australia and North America).

They provide evidence that equity returns show strong evidence of asymmetries in conditional volatility, while little

is found for bond returns. Chiang et al. (2007) applied a DCC model to nine Asian stocks and confirm a contagian ef-

fect during the Asian crisis. Ho et al. (2009) applied various multivariate GARCH models to investigate the evidence

of asymmetry and time-varying conditional correlations between five sectors of Industrial Production of the United

States. They provide also, strong evidence of asymmetric conditional volatility in all sectors and some support of

1See Bauwens et al. (2006) for more details.
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time-varying correlations in various sectoral pairs. Büttner and Hayo (2011) used a bivariate DCC model to extract

dynamic conditional correlations between European stock markets. Chang et al. (2011) employed several multivariate

GARCH models (CCC, DCC, VARMA-GARCH and VARMA-AGARCH) to model conditional volatility in the re-

turns of rubber spot and futures in major rubber futures and rubber spot Asian markets, in order to investigate volatility

transmissions across these markets. Their results provide presence of volatility spillovers and asymmetric effects of

positive and negative return shocks on conditional volatility. Kenourgios et al. (2011) applied the AG-DCC model and

a multivariate regime-switching Gaussian copula model to capture non-linear correlation dynamics in four emerging

equity markets (Brazil, Russia, India and China) and two developed markets (U.S. and U.K.). Arouri et al. (2011)

employed a VAR-GARCH approach to investigate the return linkage and volatility transmission between oil and stock

markets in Gulf Cooperation Council countries. Lahrech and Sylwester (2011) used DCC multivariate GARCH mod-

els to examine the dynamic linkage between U.S. and Latin American stock markets. Their results show an increase

in the degree of co-movement between Latin American equity markets and U.S. equity ones.

In this study, we employ three multivariate GARCH models, such as the CCC model of Bollerslev (1990), the

DCC model of Engle (2002) and the cDCC model of Aielli (2008). These models impose a useful structure on the

many possible model parameters. However, parameters of the model can easily be estimated and the model can be

evaluated and used in straightforward way. Our empirical methodology follows a two-step approach. The first step

applies these dynamic conditional correlation models to model conditional volatility in the returns of three developed

stock markets (U.K., U.S. and Japan stock markets), in order to examine the evidence of time-varying conditional

variances and correlations between stock markets. Moreover, in order to show the asymmetric effects of positive

and negative return shocks on conditional volatility the EGARCH and GJR-GARCH models of Nelson (1991) and

Glosten et al. (1993), respectively, were employed for modeling univariate conditional volatility. In the second step,

we re-examine the dynamic conditional correlation analysis among the three major developed stock markets through

a novel approach, wavelet analysis. This technique is a very promising tool as it is possible to capture the time and

frequency varying features of co-movement within an unified framework which represents a refinement to previous

approaches. This wavelet-based analysis takes account the distinction between the short and long-term investor. From

a portfolio diversification view, there exist a kind of investors whose are more interested in the co-movement of stock

returns at higher frequencies (lower scales), that is, short-term fluctuations, and also, there exist a kind of investors

whose focuse on the relationship at lower frequencies (higher scales), that is, long-term fluctuations. The study of

the co-movement of stock market returns, i.e. dynamics of variances and correlations, across scales is crucial for risk

assessment of a portfolio. In terms of risk management, a higher co-movement (higher covariances) among assets of

a given portfolio implies lower gains. According to investors or traders, evaluating the co-movement of assets is a

3



great importance to best assess the risk of a portfolio. Several applications of wavelet studying the co-movement of

stock indices have been recently applied by Sharkasi et al. (2005), Rua and Nunes (2009), Rua (2010) and Masih et al.

(2010).

In this paper, we investigate also the selection of the multivariate GARCH models used in the two approaches

(with and without wavelet analysis) to identify which model has the best out-of-sample forecasting performance. The

assessment of the forecast performance of these models is based on out-of-sample one-day ahead conditional matrix

forecasts. However, to measure model performance we used four statistical loss functions.2

The empirical evidence showed that the conditional variances and correlations of U.K., U.S. and Japan stock

market returns were dynamic and the three markets were highly correlated. We showed also, that the cDCC model

of Aielli (2008) is preferable than the CCC and DCC models based on one-day ahead out-of-sample forecasts. With

regard to wavelet-based multivariate conditional volatility approach, our findings suggested a multi-scale behavior

of the three markets under study, which decomposes the total spillover into three sub-spillovers and decomposes the

market risk measured by VaR into wavelet VaR (WVaR) estimates. In addition, this new approach help traders and

investors to reduce risk management on their investing time horizons.

The purpose of the paper is four-fold. First, we estimate multivariate conditional volatility for stock market

returns using several recent models of multivariate conditional volatility. Second, we investigate the importance of

volatility spillovers on the conditional variance across the three developed markets. Third, we focuse on the forecasting

performance of the multivariate conditional volatility models under study for the last 250 days of the data set. Forecast

comparison is based on four different loss functions including the mean squared error, the mean absolute error, the

mean absolute percentage error and the logarithm loss error. Fourth, we propose a wavelet-based multi-resolution

analysis in order to combine between traditional multivariate conditional volatility models and wavelet decomposition.

The combination of wavelet decomposition and dynamic conditional correlation models was introduced to analyze the

comovements and volatility spillovers between three developed markets on multi-scale framework, based on behavior

of investors. Finally, we compare the performance of wavelet-based multivariate conditional volatility model against

the traditional one for one-day ahead forecast.

The structure of the paper is organized as follows: Section 2 presents the data used for the empirical analysis and

the multivariate conditional volatility methodology. Section 3 reports the empirical results under raw data. Wavelet

analysis is discussed in section 4. Finally, concluding remarks are stated in section 5.

2Hansen et al. (2003), Hansen and Lunde (2005), Becker and Clements (2008) and others, showed that evaluation of univariate volatility fore-

cast is well understood, while for an applied point of view ther are no clear guidelines available on model evaluation and selection in multivariate

setting (see Laurent et al. (2011)).
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2. Methodology and empirical specifications

2.1. Data

Our data on stock market prices consist of the S&P 500, FTSE 100 and NIKKEI 225 composite indices for U.S.,

U.K. and Japan. We collect daily data over the period from January 01, 2003 to February 04, 2011. Indices are

obtained from DataStream. We use daily data in order to retain a high number of observations to adequately capture

the rapidity and intensity of the dynamic interactions between markets.

Returns of market i (index i) at time t are computed as ri,t = log(Pi,t/Pi,t−1)× 100, where Pi,t and Pi,t−1 are the

closing prices for day t and t −1, respectively.

2.2. Descriptive statistics

The summary statistics of the data are given in Table 1. In panel A (Table 1), for each return series, the mean value

is close to zero. For each return series the standard deviation is larger than the mean value. Each return series displays

a small amount of skewness and large amount of kurtosis and the returns are not normally distributed.

In panel B (Table 1), unconditional correlation coefficients in stock market index returns indicate strong pairwise

correlations. The correlation between S&P 500 and FTSE 100 is positive and larger than the correlation between

NIKKEI 225 and FTSE 100. This could be due to the high trade share between the two markets.

Table 1

Descriptive statistics of stock market returns.

Panel A: Descriptive statistics.

Mean Max Min Std.dev Skewness Kurtosis Jarque-Bera

FTSE 100 0.0199 9.384 -9.265 1.252 -0.0914 9.019 7180.19∗

S&P 500 0.0187 10.957 -9.469 1.314 -0.256 11.410 11508.39∗

NIKKEI 225 0.0097 13.234 -12.111 1.544 -0.466 8.889 7048.35∗

Panel B: Unconditional (market return) correlation matrix

FTSE 100 S&P 500 NIKKEI 225

FTSE 100 1.000 0.55 0.34

S&P 500 1.000 0.11

NIKKEI 225 1.000

Notes: ∗ denotes the rejection of the null hypothesis of normality at the 1% level of the Jarque-Bera test. The data frequency is

daily and covers the period from 01 January 2003 to 04 February 2011.

The results of the unit root tests for all sample of level prices (in logs) and returns in each market are summarized

in Table 2. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests are used to explore the existence of

unit roots in individual series. The results show that all returns are stationary.
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Table 2

Unit root tests.

Panel A: Stock market level prices (in log)

Prices ADF test Phillips-Perron test

None Constant Constant and trend Constant Trend

FTSE 100 0.724 -1.870 -1.920 -1.847 -1.866

S&P 500 0.644 -1.908 -1.879 -1.951 -1.912

NIKKEI 225 0.247 -1.744 -1.807 -1.670 -1.733

Panel B: Stock market returns

Returns ADF test (t-statistic) Phillips-Perron test

None Constant Constant and trend Constant Trend

FTSE 100 -35.171 -35.177 -35.171 -49.933 -49.924

S&P 500 -37.754 -37.758 -37.754 -52.593 -52.587

NIKKEI 225 -34.817 -34.811 -34.833 -46.359 -46.382

Notes: Entries in bold indicate that the null hypothesis is rejected at 1% level.

2.3. Model specifications

The econometric specification used in our study has two components. To model the stock market return we used

a vector autoregression (VAR). To model the conditional variance we used a multivariate GARCH model.

A VAR of order p, where the order p represents the number of lags, that includes N variables can be written as the

following form:

Yt = Φ0 +
p

∑
i=1

ΦiYt−i + εt , t = 1, . . . ,T (1)

where Yt = (Y1t , . . . ,YNt)
′

is a column of observations on current values of all variables in the model,Φi is N ×N

matrix of unknown coefficients, Φ0 is a column vector of deterministic constant terms, εt = (ε1t , . . . ,εNt)
′

is a column

vector of errors.3 Our basic VAR will have the three stationary variables, first log differences of FTSE 100, S&P

500 and NIKKEI 225 stock market prices (will be defined in empirical section). We focused on the modelling of

multivariate time-varying volatilities. The most widely used model is DCC one of Engle (2002) which captures the

dynamic of time-varying conditional correlations, contrary to the benchmark CCC model (Bollerslev (1990)) which

retains the conditional correlation constant.4

3Following Brooks (2002), the main advantage of the VAR is that there is no need to specify which variables are the endogenous variables and

which are the explanatory variables because in the VAR, all selected variables are treated as endogenous variables. That is, each variable depends

on the lagged values of all selected variables and helps in capturing the complex dynamic properties of the data. Note that selection of appropriate

lag length is crucial. If the chosen lag length is too large relative to the sample size, the degrees of freedom will be reduced and the standard errors

of estimated coefficients will be large. If the chosen lag length is too small, then the selected lags in the VAR analysis may not be able to capture

the dynamic properties of the data. The chosen lag length should be free of the problem of serial correlation in the residuals.
4The CCC specification can be presented as:

Ht = Dt RDt , where, Dt = diag
√

hi,t is a diagonal matrix with square root of the estimated univariate GARCH variances on the diagonal. R is
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Figure 1 Time series plots of FTSE 100, S&P 500 and NIKKEI 225 stock market indices. We plot the daily level

stock market indices (left panel) and corresponding returns (right panel) in the period January 01, 2003 to February

04, 2011.

The specification of the DCC model is as follows:

rt = µ +
p

∑
s=1

Φsrt−s + εt , t = 1, . . . ,T, εt |Ωt−1
∼ N (0,Ht), (2)

εt = (εUK,t ,εUS,t ,εJP,t)
′
= H

1/2
t zt , zt ∼ N (0,I3), (3)

Ht = E(εtε
′
t |Ωt−1

), (4)

where, rt is a 3×1 vector of the stock market index return, εt is the error term from the mean equations of stock

market indices (Equation 2), zt is a 3×1 vector of i.i.d errors and Ht is the conditional covariance matrix. Equation 2

the time-invariant symmetric matrix of the correlation returns with ρii = 1.

In CCC model, the conditional correlation coefficients are constant, but conditional variances are allowed to vary in time.
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To represent the Engle’s (2002) DCC-GARCH model for the purpose of this study, let rt = (rUK,t ,rUS,t ,rJP,t)
′

be

a 3×1 vector of stock market returns, such that, rUK ,rUS and rJP are the returns of FTSE 100, S&P 500 and NIKKEI

225 indices, respectively: rt |Ωt−1
∼ N (0,Ht).

The DCC-GARCH specification of the covariance matrix, Ht , can be written as:

Ht = DtRtDt (5)

where Dt = diag
(√

hUK,t ,
√

hUS,t ,
√

hJP,t

)

is 3×3 diagonal matrix of time-varying standard deviation from uni-

variate GARCH models; i.e. hi,t = ωi +αiε2
i,t−1 +βihi,t−1, i=UK, US, JP, and Rt =

{

ρi j

}

is the time-varying condi-

tional correlation matrix.

The estimation procedure of DCC-GARCH model is based on two stages. In the first stage, a univariate GARCH

model is estimated. In the second step, the vector of standardized residuals ηi,t = ri,t/
√

hi,t is employed to develop

the DCC correlation specification as follows:

Rt = diag
(

q
−1/2

11,t , . . . ,q
−1/2

33,t

)

Qtdiag
(

q
−1/2

11,t , . . . ,q
−1/2

33,t

)

(6)

where Qt = (qi jt
) is a symmetric positive define matrix. Qt is assumed to vary according to a GARCH-type

process:

Qt = (1−θ1 −θ2)Q̄+θ1ηt−1η
′
t−1 +θ2Qt−1 (7)

The parameters θ1 and θ2 are scalar parameters to capture the effects of previous shocks and previous dynamic

conditional correlation on current dynamic conditional correlation. The parameters θ1 and θ2 are positive and θ1 +

θ2 < 1. Q̄ is 3×3 unconditional variance matrix of standardized residuals ηi,t . The correlation estimators of equation

7 are of the form:

ρi j,t =
qi j,t√

qii,tq j j,t
.
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In the DCC model the choice of Q̄ is not obvious as Qt is neither a conditional variance nor correlation. Although

E(ηt−1η ′
t−1) is inconsistent for the target since the recursion in Qt does not have a martingale representation.5 Aielli

(2008) proposed the corrected Dynamic Conditional Correlation (cDCC) to evaluate the impact of both the lack of

consistency and the existence of bias in the estimated parameters of the DCC model of Engle (2002). He showed that

the bias depends on the persistence of the DCC dynamic parameters.6

In order to resolve this issue, Aielli (2008) introduces the cDCC model, which have the same specification as the

DCC model of Engle (2002), except of the correlation process Qt is reformulated as follows:

Qt = (1−θ1 −θ2) Q̄+θ1η ∗
t−1η ∗′

t−1 +θ2Qt−1 (8)

where η ∗
t = diag{Qt}1/2 ηt .

To investigate the asymmetric properties of stock market returns we introduce the conditional asymmetries in

variance. Cappiello et al. (2006) estimate several asymmetric versions of the dynamic conditional correlation models.

The version which we use is based on the following specification:

rt = µ +∑p
s=1 Φsrt−s + εt , t = 1, . . . ,T, εt |Ωt−1

∼ N (0,Ht)

Ht = DtRtDt where Dt = diag
(√

h1,t ,
√

h2,t ,
√

h3,t

)

hit = ωi +αiε2
i,t−1 +γi1{εi,t−1<0}ε2

i,t−1 +βihi,t−1 for i =UK,US,JP

Rt = Q∗−1
t QtQ

∗−1
t where Q∗

t = diag
{√

q11,t ,
√

q22,t ,
√

q33,t

}

Qt = (1−θ1 −θ2) Q̄+θ1ηt−1η ′
t−1 +θ2Qt−1.

3. Empirical results

In this section we initially employed a vector autoregressive (VAR) model to examine the relationship among

stock market returns of the three developped countries. Our model is estimated on set of stationary variable. These

variables are returns in stock market prices for the United Kingdom (U.K), United States (U.S) and Japan.

Table 3 reports the findings of the VAR(8) model (lags is selected by AIC criterion).

5see Aielli (2008) for further details.
6Aielli (2008) showed that the lack of consistency of the three-step DCC estimator depends strictly on the persistence of the parameters driving

the correlation dynamics and on the relevance of the innovations. The bias is an increasing function of both θ1 and θ1+θ2. The parameter estimates

obtained from fitting DCC models are small, and close to zero for θ1 and close to unit for θ1 +θ2.
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3.1. Conditional variance and volatility analysis

This subsection presents the empirical results from symmetric and asymmetric multivariate models. In the first

step the univariate GARCH(1,1) model for each stock market is fitted. We model the conditional variance as a

GARCH(1,1), EGARCH(1,1) and TGARCH(1,1). In the second step the symmetric multivariate GARCH(1,1) mod-

els, such as; Constant Conditional Correlation (CCC), the Dynamic Conditional Correlation (DCC), the corrected

Dynamic Conditional Correlation (cDCC) and the asymmetric multivariate GARCH(1,1) models, such as; aCCC,

aDCC and a-cDCC are fitted.

Symmetric and asymmetric univariate GARCH analysis. Table 4 reports the model estimates (panel A) and related

diagnostic tests (panel B) for the three models and for the three stock markets. Firstly, panel A of Table 4 shows

that the parameters in the conditional variance equations are all statistically significant, except for the α ’s in the

EGARCH model for the three markets. The estimated value of β (GARCH effect) is close to unity (in all models the

estimated values are greater than 0.90) and is significant at the 1% level for each model. This indicates a high degree

of volatility persistence in the U.K, U.S and Japan stock market returns. Secondly, results given by the GARCH(1,1)

model assume that positive and negative shocks will have the same influence in conditional volatilities forecasts. In

order to identify the asymmetry in conditional volatilities, we fitted the univariate EGARCH(1,1) and TGARCH(1,1)

models. This asymmetry is generally reffered to as a "leverage" and a "Threshold" effects. The EGARCH(1,1) model

captures this "leverage" asymmetry and the TGARCH(1,1) captures this "threshold" asymmetry.7

The results showed that the asymmetric parameter γ or δ is positive and significantly different from zero at the

5% level in the EGARCH(1,1) model, indicating that U.K, U.S and Japan stock markets exhibit a leverage effect with

positive shocks (good news) and significantly different from zero at 1% level in the TGARCH(1,1) model, identifying

that the U.K, U.S and Japan stock markets exhibit a threshold effect with positive effect.

To select the adequate model for our data, we compare between the three models using three criteria; such as the

Log-likelihood, Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC). We showed that the

asymmetric GARCH model; TGARCH(1,1) has a superior goodness of fit for the data employed. For instance, AIC

in the TGARCH(1,1) is lower than in GARCH(1,1) and EGARCH(1,1) models.

7The EGARCH (Exponential GARCH) model of Nelson (1991) is formulated in terms of the logarithm of the conditional variance, as in the

EGARCH(1,1) model,

log(ht) = ω+α
|εt−1|√

ht−1

+γ
εt−1√
ht−1

+β log(ht−1).

The parametrization in terms of logarithms has the obvious advantage of avoiding non-negativity constraints on the parameters.

The TGARCH (Threshold) GARCH model or GJR-GARCH model defined by Glosten et al. (1993) and Zakoian (1994) augments the GARCH

model by including an additional ARCH term conditional on the sign of the past innovation,

ht = ω+αε 2
t−1 +δ1{εt−1<0}ε2

t−1 +βht−1.
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Table 3

VAR diagnostic test.

FTSE 100 [p-value] S&P 500 [p-value] NIKKEI 225 [p-value]

Panel A: Univariate diagnostic test

Q(12) 3.8854 [0.421] 5.4819 [0.241] 3.2173 [0.522]

ARCH test 85.192 [0.000] 73.997 [0.000] 53.224 [0.000]

JB test 811.82 [0.000] 1732.9 [0.000] 964.66 [0.000]

Std.dev 0.0114 0.0128 0.0123

Panel B: Multivariate diagnostic test

Q(12) [p-value] 39.6760 [0.309] AIC -18.523

JB test [p-value] 2841.6 [0.000] SIC -18.321

Log-likelihood 19561.61

The VAR was estimated using eight lags (the lag was selected using the AIC criterion). p-values show the statistical significance

of the results.

Table 4

GARCH parameter estimates stock market indices for raw data.

United Kingdom United States Japan

GARCH EGARCH TGARCH GARCH EGARCH TGARCH GARCH EGARCH TGARCH

Panel A: model estimates.

ω 0.0078∗∗ −9.2720∗ 0.0101∗ 0.0112∗∗ −9.0095∗ 0.0114∗∗ 0.0218∗∗ −8.9373∗ 0.0244∗∗

α 0.0894∗ 1.0788 0.0080 0.0707∗ 2.3070 −0.0078 0.0753∗ 0.1645 0.0449∗

β 0.9055∗ 0.9594∗ 0.9267∗ 0.9190∗ 0.9616∗ 0.9416∗ 0.9101∗ 0.9306∗ 0.9091∗

γ or δ 0.1266∗ 0.1064∗ 0.0651 0.1055∗ 0.2179∗ 0.0562∗∗

Log-likelihood 6875.8 6848.3 6900.5 6764.4 6734.5 6797.5 6497.1 6468.2 6504.5

AIC -6.5331 -6.5050 -6.5556 -6.4272 -6.3969 -6.4577 -6.1731 -6.1437 -6.1792

SIC -6.5250 -6.4916 -6.5449 -6.4191 -6.3834 -6.4469 -6.1650 -6.1303 -6.1685

Panel B: diagnostic test for standardized residuals.

Q(24) 21.1221 18.6651 19.0830 39.6830 34.7351 40.3153 22.6904 18.6922 25.6935

p-value 0.6315 0.7696 0.7475 0.0231 0.0724 0.0197 0.5381 0.7681 0.3688

Qs(24) 34.6176 37.0246 33.1795 37.9826 45.9568 31.3504 19.1083 35.0669 14.5893

p-value 0.0424 0.0235 0.0593 0.0184 0.0020 0.0891 0.6386 0.0381 0.8792

Notes: The estimates are produced by the univariate GARCH(1,1), univariate EGARCH(1,1) and TGARCH(1,1) models. The univariate variance estimates are

introduced as inputs in the estimation of the CCC, DCC and cDCC models. The estimated coefficient ω denotes the constant of the variance equation, α represents the

ARCH term, β is the GARCH coefficient, γ and δ are the asymmetric effects.
∗∗∗, ∗∗ and ∗ indicate significance at 10%, 5% and 1%, respectively. Q(24) and Qs(24) respectively represent the Ljung-Box Q statistics of order 24 computed on the

standardized residuals and squared standardized residuals. Value of the estimated coefficient ω is multiplied by 104 for the EGARCH model. Values in bold indicate

the selected model.

Panel B of Table 4 depicts the Ljung-Box statistics computed on the standardized residuals and squared standard-

ized residuals. We showed that all the Q(24) and Qs(24) values don’t reject the null hypothesis of no serial correlation

in the standardized residuals and squared standardized residuals at 1% level.

Symmetric and asymmetric dynamic conditional correlation analysis. In the second step the symmetric and asym-

metric multivariate GARCH(1,1) models were estimated in order to investigate the constant and time-varying condi-

tional correlation in the stock markets under study. To fit these models, the standardized residuals of the univariate

GARCH(1,1) models specification (discussed in the first step of our study) was employed for the estimation of the

symmetric models; CCC, DCC, cDCC and asymmetric models; aCCC, aDCC, a-cDCC. The DCC and cDCC esti-

mates of the conditional correlations between the volatilities of the FTSE 100, S&P 500 and NIKKEI 225 returns are
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Table 5

CCC diagnostic under raw data

Log-likelihood: -7233.3 AIC: 6.8872 SIC: 6.9194

Diagnostic test for standardized residuals.

FTSE 100 S&P 500 NIKKEI 225

Q(12) 25.9838 17.2378 13.8918

p-value 0.0107 0.14086 0.3076

Qs(12) 26.1324 17.1204 13.3307

p-value 0.0102 0.1451 0.3454

The Constant Conditional Correlation (CCC) model of Bollerslev (1990) assumes that the conditional variance for each return, hit ,

i=UK, US, JP, follows a univariate GARCH process. The specification is as

rt = Φ0 +∑p
s=1 Φsrt−s + εt , εt |Ωt−1

∼ N (0,Ht)

εt = H
1/2
t zt , zt ∼ N (0,I3)

Ht = E(εtε
′
t |Ωt−1

),

where, rt =
(

rUK,t ,rUS,t ,rJP,t
)′

is the vector of stock market index returns, εt =
(

εUK,t ,εUS,t ,εJP,t
)′

is the error term from the mean

equation of stock market indices (Equation 2), zt is a 3×1 vector of i.i.d errors and Ht is the conditional covariance matrix, which

satisfies the following equation:

Ht = DtRDt

where Dt = diag
(

h
1/2
UK,t ,h

1/2
US,t ,h

1/2
JP,t

)

, and R =
{

ρi j

}

, for i, j = UK,US,JP, is the unconditional (time-invariant) correlation

matrix. The off-diagonal elements of the conditional covariance matrix are given by

Hi j = h
1/2
it h

1/2
jt ρi j, i 6= j

∗∗∗, ∗∗ and ∗ indicate significance at 10%, 5% and 1%, respectively. Q(12) and Qs(12) respectively represent the Ljung-Box Q

statistics of order 12 computed on the standardized residuals and squared standardized residuals.

Table 6

Constant conditional correlation estimates under raw data.

Stock market returns FTSE 100 S&P 500 NIKKEI 225

FTSE 100 1 0.5692∗ (0.0149) 0.2583∗ (0.0212)

S&P 500 1 0.1751∗ (0.0222)

NIKKEI 225 1

The table summarizes the estimated invariant correlations between the U.K., U.S. and Japan stock markets, as they are produced

by the CCC model. Values in (·) are standard errors. ∗∗∗, ∗∗ and ∗ indicate significance at 10%, 5% and 1%, respectively.
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given in tables 7 and 8. Results showed that all coefficients are statistically significant at 1% and 5% levels.

For the CCC model (Table 5 and 6), the correlation between FTSE 100 and S&P 500, FTSE 100 and NIKKEI 225

and S&P 500 and NIKKEI 225 are each positive and statistically significant at 1% level, and the highest correlation

is between FTSE 100 and S&P 500 followed by the correlation between FTSE 100 and NIKKEI 225. This indicates

the positive comovement between the three markets. For instance, we found that the co-movements between U.K

and U.S are higher than the co-movements between U.S and Japan. However, we remarked that estimated constant

conditional correlation coefficients of the sample stock markets do not seem to be informative on dynamic linkages

and co-movements between the abovementioned markets. To evaluate the dynamic (pairwise) correlation structure of

U.K., U.S. and Japan stock markets, we employed the DCC and cDCC models in trivariate framework.

For the DCC and cDCC models (Tables 7 and 8), the estimated parameters θ1 and θ2 capture the effect of lagged

standardized shocks; ηt−1η ′
t−1, and η ∗

t−1η ∗′
t−1 and lagged dynamic conditional correlations; Qt−1, on current dy-

namic conditional correlations, respectively. We remarked that these parameters are significant, and this statistical

significance in each market indicates the presence of time-varying stock market correlations. Following the dynamic

conditional variance, the three markets under study produce similar behavior and the estimated conditional variance

shows a sharp spikes in the period between 2007 and 2008 (The maximum value of estimated conditional variance is

in October 21, 2008 for FTSE 100 returns, in October 16, 2008 for the S&P 500 returns and in November 03, 2008

for NIKKEI 225 returns). This period is related to the U.S subprime financial crisis. This financial crisis led U.K, U.S

and Japan capital markets to abrupt downturns, dramatically increasing systematic volatility.

We conclude that the estimates of the conditional variances based on DCC and cDCC models suggest the presence

of volatility spillovers in the U.K, U.S and Japan stock market returns.

As shown in Figure 2, we remarked also that the dynamic conditional correlations of the three markets under study

show considerable variation, and can vary from the constant conditional correlations (ρUK−US, ρUK−JP and ρUS−JP)

indicating that the assumption of constant conditional correlation for all shocks to returns is not supported empirically.

We stated that during the period 2003-2006, correlations between U.K. and U.S. decreased (58% to 38%), as indicated

in Figure 2. Whereas, after 2006 we remarked a substantial increase of correlations between U.K. and U.S., it might

be due to the Afghanistan, Iraq and Liban wars and the american subprime financial crisis.

The diagnostic tests for standardized residuals of CCC model are shown in Table 5 and those of DCC and cDCC

models are shown in panel B of Tables 7 and 8. Ljung-Box Q(12) and Qs(12) statistics for the residuals models

indicate no serial correlation in either the standardized residuals Q(12) or the squared standardized residuals Qs(12),

inferring that the fitted models are appropriate for the data employed.

To investigate the asymmetry in the conditional volatility we fitted the aCCC, aDCC and a-cDCC models. The
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Table 7

DCC estimates under raw data

θ1 θ2 Log-likelihood AIC

Panel A: model estimates.

Coefficient 0.005218∗ 0.992655∗ -7211.0 6.8679

Std.error 0.001416 0.002210

t-Stat 3.685000 449.1000

p-value 0.000200 0.000000

Panel B: diagnostic test for standardized residuals.

FTSE 100 S&P 500 NIKKEI 225

Q(12) 21.6339 16.2283 13.9273

p-value 0.04180 0.18100 0.30530

Qs(12) 25.7240 18.5131 13.3440

p-value 0.01170 0.10090 0.34450

Estimates of a symmetric version of Engle (2002) dynamic conditional correlation model are computed. The specification is as

rt = Φ0 +∑p
s=1 Φsrt−s + εt εt |Ωt−1

∼ N (0,Ht)

εt =





εUK,t

εUS,t

εJP,t



= H
1/2
t zt , zt ∼ N (0,I3)

Ht = DtRtDt where Dt = diag
(√

hUK,t ,
√

hUS,t ,
√

hJP,t
)

hit = ωi +αiε2
i,t−1 +βihi,t−1, i =UK,US,JP

The dynamic conditional correlation Rt =
{

ρi j

}

t
is a time-varying matrix defined as

Rt = Q∗−1
t QtQ

∗−1
t where Q∗−1

t = diag
{√

q11,t ,
√

q22,t ,
√

q33,t

}

Qt = (1−θ1 −θ2) Q̄+θ1ηt−1η ′
t−1 +θ2Qt−1 where ηt = D−1

t εt .

Q̄ is the unconditional covariance matrix of η . The elements of Ht are
{

Hi j

}

t
=

√

hith jtρi j where ρii = 1. ∗∗∗, ∗∗ and ∗ indicate

significance at 10%, 5% and 1%, respectively. Q(12) and Qs(12 respectively represent the Ljung-Box Q statistics of order 12

computed on the standardized residuals and squared standardized residuals.

results are reported in Table 9. In the asymmetric case, we focused on the TGARCH(1,1)-based model to model the

asymmetric behavior in the conditional volatilities.8 The asymmetric dynamic conditional correlation estimates are

all significant at 1% level (as shown in Table 9). Based on the log-likelihood values and AIC criterion reported in the

last two columns of Table 9, the asymmetric cDCC (a-cDCC) is supperior to the aCCC and aDCC. Moreover, as it

can be seen, the log-likelihood values and AIC criteria of aDCC and a-cDCC are nearly equivalent, hence the choice

of model needs to be made on other grounds (see the following subsection).

8The results from Table 4 indicate that TGARCH(1,1) model compared to GARCH(1,1) and EGARCH(1,1), achieves a significant improvement

in the log-likelihood function, AIC and SIC. As shown in Table 4 the TGARCH(1,1) model has the lowest AIC and SIC, and maximize the log-

likelihood value. For instance, the AIC values are -6.5556, -6.4577 and -6.1792 for the FTSE 100, S&P 500 and NIKKEI 225 returns, respectively.

The log-likelihood values are 6900.5, 6797.5 and 6504.5 for the FTSE 100, S&P 500 and NIKKEI 225 returns, respectively. The apparent

superiority of the TGARCH specification compared with EGARCH models is that the former is more robust to large shocks. This intuition is

supported by Nelson and Foster (1994). The authors showed that the TGARCH model is consistent estimator of the conditional variance of near

diffusion processes.
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Table 8

corrected DCC (cDCC) estimates under raw data.

θ1 θ2 Log-likelihood AIC

Panel A: model estimates.

Coefficient 0.005282∗ 0.992716∗ -7210.5 6.8674

Std.error 0.001430 0.002047

t-Stat 3.692000 484.8000

p-value 0.000200 0.000000

Panel B: diagnostic test for standardized residuals.

FTSE 100 S&P 500 NIKKEI 225

Q(12) 21.6228 16.3030 13.9019

p-value 0.04190 0.17770 0.30700

Qs(12) 25.6085 18.5792 13.3573

p-value 0.01210 0.09920 0.34360

Aielli (2008) proposed a consistent DCC (cDCC) model. He suggested that the DCC correlation Qt should take a slightly different

from than given in DCC model. The specification is similar to DCC one, except of Qt which becomes

Qt = (1−θ1 −θ2) Q̄+θ1η ∗
t−1η ∗′

t−1 +θ2Qt−1

η ∗
t = diag{Qt}1/2 ηt

∗∗∗, ∗∗ and ∗ indicate significance at 10%, 5% and 1%, respectively. Q(12) and Qs(12) respectively represent the Ljung-Box Q

statistics of order 12 computed on the standardized residuals and squared standardized residuals.

Table 9

Asymmetric dynamic conditional correlation model under raw data.

θ1 θ2 Log-likelihood AIC BIC

aCCC -7169.5 6.8293 6.8696

aDCC 0.0055(0.00162)∗ 0.9913(0.00295)∗ -7148.3 6.8111 6.8568

a-cDCC 0.0056(0.00162)∗ 0.9913(0.00273)∗ -7148.0 6.8108 6.8565

This table presents estimates coefficients for the asymmetric CCC [aCCC] the asymmetric DCC [aDCC] model and the asymmetric

cDCC [a-cDCC] model. The specification is similar to those in DCC and cDCC models (given in Tables 7 and 8), except of the

conditional variances follow the asymmetric TGARCH model of Glosten et al. (1993). The value in parentheses are standard

errors. ∗ indicate significance at 1% level. Log-likelihood is the log-likelihood value; AIC is the Akaike information criterion.

Values in bold indicate the selected model.
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Figure 2 Time-varying conditional variances (left column) and conditional correlations (right column) from DCC

model. The pictures on the left column:(a), (c) and (e) refer to conditional variances of U.K, U.S and Japan stock

market indices and those on the right column:(b), (d) and (f) report conditional correlations among the same group of

stock market indices. The blue line (horizontal) is the constant conditional correlation estimate.

3.2. Forecast performance evaluation

To evaluate the volatility forecasting performance of different multivariate GARCH models and to compare be-

tween them, further loss functions can be used. The popular statistical loss functions employed to assess the accuracy

of competing models in the forecasting of volatilities over daily trading horizon are Mean squared Error (MSE),

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Logarithm Loss Error (LLE). These loss

metrics are expressed as follows:

MSEk =
1

M

M

∑
m=1

(

ςm,k − σ̂2
m

)2
(9)
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MAEk =
1

M

M

∑
m=1

∣

∣ςm,k − σ̂2
m

∣

∣ (10)

MAPEk =
1

M

M

∑
m=1

∣

∣

∣

∣

ςm,k − σ̂2
m

σ̂2
m

∣

∣

∣

∣

(11)

LLEk =
1

M

M

∑
m=1

[

log(ςm,k)− log(σ̂2
m)
]2

(12)

where M is the number of forecast data points; ςm,k = κ ′
Hmκ denotes the portfolio volatility forecast generated by

model k for day m; σ̂2
m is the actual volatility on day m.

The assessment of the forecast performance of the various volatility models described in section 2.3 is based on

out-of-sample one-day ahead prediction conditional variances and correlations. This forecasting study is done by

first removing the last 250 observations from our sample starts from 02 January 2003 and ends 04 February 2011. A

forecast of volatilities and correlations are generated for the period n+1, where n is the size of the first sample to be

estimated starts 02 January 2003 and ends 19 February 2010 (the estimation is based on three models: CCC, DCC

and cDCC). The second sample, starting 03 January 2003 and ending on n+ 1, is used to forecast the volatility and

correlation of n+2 based on the estimated models (CCC, DCC and cDCC) for the second sample. The procedure of

estimation and forecasting steps is repeated 250 times for the available sample from 02 January 2003 to 04 February

2011.9 More specifically, we produce the 250 one-day ahead forecasts ςm, where ςm, m = n+ 1, . . . ,n+ 250 is the

forecast of the conditional variance.

The actual volatility σ̂2
m is unobservable. The use of squared returns as a proxy for actual volatility is used in the

literature (see Kang et al. (2009), Sadorsky (2006) and Wei et al. (2010)). In our empirical study, the proxies of actual

volatilities are as follows: for forecasts based on the unfiltered return series (original stock market return series), we

proxied the actual volatility by the squared returns, r2
m.

Table 10 presents the forecast accuracy statistics that consist of the mean of four loss functions: MSE, MAE,

MAPE and LLE. In terms of these criteria and based on symmetric models, we find that DCC model produces smaller

values than those produced by CCC and cDCC. In terms of these statistics and basing in asymmetric models, the

a-cDCC model produces the smallest values. Moreover, we remarked that all loss functions values produced by

asymmetric models are smaller than those calculated by symmetric ones. In summary, we can conclude that, in our

9For instance, forecasting the DCC model is as follows: the initial sample consists of the first 1862 daily observations, i.e. 02 January 2003

to 19 February 2010. The last 250 trading days constitute the sample for which we compute one-day ahead forecasts. We re-estimated the DCC

model basing on the initial sample every day using a recursive method (all estimations and forecasts are computed with OxMetrics 6). After that,

we computed the conditional variance and conditional correlation forecast values. These forecast values are used to compute the loss functions of

the weighted portfolio defined before.
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Table 10

Volatility forecasts performance.

Symmetric models Asymmetric models

CCC DCC cDCC aCCC aDCC a-cDCC

MSE 0.16923 0.15971 0.15986 0.09237 0.08652 0.08639

MAE 0.40981 0.39822 0.39844 0.30178 0.29195 0.29170

MAPE 313.908 304.884 304.990 221.732 214.423 214.199

LLE 111.794 111.208 111.220 105.430 104.763 104.744

The table reports the loss functions over the 250 forecasting observations for the symmetric and asymmetric dynamic

conditional correlation models. The MSE, MAE, MAPE and LLE of the weighted portfolio are computed as fol-

lows: MSEk = M−1 ∑M
m=1

(

ςm,k − ŝ
2
m

)2
, MAEk = M−1 ∑M

m=1

∣

∣ςm,k − ŝ
2
m

∣

∣, MAPEk = M−1 ∑M
m=1

∣

∣(ςm,k − ŝ
2
m)/ŝ

2
m

∣

∣ and LLEk =

M−1 ∑M
m=1

[

log(ςm,k)− log(ŝ2
m)

]2
, where M is the number of forecast data points (M = 250); ςm,k denotes the volatility fore-

cast of the portfolio constituted of three stock market indices and generated by model k for day m, it is defined by equation 14; ŝ2
m

is the actual portfolio volatility on day m.

forecasting study, asymmetric models produce more accurate volatility forecasts as compared to those models with

symmetric conditional volatility.

3.3. Application to Value-at-Risk

In this section, we present a methodology allowing us to compute the VaR of diversified portfolio. A portfolio

with weight κi in stock market index i has return as

r
p
t = κ

′
rt (13)

where rt = (rUK,t ,rUS,t ,rJP,t)
′
denotes the vector of stock market returns of FTSE 100 (rUK,t), S&P 500 (rUS,t) and

NIKKEI 225 (rJP,t). κ ′
= (κUK ,κUS,κJP) = (0.27,0.40,0.33) is the weight vector of the three given indices.10

The portfolio variances are as follows

ςt = κ
′
Htκ (14)

where Ht is the conditional covariance defined in section 2.

The multivariate GARCH-based VaR estimates for q-day holding periods are computed as follows:

VaRk
t+l(n,α ) = qκ

′
µt+l + zα

√
qςt+l (15)

10These weights are computed using the R function portfolio.optim of the PerformanceAnalytics R package, which computes an efficient

portfolio from the given return series in the mean-variance sense. The computed portfolio has the desired expected return and no other portfolio

exists, which has the same mean return, but a smaller variance.
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where the argument (q) of VaR is used to denote the time horizon, zα denotes the corresponding quantile which

depends on the chosen distribution. For instance, when computing a 99% VaR using normal distribution, zα = 2.33.

ςt+l = (κ ′
Ht+lκ )1/2 is the square root of the daily conditional variance forecast of the portfolio generated from model

k (CCC, DCC, cDCC), made at time t + l. µt+l is the conditional mean forecast at time t + l, generated from VAR(8)

model.

3.3.1. Backtesting VaR measures

In order to analyze our results implied by different time-varying volatilities models, we use the above estimation

to compute one-day ahead out-of-sample VaR. We performed a backtesting analysis based on likelihood ratio test

(Kupiec (1995) and Christoffersen (1998)) and dynamic quantile regression test (Engle and Manganelli (2004)).

Unconditional coverage. Kupiec (1995) developped the likelihood ratio test, LRuc as follows:

Let n1 = ∑n0
t=11t be the number of days over a n0 period that the portfolio loss was larger than the VaR estimate,

where

1t+1 =











1 if rt+1 <VaRt+1 |Ωt

0 if rt+1 ≥VaRt+1 |Ωt

n1 ∼ B(n0,π) is a Binomial variable representing the number of exceedances or exceptions in the sample of

length n0. The null hypothesis of the failure probability, π, is tested against the alternative hypothesis that the failure

probability differs from π0.11 The LRuc statistic is

LRuc =−2ln
[

(1−π)n0−n1πn1
]

+2ln

[

(1− n1

n0
)(

n1

n0
)n1

]

(16)

Asymptotically, LRuc ∼ χ2(1).

Conditional coverage. Christoffersen (1998) developped a likelihood statistic to test joint assumption of uncondi-

tional coverage and independence of failures. He tests the null hypothesis of independence against the alternative of

first-order Markov structure of {1t+1},12 with transition matrix

Π =







π00 1−π11

1−π00 π11







11The null hypothesis for Kupiec (1995) test is, H0 : π = n1/n0 = π0, where π is the expected proportion of exceedances, which equals the

desired coverage level π0 (usually equal to 1% and 5%).
12The null hypothesis for Christoffersen (1998) test is, H0 : π00 = π11.
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where πii = p(1t+1 = i | 1t = i), i = 0,1. Let ni j be the number of observations of 1t+1 assuming value i followed

by j, for i, j = 0,1; and πi j = ni j/∑ j ni j is the corresponding probability. Hence, we have π̂01 = n01/(n00 +n01) and

π̂11 = n11/(n10 +n11). The statistic of the test is given by

LRcc = LRuc +LRind ∼ χ2(2) (17)

where

LRind =−2ln
[

(1−π)n0−n1πn1
]

+2ln
[

(1− π̂01)
n00π̂n01

01 (1− π̂11)
n10π̂n11

11

]

Asymptotically, LRind ∼ χ2(1).

Dynamic Quantile. Engle and Manganelli (2004) proposed the dynamic quantile (DQ) test to correct for the inef-

ficiency in the conditional coverage test of Christoffersen (1998). They defined an indicator function Hitt(α ) =

1{
rt<VaRt (α )|Ωt−1

}−α to test the VaR of long position as follows:

Hitt+1(α ) =











1−α if rt+1 <VaRt+1 |Ωt

−α , else

(18)

Engle and Manganelli (2004) suggested to test jointly the following hypothesis:

H0 :











E(Hitt+1) = 0, (1)

Hitt+1 is uncorrelated with variables included in the information set. (2)

These two tests (1) and (2) can be done using artificial regression Hitt+1 = Xt+1β +ut+1, where Xt+1 is a N ×K

matrix whose first column is a column ones and remaining columns are additional explanatory variables.13

Under H0, Engle and Manganelli (2004) show that the dynamic quantile test statistic is given by

DQ =
β̂ ′

OLSX
′
X β̂OLS

α (1−α )
∼ χ2(7) (19)

The statistical adequacy of VaR forecasts is obtained by the previous tests. It is well-known that these tests have

limited power in distinguishing among various models for VaR. Using these metrics, we cannot conclude whether

an adequate model is more accurate than another one. Loss functions represent an alternative approach that can be

13We include five lags of Hitt and the current VaR as explanatory variables. Hence, Hitt =
(

ι , Hitt−1, Hitt−2, Hitt−3, Hitt−4, Hitt−5, VaRt(α )
)
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Table 11

Daily VaR forecasts.

Model Mean VaR α -level

1% 2.5% 5% 10%

Symmetric models

CCC 1.48782 1.25373 1.05289 0.82008

DCC 1.46673 1.23595 1.03796 0.80845

cDCC 1.46716 1.23632 1.03827 0.80869

Asymmetric models

aCCC 1.27590 1.07515 0.90292 0.70327

aDCC 1.25483 1.05739 0.88801 0.69166

a-cDCC 1.25426 1.05692 0.88761 0.69135

Notes: The table presents the out-of-sample daily VaR of the weighted portfolio consisted of three stock market indices (FTSE 100,

S&P 500 and NIKKEI 225). We used quantile for normal distribution. Values in bold show the selected model for better forecasts.

used to compare models. Lopez (1998) suggested a loss function based on regulatory needs. He proposed measuring

the accuracy of VaR forecasts on the basis of distance between observed return, rt , and forecasted VaRt values. He

defined a penalty variable as follows:

LFt+1 =











1+
(

rt+1 −VaRt+1 |Ωt

)2

, if rt+1 <VaRt+1 |Ωt

0, if rt+1 ≥VaRt+1 |Ωt

In our study we computed the loss function LF as a sum of LFt+1, with t = 0, . . . ,n0.

Table 11 depicts the out-of-sample mean daily VaR of the weighted portfolio consisted of the FTSE 100, S&P

500 and NIKKEI 225 stock market returns. We remarked that the a-cDCC model yields the lowest average daily VaR

estimates at 1%, 2.5%, 5% and 10% levels. The backtesting analysis considers a comparison over the last 250 days

(from February 19, 2010 to February 04, 2011) and focuses mainly on exceptions or violations, i.e. the number of

times in which the portfolio returns underperform the VaR measure, and LRuc, LRcc and DQ tests statistics. We also

calculated the failure probability and statistic loss functions suggested by Lopez (1998). Tables 12 and 13 present

unconditional, conditional and dynamic quantile test statistics. The results showed that symmetric and asymmetric

models have been rejected by the LRuc, LRcc and DQ tests. Hence, these models are slow at updating the VaR values

when market volatility changes rapidly.

For symmetric models, at 1% significance level, CCC, DCC and cDCC models provide the same number of

violations and failure probabilities. The same remark is shown in case of asymmetric models. The results in Tables

12 and 13 showed that all symmetric models produce the lowest number of violations and failure probabilities. For

instance, we identify 13 and 23 violations and 5.22% and 9.23% p-values for the DCC model at 1% and 5% level,

respectively. While, for the asymmetric DCC model we find 18 and 31 violations and 7.22% and 12.44% p-values at

21



Table 12

Summary results for daily VaR diagnostic tests in symmetric case.

Exeedances Fail. prob. (%) LRuc LRind LRcc DQ LF

1% daily VaR

CCC 13 5.22 22.403 94.587 116.991 93.013 21.728

DCC 13 5.22 22.403 94.587 116.991 93.538 22.103

cDCC 13 5.22 22.403 94.587 116.991 93.441 22.087

2.5% daily VaR

CCC 18 7.22 41.188 120.452 161.640 121.155 31.706

DCC 18 7.22 41.188 120.452 161.640 121.685 32.149

cDCC 18 7.22 41.188 120.452 161.640 121.586 32.131

5% daily VaR

CCC 21 8.43 53.960 129.689 183.649 231.252 40.484

DCC 23 9.23 63.003 136.722 199.726 340.902 42.967

cDCC 23 9.23 63.003 136.722 199.726 340.788 42.948

10% daily VaR

CCC 33 13.25 113.481 173.093 286.574 391.790 61.424

DCC 35 14.05 124.484 178.564 303.049 519.173 63.944

cDCC 35 14.05 124.484 178.564 303.049 519.110 63.924

Notes: The table presents the evaluation of out-of-sample daily VaR for the weighted portfolio (consisted from three stock market

indices) generated by symmetric models. it reports test statistics over last 250 days (February 19, 2010 to February 03, 2011).

Fail. prob.: The failure probability. LRuc: The LR test of unconditional coverage. LRind : The LR test of independence. LRcc: The

joint test of coverage and independence. DQ: The Dynamic Quantile test. LF: The loss function. Values in bold show the selected

model for better forecasts.

1% and 5% level, respectively.

As shown in Tables 12 and 13, we also reported the LF criterion, which facilitates the selection of optimal VaR

model for risk manager. It is clearly that CCC and aCCC models provide the lowest LF values at 1%, 2.5%, 5% and

10% levels. For symmetric volatilty models, the study identifies the CCC model as the best performing model for a

firm, followed by cDCC and DCC models. For the asymmetric volatility models, we identify the aCCC model as the

best performing model, followed by DCC and cDCC models. However, we remarked that DCC and cDCC models

provide approximately the same performance.
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Table 13

Summary results for daily VaR diagnostic tests in asymmetric case.

Exeedances Fail. prob. (%) LRuc LRind LRind DQ LF

1% daily VaR

aCCC 18 7.22 41.188 120.452 161.640 116.833 29.947

aDCC 18 7.22 41.188 120.452 161.640 116.352 30.462

a-cDCC 18 7.22 41.188 120.452 161.640 116.394 30.470

2.5% daily VaR

aCCC 21 8.43 53.960 130.774 184.734 182.956 38.503

aDCC 24 9.63 67.671 142.213 209.884 244.406 42.074

a-cDCC 24 9.63 67.671 142.213 209.884 244.437 42.083

5% daily VaR

aCCC 30 12.04 97.505 162.832 260.338 361.907 53.707

aDCC 31 12.44 102.758 166.311 269.069 375.634 55.327

a-cDCC 31 12.44 102.758 166.311 269.069 375.646 55.338

10% daily VaR

aCCC 37 14.85 135.752 183.844 319.597 576.566 70.127

aDCC 38 15.26 141.483 186.050 327.534 607.452 71.764

a-cDCC 18 15.26 141.483 186.050 327.534 607.448 71.776

Notes: The table presents the evaluation of out-of-sample daily VaR for the weighted portfolio (consisted of three stock market

indices) generated by asymmetric models. it reports test statistics over last 250 days (February 19, 2010 to February 03, 2011).

Fail. prob.: The failure probability. LRuc: The LR test of unconditional coverage. LRind : The LR test of independence. LRcc: The

joint test of coverage and independence. DQ: The Dynamic Quantile test. LF: The loss function. Values in bold show the selected

model for better forecasts.

4. Wavelet-based approach

In this section we employed a new approach, called wavelet transform.14 We used a discrete wavelet trans-

form (DWT), more specifically, we adopt the maximal overlap discrete wavelet transform (MODWT)15 in a Multi-

resolution Analysis (MRA) framework.16

In our study, we sample the daily stock market returns at different scale j as follows: D1 (2-4 days), D2 (4-

8 days), D3 (8-16 days), D4 (16-32 days), D5 (32-64 days), D6 (64-128 days), D7 (128-256 days), D8 (256-512

days).17 We used Daubechies Least Asymmetric wavelet transformation of length L = 8 via LA(L) to obtain multi-

scale decomposition of the return series. The MRA yields an additive decomposition through MODWT given by

14The wavelet transform has two types of transform, namely, continuous wavelet transform (CWT) and discrete wavelet transform (DWT). Since

most of the time series have a finite number of observations, the discrete version of wavelet transform is used in finance and economic applications.

The wavelet transform decomposes a time series in terms of some elementary functions, called, wavelets; ψu,τ (t) =
1√
τ ψ [(t −u)/τ ]. Where 1√

τ
is a normalization factor, u is the translation parameter and τ is the dilation parameter. ψ(t) must fulfill several conditions (see, Gençay et al.

(2002) and Percival and Walden (2000)): it must have zero mean,
∫+∞
−∞ ψ(t)dt = 0, its square integrates to unity,

∫+∞
−∞ ψ2(t)dt = 1 and it should also

satisfy the admissibility condition, 0 <Cψ =
∫+∞

0
|Ψ(λ )|2

λ dλ <+∞ where Ψ(λ ) is the Fourier transform of ψ(t), that is Ψ(λ ) =
∫+∞
−∞ ψ(t)e−iλ udt.

Following the latter condition we can reconstruct a time series x(t).
15We use the MODWT because we can align perfectly the details from the decomposition with the original time series. In comparison

with the DWT, no phase shift will result in the MODWT (Gençay et al. (2002)). Fore more information about the MODWT, please refer to

Percival and Walden (2000) and Gençay et al. (2002).
16For more details, see Mallat (1989) and Percival and Walden (2000).
17We decompose our time series up to scale 8 (scale J ≤ log2 [(T −1)/(L−1)+1], where T is the number of observations of stock market

returns (T = 2112), and L is the length of the wavelet filter LA(8)). We used the wavelets R package for the MODWT.
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X(t) = ∑k s̃ j,kφj,k(t)+∑ j ∑k d̃ j,kψ j,k(t), j = 1, . . . ,J

= SJ(t)+DJ(t)+DJ−1(t)+ . . .+D1(t)
(20)

where SJ(t) refers to the smooth series and it represent the approximation that captures the long memory term

properties, D j(t), j = 1, . . . ,J. refers to details series, which represent the contribution of frequency j to the original

series.

The wavelet detail, D j(t), captures local fluctuations over the whole period of time series at each scale, while the

wavelet smooth, SJ(t), gives an approximation of the original series at scale J.

After computing the MODWT crystals (details and smooths) for every stock market return, and from the decom-

posed series (D1, . . . ,D8,S8) we classify the short, medium and long term series as follows: Short term = D1 +D2 +

D3; Medium term = D4 +D5 +D6; Long term = D7 +D8 + S8. This choice of time-horizon decomposition is used

to classify three types of investors or traders, such as short, medium and long term ones, i.e. to analyze the behavior

of investors among different time-horizons. Here the highest frequency component Short term, D1 +D2 +D3 repre-

sents the short-term variations due to shocks occurring at a time scale of 2 to 16 days, it provides daily and weekly

spillovers, the next component Medium term, D4 +D5 +D6 represents the mid-term variations at time scale of 32 to

128 days, it defines the monthly and quarterly spillovers, and the third component Long term, D7+D8+S8 represents

the long-term variations of 256 days and more, it provides the annual spillovers. The main advantage of this classi-

fication is to decompose the risk and the volatility spillovers into three investment horizons. Therefore, we focus in

three sub-spillovers. All market participants, such as regulators, traders and investors, who trade in stock markets (in

our study, U.K., U.S. and Japan stock markets) make decisions over different time scales. In fact, due to the different

decision-making time scales among investors, the time-varying volatilities and correlations of stock market indices

will vary over the different time scales associated with those horizons (investment strategies).

In order to analyze the comovements in returns and volatilities (the analysis is based on new time series: Short

term, Medium term and Long term) between the three markets defined before and to investigate the dynamics and

spillover effects, we applied a trivariate dynamic conditional correlation (CCC, DCC and cDCC) model. We proceed

the same specifications presented in section 2.3 to model the conditional mean and the conditional variances, we fitted

a VAR(1)-MGARCH(1,1) to the three new series as follows:















Xt = c0 +AXt−1 +υt

υt = Dtzt

(21)

where Xt = (FTSE-Shortt ,S&P500-Shortt ,NIKKEI-Shortt)
′
, c0 is a (3× 1) vector of constants, A is (3× 3) co-
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Table 14

Unit root tests of wavelet components.

FTSE 100 S&P 500 Nikkei 225

ADF test KPSS test ADF test KPSS test ADF test KPSS test

Short term −42.986∗ 0.006∗ −46.451∗ 0.019∗ −43.018∗ 0.008∗

Medium term −54.386∗ 0.016∗ −52.996∗ 0.013∗ −49.944∗ 0.004∗

Long term −33.796∗ 0.520∗ −34.725∗ 0.486∗ −47.833∗ 0.648∗

Notes: The table reports results of the augmented Dickey-Fuller (Dickey and Fuller (1979)) and

Kwiatkowski–Phillips–Schmidt–Shin (Kwiatkowski et al. (1992)) tests. The KPSS test contains a constant and not a time

trend. While, the ADF test without constant and trend. The null hypothesis of ADF test is that a time series contains a unit root,

I(1) process, whereas the KPSS test has the null hypothesis of stationarity, I(0) process.
∗ indicate the rejection of the unit root null at 1% significance level.

efficient matrix, υt is (3× 1) vector of error term from the mean equations of decomposed series, and zt refers to a

(3×1) vector of independently and identically distributed errors.

To ensure the stationarity of our reconstructed series (Short term, Medium term and Long term series), we applied

the ADF and KPSS tests to our decomposed data. As shown in Table 14 all test statistics are statistically significant

at 1% level, therefore indicating stationarity.

Table 15 presents estimates from two types of conditional volatility regressions: (i) a univariate GARCH model,

and (ii) a univariate EGARCH model for each market and at each time scale. A GARCH(1,1) model and EGARCH(1,1)

model proved adequate for capturing conditional heteroskedasticity. As shown in Table 15 the univariate GARCH

models display more statistically significant coefficients than a univariate EGARCH ones. In terms of GARCH model,

the α and β coefficients (ARCH and GARCH effects, respectively) are positive and statistically significant in all stock

markets, indicating highly persistent volatility dynamics in short-term horizon (lower scales/ higher frequencies).

The time scale constant conditional correlations among the three stock market returns from the CCC model are

summarized in Table 16. The results indicate that the highest constant correlation between markets is shown in

medium-term horizon, which corresponds to monthly and quarterly time horizons. Therefore, the comovements

between the three markets are higher in medium horizon than comovements in short or long horizons. For instance,

the correlations between U.K. and U.S. are as follows: 52.7%, 68.9% and 65% for short, medium and long term,

respectively, and the correlations between U.S. and Japan are: 13%, 55.7% and 35.1% for short, medium and long

term, respectively. Furthermore, we remark that time scale constant correlations between U.K. and U.S. are stronger

than the others in all time scales.

Parameter estimates for the conditional variance-covariance equations in the DCC and cDCC models are reported

in Table 17. Coefficients θ1 and θ2 reflect the ARCH and GARCH effects, respectively. The estimates parameters

of the DCC and cDCC models are statistically significant at 1% level in all time scales, and the sum θ1 +θ2 close
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Table 15

Univariate GARCH(1,1) estimates for different time horizons.

ω α β γ Log-likelihood AIC

Short term

FTSE 100 0.0076∗∗ 0.1056∗ 0.8896∗ -2638.6 2.5027

S&P 500 0.0089∗∗ 0.0757∗ 0.9149∗ -2740.2 2.5989

NIKKEI 225 0.0188∗ 0.0868∗ 0.8992∗ -3045.3 2.8881

Medium term

FTSE 100 0.8657∗ 0.1172∗ 574.33 -0.5419

S&P 500 0.8863∗ 0.0944∗ 658.69 -0.6268

NIKKEI 225 0.9542∗ 0.0014∗ -156.81 0.1503

Long term

FTSE 100 −0.0508 1.0027∗ 2.5384∗ 2950.9 -2.7907

S&P 500 −0.0608 1.0209∗ 2.2234∗ 2953.6 -2.7932

NIKKEI 225 −0.0485 1.0232∗ 2.2854∗ 2008.5 -1.8982

Notes: The table summarizes the estimated coefficients produced by the univariate GARCH(1,1) model for short and medium term

horizon series and EGARCH(1,1) model for long term horizon series. The univariate variance estimates are introduced as inputs

in the estimation process of the CCC, DCC and cDCC models. The estimated coefficient ω denotes the constant term, α and β are

the ARCH and GARCH terms, respectively, in the conditional variance equations, γ is the asymmetric parameter.

The above estimates are for the sample period of 02 January 2003 to 04 February 2011. Significance levels at 1%, 5% and 10%

are denoted by ∗, ∗∗ and ∗∗∗, respectively. Log-likelihood is the logarithm maximum likelihood function value. AIC is the Akaike

information criterion.

Table 16

Constant conditional correlation estimates under wavelet return series

Short term Medium term Long term

FTSE 100 S&P 500 NIKKEI

225

FTSE 100 S&P 500 NIKKEI

225

FTSE 100 S&P 500 NIKKEI

225

FTSE 100 1.000 0.527∗ 0.242∗ 1.000 0.689∗ 0.570∗ 1.000 0.650∗ 0.283∗

S&P 500 1.000 0.130∗ 1.000 0.557∗ 1.000 0.351∗

NIKKEI 225 1.000 1.000 1.000

The table reports the estimated time scale conditional correlations between the U.K., U.S. and Japan stock markets, as they are

produced by the CCC model. ∗ indicate significance at 1% level.

to unity for the two models and at each scale, implying high persistent volatility in short, medium and long term

horizons. Based on DCC model, the degree of persistence, θ1 + θ2, are 0.997, 0.894 and 0.995 for short, medium

and long term, respectively. Based on cDCC model the degree of persistence is 0.997, 0.995 and 0.999 for the short,

medium and long terms, respectively. The short run persistence of shocks on dynamic conditional correlations is the

greatest for high scales (0.594 and 0.831), while the largest long run persistence of shocks to conditional correlations

is 0.997 (0.004+0.993) for low scales. We remark also that the short run persistence shocks increases by scales, while

the long run persistence shocks decreases among scales.

The scale spillover effect in volatility provide strong persistence for all components (Short term, Medium term

and Long term), this phenomenon result from the trading of heterogeneous group of investors. In fact, at finest scales

(Short term component), market participants are hedging strategists, speculators and market makers. Therefore, they
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Table 17

Estimates of the multivariate GARCH(1,1) models (DCC and cDCC) for different time horizons.

θ1 θ2 Log-likelihood AIC

DCC model

Short term 0.004457 (0.0017)∗ 0.993156 (0.0032)∗ -8002.8 7.59530

Medium term 0.719497 (0.0066)∗ 0.175299 (0.0078)∗ 14834.1 -14.0408

Long term 0.594683 (0.0269)∗ 0.400597 (0.0277)∗ 40909.8 -38.7454

cDCC model

Short term 0.004560 (0.0016)∗ 0.993199 (0.0027)∗ -8002.2 7.59470

Medium term 0.763499 (0.0055)∗ 0.231645 (0.0056)∗ 15229.6 -14.4155

Long term 0.831890 (0.0242)∗ 0.167528 (0.0244)∗ 43104.5 -40.8247

Notes: This table reports the estimates parameters of DCC and cDCC models. Significance levels at 1%, 5% and 10% are denoted

by ∗, ∗∗ and ∗∗∗, respectively. Log-likelihood is the logarithm maximum likelihood function value. AIC is the Akaike information

criterion.

trade the three markets (U.K., U.S. and Japan) simultaneously. Kim and In (2003) showed that speculators and market

makers intensively trade to realize a quick profit (or minimize loss) over short time scales. In the intermediate scales

(mid-horizon; Medium term component), the main traders are international portfolio managers who mainly follow

index tracking trading strategies. Kim and In (2003) showed that trades typically occurs on a weekly to monthly

basis, with little attention paid to daily prices. At high scales (Long term component), the main traders are central

banks which operate on long-term horizons and often consider long-term economic fundamentals for their strategy.

The forecasting performance of the CCC, DCC and cDCC models at each scale is evaluated by comparing the four

statistical loss functions defined in section 3.2. This forecasting study is based on recursive out-of-sample one-day

ahead forecast of variance-covariance matrix of dynamic conditional models at each time horizon, i.e. Short term,

Medium term and Long term components. The "wavelet" volatility models are estimated based on 1863 observations

corresponding to the period 02 January 2003 to 19 February 2010. The variables used in the models are: Short term,

Medium term and Long term components. We compare the accuracy of wavelet volatility forecasts based on:

RMSEk( j) =

{

1

M

M

∑
m=1

[

ςm,k( j)− σ̂2
m( j)

]2

}1/2

,

MAEk( j) =
1

M

M

∑
m=1

∣

∣ςm,k( j)− σ̂2
m( j)

∣

∣ ,

MAPEk( j) =
1

M

M

∑
m=1

∣

∣ςm,k( j)− σ̂2
m( j)

∣

∣

|σ̂2
m( j)| ,

and
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Table 18

One-day out-of-sample volatility forecasts performance for different time horizons.

Forecast loss functions

RMSE MAE MAPE LLE

Panel A: Short term

CCC 1.488636 0.725253 5.076901 8.356644

DCC 1.488659 0.723788 5.050991 8.336478

cDCC 1.489430 0.718159 4.958577 8.273333

Panel B: Medium term

CCC 0.139242 0.082996 1.001749 24.867650

DCC 0.139241 0.082996 1.001749 24.865190

cDCC 0.139241 0.082996 1.001749 24.864380

Panel C: Long term

CCC 0.015626 0.012123 0.999986 73.91793

DCC 0.015626 0.012123 0.999986 73.91789

cDCC 0.015626 0.012123 0.999986 73.91788

Notes: The table summarizes the four loss metrics estimates at different time horizons. The RMSE is defined

as; RMSEk( j) =
{

∑M
m=1

[

ςm,k( j)− σ̂2
m( j)

]2
/M

}1/2
, the MAE is defined as; MAEk( j) = ∑M

m=1

∣

∣ςm,k( j)− σ̂2
m( j)

∣

∣/M,

the MAPE is defined as; MAPEk( j) =
{

∑M
m=1

∣

∣ςm,k( j)− σ̂2
m( j)

∣

∣/
∣

∣σ̂2
m( j)

∣

∣

}

/M and the LLE is defined as; LLEk( j) =

∑M
m=1

[

log(ςm,k( j))− log(σ̂2
m( j))

]2
/M, where, ςm,k( j) is the wavelet volatility forecast generated by model k for day m and scale

j and σ̂2
m( j) is the actual volatility on day m at scale j.

LLEk( j) =
1

M

M

∑
m=1

[

log(ςm,k( j))− log(σ̂2
m( j))

]2
.

where ςm,k( j) is the wavelet volatility forecast generated by model k for day m and scale j and σ̂2
m( j) is the actual

volatility on day m at scale j. The actual wavelet volatility is not observable, therefore we define three proxies of

σ̂2
m( j), such as: (Short term)2, (Medium term)2 and (Long term)2, for the short-term horizon, medium-term horizon

and long-term horizon, respectively.

Table 18 summarizes the results of the one-day out-of-sample volatility forecast loss functions. We observe that,

at low scales (Short term component) and in terms of MAE, MAPE and LLE criteria, the cDCC model provides

better volatility forecasts, it has lower loss function values than CCC and DCC models. While, at intermediate scales

(Medium term component) and high scales (Long term component), the three dynamic conditional correlation models

show similar accuracy in one-day out-of-sample forecasts (the values of RMSE, MAE and MAPE are equals).

Table 19 presents mean WVaR estimates for each of the dynamic conditional correlation models under 99%,

97.5%, 95% and 90% confidence levels over the out-of-sample period from February 22, 2010, to February 04, 2011.

This basic statistic can be shown as the preliminary understanding of average performance during the forecasting

period before the implementation of backtesting tests and market risk loss criteria. As shown in Table 19, the WVaR
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Table 19

Daily WVaR forecasts.

Mean WVaR α -level

1% 2.5% 5% 10%

CCC model

Short term 1.7684 1.4902 1.2514 0.9747

Medium term 0.0381 0.0321 0.0270 0.0210

Long term 0.0025 0.0021 0.0018 0.0014

DCC model

Short term 1.7641 1.4865 1.2484 0.9723

Medium term 0.0381 0.0321 0.0270 0.0210

Long term 0.0025 0.0021 0.0018 0.0014

cDCC model

Short term 1.7455 1.4708 1.2352 0.9620

Medium term 0.0381 0.0321 0.0270 0.0210

Long term 0.0025 0.0021 0.0018 0.0014

Notes: The table presents the out-of-sample daily VaR of the weighted portfolio across wavelet scales. We used quantile for normal

distribution.

estimates produced by the cDCC model at short-term horizon (low scales or high frequencies) are smaller than those

of CCC and DCC models in 99%, 97.5%, 95% and 90% confidence levels. For instance, at 99% confidence level,

the average WVaR is 1.7455 for the cDCC model, while those of CCC and DCC are 1.7684 and 1.7641, respectively.

We remark also, that WVaR at medium-term horizon (intermediate scales) and long-term horizon (high scales or

low frequencies) produced by the three models are equals, for each confidence level, 99%, 97.5%, 95% and 90%.

However, the mean WVaR decreases from lower scales to higher ones, such that, Short term component (low scales/

high frequencies) provides high WVaR estimates, followed by Medium term (intermediate scales) component and

Long term (high scales/ low frequencies) component, at all confidence levels.

To accurately comparing the forecasting ability of the mentioned models in terms of WVaR,18 backtesting diag-

nostic tests: unconditional coverage of Kupiec (1995), conditional coverage of Christoffersen (1998), and dynamic

quantile of Engle and Manganelli (2004) are introduced and used for determining the accuracy of wavelet model-

based VaR measurements. We used also, the regularity loss function of Lopez (1998) based on wavelet market risk

(WVaR) defined before. It is defined in wavelet case as follows:

18The multivariate GARCH-based WVaR estimate for one-day ahead forecasts are defined as follows:

VaRk
t+m( j) = κ

′
dt+m + zα ςt+m( j).

where zα denotes the normal quantile, κ ′
dt+m is the wavelet mean one-day ahead forecast estimate computed by forecasting VAR(1) based on

wavelet components series. The wavelet weighted portfolio return is d
pt f
t = κ ′

dt : dt =
(

dUK,t , dUS,t , dJP,t

)′
denotes the vector of wavelet return

components of FTSE 100 (dUK,t ), S&P 500 (dUS,t ) and NIKKEI 225 (dJP,t ), κ ′
= (κUK , κUS, κJP) is the vector of weights in the portfolio.

ςt( j) = κ ′
Ht( j)κ , where Ht( j) is the wavelet conditional variance-covariance matrix defined in section 2.3. Briefly, the wavelet conditional mean

and wavelet conditional variance-covariance estimates are calculated from forecasting the model defined in equation 21.
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Table 20

Summary results for daily WVaR diagnostic tests.

Exceedances Fail. prob. (%) LRuc LRind LRcc DQ LF( j)

1% WVaR CCC

Short term 7 2.81 5.533 58.791 64.325 68.020 68.020

Medium term 88 35.34 490.278 310.040 800.318 7404.16 96.628

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.037

DCC

Short term 7 2.81 5.533 58.791 64.325 67.173 8.723

Medium term 88 35.34 490.278 310.040 800.318 7404.16 96.628

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.037

cDCC

Short term 7 2.81 5.533 58.791 64.325 68.115 8.857

Medium term 88 35.34 490.278 310.040 800.318 7404.16 96.628

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.037

2.5% WVaR CCC

Short term 11 4.41 15.960 83.318 99.278 67.001 14.978

Medium term 90 3.61 506.312 312.373 818.685 7600.83 98.894

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.044

DCC

Short term 11 4.41 15.960 83.318 99.278 65.107 15.003

Medium term 90 36.14 506.312 312.373 818.685 7600.83 98.893

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.044

cDCC

Short term 11 4.41 15.960 83.318 99.278 67.182 15.199

Medium term 90 36.14 506.312 312.373 818.685 7600.83 98.893

Long term 98 39.35 571.829 329.860 901.689 9404.57 99.044

5% WVaR CCC

Short term 16 6.42 33.264 110.467 143.731 101.254 23.170

Medium term 94 37.75 538.797 314.791 853.588 7827.88 103.126

Long term 99 39.75 580.171 330.707 910.879 9503.55 100.049

DCC

Short term 16 6.42 33.264 110.467 143.731 98.500 23.204

Medium term 94 37.75 538.797 314.791 853.588 7827.88 103.126

Long term 99 39.75 580.171 330.707 910.879 9503.55 100.049

cDCC

Short term 16 6.42 33.264 110.467 143.731 101.542 23.457

Medium term 94 37.75 538.797 314.791 853.588 7827.88 103.126

Long term 99 39.75 580.171 330.707 910.879 9503.55 100.049

Notes: The table presents the evaluation of out-of-sample daily WVaR for the wavelet details. it reports test statistics over last 250

days (February 19, 2010 to February 03, 2011). Exceedance: The term "exceedance" refers to an instance when portfolio losses

are greater than corresponding VaR estimates in the backtest, In the literature, the terms "breaches" and "violations" are also used

when referring to "exceedances". Fail. prob.: The failure probability. LRuc: The LR test of unconditional coverage. LRind : The

LR test of independence. LRcc: The joint test of coverage and independence. DQ: The Dynamic Quantile test. LF( j): The loss

function. The respective critical values of LRuc and LRcc statistics at 5% significance level are 3.84 and 5.99.

LFt+1(j) =











1+
(

dt+1 −VaRt+1( j) |Ωt

)2

, if dt+1 <VaRt+1( j) |Ωt

0, if dt+1 ≥VaRt+1( j) |Ωt

(22)

The statistical adequacy of the WVaR forecasts computed by the three dynamic conditional correlation models is

obtained by the backtesting procedure described before: we will characterize the model as an adequate one for the

volatility forecasting, if the null hypothesis cannot rejected.19 Table 20 presents the summary backtesting statistics for

the daily WVaR forecasts of wavelet return series. In terms of LRuc, LRind , LRcc and DQ statistics, the null hypothesis

19rejection of the null hypothesis indicates that the computed VaR estimates are not sufficiently accurate.

30



are rejected at 1%, 2.5% and 5% significance level. According to these metrics, we cannot conclude whether an

adequate multivariate model is more accurate than another one.20 Column 9 of Table 20 shows the mean loss function

values. A WVaR model is preferred to another one, if it yields a lower averaging loss criterion value: LF(j), defined as

the sum of LFt(j), that is,LF(j) = ∑n0
t=1 LFt(j). At 99%, 97.5% and 95% confidence levels, LF(j) statistic indicates

that DCC and cDCC models provide strong WVaR performance (smaller LF(j) values) than CCC model. We can

note also, that the three dynamic conditional correlation models have the same WVaR performance at medium-term

(intermediate scales) and long-term (high scales) horizons for 99%, 97.5% and 95% confidence levels.

5. Concluding remarks

The empirical analysis in the paper examined the co-movements and spillover effects in the stock market returns

of three developed countries: U.K., U.S. and Japan for the period 01 January 2003 to 04 February 2011. Three multi-

variate conditional correlation volatility models were used, namely CCC model of Bollerslev (1990), DCC model of

Engle (2002) and cDCC model of Aielli (2008). Empirical results show that multivariate estimates were significant

for all returns in the CCC, DCC and cDCC models. However, these models showed evidence of volatility spillovers

and asymmetric effects of negative and positive shocks of equal magnitude on the conditional variances. The statis-

tical significance of DCC and cDCC estimates indicates that the conditional correlations were dynamic. In fact, the

variance-covariance analysis produced useful information on the dynamic correlations between the three developed

markets, and for each pairwise series, the dynamic conditional correlations vary considerably from their respective

constant correlations, implying the absence of any constant correlation between the stock markets under study. The

empirical findings showed that the U.K. and U.S. markets were highly correlated since the end of 2007 (the beginning

of subprime crisis), followed by the U.K. and Japan markets and U.S. and Japan markets. These results confirm the

presence of spillover effects between pairwise stock market returns. The paper also compared one-day ahead con-

ditional volatility forecasts from the dynamic conditional correlation models used in the study, using 250 one-day

out-of-sample forecasts, and showed that asymmetric cDCC model is preferred over the other models, according to

the four used statistical loss metrics: mean squared error, mean absolute error, mean absolute percentage error and

logarithm loss error.

The paper also combined the wavelet analysis and multivariate conditional volatility models to analyze the co-

movements and volatility spillover effects in a multi-scale framework. Unlike the traditional multivariate dynamic

20The abovementioned backtesting tests focused on examining the accuracy of failure frequency and the independence of the failure process for

VaR models. However, there are a large number of VaR models that can pass these statistical evaluation tests. How do risk managers choose among

alternative VaR models? which model will generate fewer regulatory capital requirements and induce less oppurtunity cost of capital?. To answer

these questions we use a regulatory loss function related to market risk.
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conditional correlation volatility models, the wavelet-based dynamic conditional correlation approach allows one

to decompose the spillover effect and co-movement into many sub-spillovers and sub-comovements on various time

scales according to heterogeneous groups of traders and investors. However, wavelet analysis help investors to uncover

the complex pattern of return and volatility spillovers on their own horizon, and make a good hedging strategy on

their risk. The findings of wavelet analysis show that multivariate estimates were significant for all wavelet time

series. Moreover, wavelet-based multivariate models highlight volatility spillovers on the conditional variance for all

stock markets under study. In fact, the wavelet study successfully decomposes the total spillover into sub-spillovers,

respectively for short-term, mid-term and long-term horizons. The out-of-sample forecasts over wavelet scales are

evaluated using four statistical loss functions and one-day ahead wavelet VaR (WVaR) forecast accuracy. The out-of-

sample forecast results showed that high scales (Long term component) provide smaller statistical loss metrics values

than lower scales (Short component).
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