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Abstract

We study the estimation of a high dimensional approximate factor model in the pres-

ence of both cross sectional dependence and heteroskedasticity. The classical method of

principal components analysis (PCA) does not efficiently estimate the factor loadings or

common factors because it essentially treats the idiosyncratic error to be homoskedas-

tic and cross sectionally uncorrelated. For efficient estimation it is essential to estimate

a large error covariance matrix. We assume the model to be conditionally sparse, and

propose two approaches to estimating the common factors and factor loadings; both

are based on maximizing a Gaussian quasi-likelihood and involve regularizing a large

covariance sparse matrix. In the first approach the factor loadings and the error covari-

ance are estimated separately while in the second approach they are estimated jointly.

Extensive asymptotic analysis has been carried out. In particular, we develop the in-

ferential theory for the two-step estimation. Because the proposed approaches take

into account the large error covariance matrix, they produce more efficient estimators

than the classical PCA methods or methods based on a strict factor model.

Keywords: High dimensionality, unknown factors, principal components, sparse matrix,

conditional sparse, thresholding, cross-sectional correlation, penalized maximum likelihood,

adaptive lasso, heteroskedasticity
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1 Introduction

In many applications of economics, finance, and other scientific fields, researchers often

face a large panel data set in which there are multiple observations for each individual;

here individuals can be families, firms, countries, etc. Modern applications usually involve

data-rich environments in which both the number of observations for each individual and

the number of individuals are large. One useful method for summarizing information in a

large dataset is the factor model:

yit = αi + λ′
0ift + uit, i ≤ N, t ≤ T, (1.1)

where αi is an individual effect, λ0i is an r × 1 vector of factor loadings and ft is an r × 1

vector of common factors; uit denotes the idiosyncratic component of the model. Note that

yit is the only observable random variable in this model. If we write yt = (y1t, ..., yNt)
′,

Λ0 = (λ01, ..., λ0N)
′, α = (α1, ..., αN)

′ and ut = (u1t, ..., uNt)
′, then model (1.1) can be

equivalently written as

yt = α + Λ0ft + ut.

Because yit is the only observable in the model, both factors and loadings are treated

as parameters to estimate. As was shown by Chamberlain and Rothschild (1983), in many

applications of factor analysis, it is desirable to allow dependence among the error terms

{uit}i≤N,t≤T not only serially but also cross-sectionally. This gives rise to the approximate

factor model, in which the N × N covariance matrix Σu0 = cov(ut) is not diagonal. In

addition, the diagonal entries may vary in a large range. As a result, efficiently estimating

the factor model under both large N and large T is difficult because to take into account both

cross-sectional heteroskedasticity and dependence of {uit}i≤N,t≤T , it is essential to estimate

the large covariance Σu0. The latter has been known as a challenging problem when N is

larger than T .

In this paper, we assume the model to be conditionally sparse, in the sense that Σu0 is

a sparse matrix with bounded eigenvalues. This assumption effectively reduces the number

of parameters to be estimated in the model, and allows a consistent estimation of Σu0. The

latter is needed to efficiently estimate the factor loadings. In addition, it enables the model

to identify the common components αi + λ′
0ift asymptotically as N → ∞. We propose two

alternative methods, both are likelihood-based. The first one is a two-step procedure. In

step one, we apply the principal orthogonal complement thresholding (POET) estimator of

Fan et al. (2012) to estimate Σu0 using the adaptive thresholding as in Cai and Liu (2011);

in step two, we estimate the factor loadings by maximizing a Gaussian-quasi likelihood func-
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tion, which depends on the covariance estimator in the first step. These two steps can be

carried out iteratively. We also propose an alternative method for jointly estimating the

factor loadings and the error covariance matrix by maximizing a weighted l1 penalized likeli-

hood function. The likelihood penalizes the estimation of the off-diagonal entries of the error

covariance and automatically produces a sparse covariance estimator. We present asymp-

totic analysis for both methods. In particular, we derive the uniform rate of convergence

and limiting distribution of the estimators for the two-step procedure. The analysis of the

joint-estimation is more difficult as it involves penalizing a large covariance with diverging

eigenvalues. We establish the consistency for this method.

Moreover, we achieve the “sparsistency” for the estimated error covariance matrix in fac-

tor analysis (see Section 3 for detailed explanations). The estimated covariance is consistent

for both approaches under the normalized Frobenius norm even when N is much larger than

T . This is important in the applications of approximate factor models.

There has been a large literature on estimating the approximate factor model. Stock and

Watson (1998, 2002) and Bai (2003) considered the principal components analysis (PCA),

and they developed large-sample inferential theory. However, the PCA essentially treats uit

to have the same variance across i, hence is inefficient when cross-sectional heteroskedasticity

is present. Choi (2012) proposed a generalized PCA that requires N < T to invert the error

sample covariance matrix. More recently, Bai and Li (2012) estimated the factor loadings

by maximizing the Gaussian-quasi likelihood, which addresses the heteroskedasticity under

large N , but they consider the strict factor model in which (u1t, ..., uNt) are uncorrelated.

Additional literature on factor analysis includes, e.g., Bai and Ng (2002), Wang (2009), Dias,

Pinherio and Rua (2008), Breitung and Tenhofen (2011), Han (2012), etc; most of these

studies are based on the PCA method. In contrast, our methods are maximum-likelihood-

based. Maximum likelihood methods have been one of the fundamental tools for statistical

estimation and inference.

Our approach is closely related to the large covariance estimation literature, which has

been rapidly growing in recent years. There are in general two ways to estimate a sparse co-

variance in the literature: thresholding and penalized maximum likelihood. For our two-step

procedure, we apply the POET estimator recently proposed by Fan et al. (2012), corre-

sponding to the thresholding approach of Bickel and Levina (2008a), Rothman et al. (2009)

and Cai and Liu (2011). For the joint estimation procedure, we use the penalized likelihood,

corresponding to that of Lam and Fan (2009), Bien and Tibshirani (2011), etc. In either

way, we need to show that the impact of estimating the large covariances is asymptotically

negligible for an efficient estimation, which is not easy in our context since the likelihood

function is highly nonlinear, and Λ0Λ
′
0 contains a few eigenvalues that grow very fast. It was
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recently shown by Fan et al. (2012) that estimating a covariance matrix with fast diverging

eigenvalues is a challenging problem. Other works on large covariance estimation include Cai

and Zhou (2012), Fan et al. (2008), Jung and Marron (2009), Witten, Tibshirani and Hastie

(2009), Deng and Tsui (2010), Yuan (2010), Ledoit and Wolf (2012), El Karoui (2008), Pati

et al. (2012), Rohde and Tsybakov (2011), Zhou et al. (2011), Ravikumar et al. (2011) etc.

This paper focuses on high-dimensional static factor models although the factors and

errors can be serially correlated. The model considered is different from the generalized

dynamic factor models as in Forni, Hallin, Lippi and Reichlin (2000), Forni and Lippi (2001),

Hallin and Lǐska (2007), and other references therein. Both static and dynamic factor models

are receiving increasing attention in applications of many fields.

The paper is organized as follows. Section 2 introduces the conditional sparsity assump-

tion and the likelihood function. Section 3 proposes the two-step estimation procedure. In

particular, we present asymptotic inferential theory of the estimators. Both uniform rate

of convergence and limiting distributions are derived. Section 4 gives the joint estimation

as an alternative procedure, where we demonstrate the estimation consistency. Section 5

illustrates some numerical examples which compare the proposed methods with the existing

ones in the literature. Finally, Section 6 concludes with further discussions. All proofs are

given in the appendix.

Notation

Let λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of a matrix A

respectively. Also Let ‖A‖1, ‖A‖ and ‖A‖F denote the l1, spectral and Frobenius norms of

A, respectively. They are defined as ‖A‖1 = maxi
∑

j |Aij|, ‖A‖ =
√
λmax(A′A), ‖A‖F =√

tr(A′A). Note that ‖A‖ is also the Euclidean norm when A is a vector. For two sequences

aT and bT , we write aT ≪ bT , and equivalently bT ≫ aT , if aT = o(bT ) as T → ∞.

2 Approximate Factor Models

2.1 The model

The approximate factor model (1.1) implies the following covariance decomposition:

Σy0 = Λ0 cov(ft) Λ
′
0 + Σu0, (2.1)

assuming ft to be uncorrelated with ut, where Σy0 and Σu0 denote the N × N covariance

matrices of yt and ut; cov(ft) denotes the r × r covariance of ft, all assumed to be time-

invariant. The approximate factor model typically requires the idiosyncratic covariance Σu0

have bounded eigenvalues and Λ′
0Λ0 have eigenvalues diverging at rate O(N). One of the
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key concepts of approximate factor models is that it allows Σu0 to be non-diagonal.

Stock and Watson (1998) and Bai (2003) derived the rates of convergence as well as the

inferential theory of the method of principal component analysis (PCA) for estimating the

factors and loadings. Let Y = (y1, ..., yT )
′ be the T ×N data matrix. Then PCA estimates

the T ×r factor matrix F by maximizing tr(F ′(Y Y ′)F ) subject to normalization restrictions

for F . The PCA method essentially restricts to have cross-sectional homoskedasticity and

independence. Thus it is known to be inefficient when the idiosyncratic errors are either

cross sectionally heteroskedastic or correlated.

This paper aims at the efficient estimation of the approximate factor model, and assumes

the number of factors r to be known. In practice, r can be estimated from the data, and

there has been a large literature addressing its consistent estimation, e.g., Bai and Ng (2002),

Kapetanios (2010), Onatski (2010), Alessi et al. (2010), Hallin and Lǐska (2007), Lam and

Yao (2012), among others.

2.2 Conditional sparsity

An efficient estimation of the factor loadings and factors should take into account both

cross-sectional dependence and heteroskedasticity, which will then involve estimating Σu0 =

cov(ut), or more precisely, the precision matrix Σ−1
u0 . In a data-rich environment, N can be

either comparable with or much larger than T . Then estimating Σu0 is a challenging problem

even when the idiosyncratics {uit}i≤N,t≤T are observable, because the sample covariance is

nonsingular when N > T , whose spectrum is inconsistent (Johnstone and Ma 2009).

Under the regular approximate factor model considered by Chamberlain and Rothschild

(1983) and Stock and Watson (2002), it is difficult to estimate Σu0 without further structural

assumptions. A natural assumption to go one-step further is that of sparsity, which assumes

that many off-diagonal elements of Σu0 be either zero or vanishing as the dimensionality

increases. In an approximate factor model, it is more appropriate to assume Σu0 be a sparse

matrix instead of Σy0. Due to the presence of common factors, we call such a special structure

of the factor model to be conditionally sparse.

Therefore, the model studied in the current paper is the approximate factor model with

conditional sparsity (sparsity structure on Σu0), which is sightly more restrictive than that

of Chamberlain and Rothschild (1983). The conditional sparsity is required to regularize a

large idiosyncratic covariance, which allows us to take both cross sectional correlation and

heteroskedasticity into account, and is needed for an efficient estimation. However, such

an assumption is still quite general and covers most of the applications of factor models in

economics, finance, genomics, and many important applied areas.
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2.3 Maximum likelihood

Compared to PCA, a more efficient estimation for model (2.1) of high dimension is based

on a Gaussian quasi-likelihood approach. Let f̄ = T−1
∑T

t=1 ft. Because of the existence of

α, the model yt = Λ0ft + α + ut is observationally equivalent to yt = Λ0f
∗
t + α∗ + ut, where

f ∗
t = ft − f̄ and α∗ = α + Λ0f̄ . Therefore without loss of generality, we assume f̄ = 0. The

Guassian quasi-likelihood for Σy is given by

−N−1 log | det(Σy)| −N−1tr(SyΣ
−1
y )

where Sy = T−1
∑T

t=1(yt− ȳ)(yt− ȳ)′ is the sample covariance matrix, with ȳ = T−1
∑T

t=1 yt.

Plugging in (2.1), using the notation Sf = 1
T

∑T
t=1 ftf

′
t , we obtain the quasi-likelihood func-

tion for the factors and loadings:

− 1

N
log |det (ΛSfΛ

′ + Σu)| −
1

N
tr
(
Sy(ΛSfΛ

′ + Σu)
−1
)
, (2.2)

where Λ = (λ1, ..., λN)
′ is an N × r matrix of factor loadings.

It has been well known that the factors and loadings are not separably identified without

further restrictions. Note that the factors and loadings enter the likelihood through ΛSfΛ
′.

Hence for any invertible r × r matrix H̄, if we define Λ∗ = ΛH̄−1, f ∗
t = H̄ft and Sf∗ =

1
T

∑T
t=1 f

∗
t f

∗′
t , then Λ∗Sf∗Λ∗′ = ΛSfΛ

′, and they produce observationally equivalent models.

In this paper, we focus on a usual restriction for MLE of factor analysis (see e.g., Lawley

and Maxwell 1971) as follows:

Sf = Ir, and Λ′Σ−1
u Λ is diagonal, (2.3)

and the diagonal entries of Λ′Σ−1
u Λ are distinct and are arranged in a decreasing order.

Restriction (2.3) guarantees a unique solution to the maximization of the log-likelihood

function up to a column sign change for Λ. Therefore we assume the estimator Λ̂ and Λ0

have the same column signs, as part of the identification conditions.

The negative log-likelihood function (2.2) simplifies to

−L(Λ,Σu) =
1

N
log |det (ΛΛ′ + Σu)|+

1

N
tr
(
Sy(ΛΛ

′ + Σu)
−1
)
. (2.4)

In the presence of cross sectional dependence, Σu0 is not necessarily diagonal. Therefore

there can be up to O(N2) free parameters in the likelihood function (2.4). There are in

general two main regularization approaches to estimating a large sparse covariance: (adap-

tive) thresholding (Bickel and Levina 2008a, Rothman et al. 2009, Cai and Liu 2011, etc.)
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and penalized maximum likelihood (Lam and Fan 2009, Bien and Tibshirani 2011). Corre-

spondingly in this paper, we propose two methods for regularizing the likelihood function to

efficiently estimate the factor loadings as well as the unknown factors. One estimates Σu0

and Λ0 in two steps and the other estimates them jointly.

3 Two-Step Estimation

The two-step estimation estimates (Λ0,Σu0) separately. In the first step, we estimate

Σu0 by the principal orthogonal complement thresholding (POET), proposed by Fan et al.

(2012), and in the second step we estimate Λ0 only, using the quasi-maximum likelihood,

replacing Σu by the covariance estimator obtained in step one.

3.1 Step one: covariance estimation by thresholding

The POET is based on a spectrum expansion of the sample covariance matrix and adap-

tive thresholding. Let (νj, ξj)
N
j=1 be the eigenvalues-vectors of the sample covariance Sy of

yt, in a decreasing order such that ν1 ≥ ν2 ≥ ... ≥ νN . Then Sy has the following spectrum

decomposition:

Sy =
r∑

i=1

νiξiξ
′
i +R

where R =
∑N

i=r+1 νiξiξ
′
i is the orthogonal complement component. Define a general thresh-

olding function sij(z) : R → R as in Rothman et al. (2009) and Cai and Liu (2011) with an

entry-dependent threshold τij such that:

(i) sij(z) = 0 if |z| < τij;

(ii) |sij(z)− z| ≤ τij.

(iii) There are constants a > 0 and b > 1 such that |sij(z)− z| ≤ aτ 2ij if |z| > bτij.

Examples of sij(z) include the hard-thresholding: sij(z) = zI(|z|>τij); SCAD (Fan and Li

2001), MPC (Zhang 2010) etc. Then we obtain the step-one consistent estimator for Σu0:

Σ̂(1)
u = (sij(Rij))N×N , where R = (Rij)N×N .

We can choose the threshold as τij = C
√
RiiRjj(

√
(logN)/T + 1/

√
N) for some universal

constant C > 0, which corresponds to applying the threshold C(
√

(logN)/T + 1/
√
N) to

the correlation matrix of R [defined to be diag(R)−1/2R diag(R)−1/2]. The POET estimator

also has an equivalent expression using PCA. Let {ûPCA
it }i≤N,t≤T denote the PCA estimators

of {uit}i≤N,t≤T (Bai 2003). Then Σ̂
(1)
u,ij = sij(T

−1
∑T

t=1 û
PCA
it ûPCA

jt ).
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It was shown by Fan et al. (2012) that under some regularity conditions ‖Σ̂(1)
u −Σu0‖ =

Op(N
−1/2+T−1/2(logN)1/2), which guarantees the positive definiteness asymptotically, given

that λmin(Σu0) > 0 is bounded away from zero.

3.2 Step two: estimating factor loadings and factors

Replacing Σu in (2.4) by Σ̂
(1)
u , we obtain the objective function for Λ. Under the identi-

fication condition (2.3), in this step, we estimate the loadings as:

Λ̂(1) = arg min
Λ∈Θλ

L1(Λ)

= arg min
Λ∈Θλ

1

N
log | det(ΛΛ′ + Σ̂(1)

u )|+ 1

N
tr(Sy(ΛΛ

′ + Σ̂(1)
u )−1) (3.1)

where Θλ is a parameter space for the loading matrix, to be defined later. Suppose that

yt ∼ N(0,Λ0Λ
′
0 + Σu0), the negative log-likelihood is then the same (up to a constant) as

(3.1) except that Σ̂
(1)
u should be replaced by Σu0. Consequently, (3.1) can be treated as a

Gaussian quasi-likelihood of Λ, which will give an efficient estimation of Λ0 since it takes into

account the cross sectional heteroskedasticity and dependence in Σu0 through its consistent

estimator.

After obtaining Λ̂(1), we estimate ft via the generalized least squares (GLS) as suggested

by Bai and Li (2012):

f̂
(1)
t = (Λ̂(1)′(Σ̂(1)

u )−1Λ̂(1))−1Λ̂(1)′(Σ̂(1)
u )−1(yt − ȳ).

The proposed two-step procedure can be carried out iteratively. After obtaining

(Λ̂(1), f̂
(1)
t ), we update

ût = yt − Λ̂(1)f̂
(1)
t , Σ̂(1)

u = (sij(T
−1

T∑

t=1

ûitûjt))N×N .

Then Σ̂
(1)
u in the objective function (3.1) is updated, which gives updated Λ̂(1) and f̂

(1)
t

respectively. This procedure can be continued until convergence.

3.3 Positive definiteness

The objective function (3.1) requires ΛΛ′ + Σ̂
(1)
u be positive definite for any given finite

sample. A sufficient condition is the finite-sample positive definiteness of Σ̂
(1)
u , which also
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depends on the choice of the adaptive threshold value τij. We specify

τij = Cαij

(√
logN

T
+

1√
N

)

where αij is an entry-dependent value that captures the variability of individual variables

such as
√
RiiRjj; C > 0 is a pre-determined universal constant. More concretely, the finite

sample positive definiteness depends on the choice of C. If we write Σ̂
(1)
u = Σ̂

(1)
u (C) in step

one to indicate its dependence on the threshold, then C should be chosen in the interval

(Cmin, Cmax], where

Cmin = inf{M : λmin(Σ̂
(1)
u (C)) > 0, ∀C > M},

and Cmax is a large constant that thresholds all the off-diagonal elements of Σ̂
(1)
u to zero.

Then by construction, Σ̂
(1)
u (C) is finite-sample positive definite for any C > Cmin (see Figure

1).

Figure 1: Minimum eigenvalue of λmin(Σ̂
(1)
u (C))
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Data are simulated from the setting of Section 5 with T = 100, N = 150. Both hard and SCAD
with adaptive thresholds (Cai and Liu 2011) are plotted.

3.4 Asymptotic analysis

We now present the asymptotic analysis of the proposed two-step estimator. We first

list a set of regularity conditions and then present the consistency. A more refined set of

assumptions are needed to achieve the optimal rate of convergence as well as the limiting

distributions.
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3.4.1 Consistency

Assumption 3.1. Let Σu0,ij denote the (i, j)th entry of Σu0. There is q ∈ [0, 1) such that

mN ≡ max
i≤N

N∑

j=1

|Σu0,ij|q = o(min(
√
N,
√

T/ logN)).

In particular, when q = 0, we define mN = maxi≤N

∑N
j=1 I(Σu0,ij 6=0), which corresponds to the

“exactly sparse” case.

The first assumption sets a condition on the sparsity of Σu0, under which Fan et al.

(2012) showed that the POET estimator Σ̂
(1)
u is consistent under the operator norm. The

sparsity is in terms of the maximum row sum, considered by Bickel and Levina (2008a).

The following assumption provides the regularity conditions on the data generating pro-

cess. We introduce the strong mixing condition. Let F0
−∞ and F∞

T denote the σ-algebras

generated by {(ft, ut) : −∞ ≤ t ≤ 0} and {(ft, ut) : T ≤ t ≤ ∞} respectively. In addition,

define the mixing coefficient

α(T ) = sup
A∈F0

−∞
,B∈F∞

T

|P (A)P (B)− P (AB)|. (3.2)

Assumption 3.2. (i) {ut, ft}t≥1 is strictly stationary. In addition, Euit = Euitfjt = 0 for

all i ≤ p, j ≤ r and t ≤ T.

(ii) There exist constants c1, c2 > 0 such that c2 < λmin(Σu0) ≤ λmax(Σu0) < c1, and

maxj≤N ‖λ0j‖ < c1.

(iii) Exponential tail: There exist r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ p

and j ≤ r,

P (|uit| > s) ≤ exp(−(s/b1)
r1), P (|fjt| > s) ≤ exp(−(s/b2)

r2).

(iv) Strong mixing: There exists r3 > 0 such that 3r−1
1 + 1.5r−1

2 + r−1
3 > 1, and C > 0

satisfying: for all T ∈ Z
+,

α(T ) ≤ exp(−CT r3).

The following assumptions are standard in the approximate factor models, see e.g., Stock

and Watson (1998, 2002) and Bai (2003). In particular, Assumption 3.3 implies that the

first r eigenvalues of Λ0Λ
′
0 are growing rapidly at O(N). Intuitively, it requires the fac-

tors be pervasive in the sense that they impact a non-vanishing proportion of time series

{y1t}t≤T , ..., {yNt}t≤T .
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Assumption 3.3. There is a δ > 0 such that for all large N ,

δ−1 < λmin(N
−1Λ′

0Λ0) ≤ λmax(N
−1Λ′

0Λ0) < δ.

Therefore all the eigenvalues of N−1Λ′
0Λ0 are bounded away from both zero and infinity as

N → ∞.

Assumption 3.4. There exists M > 0 such that for all t ≤ T and s ≤ T ,

(i) E[N−1/2(u′
sut − Eu′

sut)]
4 < M ,

(ii) E‖N−1/2
∑N

j=1 λ0jujt‖4 < M .

The following assumption defines the threshold τij on the (i, j)th entry of Rij for the

step-one POET estimator.

Assumption 3.5. The threshold τij = Cαij(
√

(logN)/T + 1/
√
T ) where αij > 0 is entry-

dependent, either stochastic or deterministic, such that ∀ǫ > 0, there are positive C1 and C2

so that

P (C1 < min
i,j≤N

αij ≤ max
i,j≤N

αi,j < C2) > 1− ǫ (3.3)

for all large N and T . Here C > 0 is a deterministic constant.

Condition (3.3) requires the rate τij ≍ (
√
(logN)/T + 1/

√
T ) uniformly in (i, j). This

condition is satisfied by the universal threshold αij = α for all (i, j), the correlation threshold

αij =
√
RiiRjj as discussed before, and the adaptive threshold in Cai and Liu (2011).

For identification, we require the objective function be minimized subject to the diagonal-

ity of Λ′(Σ̂
(1)
u )−1Λ. In addition, since Assumption 3.3 is essential in asymptotically identifying

the covariance decomposition Σy0 = Λ0Λ
′
0 +Σu0, we need to take it into account when mini-

mizing the objective function. Therefore we assume δ in Assumption 3.3 is sufficiently large,

which leads to the following parameter space:

Θλ = {Λ : δ−1 < λmin(N
−1Λ′Λ) ≤ λmax(N

−1Λ′Λ) < δ,

Λ′(Σ̂(1)
u )−1Λ is diagonal.} (3.4)

Write γ−1 = 3r−1
1 + 1.5r−1

2 + r−1
3 + 1 and Λ̂(1) = (λ̂

(1)
1 , ..., λ̂

(1)
N )′. We have the following

theorem.

Theorem 3.1. Suppose (logN)6/γ = o(T ), T = o(N2). Under Assumptions 3.1-3.5,

1√
N
‖Λ̂(1) − Λ0‖F = op(1), max

j≤N
‖λ̂(1)

j − λ0j‖ = op(1).
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By a more careful large-sample analysis, we can improve the above result and derive the

rate of convergence. Throughout the paper, we will frequently use the notation:

ωT =
1√
N

+

√
logN

T
.

Theorem 3.2. Under the Assumptions of Theorem 3.1,

1√
N
‖Λ̂(1) − Λ0‖F = Op(mNω

1−q
T ), max

j≤N
‖λ̂(1)

j − λ0j‖ = Op(mNω
1−q
T ),

where mN and q are defined in Assumption 3.1.

Remark 3.1. In the above theorem mN does not need to be bounded. But in order to

achieve the
√
T -consistency for each λ̂j, the uniform rate of convergence above would require

it be bounded (which is a strong assumption on the sparsity of Σu0). Later in Section 3.4.3

we will enhance this convergence rate so that the boundedness of mN is not necessary and√
T -consistency can still be achieved. This will require additional regularity conditions.

3.4.2 Covariance estimation and sparsistency

In order to obtain the limiting distribution for each individual λ̂
(1)
j , we also need to

achieve the sparsistency for estimating Σu0. By sparsistency, we mean the property that all

small entries of Σu0 are estimated as exactly zeros with a probability arbitrarily close to

one. Besides being important for deriving the limiting distribution of λ̂
(1)
j , the sparsistency

itself is of independent interest for large covariance estimation, and has been studied by

many authors, for instance, Lam and Fan (2009) and Rothman et al. (2009). To our best

knowledge, this is the first place where the sparsistency for an estimated idiosyncratic Σu0

is achieved in a high dimensional approximate factor model.

Let SL and SU denote two disjoint sets and respectively include the indices of small and

large elements of Σu0 in absolute value, and

{(i, j) : i ≤ N, j ≤ N} = SL ∪ SU .

Because the diagonal elements represent the individual variances of the idiosyncratic com-

ponents, we assume (i, i) ∈ SU for all i ≤ N. The sparsity assumes that most of the indices

(i, j) belong to SL when i 6= j. A special case arises when Σu0 is strictly sparse, in the sense

that its elements in small magnitudes (SL) are exactly zero. For the banded matrix as an

example,

Σu0,ij 6= 0 if |i− j| ≤ k; Σu0,ij = 0 if |i− j| > k

12



for some fixed k. Then SL = {(i, j) : |i− j| > k} and SU = {(i, j) : |i− j| ≤ k}.
The following assumption quantifies the “small” and “big” entries of Σu0. By “small”

entries we mean those of smaller order than ωT = N−1/2 + T−1/2(logN)1/2. The partition

{(i, j) : i ≤ N, j ≤ N} = SL ∪ SU may not be unique. Our analysis suffices as long as such

a partition exists.

Assumption 3.6. There is a partition {(i, j) : i ≤ N, j ≤ N} = SL∪SU such that (i, i) ∈ SU

for all i ≤ N and SL is nonempty. In addition,

max
(i,j)∈SL

|Σu0,ij| ≪ ωT ≪ min
(i,j)∈SU

|Σu0,ij|.

The conditional sparsity assumption requires most off-diagonal entries of Σu0 be inside

SL, hence it is reasonable to have SL 6= ∅ in the condition. It is likely that SU only contains

the diagonal elements. It then essentially corresponds to the strict factor model where Σu0 is

almost a diagonal matrix and error terms are only weakly cross-sectionally correlated. That

is also a special case of Assumption 3.6.

Theorem 3.3. Under Assumption 3.6 and those of Theorem 3.2, for any ǫ > 0 and M > 0,

there is an integer N0 > 0 such that as long as T and N > N0,

P (Σ̂
(1)
u,ij = 0, ∀(i, j) ∈ SL) > 1− ǫ,

P (|Σ̂(1)
u,ij| > MωT , ∀(i, j) ∈ SU) > 1− ǫ.

It was shown by Fan et al. (2012) that ‖(Σ̂(1)
u )−1 − Σ−1

u0 ‖ = Op(mNω
1−q
T ). Theorem 3.4

below demonstrates a strengthened convergence rate for the averaged estimation error.

Assumption 3.7. There is c > 0 such that ‖Σ−1
u0 ‖1 < c.

In addition to Assumptions 3.1 and 3.6, we require the following condition on the sparsity

of Σu0, which further characterizes SL and SU :

Assumption 3.8. The index sets SL and SU satisfy:
∑

i 6=j,(i,j)∈SU
1 = O(N) and

∑
(i,j)∈SL

|Σu0,ij| = O(1).

Assumption 3.8 requires that the number of off-diagonal large entries of Σu0 be of order

O(N), and that the absolute sum of the small entries is bounded. This assumption is

satisfied, for example, if {uit}i≤N follows an heteroskedastic MA(p) process with a fixed

p, where
∑

i 6=j,(i,j)∈SU
1 = O(N) and

∑
(i,j)∈SL

|Σu0,ij| = 0. It is also satisfied by banded

13



matrices (Bickel and Levina 2008b, Cai and Yuan 2012) and block-diagonal matrices with

fixed block size.

Define an r ×N matrix Ξ = Λ′
0Σ

−1
u0 = (ξ1, ..., ξN). Then ‖Σ−1

u0 ‖1 < c implies

max
j≤N

‖ξj‖ = max
j≤N

‖
N∑

i=1

λ0i(Σ
−1
u0 )ij‖ ≤ ‖Σ−1

u0 ‖1 max
j≤N

‖λ0j‖ < ∞.

The following assumption corresponds to those of PCA in Bai (2003), and also extends

to the non-diagonal Σu0.

Assumption 3.9. (i) E‖ 1√
TN

∑T
s=1 fs(u

′
sut − Eu′

sut)‖2 = O(1)

(ii) For each element di,kl of ξiξ
′
i (k, l ≤ r),

1
N
√
NT

∑N
j=1

∑N
i=1

∑T
t=1(uitujt − Euitujt)λ0iλ

′
0jdi,kl = Op(1),

1√
NT

∑N
i=1

∑T
t=1(u

2
it − Eu2

it)ξiξ
′
i = Op(1).

(iii) For each element dij,kl of ξiξ
′
j,

1
N
√
NT

∑
i 6=j,(i,j)∈SU

∑T
t=1

∑N
v=1(uituvt − Euituvt)λ0jλ

′
0vdij,kl = Op(1),

1√
NT

∑
i 6=j,(i,j)∈SU

∑T
t=1(uitujt − Euitujt)ξiξ

′
j = Op(1).

Under Assumption 3.9, we can achieve the following improved rate of convergence for the

averaged estimation error Σ̂
(1)
u − Σu0:

Theorem 3.4. Under the assumptions of Theorem 3.3 and Assumption 3.9,

1

N
‖Λ′

0[(Σ̂
(1)
u )−1 − Σ−1

u0 ]Λ0‖F = Op(m
2
Nω

2−2q
T ).

Remark 3.2. 1. A simple application of

‖(Σ̂(1)
u )−1 − Σ−1

u0 ‖ = Op(mNω
1−q
T ) by Fan et al. (2012) yields

1
N
‖Λ′

0[(Σ̂
(1)
u )−1−Σ−1

u0 ]Λ0‖F = Op(mNω
1−q
T ). In contrast, the rate we present in Theorem

3.4 requires more refined asymptotic analysis. It shows that after weighted by the factor

loadings, the averaged convergence rate is faster.

2. The condition on the large-entry-set SU in Assumption 3.8 can be relaxed a bit to
∑

i 6=j,(i,j)∈SU
1 = O(N1+ǫ) for an arbitrarily small ǫ > 0, which will allow less sparse

covariances. For example, Suppose {uit}i≤N follows a cross sectional AR(1) process

such that

uit = ρui−1,t + eit

for |ρ| < 1 and {eit}i≤N,t≤T being independent across both i and t. We can then find

a partition SL ∪ SU such that
∑

(i,j)∈SL
|Σu0,ij| = O(1) and

∑
i 6=j,(i,j)∈SU

1 = O(N1+ǫ)

for any ǫ > 0. Theorems 3.4 and 3.5 below still hold. But conditions in Assumption

14



3.9 need to be adjusted accordingly. For example, in condition (iii) the normalizing

constant 1
N
√
N

in the first equation should be changed to 1
Nǫ+3/2 , and

1√
N

in the second

equation should be changed to 1
N(1+ǫ)/2 . The current Assumption 3.9, on the other

hand, keeps our presentation simple.

3.4.3 Limiting distribution

As a result of Theorem 3.4, the impact of estimating Σu0 at step one is asymptotically

negligible. This enables us to achieve the
√
T -consistency and the limiting distribution of

λ̂
(1)
j for each j. We impose further assumptions.

Assumption 3.10. (i) 1
N
√
NT

∑N
i=1

∑N
j=1

∑T
t=1(uitujt − Euitujt)ξiξ

′
j = Op(1).

For each j ≤ N , 1√
NT

∑N
i=1

∑T
t=1(uitujt − Euitujt)ξi = Op(1).

(iii) 1√
NT

∑N
i=1

∑T
t=1 ξiuitf

′
t = Op(1).

Theorem 3.5. Suppose 0 ≤ q < 1/2, and T = o(N2−2q). In addition, m2
Nω

2−2q
T = o(T−1/2).

Then under the assumptions of Theorem 3.4 and Assumption 3.10, for each j ≤ N ,

√
T (λ̂

(1)
j − λ0j) →d Nr (0, E(ujtftf

′
t)) .

We make some technical remarks regarding Theorem 3.5.

Remark 3.3. 1. The condition m2
Nω

2−2q
T = o(T−1/2) (roughly speaking, this is mN =

o(T 1/4) when N is very large and q = 0) strengthens the sparsity condition of Assump-

tion 3.1. The required upper bound for mN is tight. Roughly speaking, the estimation

error of Σ̂
(1)
u plays a role in the asymptotic expansion of

√
T (λ̂

(1)
j − λ0j) only through

an averaged term as in Theorem 3.4. Condition m2
Nω

2−2q
T = o(T−1/2) is required for

that term to be asymptotically negligible.

2. The asymptotic normality also holds jointly for finitely many estimators. For any finite

and fixed k, we have,

√
T (λ̂

(1)′

1 − λ′
01, · · · , λ̂(1)′

k − λ′
0k)

′ →d Nkr(0, E[cov(uk
t |ft)⊗ ftf

′
t ]).

where cov(uk
t |ft) = cov(u1t, ..., ukt|ft).

3. If Assumption 3.10(i) is replaced by a uniform convergence, by assuming

maxj≤N ‖ 1√
NT

∑N
i=1

∑T
t=1(uitujt − Euitujt)ξi‖ = Op(

√
N logN), we can then improve
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the uniform rate of convergence in Theorem 3.2 and obtain

max
j≤N

‖λ̂(1)
j − λ0j‖ = Op(

√
logN

T
).

3.4.4 Estimation of common factors

For the limiting distribution of f̂
(1)
t , we make the following additional assumption:

Assumption 3.11. There is a positive definite matrix Q such that for each t ≤ T,

1

N
Λ′

0Σ
−1
u0Λ0 → Q,

1√
N
Λ′

0Σ
−1
u0 ut =

1√
N

N∑

j=1

ξjujt → Nr(0, Q).

For the next assumption, we define βt = Σ−1
u0 ut. Then βt has mean zero and covariance

matrix Σ−1
u0 .

Assumption 3.12. For any fixed t ≤ T ,

(i) 1√
NT

∑T
s=1

∑N
i=1 fsuisβit = Op(1),

1
NT

√
N

∑N
i=1

∑N
j=1

∑T
s=1 ξi(uisujs − Euisujs)βjt = op(1)

1
T
√
N

∑N
i=1

∑T
s=1(u

2
is − Eu2

is)ξiβit = op(1)
1

T
√
N

∑
i 6=j,(i,j)∈SU

∑T
s=1(uisujs − Euisujs)ξiβjt = op(1).

(ii) For each k ≤ r,
1

NT
√
N

∑N
i=1

∑N
j=1

∑T
s=1(uisujs − Euisujs)λ0iλ

′
0jξikβit = op(1),

1
NT

√
N

∑
i 6=j,(i,j)∈SU

∑T
s=1

∑N
l=1(uisuls − Euisuls)λ0jλ

′
0lξikβjt = op(1).

Theorem 3.6. Under the assumptions of Theorem 3.5, we have for each fixed t ≤ T ,

‖f̂ (1)
t − ft‖ = Op(mNω

1−q
T (log T )1/r1+1/r2).

where r1, r2 > 0 are defined in Assumption 3.2.

If in addition Assumptions 3.11, 3.12 are satisfied and
√
Nm2

Nω
2−2q
T = o(1). Then when

T 1/(2−2q) ≪ N ≪ T 2−2q, √
N(f̂

(1)
t − ft) →d N(0, Q−1).

Remark 3.4. 1. It follows from Theorem 3.6 that for each fixed t, f̂
(1)
t is a root- N

consistent estimator of ft. Root- N consistency for the estimated common factors also

holds for the principal components estimator as in Bai (2003). In addition, the above

limiting distribution holds only when N = o(T 2).
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2. If we strengthen the assumption to maxt≤T ‖ 1√
N

∑N
i=1 ξiuit‖ = Op(log T ), then the

uniform rate of convergence can be achieved:

max
t≤T

‖f̂ (1)
t − ft‖ = Op(mNω

1−q
T (log T )1/r1+1/r2+1).

To compare this rate with that of the PCA estimator, we consider for simplicity, the

strictly sparse case q = 0. Then when N = o(T 3/2) and mN is either bounded or

growing slowly (m2
N ≪ min{

√
T , T 3/2/N}), the above rate is faster than that of the

PCA estimator. (The above rate is Op((log T )
1/r1+1/r2/

√
N) when N = O(T ), whereas

the uniform convergence rate for PCA estimator is Op(T
1/4/

√
N).)

4 Joint Estimation

4.1 l1- penalized maximum likelihood

One can also jointly estimate (Λ0,Σu0) to take into account the cross-sectional dependence

and heteroskedasticity simultaneously. As in the sparse covariance estimation literature (e.g.,

Lam and Fan 2009, Bien and Tibshirani 2011), we penalize the off-diagonal elements of

the error covariance estimator, and minimize the following weighted-l1 penalized objective

function, motivated by a penalized Gaussian likelihood function:

(Λ̂(2), Σ̂(2)
u ) = arg min

(Λ,Σu)∈Θλ×Γ
L2(Λ,Σu)

= arg min
Λ∈Θλ×Γ

1

N
log | det(ΛΛ′ + Σu)|+

1

N
tr(Sy(ΛΛ

′ + Σu)
−1)

+
1

N

∑

i 6=j

µTwij|Σu,ij|, (4.1)

where Γ is the parameter space for Σu, to be defined later. We introduce the weighted

l1-penalty N−1µT

∑
i 6=j wij|Σu,ij| with wij ≥ 0 to penalize the inclusion of many off-diagonal

elements of Σu,ij in small magnitudes, which therefore produces a sparse estimator Σ̂
(2)
u .

Here µT is a tuning parameter that converges to zero at a not-too-fast rate; wij is an entry-

dependent weight parameter, which can be either deterministic or stochastic. Popular choices

of wij in the literature include:

Lasso The choice wij = 1 for all i 6= j gives the well-known Lasso penaltyN−1µT

∑
i 6=j |Σu,ij|

studied by Tibshirani (1996). The Lasso penalty puts an equal weight to each element

of the idiosyncratic covariance matrix.
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Adaptive-Lasso Let Σ̂∗
u,ij be a preliminary consistent estimator of Σu0,ij. Let wij =

|Σ̂∗
u,ij|−γ for some γ > 0, then

µT

N

∑

i 6=j

wij|Σu,ij| =
µT

N

∑

i 6=j

|Σ̂∗
u,ij|−γ|Σu,ij|

corresponds to the adaptive-lasso penalty proposed by Zou (2006). Note that the

adaptive-lasso puts an entry-adaptive weight on each off-diagonal element of Σu, whose

reciprocal is proportional to the preliminary estimate. If the true element Σu0,ij ∈ SL,

the weight |Σ̂∗
u,ij|−γ should be quite large, and results in a heavy penalty on that entry.

The preliminary estimator Σ̂∗
u,ij can be taken, for example, as the PCA estimator

Σ̂PCA
u,ij = T−1

∑T
t=1 û

PCA
it ûPCA′

jt . It was shown by Bai (2003) that under mild conditions,

Σ̂PCA
u,ij − Σu0,ij = Op(N

−1/2 + T−1/2).

SCAD: Fan and Li (2001) proposed to use, for some a > 2 (e.g, a = 3.7)

wij = I(|Σ̂∗

u,ij |≤µT ) +
(a− |Σ̂∗

u,ij|/µT )+

a− 1
I(|Σ̂∗

u,ij |>µT ).

The notation z+ stands for the positive part of z; z+ is z if z > 0, zero otherwise.

Here Σ̂∗
u,ij is still a preliminary consistent estimator, which can be taken as the PCA

estimator.

4.2 Consistency of the joint estimation

We assume the parameter space for Σu0 to be, for some known sufficiently large M > 0,

Γ = {Σu : ‖Σu‖1 < M, ‖Σ−1
u ‖1 < M}.

Then Σu0 ∈ Γ implies that all the eigenvalues of Σu0 are bounded away from both zero and

infinity. There are many examples where both the covariance and its inverse have bounded

row sums. For example, for each t, when {uit}Ni=1 follows a cross sectional autoregressive

process AR(p) for some fixed p, then the maximum row sum of Σu0 is bounded. The inverse

of Σu0 is a banded matrix, whose maximum row sum is also bounded.

As before we assume T−1
∑T

t=1 ftf
′
t = Ir and Λ′

0Σ
−1
u0Λ be diagonal for identification. In

addition, Assumptions 3.2 and 3.3 for the two-step estimation are still needed. Those con-

ditions such as strong mixing, weakly dependence and bounded eigenvalues of N−1Λ′
0Λ0

regulate the data generating process, and asymptotically identify the covariance decomposi-

tion (2.1).
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The conditions for the partition {(i, j) : i, j ≤ N} = SL ∪ SU of Σu0 are replaced by the

following, which are weaker than those of two-step estimation in Assumption 3.8. Define the

number of off-diagonal large entries:

D =
∑

i 6=j,(i,j)∈SU

1. (4.2)

Assumption 4.1. There exists a partition {(i, j) : i ≤ N, j ≤ N} = SL ∪ SU where SU and

SL are disjoint, which satisfies:

(i) Σu0,ii ∈ SU for all i ≤ N ,

(ii) D = o(min{N
√

T/ logN,N2/ logN}),
(iii)

∑
(i,j)∈SL

|Σu0,ij| = o(N).

The following assumption is imposed on the penalty parameters. Define the weights

ratios

αT =
maxi 6=j,(i,j)∈SU

wij

min(i,j)∈SL
wij

, βT =
max(i,j)∈SL

wij

min(i,j)∈SL
wij

.

Assumption 4.2. The tuning parameter µT and the weights {wij}i≤N,j≤N satisfy:

(i)

αT = op

[
min

{√
T

logN

N

D
,

(
T

logN

)1/4
√

N

D
,

N√
D logN

}]
,

βT

∑

(i,j)∈SL

|Σu0,ij| = op(N),

(ii) µT max(i,j)∈SL
wij

∑
(i,j)∈SL

|Σu0,ij| = o(min{N,N2/D,N2/(Dα2
T )}),

µT maxi 6=j,(i,j)∈SU
wij = o(min{N/D,

√
N/D,N/(DαT )}),

µT min(i,j)∈SL
wij ≫

√
logN/T + (logN)/N.

The above assumption is not as complicated as it looks, and is satisfied by many examples.

For instance, the Lasso penalty sets wij = 1 for all i, j ≤ N . Hence αT = βT = 1. Then

condition (i) of Assumption 4.2 follows from Assumption 4.1(ii), which is also satisfied if

D = O(N). Condition (ii) is also straightforward to verify. This immediately implies the

following lemma.

Lemma 4.1 (Lasso). Choose wij = 1 for all i, j ≤ N, i 6= j. Suppose in addition D = O(N)

and logN = o(T ). Then Assumption 4.2 is satisfied if the tuning parameter µT = o(1) is

such that √
logN

T
+

logN

N
= o(µT ).
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One of the attractive features of this lemma is that the condition on µT does not depend

on the unknown Σu0. We will present the adaptive lasso and SCAD as another two examples

of the weighted-l1 penalty in Section 4.3 below, both satisfy the above assumption.

Our main theorem is stated as follows.

Theorem 4.1. Suppose logN = o(T ). Under Assumptions 3.2, 3.3, 3.7, 4.1, and 4.2, the

penalized ML estimator satisfies: as T and N → ∞,

1

N
‖Σ̂(2)

u − Σu0‖2F →p 0,
1

N
‖Λ̂(2) − Λ0‖2F →p 0.

For each t ≤ T ,

‖f̂ (2)
t − ft‖ = op(1).

Remark 4.1. 1. The consistency for f̂
(2)
t can be made uniformly in t ≤ T if the condition

is strengthened to maxt≤T ‖N−1/2
∑N

i=1 ξiuit‖ = op(
√
N).

2. To establish the consistency in the high dimensional literature, one usually constructs

a neighborhood of the true parameters (Λ0,Σu0) ∈ U (e.g., Rothman et al. 2008,

Lam and Fan 2009), and show that with probability approaching one, L2(Λ0,Σu0) >

sup(Λ,Σu)/∈U L2(Λ,Σu). This strategy however, does not work here due to the technical

difficulty in dealing with the term (ΛΛ′ + Σu) in the likelihood function, because its

largest r eigenvalues are unbounded and grow at rate O(N) uniformly in the parameter

space. One of the contributions of Theorem 4.1 is to achieve consistency using a

new strategy to deal with the penalized likelihood function, which involves diverging

eigenvalues.

In this paper we only present the consistency for the joint estimation, which is already

technically difficult as one needs to deal with an equilibrium of the first order conditions for

both (Λ̂(2), Σ̂
(2)
u ) simultaneously. Deriving the limiting distributions for the joint estimators

is difficult, and we leave this as a future topic.

4.3 Two examples

We present two popular choices for the weights as examples: one is adaptive lasso, pro-

posed by Zou (2006), and the other is SCAD by Fan and Li (2001). Both weights depend on

a preliminary consistent estimate of each element of Σu0. In the high dimensional approx-

imate factor model, a simple consistent estimate for each element can be obtained by the

principal component analysis (Stock and Watson 1998 and Bai 2003).
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To simplify the presentation, we will assume that D = O(N), which controls the number

of off-diagonal large entries of Σu0. Moreover, we retain Assumption 3.6:

max{|Σu0,ij| : (i, j) ∈ SL} ≪ ωT ≪ min{|Σu0,ij| : Σu0,ij ∈ SU},

and recall that ωT =
√

logN
T

+ 1√
N
.

Let the initial estimate Σ̂∗
u,ij = Rij, where Rij is the PCA estimator of Σu0,ij as in Bai

(2003). The adaptive lasso chooses the weights to be, for some constant γ ∈ (0, 1],

(Adaptive Lasso) : wij = (|Σ̂∗
u,ij|+ δT )

−γ, (4.3)

where δT = o(1) is a pre-determined nonnegative sequence. The additive δT was not included

in the original definition of adaptive lasso in Zou (2006), but has often been seen in recent

literature, e.g., Xue and Zou (2012). We include it here in the weights to prevent wij getting

too large if |Σ̂∗
u,ij| is very close to zero. The adaptive lasso has been used extensively in the

high dimensional literature, see for example, Huang, Ma and Zhang (2006), van de Geer,

Bühlmann and Zhou (2011), Caner and Fan (2011), etc.

Another important example is SCAD, defined as: for some a > 2,

(SCAD) : wij = I(|Σ̂∗

u,ij |≤µT ) +
(a− |Σ̂∗

u,ij|/µT )+

a− 1
I(|Σ̂∗

u,ij |>µT ). (4.4)

We have the following theorem.

Theorem 4.2. Suppose either the Adaptive Lasso or SCAD is used for the weighted-l1 pe-

nalized objective function. Also, suppose logN = o(T ), D = O(N),
∑

(i,j)∈SL
|Σu0,ij| = o(N)

and Assumptions 3.2, 3.3, 3.7, 4.1 hold. In addition, assume the tuning parameters are such

that:

(i) for Adaptive Lasso,

ωT

(∑
(i,j)∈SL

|Σu0,ij|
N

)1/γ

≪ δT ≪ ωT , (4.5)

ω1+γ
T ≪ µT ≪ ωγ

T ; (4.6)

(ii) for SCAD:

(
logN

T

)1/4

+

(
logN

N

)1/2

≪ µT ≪ min
i 6=j,(i,j)∈SU

|Σu0,ij|. (4.7)
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Then Assumption 4.2 is satisfied, and

1

N
‖Σ̂(2)

u − Σu0‖2F = op(1),
1

N
‖Λ̂(2) − Λ0‖2F = op(1).

‖f̂ (2)
t − ft‖ = op(1).

As in the case of Lemma 4.1, an attractive feature of this theorem is that, if both the

upper bound of
∑

(i,j)∈SL
|Σu0,ij| and the lower bound of

mini 6=j,(i,j)∈SU
|Σu0,ij| are known, [e.g., in the strictly sparse model,

∑
(i,j)∈SL

|Σu0,ij| = 0, and assume mini 6=j,(i,j)∈SU
|Σu0,ij| is bounded away from zero as in

MA(1)] then Conditions (4.5) - (4.7) do not depend on any other unknown feature of Σu0.

5 Numerical Examples

We propose a novel algorithm to numerically minimize the objective function L2(Λ,Σu)

(4.1) for joint estimation, which combines the EM algorithm with the majorize-minimize

method recently proposed by Bien and Tibshirani (2011). The algorithm uses the PCA as

initial values, and updates the estimator iteratively. At each iteration, an EM-algorithm is

carried out to estimate Λ and the empirical residual covariance 1
T

∑T
t=1 ûtû

′
t. Then a majorize-

minimize method (Bien and Tibshirani 2011) is used to obtain a positive definite estimate of

the covariance Σu based on 1
T

∑T
t=1 ûtû

′
t and soft-thresholding. The algorithm is summarized

as follows (see Bai and Li (2012) and Bien and Tibshirani (2011) for detailed descriptions of

the algorithm).

1. Initialize Λ̂ and û as the PCA estimators. Initialize Σ̂u as a diagonal matrix of the

sample covariance based on the PCA residuals.

2. At step k+1, Λ̂k+1 = AM−1, where

M = Λ̂′
kΣ̂

−1
y,kSyΣ̂

−1
y,kΛ̂k + Ir − Λ̂′

kΣ̂
−1
y,kΛ̂k,

A = SyΣ̂
−1
y,kΛ̂k, Σ̂y,k = Λ̂kΛ̂

′
k + Σ̂u,k.

Let Su,k = Sy − AΛ̂′
k+1 − Λ̂k+1A

′ + Λ̂k+1M Λ̂′
k+1.

3. Still at step k + 1, For some small value t > 0 , let B = Σ̂u,k − t(Σ̂−1
u,k − Σ̂−1

u,kSu,kΣ̂
−1
u,k).

Let

Σ̂u,k+1 = S(B, λtK)
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where S(A,B)ij = sign(Aij)(Aij − Bij) and K is a matrix whose off-diagonal Kij is

|(Su,k)ij|−γ and diagonal elements are zero.

4. Repeat 2-3 until converge.

We present a numerical experiment to illustrate the performance of the proposed method.

The data was generated as following: {eit}i≤N,t≤T are both serially and cross-sectionally

independent as N(0, 1). Let

u1t = e1t, u2t = e2t + a1e1t, u3t = e3t + a2e2t + b1e1t,

ui+1,t = ei+1,t + aieit + bi−1ei−1,t + ci−2ei−2,t,

where {ai, bi, ci}Ni=1 are i.i.d. N(0, 0.72). Let the two factors {f1t, f2t} be i.i.d. N(0, 1), and

{λi,1, λi,2}i≤N be uniform on [0, 1]. Then Σu0 is a banded matrix.

We apply the adaptive lasso penalty for our joint estimation, with various choices of the

tuning parameters γ and µT . The result is compared with the PCA estimator and the regular

maximum likelihood restricted to diagonal Σ̂u (DML, Bai and Li 2012). More specifically,

DML estimates (Λ0,Σu0) by:

min
Σu,ij=0 for i 6=j

min
Λ

1

N
log |ΛΛ′ + Σu|+

1

N
tr(Sy(ΛΛ

′ + Σu)
−1). (5.1)

Therefore DML forces the covariance estimator to be diagonal even though the true Σu0 is

not. Hence it does not take the idiosyncratic cross-sectional dependence into account.

For each estimator, the smallest canonical correlation (the higher the better) between

the estimator and the parameter has been used as a measurement to assess the accuracy of

each estimator. Tables 1 and 2 list the results of the estimated factor loadings and common

factors from joint-estimation.

We have also computed the canonical correlations between the estimators and the true

parameters using the regularized two-step method (Section 3) with iterations. For compu-

tational simplicity, the threshold value in the first step has been fixed to be the adaptive

threshold of Fan et al. (2012) with a universal constant C = 1, which we find to maintain the

finite-sample positive definiteness well. The results demonstrate that both two-step and joint

estimations have higher canonical correlations, and thus outperform the PCA and DML.

Our EM plus majorize-minimize algorithm maximizes an approximate penalized like-

lihood function. Developing an efficient algorithm for maximizing the original likelihood

function will be a future research direction.
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Table 1: Canonical correlations between Λ̂(2) and Λ0

PCA DML
Penalized ML

γ = 1 γ = 5
T N µT = 0.08 µT = 0.3 µT = 0.08 µT = 0.3
50 50 0.205 0.199 0.212 0.222 0.230 0.234
50 100 0.429 0.558 0.591 0.613 0.627 0.631
50 150 0.328 0.470 0.494 0.495 0.515 0.507

100 50 0.496 0.519 0.560 0.537 0.558 0.537
100 100 0.394 0.574 0.621 0.648 0.648 0.658
100 150 0.774 0.819 0.837 0.829 0.840 0.836

Canonical correlations are presented. DML is defined in (5.1) which treats Σu to be diagonal.
Penalized ML uses the one-step adaptive Lasso estimation.

Table 2: Canonical correlations between F̂ (2) and F

PCA DML
Penalized ML

γ = 1 γ = 5
T N µT = 0.08 µT = 0.3 µT = 0.08 µT = 0.3
50 50 0.232 0.234 0.251 0.267 0.279 0.283
50 100 0.477 0.640 0.671 0.732 0.748 0.749
50 150 0.411 0.599 0.623 0.638 0.666 0.650

100 50 0.430 0.446 0.503 0.473 0.508 0.474
100 100 0.371 0.579 0.647 0.688 0.687 0.697
100 150 0.820 0.867 0.880 0.892 0.912 0.903

Canonical correlations are presented. Penalized ML uses the one-step adaptive Lasso estimation.
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Table 3: Canonical correlations between the regularized two-step ML estimators (Section 3)
and the true parameters

Factor loadings Factors
T N PCA DML Two-step PCA DML Two-step

ML ML
50 50 0.205 0.199 0.241 0.232 0.234 0.277
50 100 0.429 0.558 0.643 0.477 0.640 0.752
50 150 0.328 0.470 0.565 0.411 0.599 0.731

100 50 0.496 0.519 0.548 0.430 0.446 0.469
100 100 0.394 0.574 0.717 0.371 0.579 0.758
100 150 0.774 0.819 0.846 0.820 0.867 0.927

The SCAD(τij) threshold has been used for the covariance estimation, where τij = αijωT with the
adaptive threshold constant αij proposed by Cai and Liu (2011).

6 Conclusion

We study the estimation of a high dimensional approximate factor model in the presence

of cross sectional dependence and heteroskedasticity. The classical PCA method does not

efficiently estimate the factor loadings or common factors because it essentially treats the

idiosyncratic error to be homoskedastic and cross sectionally uncorrelated. For the efficient

estimation it is essential to estimate a large error covariance matrix.

We assume the model to be conditionally sparse in the sense that after the common

factors are taken out, the idiosyncratic components have a sparse covariance matrix. This

enables us to combine the merits of both sparsity and high dimensional factor analysis.

Two maximum-likelihood-based approaches are proposed to estimate the common factors

and factor loadings, both involve regularizing a large covariance sparse matrix. Extensive

asymptotic analysis has been carried out. In particular, we develop the inferential theory

for the two-step estimation.

It remains to derive the limiting distribution as well as the optimal rates of convergence

for the estimators by the joint-estimation method. This will extend the consistency results

obtained in the current paper. In the presence of a covariance Λ0Λ
′
0 that has fast-diverging

eigenvalues, the task is difficult because it requires the consistency of the penalized covariance

estimator under the operator norm. We intend to address this issue in future research.
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A Proofs for generic estimators

We need to establish the results for two sets of estimators: the two-step estimator and

the joint estimator, whose proofs for consistency share some similarities. Therefore in this

section we establish some preliminary results for generic estimators that can be used for

both cases. We denote by (Λ̂, Σ̂u) as a generic estimator for (Λ0,Σu0), which can be either

(Λ̂(1), Σ̂
(1)
u ) or (Λ̂(2), Σ̂

(2)
u ). Define

Q2(Λ,Σu) =
1

N
tr(Λ′

0Σ
−1
u Λ0 − Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0), (A.1)

Q3(Λ,Σu) =
1

N
log |ΛΛ′+Σu|+

1

N
tr(Sy(ΛΛ

′+Σu)
−1)− 1

N
tr(SuΣ

−1
u )− 1

N
log |Σu|−Q2(Λ,Σu).

(A.2)

Define the set

Ξδ = {(Λ,Σu) : δ−1 < λmin(N
−1Λ′Λ) ≤ λmax(N

−1Λ′Λ) < δ,

δ−1 < λmin(Σu) ≤ λmax(Σu) < δ}

We first present a lemma that will be needed throughout the proof.

Lemma A.1. (i) maxi,j≤r | 1T
∑T

t=1 fitfjt − Efitfjt| = Op(
√

1/T ).

(ii) maxi,j≤N | 1
T

∑T
t=1 uitujt − Euitujt| = Op(

√
(logN)/T ).

(iii) maxi≤r,j≤N | 1
T

∑T
t=1 fitujt| = Op(

√
(logN)/T ).

Proof. See Lemmas A.3 and B.1 in Fan, Liao and Mincheva (2011).

Lemma A.2. Under Assumption 3.2, for any δ > 0,

sup
(Λ,Σu)∈Ξδ

|Q3(Λ,Σu)| = O

(
logN

N
+

√
logN

T

)
.

Therefore we can write

1

N
log |ΛΛ′ + Σu|+

1

N
tr(Sy(ΛΛ

′ + Σu)
−1)

=
1

N
tr(SuΣ

−1
u ) +

1

N
log |Σu|+Q2(Λ,Σu) +O

(
logN

N
+

√
logN

T

)
. (A.3)

Proof. First of all, note that |ΛΛ′ +Σu| = |Σu| × |Ir +Λ′Σ−1
u Λ|, and sup(Λ,Σu)∈Ξδ

1
N
log |Ir +
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Λ′Σ−1
u Λ| = O

(
logN
N

)
, hence we have

1

N
log |ΛΛ′ + Σu| =

1

N
log |Σu|+O

(
logN

N

)
, (A.4)

where O(·) is uniform in Ξδ. Equation (A.4) will be used later in the proof.

We now consider the term N−1tr(Sy(ΛΛ
′ + Σu)

−1). With the identification condition
1
T

∑T
t=1 ftf

′
t = Ir, f̄ = 0, and Su = 1

T

∑T
t=1 utu

′
t,

Sy =
1

T

T∑

t=1

(yt − ȳ)(yt − ȳ)′ = Λ0Λ
′
0 + Su + Λ0

1

T

T∑

t=1

ftu
′
t + (Λ0

1

T

T∑

t=1

ftu
′
t)

′ − ūū′.

By the matrix inversion formula (ΛΛ′ + Σu)
−1 = Σ−1

u − Σ−1
u Λ(Ir + Λ′Σ−1

u Λ)−1Λ′Σ−1
u ,

1

N
tr(Sy(ΛΛ

′ + Σu)
−1) =

1

N
tr(Λ′

0Σ
−1
u Λ0) +

1

N
tr(SuΣ

−1
u )− A1 + A2 + A3 − A4 − A5, (A.5)

where A1 = N−1tr(Λ0Λ
′
0Σ

−1
u Λ(Ir+Λ′Σ−1

u Λ)−1Λ′Σ−1
u ), A2 =

1
N
tr( 1

T

∑T
t=1 Λ0ftu

′
t(ΛΛ

′+Σu)
−1),

A3 =
1
N
tr( 1

T

∑T
t=1 utf

′
tΛ

′
0(ΛΛ

′+Σu)
−1), and A4 =

1
N
tr(SuΣ

−1
u Λ(Ir+Λ′Σ−1

u Λ)−1Λ′Σ−1
u ). Term

A5 = N−1tr(ūū′(ΛΛ′+Σu)
−1) = Op((logN)/T ) uniformly in the parameter space, and hence

can be ignored.

Let us look at terms A1, A2, A3 and A4 subsequently. Note that λmax(Σu) and Nλ−1
min(Λ

′Λ)

are both bounded from above uniformly in Ξδ, we have,

sup
(Λ,Σu)∈Ξδ

λmax[(Λ
′Σ−1

u Λ)−1] ≤ sup
(Λ,Σu)∈Ξδ

λmax(Σu)

λmin(Λ′Λ)
= O(N−1), (A.6)

sup
(Λ,Σu)∈Ξδ

λmax[(Ir + Λ′Σ−1
u Λ)−1] ≤ sup

(Λ,Σu)∈Ξδ

λmax[(Λ
′Σ−1

u Λ)−1] = O(N−1). (A.7)

In addition, ‖Λ‖F = O(
√
N), λmax(Σ

−1
u ) = O(1) uniformly in Ξδ, and ‖Λ0‖F = O(

√
N).

Applying the matrix inversion formula yields

A1 =
1

N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0)−

1

N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1(Ir + Λ′Σ−1
u Λ)−1Λ′Σ−1

u Λ0)

=
1

N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0) +O

(
1

N

)
, (A.8)

where O(·) is uniform over (Λ,Σu) ∈ Ξδ. In the second equality above we applied (A.6) and

(A.7) and the following inequality:

1

N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1(Ir + Λ′Σ−1
u Λ)−1Λ′Σ−1

u Λ0)
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≤ 1

N
‖Λ′

0Σ
−1
u Λ‖2Fλmax[(Λ

′Σ−1
u Λ)−1]λmax[(Ir + Λ′Σ−1

u Λ)−1]

≤ O(N−3)‖Λ0‖2F‖Λ‖2Fλmax(Σ
−1
u ) = O(N−1).

By Lemma A.1(iii), and λmax((ΛΛ
′ + Σu)

−1) ≤ λmax(Σ
−1
u ) = O(1) uniformly in Ξδ,

sup
(Λ,Σu)∈Ξδ

|A2| ≤ 1

N
‖Λ′

0(ΛΛ
′ + Σu)

−1‖F
∥∥∥∥∥
1

T

T∑

t=1

ftu
′
t

∥∥∥∥∥
F

= Op(

√
logN

T
). (A.9)

Similarly, sup(Λ,Σu)∈Ξδ
|A3| = Op(

√
logN
T

). Again by the matrix inversion formula,

A4 =
1

N
tr(SuΣ

−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u )− 1

N
tr(SuΣ

−1
u Λ(Λ′Σ−1

u Λ)−1(I + Λ′Σ−1
u Λ)−1Λ′Σ−1

u ).

The second term on the right hand side is of smaller order (uniformly) than the first term,

because it has an additional term (I + Λ′Σ−1
u Λ)−1, whose maximum eigenvalue is O(N−1)

uniformly by (A.7). The first term is bounded by (uniformly in Ξδ ):

c

N
‖SuΣ

−1
u Λ‖FO(N−1)‖Λ′Σ−1

u ‖F ≤ O(N−1)λmax(Su) = O(

√
logN

T
+

1

N
).

Hence sup(Λ,Σu)∈Ξδ
|A4| = O(T−1/2(logN)1/2 +N−1). Results (A.4) and (A.5) then yield

1

N
log |ΛΛ′ + Σu|+

1

N
tr(Sy(ΛΛ

′ + Σu)
−1)

=
1

N
tr(Λ′

0Σ
−1
u Λ0) +

1

N
tr(SuΣ

−1
u ) +

1

N
log |Σu| −

1

N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0)

+O

(
logN

N
+

√
logN

T

)

=
1

N
tr(SuΣ

−1
u ) +

1

N
log |Σu|+Q2(Λ,Σu) +O

(
logN

N
+

√
logN

T

)
.

Throughout the proofs, we note that the consistency depends crucially on the consistency

of the following quantities:

J = (Λ̂− Λ0)
′Σ̂−1

u Λ̂(Λ̂′Σ̂−1
u Λ̂)−1

We state the following lemma for the generic estimators.

Lemma A.3. (i) Λ′
0Σ

−1
u0Λ0 − (Ir − J)Λ̂′Σ̂−1

u Λ̂(Ir − J)′ = op(N)
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(ii) First order condition: Λ̂′(Λ̂Λ̂′ + Σ̂u)
−1(Sy − Λ̂Λ̂′ − Σ̂u) = 0.

We will prove Lemma A.3 for both (Λ̂(1), Σ̂
(1)
u ) and (Λ̂(2), Σ̂

(2)
u ) later when we deal with

these two estimators individually.

Lemma A.4. Suppose Lemma A.3 holds, then

(i) Λ̂′Σ̂−1
u (Sy − Λ̂Λ̂′ − Σ̂u) = 0.

(ii) (J − Ir)
′(J − Ir)− Ir = Op(N

−1 + T−1/2(logN)1/2).

Proof. (i) Using the matrix inverse formula, the same argument of Bai and Li (2012)’s (A.2)

implies Λ̂′(Λ̂Λ̂′ + Σ̂u)
−1 = (Ir + Λ̂′Σ̂−1

u Λ̂)−1Λ̂′Σ̂−1
u . Thus part (i) follows from the first order

condition in Lemma A.3.

(ii) Let H = (Λ̂′Σ̂−1
u Λ̂)−1. Part (i) can be equivalently written as J + J ′ − J ′J +K = 0

where

K = J ′ 1

T

T∑

t=1

ftu
′
tΣ̂

−1
u Λ̂H +HΛ̂′Σ̂−1

u

1

T

T∑

t=1

utf
′
tJ − 1

T

T∑

t=1

ftu
′
tΣ̂

−1
u Λ̂H −HΛ̂′Σ̂−1

u

1

T

T∑

t=1

utf
′
t

−HΛ̂′Σ̂−1
u (Su − Σ̂u)Σ̂

−1
u Λ̂H.

Note that for (Λ̂, Σ̂u) ∈ Ξδ, H = Op(N
−1), J = Op(1) for each element, ‖Σ̂−1

u ‖ = Op(1),

‖Λ̂‖F = Op(
√
N), hence

‖ 1
T

T∑

t=1

ftu
′
tΣ̂

−1
u Λ̂H‖F ≤ Op(1)‖

1

NT

T∑

t=1

ftu
′
t‖F‖Σ̂−1

u ‖‖Λ̂‖F = Op(
1

N

√
N logN

T

√
N) = Op(

√
logN

T
)

Moreover, for the empirical covariance ‖Su‖2 ≤ 2
∑

i,j≤N(T
−1
∑T

t=1 uitujt − σu0,ij)
2 +

2‖Σu0‖2 = Op(T
−1N2 logN + 1) by Lemma A.1, which implies HΛ̂′Σ̂−1

u SuΣ̂
−1
u Λ̂H =

Op(N
−1 + T−1/2(logN)1/2). Also, HΛ̂′Σ̂−1

u Σ̂uΣ̂
−1
u Λ̂H = H = Op(N

−1). Therefore K =

Op(N
−1 + T−1/2(logN)1/2). It then implies (ii).

Lemma A.5. Suppose Lemma A.3 holds, then J = op(1).

Proof. By our assumption, both Λ̂′Σ̂−1
u Λ̂ and Λ′

0Σ
−1
u0Λ are diagonal. Moreover, the eigen-

values of N−1Λ̂′Σ̂−1
u Λ̂ and N−1Λ′

0Σ
−1
u0Λ are bounded away from zero. Therefore by Lemma

A.3(i) and Lemma A.4(ii), there are two diagonal matrices M1 and M2 whose eigenvalues

are all bounded away from zero, such that

(Ir − J)M1(Ir − J)′ = M2 + op(1), (J − Ir)
′(J − Ir) = Ir + op(1) (A.10)
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Applying Lemma A.1 of Bai and Li (2012), we have J = op(1) and M1 = M2 + op(1). We

also assumed Λ̂ and Λ0 have the same column signs, as a part of identification condition.

B Proofs for Section 3

In this section, (Λ̂, Σ̂u) = (Λ̂(1), Σ̂
(1)
u ) and J = (Λ̂(1)−Λ0)(Σ̂

(1)
u )−1Λ̂(1)(Λ̂(1)′(Σ̂

(1)
u )−1Λ̂(1))−1.

Throughout Appendix B, we will let H = (Λ̂(1)′(Σ̂
(1)
u )−1Λ̂(1))−1. For notational simplicity,

we let

ωT =
1√
N

+

√
logN

T
.

We first cite a result from Fan et al. (2012):

Theorem B.1 (Theorem 3.1 in Fan et al. (2012)). Suppose (logN)6/γ = o(T ) and
√
T =

o(N), then under Assumptions 3.1- 3.5,

‖Σ̂(1)
u − Σu0‖ = Op

(
mNω

1−q
T

)
= ‖(Σ̂(1)

u )−1 − Σ−1
u0 ‖.

Proof. The sufficient conditions of this theorem are satisfied by our assumptions. See Fan

et al. (2012).

We then prove Lemma A.3, which then enables us to apply Lemmas A.4 and A.5. Under

Assumptions 3.1- 3.3, there is δ > 0 such that (Λ0,Σu0) ∈ Ξδ and (Λ̂(1), Σ̂
(1)
u ) ∈ Ξδ with

probability approaching one for Ξδ in Appendix A.

Lemma B.1. For (Λ̂, Σ̂u) = (Λ̂(1), Σ̂
(1)
u ), Lemma A.3 is satisfied.

Proof. The first order condition with respect to Λ̂(1) in (ii) is easy to verify, which is the

same as that in Bai and Li (2012). We only show part (i).

By definition, L1(Λ̂
(1)) ≤ L1(Λ0). Also the representation defined in Lemma A.2 yields

Q3(Λ,Σu) +Q2(Λ,Σu) = L1(Λ)−N−1tr(Su(Σ̂
(1)
u )−1) +N−1 log |Σ̂(1)

u |.

Thus

Q2(Λ̂
(1), Σ̂(1)

u ) +Q3(Λ̂
(1), Σ̂(1)

u ) ≤ Q2(Λ0, Σ̂
(1)
u ) +Q3(Λ0, Σ̂

(1)
u )

Note that Q2 is always nonnegative and Q2(Λ0, Σ̂
(1)
u ) = 0. Therefore by Lemma A.2, 0 ≤

Q2(Λ̂
(1), Σ̂

(1)
u ) = op(1). Moreover, the matrix in the trace operation of Q2 is semi-positive
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definite, hence

1

N
Λ′

0(Σ̂
(1)
u )−1Λ0 − (Ir − J)

1

N
Λ̂(1)′(Σ̂(1)

u )−1Λ̂(1)(Ir − J)′ = op(1). (B.1)

It remains to show that N−1Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0 = op(1), which follows immediately from

Theorem B.1 and that mNω
1−q
T = o(1).

B.1 Proof of Theorem 3.1

B.1.1 Consistency for Λ̂(1)

The equality (B.1) implies

1

N
(Λ̂(1) − Λ0)

′(Σ̂(1)
u )−1(Λ̂(1) − Λ0)−

1

N
JΛ̂(1)′(Σ̂(1)

u )−1Λ̂(1)J ′ = op(1).

The second term is bounded by N−1‖J‖2F‖Λ̂(1)‖2F‖(Σ̂(1)
u )−1‖ = Op(‖J‖2F ). Lemma A.5 then

implies the second term is op(1), which then implies that the first term is op(1). Because

(Σ̂
(1)
u )−1 has eigenvalues bounded away from zero asymptotically, we have N−1‖Λ̂(1)−Λ0‖2F =

op(1).

B.1.2 Consistency for λ̂
(1)
j

Lemma A.4 (i) can be equivalently written as: for any j ≤ N ,

λ̂
(1)
j − λ0j = −J ′λ0j +HΛ̂(1)′(Σ̂(1)

u )−1aj (B.2)

where Σ̂
(1)
u,j denotes the jth column of Σ̂

(1)
u , and aj is an N × 1 vector

aj = Λ0T
−1

T∑

t=1

ftujt + T−1

T∑

t=1

(utujt − Σ̂
(1)
u,j) + T−1

T∑

t=1

utf
′
tλ0j − ūūj.

The consistency of maxj≤N ‖λ̂(1)
j − λ0j‖ follows from Lemma A.5 and the following Lemma

B.2.

Lemma B.2. maxj≤N ‖HΛ̂(1)′(Σ̂
(1)
u )−1aj‖ = Op(mNN

−1/2ω1−q
T + T−1/2(logN)1/2).
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Proof. By Lemma A.1, uniformly in j ≤ N ,

HΛ̂(1)′(Σ̂(1)
u )−1(

1

T

T∑

t=1

utf
′
tλ0j + Λ0

1

T

T∑

t=1

ftujt) = Op(

√
N

N
(2
√
N

√
logN

T
)) = Op(

√
logN

T
).

HΛ̂(1)′(Σ̂(1)
u )−1(

1

T

T∑

t=1

utujt − Σu0,j) = Op(

√
N

N

√
N

√
logN

T
) = Op(

√
logN

T
).

HΛ̂(1)′(Σ̂(1)
u )−1(Σ̂

(1)
u,j − Σu0,j) = Op(

√
N

N
mNω

1−q
T ) = Op(

mN√
N
ω1−q
T ).

Finally, maxj≤N ‖HΛ̂(1)(Σ̂
(1)
u )−1ūūj‖ = Op(logN/T ). The result then follows from a trian-

gular inequality and that mNω
1−q
T = o(1).

B.2 Proof of Theorem 3.2

B.2.1 Uniform rate for λ̂
(1)
j

By (B.2), the uniform rate of convergence follows from Lemma B.2 and the following

Lemma B.3.

Lemma B.3. J = Op(mNω
1−q
T ).

Proof. The first order condition in Lemma A.4 (i) is equivalent to:

J ′J + J ′ + J +HΛ̂(1)′(Σ̂(1)
u )−1B(Σ̂(1)

u )−1Λ̂(1)H = 0 (B.3)

where B = Λ0T
−1
∑T

t=1 ftu
′
t+(Λ0T

−1
∑T

t=1 ftu
′
t)

′+Su−Σ̂
(1)
u −ūū′.We have, ‖Λ0‖F = O(

√
N),

ūū′ = Op(N logN/T ), and ‖Su−Σ̂
(1)
u ‖ ≤ ‖Σ̂(1)

u −Σu0‖+‖Su−Σu0‖ = Op(NT−1/2(logN)1/2+

mNω
1−q
T ). Therefore HΛ̂(1)′(Σ̂

(1)
u )−1B(Σ̂

(1)
u )−1Λ̂(1)H = Op(T

−1/2(logN)1/2 + mNN
−1ω1−q

T ).

Since J = op(1), J
′J can be ignored. It follows from (B.3) that

J ′ + J = Op(

√
logN

T
+

mNω
1−q
T

N
). (B.4)

Let Jij denote the (i, j)the entry of J . It then follows that Jii = Op(T
−1/2(logN)1/2 +

mNN
−1ω1−q

T ) for all i ≤ r. It is also not hard to verify that
√

(logN)/T = O(mNω
1−q
T ) for

any 0 ≤ q < 1 since mN ≥ 1.

On the other hand, due to the identification condition, both Λ′
0Σ

−1
u0Λ0 and

Λ̂(1)′(Σ̂
(1)
u )−1Λ̂(1) are diagonal. Let ndg(M) denote the off-diagonal elements of M . Then
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ndg(Λ′
0Σ

−1
u0Λ0) =ndg(Λ̂(1)′(Σ̂

(1)
u )−1Λ̂(1)) = 0 is equivalent to

ndg{(Λ̂(1) − Λ0)
′(Σ̂(1)

u )−1Λ̂(1) + Λ̂(1)′(Σ̂(1)
u )−1(Λ̂(1) − Λ0)}

= ndg{−Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0 + (Λ̂(1) − Λ0)
′(Σ̂(1)

u )−1(Λ̂(1) − Λ0)}

Note that if ndg{M1} = ndg{M2} then ndg{HM1H} = ndg{HM2H} for two matrices M1

and M2 since H is diagonal. Also, (Λ̂(1) − Λ0)
′(Σ̂

(1)
u )−1Λ̂(1)H = J . The above identification

condition implies

ndg{HJ + J ′H} = ndg{−HΛ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0H +H(Λ̂(1) − Λ0)
′(Σ̂(1)

u )−1(Λ̂(1) − Λ0)H}
(B.5)

Note that HΛ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0H = Op(mNN
−1ω1−q

T ). Let hii denote the ith diagonal

entry of H. Let X = (Λ̂(1) − Λ0)
′(Σ̂

(1)
u )−1(Λ̂(1) − Λ0). Then for i 6= j, (B.4) and (B.5) imply

that

Jji + Jij = Op(

√
logN

T
+

mNω
1−q
T

N
),

hiiJij + hjjJji = Op(
mNω

1−q
T

N
) + hiihjjXij.

By assumption, with probability one, there is δ > 0 such that (Nδ)−1 < hii < N−1δ, and

hii 6= hjj for i 6= j. Moreover, since all the eigenvalues of Σ̂u are bounded away from zero

and infinity, wpa1, ‖Λ̂−Λ0‖2F ≥ c‖X‖F for some c > 0. Then the above two equations imply

that for any i 6= j, Jij = Op(mNω
1−q
T )+Op(N

−1)Xji (since
√

logN/T = O(mNω
1−q
T )). Then

‖J‖2F = Op(m
2
Nω

2−2q
T +

1

N2
‖X‖2F ). (B.6)

Moreover, by Lemma B.2, maxj≤N ‖HΛ̂(1)(Σ̂
(1)
u )−1aj‖ = Op(mNω

1−q
T ).

We now show that J = Op(mNω
1−q
T ). Suppose this does not hold, then (B.6) implies

J = Op(N
−1X). By the definition

X = (Λ̂(1) − Λ0)
′(Σ̂(1)

u )−1(Λ̂(1) − Λ0),

‖X‖F = Op(‖Λ̂(1) − Λ0‖2F ). Therefore J = Op(N
−1X) yields ‖J‖2F = Op(N

−2‖Λ̂ − Λ0‖4F ).
The first order condition (B.2) also yields

max
j≤N

‖λ̂(1)
j − λ0j‖2 = Op(‖J‖2F ) = Op(N

−2‖Λ̂(1) − Λ0‖4F ),
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which implies ‖Λ̂(1) − Λ0‖2F =
∑N

j=1 ‖λ̂
(1)
j − λ0j‖2 = Op(N

−1‖Λ̂(1) − Λ0‖4F ). Therefore

1

N−1‖Λ̂(1) − Λ0‖2F
=

‖Λ̂(1) − Λ0‖2F
N−1‖Λ̂(1) − Λ0‖4F

= Op(1),

which contradicts with the consistency N−1‖Λ̂(1) − Λ0‖2F = op(1). This concludes the proof.

Therefore, (B.2) gives maxj≤N ‖λ̂(1)
j − λ0j‖ = Op(‖J‖F ) = Op(mNω

1−q
T ). The rate

of convergence for N−1/2‖Λ̂(1) − Λ0‖F then follows immediately since it is bounded by

maxj≤N ‖λ̂(1)
j − λ0j‖.

B.3 Proof of Theorem 3.3

By the definition of the covariance estimator in the first step, Σ̂
(1)
u = (sij(Rij))N×N , where

sij is a chosen thresholding function. It was shown by Fan et al. (2012, Theorem 2.1) that

Rij is the PCA estimator of T−1
∑T

t=1 uitujt, that is, Rij = T−1
∑T

t=1 û
PCA
it ûPCA

jt .

Lemma B.4. For any ǫ > 0, and any constant M > 0, for all large enough N, T ,

P (|Rij| > Mτij, ∀(i, j) ∈ SU) > 1− ǫ.

Proof. We have, |Rij| ≥ |Σu0,ij| − |Σu0,ij −Rij|. Thus for all large enough N, T ,

P (|Rij| > Mτij, ∀(i, j) ∈ SU) ≥ P (|Σu0,ij| > Mτij + |Σu0,ij −Rij|, ∀(i, j) ∈ SU)

≥ P (|Σu0,ij|/2 > |Σu0,ij −Rij|, ∀(i, j) ∈ SU) > 1− ǫ,

where in the second and last inequalities we used the assumption that ωT =

o(min(i,j)∈SU
|Σu0,ij|) and the fact that maxij |Σu0,ij −Rij| = Op(ωT ).

Proof of Theorem 3.3

By Fan et al. (2012), maxi,j |Rij − Σu0,ij| = Op(ωT ), which implies for any ǫ > 0, there

is C > 0 such that P (maxi,j |Rij − Σu0,ij| > CωT ) < ǫ/2. For some universal M > 0, we set

the threshold τij = MαijωT at entry (i, j), where αij is a data-dependent value that satisfies,

for any ǫ > 0, there is C1 > 0 such that P (αij > C1, ∀i 6= j) > 1− ǫ/2. Then as long as the

constant M in the definition of the threshold is larger than 2C/C1,

P (max
i,j

|Rij − Σu0,ij| > min
ij

τij/2) < P (max
i,j

|Rij − Σu0,ij| > MC1ωT/2) + ǫ/2 < ǫ.
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Note also that if sij(Rij) ≡ Σ̂
(1)
ij 6= 0, then |Rij| > τij, by the definition of sij. This implies,

P (Σ̂
(1)
ij 6= 0, ∃(i, j) ∈ SL) ≤ P (|Rij| > τij, ∃(i, j) ∈ SL) ≤ P ( max

(i,j)∈SL

|Rij| > min
ij

τij)

≤ P (max
i,j

|Rij − Σu0,ij|+ max
(i,j)∈SL

|Σu0,ij| > min
ij

τij).

Since max(ij)∈SL
|Σu0,ij| = o(ωT ) by assumption, for all large T,N

P (Σ̂
(1)
ij 6= 0, ∃(i, j) ∈ SL) ≤ P (max

i,j
|Rij − Σu0,ij| > min

ij
τij/2) < ǫ.

On the other hand, for arbitrarily small ǫ > 0, P (maxij τij ≤ KωT ) > 1 − ǫ/2 for some

K > 0, which implies P (|Rij| ≥ MωT +KωT , ∀(i, j) ∈ SU) ≤ P (|Rij| ≥ MωT + τij, ∀(i, j) ∈
SU) + ǫ/2. By the definition of sij, |sij(z)− z| ≤ τij for all z ∈ R. Therefore |Rij − Σ̂

(1)
u,ij| =

|Rij − sij(Rij)| ≤ τij, hence for arbitrarily large M > 0,

P (|Σ̂(1)
u,ij| > MωT , ∀(i, j) ∈ SU) ≥ P (|Rij| ≥ MωT + |Rij − Σ̂

(1)
u,ij|, ∀(i, j) ∈ SU)

≥ P (|Rij| ≥ (M +K)ωT , ∀(i, j) ∈ SU)− ǫ/2 ≥ 1− ǫ

where the last inequality follows from Lemma B.4.

B.4 Proof of Theorems 3.4 and 3.5

B.4.1 Proof of Theorem 3.4

A simple derivation implies that ‖N−1Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0‖F ≤ N−1‖Λ0‖2F‖(Σ̂(1)
u )−1 −

Σ−1
u0 ‖ = Op(mNω

1−q
T ). This rate is not tight enough for the

√
T -consistency and limiting

distribution λ̂
(1)
j . A more refined rate ofN−1Λ′

0((Σ̂
(1)
u )−1−Σ−1

u0 )Λ0 depends on the convergence

properties of the PCA estimator. We begin by citing some results proved by Fan et al. (2012).

Recall that Rij denotes the (i, j)th entry of the orthogonal complement covariance in the

sample covariance’s spectrum decomposition, and Σ̂
(1)
u,ij = sij(Rij).

Let {ûit}i≤N,t≤T be the PCA estimates of {uit}i≤N,t≤T . Let λ̂PCA
j and f̂PCA

t denote the

PCA estimators of the factor loadings and factors.

Lemma B.5. (i) For any i, j, with probability one Rij = T−1
∑T

t=1 ûitûjt,

(ii) maxi≤N T−1
∑T

t=1(ûit − uit)
2 = Op(ω

2
T ).

(iii) There is a nonsingular matrix H̄ such that T−1
∑T

t=1 ‖f̂PCA
t − H̄ft‖2 = Op(T

−1 +N−1)

and maxj ‖λ̂PCA
j − H̄

′−1λ0j‖ = Op(ωT ).

(iv) maxi,j≤N |Rij − Σu0,ij| = Op(ωT ).
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Proof. See Theorem 2.1 and Lemma C.11 of Fan et al. (2012).

Lemma B.6. 1
NT

∑T
t=1

∑N
i=1 uitλ

′
0iH̄

−1(f̂PCA
t − H̄ft)ξiξ

′
i = Op(

1√
NT

+ 1
T
+ 1

N
).

Proof. By Bai (2003), there are two r× r matrices H̄ and V , ‖V ‖F = Op(1), ‖H̄‖F = Op(1)

such that f̂PCA
t − H̄ft = V (NT )−1

∑T
s=1 f̂

PCA
s [u′

sut + f ′
s

∑N
j=1 λ0jujt + f ′

t

∑N
j=1 λ0jujs]. The

desired result then follows from the following Lemma B.7.

Lemma B.7. (i) 1
NT

∑T
t=1

∑N
i=1 uitλ

′
0iH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s u′

sutξiξ
′
i = Op(

1√
NT

+ 1
T
+ 1

N
)

(ii) 1
NT

∑T
t=1

∑N
i=1 uitλ

′
0iH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s f ′

s

∑N
j=1 λ0jujtξiξ

′
i = Op(

1√
NT

+ 1
N
)

(iii) 1
NT

∑T
t=1

∑N
i=1 uitλ

′
0iH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s f ′

t

∑N
j=1 λ0jujsξiξ

′
i = Op(

1√
NT

+ 1
T
).

Proof. (i) We have,

‖ 1

NT

T∑

t=1

N∑

i=1

uit
1

NT

T∑

s=1

f̂PCA′

s u′
sutH̄

−1′λ0iξiξ
′
i‖ ≤ ‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

f ′
sH̄

′u′
sutH̄

−1′λ0iξiξ
′
i‖

+‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

(f̂PCA′

s − f ′
sH̄

′)u′
sutH̄

−1′λ0iξiξ
′
i‖ = a+ b. (B.7)

We bound a, b separately. Here a is upper bounded by a1 + a2, where by Cauchy-Schwarz,

a1 = ‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

f ′
sH̄

′(u′
sut − Eu′

sut)H̄
−1′λ0iξiξ

′
i‖

≤ max
i≤N

‖λ0iξiξ
′
i‖(

1

T

T∑

t=1

u2
it)

1/2‖ 1

N
(
1

T

T∑

t=1

‖ 1
T

T∑

s=1

fs(u
′
sut − Eu′

sut)‖2)1/2

≤ Op(1)(
1

T

T∑

t=1

‖ 1

TN

T∑

s=1

fs(u
′
sut − Eu′

sut)‖2)1/2. (B.8)

Note that E 1
T

∑T
t=1 ‖ 1

TN

∑T
s=1 fs(u

′
sut − Eu′

sut)‖2 = E‖ 1
TN

∑T
s=1 fs(u

′
sut − Eu′

sut)‖2, which
is O(T−1N−1) by Assumption 3.9. Hence a1 = Op((NT )−1/2).

a2 = ‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

f ′
sH̄

′Eu′
sutH̄

−1′λ0iξiξ
′
i‖ ≤ max

i≤N

1

T

T∑

t=1

|uit|O(1)
1

TN

T∑

s=1

‖fsEu′
sut‖

(B.9)

Since maxt≤T E(T−1N−1
∑T

s=1 ‖fsEu′
sut‖) ≤ O(T−1)maxt

∑T
s=1 |Eu′

sut|/N = O(T−1) by

the strong mixing condition (Lemma C.5 of Fan Liao and Mincheva 2012), we have a2 =

Op(T
−1). This implies a = Op(N

−1/2T−1/2 + T−1).
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Now we bound b. Using Cauchy Schwarz inequality, we have b ≤ b1 + b2 where

b1 = ‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

(f̂PCA′

s − f ′
sH̄

′)(u′
sut − Eu′

sut)H̄
−1′λ0iξiξ

′
i‖

≤ Op(1)
1

N2T

T∑

t=1

N∑

i=1

|uit|
(

1

T

T∑

s=1

‖f̂PCA
s − H̄fs‖2

)1/2(
1

T

T∑

s=1

|u′
sut − Eu′

sut|2
)1/2

≤ Op(
1

N
)Op(

1√
T

+
1√
N
)Op(

√
N) = Op(

1

N
+

1√
NT

), (B.10)

where the second inequality follows from ET−1
∑T

s=1 |u′
sut−Eu′

sut|2 = O(N). Using Cauchy-

Schwarz inequality, we also obtain

b2 = ‖ 1

N2T 2

T∑

t=1

N∑

i=1

uit

T∑

s=1

(f̂PCA′

s − f ′
sH̄

′)(Eu′
sut)H̄

−1′λ0iξiξ
′
i‖

≤ Op(1)(
1

T

T∑

s=1

‖f̂PCA
s − H̄fs‖2)1/2

(
1

T

T∑

s=1

|Eu′
sut/N |2

)1/2

= Op(
1√
NT

+
1

T
). (B.11)

(ii) Let di,kl be the (k, l)th element of ξiξ
′
i. Then the (k, l)th element of the object of interest

is bounded by d1 + d2, where, by Cauchy Schwarz inequality,

d1 = | 1

(NT )2

T∑

t=1

T∑

s=1

N∑

j=1

N∑

i=1

(uitujt − Euitujt)λ
′
0iH̄

−1f̂PCA
s f ′

sλ0jdi,kl|

≤ Op(1)(
1

T

T∑

s=1

‖f̂PCA
s ‖2)1/2( 1

T

T∑

s=1

‖f̂PCA
s ‖2)1/2‖ 1

N2T

N∑

j=1

N∑

i=1

T∑

t=1

(uitujt − Euitujt)λ0iλ
′
0jdi,kl‖

= Op(
1√
NT

). (B.12)

The last equality follows from Assumption 3.9. Also,
∑

i,j≤N |Euitujt| =
∑

(i,j)∈SU
|Σu0,ij| +∑

(i,j)∈SL
|Σu0,ij| = O(N). Thus

d2 = | 1

(NT )2

T∑

t=1

T∑

s=1

N∑

j=1

N∑

i=1

(Euitujt)λ
′
0iH̄

−1f̂PCA
s f ′

sλ0jdi,kl|

≤ Op(1)
1

N2T

T∑

s=1

‖f̂PCA
s ‖‖fs‖

∑

i,j≤N

|Euitujt| = Op(
1

N
). (B.13)
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(iii) The object of interest is bounded by e1 + e2, where

e1 = ‖ 1

N2T 2

T∑

s=1

N∑

j=1

T∑

t=1

N∑

i=1

uitλ
′
0iH̄

−1(f̂PCA
s − H̄fs)f

′
tλ0jujsξiξ

′
i‖ = Op(

1√
NT

+
1

T
), (B.14)

and we used the fact that 1
T

∑T
t=1 ‖f̂PCA

t − H̄ft‖2 = Op(T
−1 +N−1) from Lemma B.5, and

that N−1
∑N

i=1 ‖ 1
T

∑T
t=1 ftuit‖ = Op(T

−1/2).1

e2 = ‖ 1

N2T 2

T∑

s=1

N∑

j=1

T∑

t=1

N∑

i=1

uitλ
′
0ifsf

′
tλ0jujsξiξ

′
i‖ = Op(

1

T
). (B.15)

Lemma B.8. For SU in the partition {(i, j) : i, j ≤ N} = SL ∪ SU ,

(i) 1
NT

∑T
t=1

∑
i 6=j,(i,j)∈SU

uitλ
′
0jH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s u′

sutξiξ
′
j = Op(

1√
NT

+ 1
T
+ 1

N
)

(ii) 1
NT

∑T
t=1

∑
i 6=j,(i,j)∈SU

uitλ
′
0jH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s f ′

s

∑N
v=1 λ0vuvtξiξ

′
j = Op(

1√
NT

+ mN

N
)

(iii) 1
NT

∑T
t=1

∑
i 6=j,(i,j)∈SU

uitλ
′
0jH̄

−1(NT )−1
∑T

s=1 f̂
PCA
s f ′

t

∑N
v=1 λ0vuvsξiξ

′
j = Op(

√
logN
NT

+
logN
T

).

Proof. (i) The term of interest is bounded by a+ b, where

a = ‖ 1

N2T 2

T∑

t=1

∑

(i,j)∈SU ,i 6=j

uit

T∑

s=1

f ′
sH̄

′u′
sutH̄

−1′λ0jξiξ
′
j‖,

b = ‖ 1

N2T 2

T∑

t=1

∑

(i,j)∈SU ,i 6=j

uit

T∑

s=1

(f̂PCA′

s − f ′
sH̄

′)u′
sutH̄

−1′λ0jξiξ
′
j‖.

Here a is upper bounded by a1 + a2, where

a1 = ‖ 1
N2T 2

∑T
t=1

∑
(i,j)∈SU ,i 6=j uit

∑T
s=1 f

′
sH̄

′(u′
sut − Eu′

sut)H̄
−1′λ0jξiξ

′
j‖, and

a2 = ‖ 1
N2T 2

∑T
t=1

∑
(i,j)∈SU ,i 6=j uit

∑T
s=1 f

′
sH̄

′Eu′
sutH̄

−1′λ0jξiξ
′
j‖. Note that a1 and a2 can be

bounded in the same way as (B.8) and (B.9). The only difference is thatN−1
∑N

i=1 is replaced

by a double sum N−1
∑

(i,j)∈SU ,i 6=j. By the assumption, N−1
∑

(i,j)∈SU ,i 6=j 1 = O(1). The

result of the proof is exactly the same, so is omitted. We conclude that a = Op(N
−1/2T−1/2+

T−1).

On the other hand, b ≤ b1 + b2 where

b1 = ‖ 1
N2T 2

∑T
t=1

∑
(i,j)∈SU ,i 6=j uit

∑T
s=1(f̂

PCA′

s − f ′
sH̄

′)(u′
sut − Eu′

sut)H̄
−1′λ0jξiξ

′
j‖, and

1We have (N−1
∑N

i=1
‖ 1

T

∑T

t=1
ftuit‖)2 ≤ N−1

∑N

i=1
‖ 1

T

∑T

t=1
ftuit‖2 = N−1

∑N

i=1

∑r

j=1
( 1

T

∑T

t=1
ftuit)

2,

whose expectation is N−1
∑N

i=1

∑r

j=1
var( 1

T

∑T

t=1
fjtuit). Note that var( 1

T

∑T

t=1
fjtuit) = O(T−1) uniformly

in i ≤ N .
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b2 = ‖ 1
N2T 2

∑T
t=1

∑
(i,j)∈SU ,i 6=j uit

∑T
s=1(f̂

PCA′

s − f ′
sH̄

′)(Eu′
sut)H̄

−1′λ0jξiξ
′
j‖. Using Cauchy-

Schwarz inequality and the strong mixing condition, b1 and b2 can be also bounded in an

exactly the same way of (B.10) and (B.11). We conclude that b = Op(N
−1+T−1+(NT )−1/2).

(ii) Let dij,kl be the (k, l)th element of ξiξ
′
j. Then the (k, l)th element of the object of

interest is bounded by d1 + d2, where

d1 = | 1
(NT )2

∑T
t=1

∑T
s=1

∑
(i,j)∈SU ,i 6=j

∑N
v=1(uituvt − Euituvt)λ

′
0jH̄

−1f̂PCA
s f ′

sλ0vdij,kl|, and
d2 = | 1

(NT )2

∑T
t=1

∑T
s=1

∑
(i,j)∈SU ,i 6=j

∑N
v=1(Euituvt)λ

′
0jH̄

−1f̂PCA
s f ′

sλ0vdij,kl|. Bounding d1, d2

is slightly different from (B.12) and (B.13), and we give the detail here. By Cauchy Schwarz

inequality,

d1 ≤ Op(1)(
1

T

T∑

s=1

‖f̂PCA
s ‖2)1/2( 1

T

T∑

s=1

‖fs‖2)1/2‖
1

N2T

∑

i 6=j,(i,j)∈SU

T∑

t=1

N∑

v=1

(uituvt−Euituvt)λ0jλ
′
0vdij,kl‖

which is Op((NT )−1/2) by Assumption 3.9. On the other hand,

d2 ≤ Op(N
−2)
∑

i 6=j,(i,j)∈SU

∑N
k=1 |Σu0,ik|. Note that ‖Σu0‖1 = O(mN), wheremN is as defined

in Assumption 3.1. Thus d2 = Op(N
−1mN).

(iii) The object of interest is bounded by e1 + e2, where

e1 = ‖ 1
N2T 2

∑T
s=1

∑
i 6=j,(i,j)∈SU

∑T
t=1

∑N
v=1 uitλ

′
0jH̄

−1(f̂PCA
s − H̄fs)f

′
tλ0vuvsξiξ

′
j‖,

e1 = ‖ 1
N2T 2

∑T
s=1

∑
i 6=j,(i,j)∈SU

∑T
t=1

∑N
v=1 uitλ

′
0jfsf

′
tλ0vuvsξiξ

′
j‖.

Since maxi≤N ‖T−1
∑T

t=1 ftuit‖ = Op(
√

logN/T ), we conclude that e1 = Op(
√
logN
T

+
√
logN√
NT

), and e2 = Op(
logN
T

).

From Lemma B.8, immediately we have the following result.

Lemma B.9. 1
NT

∑T
t=1

∑
i 6=j,(i,j)∈SU

uitλ
′
0jH̄

−1(f̂PCA
t − H̄ft)ξiξ

′
j = Op(ω

2
T +mN/N).

Proof. Note that results (i)(ii)(iii) in Lemma B.8 sum up to Op(ω
2
T +mN/N). Hence Lemma

B.9 follows from the equality f̂PCA
t − H̄ft = V (NT )−1

∑T
s=1 f̂

PCA
s [u′

sut + f ′
s

∑N
j=1 λ0jujt +

f ′
t

∑N
j=1 λ0jujs].

The following lemma strengthens the results of Bai (2003) when Σu0 is sparse.

Lemma B.10. For the PCA estimator,

(i) N−1
∑N

i=1(Rii − Σu0,ii)ξiξ
′
i = Op(ω

2
T ).

(ii) N−1
∑

i 6=j,(i,j)∈SU
(Rij − Σu0,ij)ξiξ

′
j = Op(ω

2
T +mN/N).

Proof. (i) N−1
∑N

i=1(Rii − Σu0,ii)ξiξ
′
i =

∑N
i=1(Rii − Su,ii)ξiξ

′
i/N +

∑N
i=1(Su,ii − Σu0,ii)ξiξ

′
i/N .

By Assumption 3.9,
∑N

i=1(Su,ii − Σu0,ii)ξiξ
′
i/N =

∑N
i=1

∑T
t=1(u

2
it − Σu0,ii)ξiξ

′
i/(NT ) =
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Op(1/
√
NT ). On the other hand, 1

N

∑N
i=1(Rii − Su,ii)ξiξ

′
i is equal to

1

NT

N∑

i=1

T∑

t=1

(û2
it − u2

it)ξiξ
′
i =

1

NT

N∑

i=1

T∑

t=1

(ûit − uit)
2ξiξ

′
i +

2

NT

N∑

i=1

T∑

t=1

uit(ûit − uit)ξiξ
′
i.

The first term on the right hand side is Op(ω
2
T ). We now work on the second term. By Bai

(2003), there is a nonsingular matrix H̄ such that

ûjt − ujt = λ′
0jH̄

−1(f̂PCA
t − H̄ft) + (λ̂PCA

j − H̄
′−1λ0j)

′(f̂PCA
t − H̄ft) + (λ̂PCA

j − H̄
′−1λ0j)H̄ft.

(B.16)

By Lemma B.6 1
NT

∑T
t=1

∑N
i=1 uitλ

′
0iH̄

−1(f̂PCA
t − H̄ft)ξiξ

′
i = Op(

1√
NT

+ 1
T
+ 1

N
). In addition,

for each element di,kl of ξiξ
′
i,

1

NT

N∑

j=1

T∑

t=1

ujt(λ̂
PCA
j −H̄

′−1λ0j)H̄ftdj,kl ≤
1

N

N∑

j=1

‖dj,kl
1

T

T∑

t=1

ujtf
′
tH̄

′‖max
j

‖λ̂PCA
j −H̄

′−1λ0j‖,

which is Op(ωT

√
logN
T

). Also,

1

NT

N∑

j=1

T∑

t=1

ujt(λ̂
PCA
j −H̄

′−1λ0j)
′(f̂PCA

t −H̄ft)dj,kl =
1

T

T∑

t=1

(f̂PCA
t −H̄ft)

′ 1

N

N∑

j=1

ujt(λ̂
PCA
j −H̄

′−1λ0j)dj,kl

≤
(

1

T

T∑

t=1

‖f̂PCA
t − H̄ft‖2 max

j
‖λ̂PCA

j − H̄
′−1λ0j‖2

1

T

T∑

t=1

[
1

N

N∑

j=1

|ujtdj,kl|]2
)1/2

= Op(
ωT√
T
+

ωT√
N
).

(ii) Since Rij = T−1
∑T

t=1 ûitûjt, the term of interest equals

2

N

∑

i 6=j,(i,j)∈SU

1

T

T∑

t=1

uit(ûjt − ujt)ξiξ
′
j +

1

N

∑

i 6=j,(i,j)∈SU

1

T

T∑

t=1

(ûit − uit)(ûjt − ujt)ξiξ
′
j

+
1

NT

∑

i 6=j,(i,j)∈SU

T∑

t=1

(uitujt − Σu0,ij)ξiξ
′
j.

By Assumption 3.9, the third term is Op((NT )−1/2). By the assumption that
∑

i 6=j,(i,j)∈SU
1 =

O(N) and Cauchy Schwarz inequality, the second term is Op(ω
2
T ). We now work out the first

term. Again we use the equality ûjt−ujt = λ′
0jH̄

−1(f̂PCA
t −H̄ft)+(λ̂PCA

j −H̄
′−1λ0j)

′(f̂PCA
t −
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H̄ft) + (λ̂PCA
j − H̄

′−1λ0j)
′H̄ft. Lemma B.9 gives

1

N

∑

i 6=j,(i,j)∈SU

1

T

T∑

t=1

ujtλ
′
0iH̄

−1(f̂PCA
t − H̄ft)ξiξ

′
j = Op(ω

2
T +

mN

N
).

On the other hand, 2
N

∑
i 6=j,(i,j)∈SU

1
T

∑T
t=1 ujt(λ̂

PCA
i − H̄−1′λ0i)

′H̄ftξiξ
′
j is bounded by,

max
i≤N

‖ξi‖2
1

N

∑

i 6=j,(i,j)∈SU

‖ 1
T

T∑

t=1

ujtf
′
tH̄

′‖max
j

‖λ̂PCA
j − H̄

′−1λ0j‖ = Op(ωT

√
logN

T
),

since maxi≤N ‖ξi‖ = O(1). Also, 1
N

∑
i 6=j,(i,j)∈SU

1
T

∑T
t=1 ujt(λ̂

PCA
i −H̄−1′λ0i)

′(f̂PCA
t −H̄ft)ξiξ

′
j

is bounded by

O(1)max
i≤N

‖b̂i −H−1′λ0i‖
(

1

T

T∑

t=1

‖f̂t − H̄ft‖2
)1/2


 1

T

T∑

t=1

[
1

N

∑

i 6=j,(i,j)∈SU

|dij,kluit|]2



1/2

which is Op(
ωT√
T
+ ωT√

N
).

Proof of Theorem 3.4 N−1Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0 = Op(ω
2−2q
T m2

N)

Proof. By the triangular inequality, the left-hand-side is bounded by

1

N
‖Λ′

0((Σ̂
(1)
u )−1 − Σ−1

u0 )(Σu0 − Σ̂(1)
u )Σ−1

u0Λ0‖F +
1

N
‖Λ′

0Σ
−1
u0 (Σu0 − Σ̂(1)

u )Σ−1
u0Λ0‖F .

The first term is Op(ω
2−2q
T m2

N). We now bound the second term, which is

1

N
Ξ(Σ̂(1)

u − Σu0)Ξ
′ =

1

N

N∑

i=1

(Rii − Σu0,ii)ξiξ
′
i +

1

N

∑

i 6=j,(i,j)∈SU

(Σ̂
(1)
u,ij − Σu0,ij)ξiξ

′
j

+
1

N

∑

(i,j)∈SL

(Σ̂
(1)
u,ij − Σu0,ij)ξiξ

′
j,

where Ξ = Λ′
0Σ

−1
u0 . The first term on the right hand side is Op(ω

2
T ) by Lemma B.10. The third

term is dominated by, O(N−1)(
∑

SL
|Σu0,ij| +

∑
SL

|Σ̂(1)
u,ij|) = O(N−1) + O(N−1)

∑
SL

|Σ̂(1)
u,ij|.

By Theorem 3.3, for any ǫ > 0 and any M > 0, P ( 1
N

∑
(i,j)∈SL

|Σ̂(1)
u,ij| > Mω2

T ) ≤ P (∃(i, j) ∈
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SL, Σ̂
(1)
u,ij 6= 0) ≤ ǫ. This implies the third term is Op(ω

2
T ). The second term equals

1

N

∑

i 6=j,(i,j)∈SU

(Σ̂
(1)
u,ij −Rij)ξiξ

′
j +

1

N

∑

i 6=j,(i,j)∈SU

(Rij − Σu0,ij)ξiξ
′
j.

By Lemma B.10 (ii), N−1
∑

i 6=j,(i,j)∈SU
(Rij − Σu0,ij)ξiξ

′
j = Op(ω

2
T + mN/N). On the other

hand, recall that |sij(z)− z| ≤ aτ 2ij when |z| > bτij (Section 3.1),

‖ 1

N

∑

i 6=j,(i,j)∈SU

(Σ̂
(1)
u,ij −Rij)ξiξ

′
j‖ = ‖ 1

N

∑

i 6=j,(i,j)∈SU ,|Rij |>bτij

(sij(Rij)−Rij)ξiξ
′
j

+
1

N

∑

i 6=j,(i,j)∈SU ,|Rij |>bτij

(sij(Rij)−Rij)ξiξ
′
j‖ ≤ Op(ω

2
T ) + ‖ 1

N

∑

i 6=j,(i,j)∈SU ,|Rij |≤bτij

(sij(Rij)−Rij)ξiξ
′
j‖.

Write v = ‖N−1
∑

i 6=j,(i,j)∈SU ,|Rij |≤bτij
(sij(Rij) − Rij)ξiξ

′
j‖, then for any C > 0, and

ǫ > 0, Lemma B.4 implies P (v > Mω2
T ) ≤ P (∃(i, j) ∈ SU , |Rij| ≤ bτij) < ǫ, which

yields v = Op(ω
2
T ). Therefore 1

N

∑
i 6=j,(i,j)∈SU

(Σ̂
(1)
u,ij − Σu0,ij)ξiξ

′
j = Op(ω

2
T ). This implies

N−1Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )Λ0 = Op(ω
2
T + ω2−2q

T m2
N +mN/N) = Op(ω

2−2q
T m2

N).

B.4.2 Convergence rate for J

We now improve the rate in Lemma B.3.

Lemma B.11. (i) HΛ̂(1)′(Σ̂
(1)
u )−1[Λ0

1
T

∑T
t=1 ftu

′
t + (Λ0

1
T

∑T
t=1 ftu

′
t)

′](Σ̂
(1)
u )−1Λ̂(1)H =

Op(mNT
−1/2(logN)1/2ω1−q

T ).

(ii) HΛ̂(1)′Σ̂−1
u (Su − Σ̂

(1)
u )(Σ̂

(1)
u )−1Λ̂(1)H = Op(mNω

1−q
T T−1/2(logN)1/2 +mNω

1−q
T N−1).

Proof. (i) By Theorem 3.2,

‖Λ̂(1) − Λ0‖F = Op(
√
NmNω

1−q
T ) = ‖Λ̂(1)′(Σ̂(1)

u )−1 − Λ′
0Σ

−1
u0 ‖F . (B.17)

Therefore the RHS of part (i) equals

HΛ′
0Σ

−1
u0

[
Λ0

1

T

T∑

t=1

ftu
′
t + (Λ0

1

T

T∑

t=1

ftu
′
t)

′

]
Σ−1

u0Λ0H +Op(mN

√
logN

T
ω1−q
T ). (B.18)

Now it follows from Assumption 3.10 that

1

NT

T∑

t=1

ftu
′
tΣ

−1
u0Λ0 =

1

NT

T∑

t=1

N∑

i=1

ftuitξ
′
i = Op(

1√
NT

) = Op(mN

√
logN

T
ω1−q
T ),
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which then yields the desired result.

(ii) Recall that ‖Su − Σ̂
(1)
u ‖ = Op(NT−1/2(logN)1/2 +mNω

1−q
T ) and that

‖Λ̂(1)′(Σ̂
(1)
u )−1 − Λ′

0Σ
−1
u0 ‖F = Op(

√
NmNω

1−q
T ). By Theorem B.1, the RHS of (ii) equals

HΛ′
0Σ

−1
u0 (Su − Σu0)Σ

−1
u0Λ0H +Op(mNω

1−q
T

√
logN

T
+

mNω
1−q
T

N
).

By Assumption 3.10 (note that H = Op(N
−1)),

HΛ′
0Σ

−1
u0 (Su − Σu0)Σ

−1
u0Λ0H =

1

T
H

∑

i≤N,j≤N

∑

t≤T

(uitujt − Euitujt)ξiξ
′
jH = Op(

1√
NT

).

Lemma B.12. J = Op(m
2
Nω

2−2q
T ).

Proof. By (B.3) and Lemma B.11, ignoring the smaller order J ′J , we have

J + J ′ = Op(mNω
1−q
T

√
logN

T
+

mNω
1−q
T

N
).

This implies that Jii = Op(mNω
1−q
T (T−1/2(logN)1/2 +N−1)).

Moreover, since H(Λ̂(1) − Λ0)
′(Σ̂

(1)
u )−1(Λ̂(1) − Λ0)H = Op(N

−1m2
Nω

2−2q
T ), (B.5) and

Theorem 3.4 imply ndg{HJ + J ′H} = Op(N
−1m2

Nω
2−2q
T ). Therefore for i 6= j, Jij =

Op(m
2
Nω

2−2q
T +mNω

1−q
T (T−1/2(logN)1/2 +N−1)) = Op(m

2
Nω

2−2q
T ). The desired result follows

immediately.

B.4.3 Improved rate for λ̂
(1)
j

Lemma B.13. (i) HΛ̂(1)′(Σ̂
(1)
u )−1T−1

∑T
t=1(utujt − Σ̂

(1)
u,j) = Op(mNω

2−q
T +m2

Nω
2−2q
T N−1/2).

(ii) HΛ̂(1)′(Σ̂
(1)
u )−1T−1

∑T
t=1 utf

′
tλ0j = Op(mNω

1−q
T T−1/2(logN)1/2).

Proof. (i) We have, ‖Λ̂(1)′(Σ̂
(1)
u )−1 − Λ′

0Σ
−1
u0 ‖F = Op(

√
NmNω

1−q
T ). Hence H(Λ̂(1)′(Σ̂

(1)
u )−1 −

Λ′
0Σ

−1
u0 )T

−1
∑T

t=1(utujt− Σ̂
(1)
u,j) = Op(mNω

1−q
T T−1/2(logN)1/2+N−1/2m2

Nω
2−2−q
T ). Hence part

(i) equals

HΛ′
0Σ

−1
u0 T

−1

T∑

t=1

(utujt − E(utujt)) +Op(mNω
2−q
T +

m2
Nω

2−2q
T√
N

)

where Op(·) is uniform in j ≤ N. By Assumption 3.10, for each j ≤ N ,

HΛ′
0Σ

−1
u0 T

−1

T∑

t=1

(utujt − E(utujt)) = H
1

T

N∑

i=1

T∑

t=1

ξi(uitujt − E(utujt)) = Op((NT )−1/2).
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(ii) We have ‖H(Λ̂(1)′(Σ̂
(1)
u )−1 − Λ′

0Σ
−1
u0 )T

−1
∑T

t=1 utf
′
t‖F = Op(mNω

1−q
T T−1/2(logN)1/2).

Hence (ii) equals

HΛ′
0Σ

−1
u0

1

T

T∑

t=1

utf
′
tλ0j +Op(mNω

1−q
T

√
logN

T
).

By Assumption 3.10, the first term equalsNH(NT )−1
∑N

i=1

∑T
t=1 ξiuitf

′
tλ0j = Op((NT )−1/2),

which yields the desired result.

Lemma B.14. For each fixed j ≤ N ,

λ̂
(1)
j − λ0j = HΛ̂(1)′(Σ̂(1)

u )−1Λ0
1

T

T∑

t=1

ftujt +Op(m
2
Nω

2−2q
T ).

Proof. Note that those two terms in Lemma B.13 (i) (ii) are dominated by Op(m
2
Nω

2−2q
T ).

Therefore, the desired expansion follows from the first order condition (B.2) and Lemma

B.12.

B.4.4 Proof of Theorem 3.5

By Lemma B.14, and (B.17)

λ̂
(1)
j − λ0j = HΛ̂(1)′(Σ̂(1)

u )−1(Λ0 − Λ̂(1))
1

T

T∑

t=1

ftujt +
1

T

T∑

t=1

ftujt +Op(m
2
Nω

2−2q
T )

=
1

T

T∑

t=1

ftujt +Op(m
2
Nω

2−2q
T +mNω

1−q
T

√
logN

T
) =

1

T

T∑

t=1

ftujt +Op(m
2
Nω

2−2q
T ).

By the assumption that m2
Nω

2−2q
T = o(T−1/2), we have

√
T (λ̂

(1)
j − λ0j) = T−1/2

∑T
t=1 ftujt +

op(1). The limiting distribution follows since

T−1/2

T∑

t=1

ftujt →d Nr(0, E(ujtftf
′
t)).

B.5 Proof of Theorem 3.6

For any t ≤ T , yt − ȳ = Λ0ft + ut − ū. Hence

f̂
(1)
t − ft = −J ′ft + (Λ̂(1)′(Σ̂(1)

u )−1Λ̂(1))−1Λ̂(1)′(Σ̂(1)
u )−1(ut − ū). (B.19)
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B.5.1 Convergence rate

Since both ft and ut have exponential tails, using Bonferroni’s method we have,

maxt ‖ft‖ = Op((log T )
1/r2) and maxt ‖ut‖ = Op(

√
N(log T )1/r1). Thus by Lemma B.12,

maxt≤T ‖J ′ft‖ = Op(m
2
Nω

2−2q
T (log T )1/r2). The term with ū in (B.19) is of smaller order hence

is negligible. Also ‖(Λ̂(1)′(Σ̂
(1)
u )−1Λ̂(1))−1(Λ̂(1)′(Σ̂

(1)
u )−1 − Λ′

0Σ
−1
u0 )‖F = Op(N

−1/2mNω
1−q
T ),

where we used ‖Λ̂(1)′(Σ̂
(1)
u )−1 − Λ′

0Σ
−1
u0 ‖F = Op(

√
NmNω

1−q
T ). Hence

max
t≤T

(Λ̂(1)′(Σ̂(1)
u )−1Λ̂(1))−1Λ̂(1)′(Σ̂(1)

u )−1(ut − ū) = Op(
1

N
)Λ′

0Σ
−1
u0 ut

+Op(m
2
Nω

2−2q
T (log T )1/r2+mNω

1−q
T (log T )1/r1) = Op(

1

N
)Λ′

0Σ
−1
u0 ut+Op(mNω

1−q
T (log T )1/r1+1/r2).

Finally, because E( 1
N
Λ′

0Σ
−1
u0 utu

′
tΣ

−1
u0Λ0) = 1

N
Λ′

0Σ
−1
u0Λ0, whose eigenvalues are bounded.

Hence 1√
N
Λ′

0Σ
−1
u0 ut = Op(1). Also, Op(N

−1/2) is of smaller order than

Op(mNω
1−q
T (log T )1/r1+1/r2+1). This implies

‖f̂ (1)
t − ft‖ = Op(mNω

1−q
T (log T )1/r1+1/r2+1).

The above proof also shows that the rate can be made uniform if maxt≤T ‖ 1√
N
Λ′

0Σ
−1
u0 ut‖ =

Op(log T ).

B.5.2 Asymptotic normality

Recall that Ξ = Λ′
0Σ

−1
u0 and βt = Σ−1

u0 ut.

Lemma B.15. For any fixed t ≤ T , N−1/2(Λ̂(1) − Λ0)
′Σ−1

u0 ut = op(1).

Proof. We expand Λ̂(1) − Λ0 using the first order condition

(Λ̂(1) − Λ0)
′ = JΛ′

0 +HΛ̂(1)′(Σ̂(1)
u )−1[Λ0

1

T

T∑

s=1

fsu
′
s +

1

T

T∑

s=1

usf
′
sΛ

′
0 + Su − Σ̂(1)

u ] (B.20)

and investigate each term separately. First of all, since J = Op(m
2
Nω

2−2q
T ), and by assumption

that Λ′
0Σ

−1
u0 ut =

∑N
i=1 ξiuit = Op(

√
N), we have N−1/2JΛ′

0Σ
−1
u0 ut = Op(m

2
Nω

2−2q
T ). Second,

by the assumption that (TN)−1/2
∑T

s=1 fsu
′
sΣ

−1
u0 ut = Op(1), we have

1√
N
HΛ̂(1)′(Σ̂(1)

u )−1Λ0
1

T

T∑

s=1

fsu
′
sΣ

−1
u0 ut = Op(

1√
T
).

Third, N−1/2HΛ̂(1)′(Σ̂
(1)
u )−1 1

T

∑T
s=1 usf

′
sΛ

′
0Σ

−1
u0 ut = Op(

√
logN/T ). Moreover,
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N−1/2H(Λ̂(1)′(Σ̂
(1)
u )−1−Λ′

0Σ
−1
u0 )(Su−Σu0)Σ

−1
u0 ut = Op(mNω

1−q
T

√
N logN/T ) = op(1). There-

fore, by the assumption that (NT
√
N)−1

∑N
i=1

∑T
s=1 ξi(uisu

′
s − Euisu

′
s)βt = op(1), we have,

1√
N
HΛ̂(1)′(Σ̂(1)

u )−1(Su − Σu0)Σ
−1
u0 ut =

1√
N
HΛ′

0Σ
−1
u0 (Su − Σu0)Σ

−1
u0 ut + op(1)

=
1

T
√
N
H

N∑

i=1

N∑

j=1

T∑

s=1

ξi(uisujs − Euisujs)βjt = op(1).

Finally, N−1/2HΛ̂(1)′(Σ̂
(1)
u )−1(Σ̂

(1)
u − Σu0)Σ

−1
u0 ut = Op(

1√
N
mNω

1−q
N ).

Lemma B.16. For any fixed t ≤ T , N−1/2Λ′
0((Σ̂

(1)
u )−1 − Σ−1

u0 )ut = op(1)

Proof. We note that, N−1/2Λ′
0((Σ̂

(1)
u )−1−Σ−1

u0 )ut = N−1/2Ξ(Σ̂
(1)
u −Σu0)βt+Op(

√
Nm2

Nω
2−2q
T ).

On the other hand,

1√
N
Ξ(Σ̂(1)

u − Σu0)βt =
1√
N

N∑

i=1

(Rii − Σu0,ii)ξiβit +
1√
N

∑

i 6=j,(i,j)∈SU

(Σ̂
(1)
u,ij − Σu0,ij)ξiβjt

+
1√
N

∑

(i,j)∈SL

(Σ̂
(1)
u,ij − Σu0,ij)ξiβjt.

The result of the proof is very similar to that of Lemmas B.10 and Theorem l3.1, based on

the expansion (B.10) and Theorem 3.3, hence is omitted.

Proof of asymptotic normality

We now fix t, then Lemma B.12 gives J ′ft = Op(m
2
Nω

2−2q
T ). Hence

√
NJ ′ft is negligible

as
√
Nm2

Nω
2−2q
T = o(1). Moreover, (Λ̂(1)′(Σ̂

(1)
u )−1Λ̂(1))−1Λ̂(1)′(Σ̂

(1)
u )−1ū is of smaller order of

(Λ̂(1)′(Σ̂
(1)
u )−1Λ̂(1))−1Λ̂(1)′(Σ̂

(1)
u )−1ut, hence is negligible. Next,

√
N(Λ̂(1)′(Σ̂(1)

u )−1Λ̂(1))−1Λ̂(1)′(Σ̂(1)
u )−1ut =

√
N(Λ′

0Σ
−1
u0Λ0)

−1Λ′
0Σ

−1
u0 ut

+Op(N
−1/2)(Λ̂(1)′(Σ̂(1)

u )−1 − Λ′
0Σ

−1
u0 )ut +Op(mNω

1−q
T )

where we used (Λ̂(1)′(Σ̂
(1)
u )−1Λ̂(1)′)−1 − (Λ′

0Σ
−1
u0Λ0)

−1 = Op(N
−1mNω

1−q
T ). By Lemmas B.15

and B.16, N−1/2(Λ̂(1)′(Σ̂
(1)
u )−1 − Λ′

0Σ
−1
u0 )ut = op(1). This implies, for each fixed t,

√
N(f̂

(1)
t − ft) =

√
N(Λ′

0Σ
−1
u0Λ0)

−1Λ′
0Σ

−1
u0 ut +Op(

√
Nm2

Nω
2−2q
T +mNω

1−q
T )

=
√
N(Λ′

0Σ
−1
u0Λ0)

−1Λ′
0Σ

−1
u0 ut + op(1).
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The asymptotic normality then follows from the fact that

N−1/2Λ′
0Σ

−1
u0 ut =

1√
N

N∑

i=1

ξiuit →d N(0, Q).

C Proofs of Section 4

C.1 Proof of Theorem 4.1

Define

Q1(Σu) =
1

N
log |Σu|+

1

N
tr(SuΣ

−1
u ) +

µT

N

∑

i 6=j

wij|Σu,ij|

− 1

N
log |Σu0| −

1

N
tr(SuΣ

−1
u0 )−

µT

N

∑

i 6=j

wij|Σu0,ij|,

Let Lc(Λ,Σu) = L2(Λ,Σu)−N−1 log |Σu0| −N−1tr(SuΣ
−1
u0 )−N−1µT

∑
i 6=j wij|Σu0,ij|. Then

the minimizer of Lc is the same as that of L2. This implies Lc(Λ̂
(2), Σ̂

(2)
u ) ≤ Lc(Λ0,Σu0).

Recall the definitions of Q2(Λ,Σu) and Q3(Λ,Σu). Then

Lc(Λ,Σu) = Q1(Σu) +Q2(Λ,Σu) +Q3(Λ,Σu).

Lemma C.1. There is a nonnegative stochastic sequence 0 ≤ dT = Op(N
−1 logN +

T−1/2(logN)1/2) such that Q1(Σ̂
(2)
u ) ≤ dT with probability one.

Proof. We have Q2(Λ̂
(2), Σ̂

(2)
u ) ≥ 0. In addition, Q2(Λ0,Σu0) = Q1(Σu0) = 0. Hence

Q1(Σ̂
(2)
u ) = Lc(Λ̂

(2), Σ̂(2)
u )−Q2(Λ̂

(2), Σ̂(2)
u )−Q3(Λ̂

(2), Σ̂(2)
u )

≤ Lc(Λ̂
(2), Σ̂(2)

u )−Q3(Λ̂
(2), Σ̂(2)

u ) ≤ Lc(Λ0,Σu0)−Q3(Λ̂
(2), Σ̂(2)

u )

= Q3(Λ0,Σu0)−Q3(Λ̂
(2), Σ̂(2)

u ).

By the definition of Θλ × Γ, there is δ > 0 such that Θλ × Γ ⊂ Ξδ. The result then holds for

dT = |Q3(Λ0,Σu0)|+ |Q3(Λ̂
(2), Σ̂

(2)
u )| by Lemma A.2.

Throughout, let (recall that D =
∑

i 6=j,(i,j)∈SU
1.)

∆ = (Σ̂(2)
u )−1 − Σ−1

u0 , KT =
∑

(i,j)∈SL

|Σu0,ij|.
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Lemma C.2. For all large enough T and N ,

NQ1(Σ̂
(2)
u ) ≥ 1

2
µT min

(i,j)∈SL

wij

∑

(i,j)∈SL

|Σ̂u,ij − Σu0,ij|+ c‖∆‖2F − 2µT max
(i,j)∈SL

wijKT

−
(
Op(

√
logN

T
)
√
N +D + µT max

i 6=j,(i,j)∈SU

wij

√
D

)
‖∆‖F .

Proof. Let Ω0 = Σ−1
u0 , Ω̂ = (Σ̂

(2)
u )−1. For any Σu, let Ω = Σ−1

u . Define a function f(t) =

− log |Ω0 + t∆| + tr(Su(Ω0 + t∆)), t ≥ 0. Then − log |Ω̂| + tr(SuΩ̂) = f(1); − log |Ω0| +
tr(SuΩ0) = f(0); and

NQ1(Σ̂
(2)
u ) = f(1)− f(0) + µT

∑

i 6=j

wij|Σ̂u,ij| − µT

∑

i 6=j

wij|Σu0,ij| (C.1)

By the integral remainder Taylor expansion, f(1) − f(0) = f ′(0) +
∫ 1

0
(1 − t)f ′′(t)dt. We

now calculate f ′(0) and f ′′(t). Using the matrix differentiation formula, we have, f ′(t) =

tr(Su∆)− tr((Ω0 + t∆)−1∆), which implies,

f ′(0) = tr((Su − Σu0)(Ω̂− Ω0)) = tr(Ω0(Su − Σu0)Ω̂(Σu0 − Σ̂(2)
u ))

=
∑

ij

(Ω0(Su − Σu0)Ω̂)ij(Σu0 − Σ̂(2)
u )ij.

Note that both ‖Ω0‖1 and ‖Ω̂‖1 are bounded from above for Σu0, Σ̂
(2)
u ∈ Γ. By Lemma A.1(ii),

maxij |(Ω0(Su − Σu0)Ω̂)ij| ≤ maxij |(Su − Σu0)ij|‖Ω0‖1‖Ω̂‖1 = Op(
√
logN/T ). Therefore,

|f ′(0)| = Op(
√

logN/T )
∑

ij |Σu0,ij − Σ̂u,ij|. In addition,

f ′′(t) = tr((Ω0 + t∆)−1∆(Ω0 + t∆)−1∆) = vec(∆)(Ω0 + t∆)−1 ⊗ (Ω0 + t∆)−1vec(∆),

where vec dentoes the vectorization operator and ⊗ denotes the Kronecker prod-

uct. Since both (Λ̂(2), Σ̂
(2)
u ) and (Λ0,Σu0) are inside Θλ × Γ, sup0≤t≤1 λmax(t(Σ̂

(2)
u )−1 +

(1 − t)Σ−1
u0 ) is bounded from above, which then implies inf0≤t≤1 λmin[(Ω0 + t∆)−1] =

inf0≤t≤1 λ
−1
max(t(Σ̂

(2)
u )−1 + (1 − t)Σ−1

u0 ) is bounded below by a positive constant c. Hence

inf0≤t≤1 f
′′(t) ≥ c‖∆‖2F . From (C.1) and f(1)− f(0) ≥ −|f ′(0)|+ c‖∆‖2F , we have

NQ1(Σ̂
(2)
u ) ≥ µT

∑

i 6=j

wij|Σ̂u,ij| − µT

∑

i 6=j

wij|Σu0,ij|+ c‖∆‖2F −Op(

√
logN

T
)
∑

ij

|Σu0,ij − Σ̂u,ij|

= µT

∑

(i,j)∈SL

wij|Σ̂u,ij|+ µT

∑

i 6=j,(i,j)∈SU

wij|Σ̂u,ij| − µT

∑

i 6=j

wij|Σu0,ij|+ c‖∆‖2F
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−Op(

√
logN

T
)
∑

Σu0,ij∈SU

|Σu0,ij − Σ̂u,ij| −Op(

√
logN

T
)
∑

(i,j)∈SL

|Σu0,ij − Σ̂u,ij|.

Since |Σ̂u,ij| ≥ |Σ̂u,ij − Σu0,ij| − |Σu0,ij|, and
∑

i 6=j wij|Σu0,ij| =
∑

i 6=j,(i,j)∈SU
wij|Σu0,ij| +∑

(i,j)∈SL
wij|Σu0,ij|. It follows that

NQ1(Σ̂
(2)
u ) ≥ µT

∑

(i,j)∈SL

wij|Σ̂u,ij − Σu0,ij| −Op(

√
logN

T
)
∑

(i,j)∈SL

|Σu0,ij − Σ̂u,ij|+ c‖∆‖2F

−µT

∑

(i,j)∈SL

wij|Σu0,ij| −Op(

√
logN

T
)
∑

Σu0,ij∈SU

|Σu0,ij − Σ̂u,ij|

−µT

∑

i 6=j,(i,j)∈SU

wij[|Σu0,ij| − |Σ̂u,ij|]− µT

∑

(i,j)∈SL

wij|Σu0,ij|

≥ (µT min
(i,j)∈SL

wij −Op(

√
logN

T
))
∑

(i,j)∈SL

|Σ̂u,ij − Σu0,ij|+ c‖∆‖2F

−2µT

∑

(i,j)∈SL

wij|Σu0,ij| −Op(

√
logN

T
)
∑

Σu0,ij∈SU

|Σu0,ij − Σ̂u,ij|

−µT max
i 6=j,(i,j)∈SU

wij

∑

i 6=j,(i,j)∈SU

|Σu0,ij − Σ̂u,ij|

≥ 1

2
µT min

(i,j)∈SL

wij

∑

(i,j)∈SL

|Σ̂u,ij − Σu0,ij|+ c‖∆‖2F − 2µT max
(i,j)∈SL

wijKT

−Op(

√
logN

T
)
√
N +D‖∆‖F − µT max

i 6=j,(i,j)∈SU

wij‖∆‖F
√
D,

which implies the desired result.

Lemma C.3.

1

N
‖Σu − Σ̂(2)

u ‖2F = Op

(
1

N

(
µT max

(i,j)∈SL

wijKT + logN + µ2
T max

i 6=j,(i,j)∈SU

w2
ijD

))

+Op(
D logN

NT
+

√
logN

T
).

Proof. Lemma C.2 implies

NQ1(Σ̂
(2)
u ) ≥ c‖∆‖2F − 2µT max

(i,j)∈SL

wijKT −
(
Op(

√
logN

T
)
√
N +D + µT max

i 6=j,(i,j)∈SU

wij

√
D

)
‖∆‖F .
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Lemma C.1 gives NQ1(Σ̂
(2)
u ) ≤ Op(logN +N

√
logN/T ). Hence we have

‖∆‖2F = Op((

√
(N +D) logN

T
+ µT max

i 6=j,(i,j)∈SU

wij

√
D)2)

+Op(µT max
(i,j)∈SL

wijKT + logN +N
√

logN/T )

= Op(
(N +D) logN

T
+ µ2

T max
i 6=j,(i,j)∈SU

w2
ijD + µT max

(i,j)∈SL

wijKT + logN +N
√

logN/T )

= Op(
D logN

T
+ µ2

T max
i 6=j,(i,j)∈SU

w2
ijD + µT max

(i,j)∈SL

wijKT + logN +N
√

logN/T ).

Note that Σu0 − Σ̂
(2)
u = Σ̂

(2)
u ∆Σu0. Hence the desired result follows from ‖Σ̂(2)

u ‖ < M wp1

and ‖Σu0‖ < M .

Lemma C.4. N−1
∑

(i,j)∈SL
|Σ̂u,ij − Σu0,ij| = op(1).

Proof. Lemma C.2 implies

1

2
µT min

(i,j)∈SL

wij

∑

(i,j)∈SL

|Σ̂u,ij − Σu0,ij| ≤ NQ1(Σ̂
(2)
u ) + 2µT max

(i,j)∈SL

wijKT

+

(
Op(

√
logN

T
)
√
N +D + µT max

i 6=j,(i,j)∈SU

wij

√
D

)
‖∆‖F .

We have NQ1(Σ̂
(2)
u ) ≤ Op(logN +N

√
logN/T ). By Lemma C.3,

‖∆‖F = Op(

√
D logN

T
+ µT max

i 6=j,(i,j)∈SU

wij

√
D)

+Op(
√

µT max
(i,j)∈SL

wijKT +
√
logN +

√
N(

logN

T
)1/4).

which implies the desired result under Assumption 4.2.

Lemma C.5. N−1Λ′
0((Σ̂

(2)
u )−1 − Σ−1

u0 )Λ0 = op(1).

Proof. Let ∆1 = Σ̂
(2)
u − Σu0, Ξ = Λ′

0Σ
−1
u0 = (ξ1, ..., ξN), and V̂ = (Σ̂

(2)
u )−1Λ0. Since the l1

norms of (Σ̂
(2)
u )−1 and Σ−1

u0 are bounded away from infinity, we have, supi≤N ‖V̂i‖ = Op(1)

and supi≤N ‖ξi‖ = O(1). Then

1

N
Λ′

0(Σ
−1
u0 − (Σ̂(2)

u )−1)Λ0 =
1

N
Ξ∆1V̂ =

1

N

∑

(i,j)∈SL

ξiV̂
′
j∆1,ij +

1

N

∑

Σu0,ij∈SU

ξiV̂
′
j∆1,ij
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≤ Op(
1

N
)
∑

(i,j)∈SL

|∆1,ij|+Op(
1

N
)
∑

Σu0,ij∈SU

|∆1,ij|.

The first term on the right hand side is op(1) by Lemma C.4, and the second is bounded by

N−1‖Σ̂(2)
u −Σu0‖

√
N +D (using Cauchy-Schwarz inequality), which is also op(1) by Lemma

C.3 and Assumption 4.2.

Lemma C.6. For (Λ̂, Σ̂) = (Λ̂(2), Σ̂
(2)
u ), Lemma A.3 is satisfied.

Proof. We first show part (i) of Lemma A.3. Since Lc(Λ̂
(2), Σ̂

(2)
u ) ≤ Lc(Λ0,Σu0), and

Q1(Σu0) = Q2(Λ0,Σu0) = 0, there is a nonnegative sequence dn = Op(N
−1 logN +

T−1/2(logN)1/2) such that Q1(Σ̂
(2)
u ) + Q2(Λ̂

(2), Σ̂
(2)
u ) ≤ dn. Lemma C.2 then implies 0 ≤

Q2(Σ̂
(2)
u , Λ̂(2)) = op(1). On the other hand,

Q2(Σ̂
(2)
u , Λ̂(2)) =

1

N
tr
[
Λ′

0(Σ̂
(2)
u )−1Λ0 − Λ′

0(Σ̂
(2)
u )−1Λ̂(2)(Λ̂′(Σ̂(2)

u )−1Λ̂(2))−1Λ̂′(Σ̂(2)
u )−1Λ0

]
.

The matrix in the bracket is semi-positive definite. Hence

1

N
Λ′

0(Σ̂
(2)
u )−1Λ0 − (Ir − J)

1

N
Λ̂′(Σ̂(2)

u )−1Λ̂(2)(Ir − J)′ = op(1). (C.2)

Finally, the desired result follows from Lemma C.5.

The first order condition in part (ii) is easy to derive and is the same as that in Bai and

Li (2012).

Proof of Theorem 4.1

N−1‖Σ̂(2)
u − Σu0‖2F = op(1) follows from Lemma C.3 and Assumption 4.2. On the other

hand, equation (C.2) also implies

1

N
(Λ̂(2) − Λ0)

′Σ̂−1
u (Λ̂(2) − Λ0)− J

1

N
H−1J ′ = op(1).

By Lemma A.5, N−1JH−1J ′ = op(1). Hence N−1(Λ̂(2) − Λ0)
′Σ̂−1

u (Λ̂ − Λ0) = op(1), which

implies the consistency N−1‖Λ̂ − Λ0‖2 = op(1) because the eigenvalues of Σ̂−1
u are bounded

away from zero. Q.E.D.

To prove the consistency of f̂
(2)
t , we note that the expansion (B.19) still holds for f̂

(2)
t .

Since J = op(1) by Lemma A.5, and ū is of smaller order than ut for each fixed t. Hence

f̂
(2)
t − ft = Op(N

−1)Λ̂(2)′(Σ̂
(2)
u )−1ut + op(1). Moreover, since ‖(Σ̂(2)

u )−1‖ and ‖Σ̂(2)
u ‖ are both

Op(1) and ‖Λ̂(2)‖F = Op(
√
N) by the restriction of the parameter space Θλ × Γ, we have
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N−1‖Λ̂(2)′(Σ̂
(2)
u )−1−Λ0Σ

−1
u0 ‖F = Op(N

−1/2‖Λ̂(2)−Λ0‖F +N−1/2‖Σ̂(2)
u −Σu0‖F ), which is op(1)

as proved above. Therefore, since N−1Λ′
0Σ

−1
u0 ut = N−1

∑N
i=1 ξiuit = Op(N

−1/2),

f̂
(2)
t − ft = Op(N

−1)Λ′
0Σ

−1
u0 ut + op(1) = op(1).

C.2 Proof of Theorem 4.2

We now verify Assumption 4.2 for the Adaptive Lasso.

Lemma C.7. For adaptive lasso,

(i) mini 6=j,(i,j)∈SU
|Σu0,ij|γ maxi 6=j,(i,j)∈SU

wij = Op(1).

(ii) δγT max(i,j)∈SL
wij = Op(1),

(iii) ω−γ
T (min(i,j)∈SL

wij)
−1 = Op(1) (recall that ωT = N−1/2 + T−1/2(logN)).

Proof. By Lemma B.5 maxi≤N,j≤N |Σ̂∗
u,ij − Σu0,ij| = Op(τ). Given this result and the as-

sumption that min(i,j)∈SU
|Σu0,ij| ≫ ωT , we have result (i). For any (i, j) ∈ SL, the following

inequality holds: δ−γ
T ≤ w−1

ij ≤ (|Σu0,ij| + |Σu0,ij − Σ̂u,ij| + δT )
γ, which then implies results

(ii) and (iii), due to the assumptions that δT = o(ωT ), and Σu0,ij = O(ωT ).

Proof of Assumption 4.2 for Adaptive Lasso

It follows from the previous lemma that αT = Op(ω
γ
T (mini 6=j,Σu0,ij∈SU

|Σu0,ij|)−γ) = op(1),

and βT = Op((ωT/δT )
γ). By the assumption that D = O(N),

ζ = min

{√
T

logN

N

D
,

(
T

logN

)1/4
√

N

D
,

N√
D logN

}
≫ min

{(
T

logN

)1/4

,

√
N

logN

}
.

Hence αT = Op(ζ). This together with the lower bound assumption on δT yields Assumption

4.2 (i).

For part (ii), note that αT = op(1) implies that with probability approaching one,

min{N,
N2

D
,
N2

D
α−2
T } = N, min{N

D
,

√
N

D
,
N

D
α−1
T } =

√
N

D
.

By Lemma C.7(ii), (recall that KT =
∑

(i,j)∈SL
|Σu0,ij|) and the lower bound δT ≫

ωT (KT/N)1/γ, µT max(i,j)∈SL
wijKT = Op(µT δ

−γ
T KT ) = op(N).

By Lemma C.7(i) and the assumptions that D = O(N) and mini 6=j,(i,j)∈SU
|Σu0,ij| ≫ ωT ,

we have µT maxi 6=j,(i,j)∈SU
wij = OpµT (mini 6=j,(i,j)∈SU

|Σu0,ij|γ)−1 = op(
√
N/D), due to the

upper bound on µT = o(ωγ
T ). Finally, by Lemma C.7(iii) and the assumption that µT ≫ ω1+γ

T ,

we have µT min(i,j)∈SL
wij ≫ ωT .

Proof of Assumption 4.2 for SCAD
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Since µT/mini 6=j,(i,j)∈SU
|Rij| = op(1) and max(i,j)∈SL

|Rij| = op(µT ), it is easy to

verify that with probability approaching one, maxi 6=j,(i,j)∈SU
wij = 0, min(i,j)∈SL

wij =

max(i,j)∈SL
wij = µT . Hence αT = 0 and βT = 1. This immediately implies the desired

result.
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