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Abstract

This paper presents a sequential search model where consumers look for sev-

eral products from multiproduct �rms. In a multiproduct search market, both

consumer behavior and �rm behavior are di¤erent from the single-product case.

For example, a consumer may return to previously visited �rms before running

out of options, and prices can decrease with search costs. The framework is ex-

tended by allowing �rms to use bundling strategies. Bundling tends to reduce

the intensity of consumer search, which can soften competition and reverse the

usual welfare assessment of competitive bundling in a perfect information setting.

Applications to countercyclical pricing, loss leader pricing, and endogenous retail

market structure are also discussed.
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1 Introduction

Consumers often look for several products on a given shopping trip. For example, during

ordinary grocery shopping they buy food, drinks and household products; in high street

shopping they purchase clothes, shoes and other goods; in the Christmas season they

look for several presents. Sometimes a consumer seeks electronic combinations such

as computer, printer and scanner; when furnishing a house they need several furniture

items; when going on holiday or attending a conference they book both �ights and

hotels; and new parents look for many baby products. On the other side of the market,

there are many multiproduct �rms such as supermarkets, department stores, electronic

retailers, and travel agencies which often supply most of the products a consumer is

searching for in a particular shopping trip. Usually the shopping process also involves

non-negligible search costs. Consumers need to reach the store, �nd out each product�s

price and how suitable they are, and then may decide to visit another store in pursuit

of better deals. In e¤ect, in many cases a consumer chooses to shop for several goods

together to save on search costs.

Despite the ubiquity of multiproduct search and multiproduct �rms, the search

literature has been largely concerned with single-product search markets. In part, this

is because a multiproduct search model is less tractable than a single-product one. In

this paper, I develop a tractable model for multiproduct search markets, and show that

a multiproduct search market exhibits some qualitatively di¤erent properties compared

to the single-product case. I then argue that multiproduct search has rich market

implications, and the developed framework can be used to address interesting economic

issues such as countercyclical pricing, the welfare impact of competitive bundling, loss

leader pricing, and endogenous retail market structure.

The basic framework of this paper is a sequential search model in which consumers

look for several products and care about both price and product suitability. Each �rm

supplies all relevant products, but each product is horizontally di¤erentiated across

�rms. By incurring a search cost, a consumer can visit a �rm and learn all product and

price information. In particular, the cost of search is incurred jointly for all products

(i.e., there are economies of scale in search), and the consumer does not need to buy

all products from the same �rm (i.e., they can mix and match after sampling at least

two �rms if �rms allow them to do so). Both features are realistic and important in

multiproduct search markets.

In the basic model, I assume that �rms use linear pricing strategies (i.e., set separate

prices for each product). A distinctive feature of consumer behavior in multiproduct

search is that a consumer may return to buy from previously visited �rms before running

out of options. By contrast, in a standard single-product sequential search model, a

consumer never returns to earlier �rms before sampling all �rms. As far as pricing is

concerned, with multiproduct consumer search, if a �rm lowers one product�s price, this

will induce more consumers who are visiting it to terminate search and buy some other

products as well. That is, a reduction of one product�s price also boosts the demand
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for the �rm�s other products. I term this the joint search e¤ect. As a result, even

physically independent products are priced like complements.

Due to the joint search e¤ect, prices can decline with search costs in a multiproduct

search market. When search costs increase, the standard e¤ect is that consumers will

become more reluctant to shop around, which will induce �rms to raise their prices.

However, in a multiproduct search market, higher search costs can also strengthen the

joint search e¤ect and make the products in each �rm more like complements, which

will induce �rms to lower their prices. When the latter e¤ect dominates prices will fall

with search costs.

Another prediction is that �rms in a multiproduct search environment tend to set

lower prices than in a single-product search environment. This is for two reasons: �rst,

due to economies of scale in search, consumers on average sample more �rms in the

multiproduct search case than in the single-product search case, which tends to increase

each product�s own-price elasticity; second, multiproduct search causes the joint search

e¤ect, which gives rise to the complementary pricing phenomenon and so increases

products� cross-price elasticities. This observation can provide a possible explanation for

the phenomenon of countercyclical pricing�prices of many retail products drop during

high-demand periods such as weekends and holidays.1 During high-demand periods, it

is often the case that a higher proportion of consumers become multiproduct searchers

(e.g., many households conduct their weekly grocery shopping during weekends), and

so retailers have incentives to reduce their prices.

In multiproduct markets, bundling is a widely observed pricing strategy. Bundling

is often used as a price discrimination or entry deterrence device.2 This paper argues

that in a search environment, bundling has a new function: it can discourage consumers

from exploring rivals� deals. This is because bundling reduces the anticipated bene�t

from mixing-and-matching after visiting another �rm. This search-discouraging e¤ect

works against the typical pro-competitive e¤ect of competitive bundling in a perfect

information scenario.3 When search costs are relatively high the new e¤ect can be

such that bundling bene�ts �rms and harms consumers.4 Therefore, our �ndings in-

dicate that assuming away information frictions may signi�cantly distort the welfare

1See relevant empirical evidence documented in, for example, Warner and Barsky (1995), MacDon-

ald (2000), and Chevalier, Kashyap, and Rossi (2003).
2See, for instance, Adams and Yellen (1976), and McAfee, McMillan, and Whinston (1989) for the

view of price discrimination, and Whinston (1990) for the view of entry deterrence.
3Matutes and Regibeau (1988), Economides (1989), and Nalebu¤ (2000) studied competitive pure

bundling, and Matutes and Regibeau (1992), Anderson and Leruth (1993), Thanassoulis (2007), and

Armstrong and Vickers (2010) studied competitive mixed bundling. The main insight emerging from

all these works is that compared to linear pricing, bundling (whether pure or mixed) has a tendency

to intensify price competition, and under the assumptions of unit demand and full market coverage

(which are also retained in this paper) it typically reduces �rm pro�ts and boosts consumer welfare.
4In di¤erent settings, Carbajo, de Meza and Seidmann (1990) and Chen (1997) argue that (asym-

metric) bundling can create �vertical� product di¤erentiation between �rms, thereby softening price

competition.
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assessment of bundling.5

Related literature. Since the seminal work by Stigler (1961), there has been a vast

literature on search, but most papers focus on single object search (see, for example,

Diamond, 1971, Burdett and Judd, 1983, and Stahl, 1989 for consumer search mod-

els). There is a small branch of literature that investigates the optimal stopping rule in

multiproduct search (Burdett and Malueg, 1981, Carlson and McAfee, 1984, and Gatti,

1999).6 They have emphasized the similarity between single-product and multiproduct

search in the sense that in both cases the stopping rule often features the static reserva-

tion property. However, I argue that despite this similarity, consumer search behavior

still exhibits substantial di¤erences between the two cases.

More importantly, the above works do not consider an active supply side. McAfee

(1995) studies a multiproduct search model with endogenous prices. It extends Bur-

dett and Judd (1983) to the multiproduct case. Each product is homogenous across

stores, and by incurring a search cost a consumer can learn price information from a

random number of stores. In particular, there are consumers who learn information

from only one store. As a result, similar to Burdett and Judd (1983), �rms adopt

mixed pricing strategies, re�ecting the trade-o¤ between exploiting less informed con-

sumers and competing for more informed consumers. However, multiproduct search

generates multiple types of (symmetric) equilibria. In particular, there is a continuum

of equilibria in which �rms randomize prices on the reservation frontier such that one

product�s price decline must be associated with the rise of some other prices.7 The

model o¤ers interesting insights, but both the multiplicity of equilibria and the com-

plication of equilibrium characterization restrict its applicability. This paper develops

an alternative multiproduct search framework with di¤erentiated products, where the

symmetric equilibrium is unique and prices are deterministic.

Lal and Matutes (1994) also present a multiproduct search model where two �rms

locate at the two ends of a Hotelling city and each product is otherwise homogenous

across �rms. Each consumer needs to pay a location-speci�c cost to reach �rms and

discover the price information. Their setting is, however, subject to the Diamond

paradox: each �rm charges the monopoly prices and no consumers participate in the

5The European Commission has recently branded all bundled �nancial products as anti-competitive

and unfair. One of the main reasons is that the practice reduces consumer mobility. See the consultation

document �On the Study of Tying and Other Potentially Unfair Commercial Practices in the Retail

Financial Service Section�, 2009.
6In Burdett and Malueg (1981) and Carlson and McAfee (1984), consumers search for serval prod-

ucts among a large number of multiproduct stores that supply homogenous products and set random

prices according to an exogenous price distribution. The former mainly deals with the case with free

recall, and the latter deals with the case with no recall. Gatti (1999) considers a more general setting

in which consumers search for prices to maximize a general indirect utility function.
7In the other type of equilibria, �rms randomize prices over the acceptance set (not just on its

border). They are, however, qualitatively similar to the single-product equilibrium in the sense that

the marginal price distribution for each product is the same as in the single-product search case, and

so is the pro�t from each product.
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market. Lal and Matutes show that �rms can avoid the market collapse by advertising

prices of a subset of products. In one type of equilibrium, each �rm advertises a low

price (even below marginal cost) of one product to persuade consumers to visit the store

(i.e., loss leading occurs), but charges the monopoly price for the other unadvertised

product. In equilibrium, consumers do not search beyond the �rst visited �rm and

so two-stop shopping never happens. In my model with product-level di¤erentiation,

consumers search for both low prices and high product suitability, and an equilibrium

with an active market exists even without advertising and two-stop shopping takes place

as we often observe in the real market.8

In terms of the modelling approach, this paper is built on the single-product search

model with di¤erentiated products (Weitzman, 1979, Wolinsky, 1986, and Anderson and

Renault, 1999). Recently, this framework has been adopted to study various economic

issues.9 Compared to the homogeneous product search model, models with product

di¤erentiation often better re�ect consumer behavior in markets that are typically char-

acterized by nonstandardized products. Moreover, they avoid the well-known modelling

di¢culty suggested by Diamond (1971), who shows that with homogeneous products

and positive search costs (no matter how small) all �rms will charge a monopoly price

and no consumers search beyond the �rst sampled �rm. In search models with product

di¤erentiation, there are some consumers who are ill-matched with their initial choice

of supplier and then search further, so that the pro-competitive bene�t of actual search

is present.

The rest of the paper is organized as follows: Section 2 presents the basic model

with linear pricing and analyzes consumer search behavior. Section 3 characterizes

equilibrium linear prices and conducts comparative statics analysis, and an application

to countercyclical pricing is also discussed. Section 4 studies bundling in a search

market and examines its welfare impact relative to linear pricing. Section 5 concludes,

and discusses other applications to loss leader pricing and endogenous retail market

structure. Omitted details are presented in the Appendix.

8Ellison (2005) uses Lal and Matutes�s framework to study add-on pricing by assuming that the

base product�s price information is perfect while the add-on�s price information is not. (In the end

of this paper, I discuss a related variant in which consumers only need to search for one product�s

information.) Shelegia (2012) studies a multiproduct version of Varian (1980) in which for exogenous

reasons one group of consumers visits only one store while the other visits two. Rhodes (2011) proposes

a multiproduct monopoly model in which each consumer knows her private valuations for all products

but needs to incur a cost to reach the �rm and learn prices. He shows that selling multiple products

can solve the Diamond hold-up problem, which would unravel the market in a single-product case with

inelastic consumer demand.
9See, for instance, Armstrong, Vickers, and Zhou (2009) and Zhou (2011) for the market implications

of prominence and non-random consumer search, Bar-Isaac, Caruana, and Cunat (2012) for how the

decline of search costs a¤ects product design, and Haan and Moraga-González (2011) for attention-

grabbing advertising.
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2 A Model of Multiproduct Search

There are a large number of consumers in the market with measure normalized to one.

Each consumer is looking for two products (e.g., two furniture items, or clothes and

shoes), and they have unit demand for each product. There are n � 2 multiproduct

�rms in the market, each supplying both products at a constant marginal cost, which

is normalized to zero.

Each product is horizontally di¤erentiated across �rms. For example, di¤erent �rms

may supply di¤erent brands of furniture or clothes and shoes with di¤erent styles, and

consumers have idiosyncratic tastes. Speci�cally, a consumer�s valuations for the two

products in each �rm are randomly drawn from a common joint cumulative distrib-

ution function F (u1; u2) de�ned on [u1; u1] � [u2; u2] which has a continuous density
f(u1; u2). The match utilities are realized independently across �rms and consumers

(but a consumer may have correlated match utilities for the two products in the same

�rm). For simplicity, I assume that the two products are neither complements nor sub-

stitutes, in the sense that a consumer obtains an additive utility u1+u2 if product i has

a match utility ui, i = 1; 2. Let Fi(ui) and Hi(uijuj) denote the marginal and condi-
tional distribution functions; fi(ui) and hi(uijuj) denote the marginal and conditional
densities.

I assume that all consumers buy both products in equilibrium, i.e., the market

is fully covered.10 (This is the case, for example, when consumers have no outside

options or when they have large basic valuations for each product on top of the above

match utilities.) Consumers do not need to purchase both products from the same

�rm. This possibility of multi-stop shopping is realistic and also important for our

model. Otherwise, the model would degenerate to a single-product one with a composite

product with match utility u1+u2. In the basic model, �rms use linear pricing strategies

and charge a separate price for each product.

Initially consumers are assumed to have imperfect information about the (actual)

prices �rms are charging and match utilities of all products.11 But they can gather

information through a sequential search process: by incurring a search cost s � 0, a

consumer can visit a �rm and �nd out both of its prices (p1; p2) and both of its match

utilities (u1; u2). At each �rm (except the last one), the consumer faces the following

options: stop searching and buy both products (maybe from �rms visited earlier), or

buy one product and keep searching for the other, or keep searching for both products.

The cost of search is assumed to be independent of the number of products a consumer

is looking for, which re�ects economies of scale in search. Finally, I suppose that

consumers have free recall/return, i.e., there are no extra costs in buying products from

10The assumption of full market coverage is often adopted in oligopoly models. Our main insights

carry over to the case without this assumption (though the analysis will become more involved).
11If consumers purchase products frequently, they may know both price and product information

before search. However, in reality both prices and product variants in many retailers change over time,

such that imperfect information might be still a plausible presumption.
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a previously visited store.

The timing is as follows: Firms set prices simultaneously �rst, and then consumers

start to search without observing �rms� actual prices (though they hold the equilibrium

belief about �rms� pricing strategy). After visiting each �rm, consumers decide whether

to stop searching or not. Both consumers and �rms are assumed to be risk neutral. I

focus on symmetric equilibria in which �rms set the same prices and consumers sample

�rms in a random order (and without replacement).12 The equilibrium concept I use

is the perfect Bayesian equilibrium. Each �rm sets its prices to maximize pro�ts,

given its expectation of consumers� search behavior and other �rms� pricing strategy.

Consumers search optimally, to maximize their expected surplus, given the match utility

distribution and their rational beliefs about �rms� pricing strategy. At each �rm, even

after observing o¤-equilibrium o¤ers, consumers hold the equilibrium belief about the

unsampled �rms� prices.13

I have made several simplifying assumptions to make the model tractable, and it is

useful to discuss them at this point.

Economies of scale in search. The assumption that the search cost is independent

of the number of products a consumer is seeking is an approximation when the search

cost is mainly for learning the existence of a seller or for reaching the store. In the

other polar case where the cost of search is solely from product inspection and so

totally divisible among products, the multiproduct search problem degenerates to two

separate single-product search problems.14 In reality, most situations are in between (a

typical shopping process involves a �xed cost for reaching the store and also variable

in-store search costs for inspecting each product). Our simpli�cation is made both for

analytical convenience and for highlighting the di¤erence between multiproduct and

single-product search.

Free recall. Free recall is often assumed in the consumer search literature. It could

be appropriate, for instance, when a consumer can phone previously visited �rms (e.g.,

furniture stores) to order the products she decides to buy, or when shopping online a

consumer can leave the browsed websites open. In most consumer markets, however,

there are positive returning costs. I choose to assume free recall both for tractability,

and for facilitating comparison with the single-product search model in Wolinsky (1986)

12As usual in search models, there exists an uninteresting equilibrium where consumers expect all

�rms to set very high prices and do not participate in the market at all, and so �rms have no incentive

to reduce their prices. I do not consider this equilibrium further. The issue of possible asymmetric

equlibria will be discussed later.
13Notice that in our setting there are no correlated economic shocks (e.g., aggregate cost shocks)

across �rms and so their pricing decisions are independent of each other.
14The case with divisible inspection costs among products will be non-trivial if consumers have to

one-stop shop (e.g., due to bundling). After inspecting a product at one �rm, a consumer needs to

decide whether to continue to inspect the other product at the same �rm or to inspect products in other

�rms. (This case is also equivalent to a search problem with multi-attribute products and separable

inspection costs among attributes.)
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and Anderson and Renault (1999) (both of which assume free recall).

Independent products. In reality the products that a consumer is seeking in a partic-

ular shopping trip are rarely independent. In many circumstances (e.g., when shopping

for clothes and shoes), they are more or less intrinsic complements in the sense that

a higher valuation for one product increases the consumer�s willingness to pay for the

other (e.g., the utility function takes the form of u1 + u2 + �u1u2 with � > 0). As I

discuss later, considering complementary valuations of this kind will complicate analy-

sis but not generate important new insights. In addition, given the assumption of full

market coverage, the two products in my model can also be regarded as perfect comple-

ments in the sense that consumers can obtain positive utility only by consuming both

of them together.

2.1 The optimal stopping rule

I �rst derive the optimal stopping rule (which has been proved in Burdett and Malueg,

1981, or Gatti, 1999 in a price search scenario). The �rst observation is that given the

indivisible search cost and free recall, a consumer will never buy one product �rst and

keep searching for the other. Hence, at any store (except the last one) the consumer

faces only two options: stop searching and buy both products (one of which may be

from a �rm visited earlier), or keep searching for both.

Denote by

� i(x) �
Z ui

x

(ui � x)dFi(ui) =
Z ui

x

[1� Fi(ui)]dui (1)

the expected incremental bene�t from sampling one more product i when the maximum

utility of product i so far is x and all product i have the same price. (The second equality

is from integration by parts.) Then the optimal stopping rule when all �rms charge the

same prices is as follows:

Lemma 1 Suppose prices are linear and symmetric across �rms. Suppose the maxi-

mum match utility of product i observed so far is zi and there are �rms left unsampled.

Then a consumer will stop searching if and only if

�1(z1) + �2(z2) � s : (2)

The left-hand side of (2) is the expected bene�t from sampling one more �rm given

the pair of maximum utilities so far is (z1; z2), and the right-hand side is the search

cost. This stopping rule seems �myopic� at the �rst glance, but it is indeed sequentially

rational. It can be understood by backward induction. When in the penultimate �rm,

it is clear that (2) gives the optimal stopping rule because given (z1; z2) the expected

bene�t from sampling the last �rm is E[max (0; u1 � z1)+max (0; u2 � z2)], which equals
the left-hand side of (2). (Note that I did not assume u1 and u2 are independently

distributed. The separability of the incremental bene�t in (2) is because of the additive

utility function and the linearity of the expectation operator.) Now step back and
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consider the situation when the consumer is at the �rm before that. If (2) is violated,

sampling one more �rm is always desirable. By contrast, if (2) holds and if the consumer

continues to search, the updated maximum match utility pair will be no worse than

(z1; z2) no matter what she will �nd at the next �rm, and so she will stop searching

there. This implies that if (2) holds, the bene�t from keeping searching is the same as

sampling just one more �rm. Expecting that, the consumer should actually cease her

search now.

Figure 1 below illustrates the optimal stopping rule. A is the set of (z1; z2) which

satis�es (2) and let us refer to it as the acceptance set. Then when there are no price

di¤erences across �rms, a consumer will stop searching if and only if the maximum

utility pair so far lies within A. Let B be the complement of A.

z1

z2

A

B

a1

a2

z r r

r

z _ u

u

z2 = �(z1)

Figure 1: The optimal stopping rule in multiproduct search

De�ne the border of A as z2 = �(z1) (i.e., (z1; �(z1)) satis�es (2) with equality) and call

it the reservation frontier. The reservation frontier is decreasing and convex. From the

de�nition of �(�), one can check that

�0(z1) = �
1� F1(z1)
1� F2(�(z1))

< 0 ;

and so �(�) is a decreasing function. Then it is also easy to see that �0(z1) increases
with z1, i.e., �(�) is convex.15

15If we consider two intrinsic complements, the reservation frontier may no longer be decreasing.

For example, when the utility function takes the form of u1 + u2 + �u1u2 with � > 0, one can check

that in the duopoly case, for instance, the reservation frontier satis�es

1

2
(1� u1)2 +

1

2
(1� u2)2 +

�

4

�
(u1 � u2)2 + (1� u1u2)2

�
= s ;

and it is not monotonically decreasing. This is because now �nding a better matched product 1 may

strictly increase a consumer�s incentive to �nd a better matched product 2. When there are more than
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Notice that ai on Figure 1 is just the reservation utility level when the consumer is

only searching for product i. (If all product i have the same price, a consumer will stop

searching if and only if the maximum utility so far is no less than ai.) It solves

� i(ai) = s ; (3)

and satis�es �(a1) = u2 and �(u1) = a2. This is because when the maximum possible

utility of one product has been achieved, the consumer will behave as if she is only

searching for the other product.

Search behavior comparison. It is useful to compare consumer search behavior be-

tween single-product and multiproduct search. The early literature has emphasized

that in both cases (given additive utilities in the multiproduct case) the optimal stop-

ping rule possesses the static reservation property. Despite this similarity, consumers�

search behavior exhibits some important di¤erences between the two cases, which have

not been discussed before.

In single-product search with perfect recall, the stopping rule is characterized by a

reservation utility a. When a consumer is already at some �rm (except the last one),

she will stop searching if and only if the current product has a utility greater than

a. Previous o¤ers are irrelevant because they must be worse than a (otherwise the

consumer would not have come to this �rm). As a result, a consumer never returns to

previously visited �rms until she �nishes sampling all �rms. In particular, if there are

an in�nite number of �rms, the consumer never exercises the recall option.

However, in multiproduct search, a consumer�s stopping rule depends on both the

current �rm�s o¤er u and the best o¤er so far z. This can be seen from the example

indicated in Figure 1, where the current o¤er u lies outside the acceptance set A but

the consumer will stop searching because z _ u 2 A (where _ denotes the �join� of
two vectors). When she stops searching, she will go back to some previous �rm to buy

product 2. This has two implications for the demand analysis. First, with multiproduct

search, a �rm�s price adjustment will not only a¤ect a consumer�s search decision at

this �rm, but will also a¤ect her search decisions at subsequent �rms if she leaves this

�rm. Second, a consumer often returns to a previously visited �rm to buy one product

even if there are �rms left unsampled. This is true even if there are an in�nite number

of �rms.

These di¤erences will complicate the demand analysis in multiproduct search. More-

over, unlike the single-product search case, considering an in�nite number of �rms does

not achieve any simplicity. In e¤ect, with multiproduct search, the simplest case is

when there are only two �rms. Hence, in the following analysis, I mainly deal with the

duopoly case. As I will discuss in section 5.1, such a simpli�cation does not lose the

most important insights concerning �rm pricing in a multiproduct search market. (A

detailed analysis of the general case with more than two �rms is provided in the online

two �rms, considering intrinsic complements will even render the optimal stopping rule non-stationary

(see Gatti, 1999, for a related discussion).
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supplementary document at https://sites.google.com/site/jidongzhou77/research.)

3 Equilibrium Prices

3.1 The single-product benchmark

To facilitate comparison, I �rst report some results from the single-product search

model (see Wolinsky, 1986 and Anderson and Renault, 1999 for an analysis with n

�rms). Suppose the product in question is product i, and the unit search cost is still

s. Then the reservation utility level is ai de�ned in (3), and it decreases with s (i.e.,

a higher search cost will make consumers less willing to search on). In the following

analysis, I mainly focus on the case with a relatively small search cost:

s < � i(ui), ai > ui for both i = 1; 2 : (4)

(Remember that � i(ui) is the expected bene�t from sampling another product i when

the current one has the lowest possible match utility.) This condition ensures an active

search market even in the single-product case.

The symmetric equilibrium price p0i in the duopoly case is then determined by

1

p0i
= fi(ai)[1� Fi(ai)] + 2

Z ai

ui

fi(u)
2du

| {z }
�0

: (5)

It follows that p0i increases with the search cost s (or decreases with ai) if

fi(ai)
2 + f 0i(ai)[1� Fi(ai)] � 0 :

This condition is equivalent to an increasing hazard rate fi=(1�Fi). Then we have the
following result (Anderson and Renault, 1999 have shown this result for an arbitrary

number of �rms):

Proposition 1 Suppose the consumer is only searching for product i and the search

cost condition (4) holds. Then the equilibrium price de�ned in (5) increases with search

costs if the match utility has an increasing hazard rate fi=(1� Fi).

3.2 Equilibrium prices in multiproduct search

I now turn to the multiproduct search case. Let (p1; p2) be the symmetric equilibrium

prices. For notational convenience, let (u1; u2) be the match utilities of �rm I, the �rm

in question, and (v1; v2) be the match utilities of �rm II, the rival �rm. In the symmetric

equilibrium, for a consumer who samples �rm I �rst, her reservation frontier u2 = �(u1)

is determined by

�1(u1) + �2(�(u1)) = s ; (6)
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which simply says that the expected bene�t of sampling �rm II is equal to the search

cost. Note that �(u1) is only de�ned for u1 2 [a1; u1] (see Figure 2 below). But

for convenience, let us extend its domain to all possible values of u1, and stipulate

�(u1) > u2 for u1 < a1.

Instead of writing down the demand functions and deriving the �rst-order conditions

for the equilibrium prices directly, I use the following economically more illuminating

method. Starting from an equilibrium, suppose �rm I unilaterally decreases p2 by a

small ". How does this adjustment a¤ect �rm I�s pro�ts? Let us focus on the �rst-order

e¤ects. First, �rm I su¤ers a loss from those consumers who only buy product 2 from

it because they are now paying less. Since in equilibrium half of the consumers buy

product 2 from �rm I (remember the assumption of full market coverage), this loss is

"=2. Second, �rm I gains from boosted demand: (i) For those consumers who visit �rm

I �rst, they will be more likely to stop searching since they hold equilibrium beliefs that

the second �rm is charging the equilibrium prices. Once they stop searching, they will

buy both products from �rm I immediately. (ii) For those consumers who eventually

sample both �rms, they will be more likely to buy product 2 from �rm I due to the

price reduction. In equilibrium, the loss and gain should be such that �rm I has no

incentive to deviate, which generates the �rst-order condition for p2.

Now let us analyze in detail the two (�rst-order) gains from the proposed small price

reduction. The �rst gain is from the e¤ect of the price reduction on consumers� search

decisions. How many consumers who sample �rm I �rst will stop searching because of

the price reduction? (Note that the consumers who sample �rm II �rst hold equilibrium

beliefs and so their stopping decisions remain unchanged.)

Denote by �(u1j") the new reservation frontier. Since reducing p2 by " is equivalent
to increasing u2 by ", �(u1j") solves

�1(u1) + �2(�(u1j") + ") = s ;

so �(u1j") = �(u1) � " according to the de�nition of �(�). That is, the reservation
frontier moves downward everywhere by ", and the stopping region A expands (i.e.,

more consumers buy immediately at �rm I) as illustrated in Figure 2 below.16 For a

small ", the number of consumers who originally continued to search but now cease

searching and buy immediately at �rm I (i.e., the probability measure of the shaded

area between �(u1) and �(u1j") in Figure 2) is

"

2

Z u1

a1

f(u; �(u))du : (7)

(Remember that half of the consumers sample �rm I �rst. The integral term is the line

integral along the reservation frontier in the u1 dimension.)

16More precisely, �(a1j") = u2 � " and so the reservation frontier has a small vertical segment at
u1 = a1. But this does not a¤ect our analysis as " is small.
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Figure 2: Price deviation and the stopping rule

What is �rm I�s net bene�t from these marginal consumers? Realize that these

marginal consumers now buy both products from �rm I for sure, while before the price

deviation they only bought each product from �rm I with some probability less than one

(i.e., when they search on but �nd worse products at �rm II). To be speci�c, consider

a marginal consumer on the reservation frontier with match utilities (u1; �(u1)). If she

chooses to sample �rm II, she will �nd a worse product 1 at �rm II (i.e., v1 < u1)

with probability F1(u1), in which case she will return to �rm I and buy its product 1.

Similarly, if she continues to sample �rm II, she will �nd a worse product 2 at �rm

II (i.e., v2 < �(u1)) with probability F2(�(u1)), in which case she will return to �rm I

and buy its product 2. Hence, the net bene�t from inducing this marginal consumer to

cease searching is p1[1� F1(u1)] + p2[1� F2(�(u1))]. We then sum this bene�t over all

marginal consumers on the reservation frontier. By using (7), this total bene�t is

"

2

Z u1

a1

fp1[1� F1(u)] + p2[1� F2(�(u))]g f(u; �(u))du : (8)

The second gain is from those consumers who sample both �rms. They will now

more likely buy product 2 from �rm I due to the price reduction. Consider �rst a

consumer who visits �rm I �rst and �nds match utilities (u1; u2) 2 B("). She will

then continue to visit �rm II, but will return to �rm I and buy its product 2 if v2 <

u2 + ". The probability of that event is F2(u2 + ") � F2(u2) + "f2(u2). So the small

price adjustment increases the probability that this consumer buys product 2 from

�rm I by "f2(u2). Then the total increased probability from all such consumers is
"
2

R
B(")

f2(u2)dF (u) � "
2

R
B
f2(u2)dF (u). (Since B(") converges to B as " ! 0, we can

discard all higher order e¤ects.) Similarly, one can show that the increased probability

that those consumers who sample �rm II �rst and then come to �rm I buy product 2
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at �rm I is "
2

R
B
f2(v2)dF (v). Adding them together gives us the second gain, which is

p2"

Z

B

f2(u2)dF (u) : (9)

In equilibrium, the (�rst-order) loss "=2 from the small price reduction should be

equal to the sum of the two (�rst-order) gains in (8) and (9). This yields the �rst-order

condition for p2:

1 = 2p2

Z

B

f2(u2)dF (u) + p2

Z u1

a1

[1� F2(�(u))]f(u; �(u))du
| {z }

standard e¤ect

(10)

+ p1

Z u1

a1

[1� F1(u)]f(u; �(u))du
| {z }

joint search e¤ect

:

The �rst two terms on the right-hand side capture the standard e¤ect of a product�s

price adjustment on its own demand: reducing p2 increases demand for product 2. (This

is similar to the right-hand side of (5) in the single-product search case.)

The last term, however, captures a new feature of the multiproduct search model:

when �rm I reduces its p2, more consumers who sample it �rst will stop searching and

buy both products, which increases the demand for its product 1 as well. This makes

the two products supplied by the same �rm like complements even if they are physically

independent.17 This e¤ect occurs because each consumer is searching for two products

and the cost of search is incurred jointly for them, and so I refer to it as the joint search

e¤ect henceforth.

Also notice that the size of the joint search e¤ect (which determines the degree

of �complementarity� between the two products in each �rm) relies on the mass of

marginal consumers on the reservation frontier, i.e., (7). It depends not only on the

density function f but also on the �length� of the reservation frontier as indicated in

Figure 2. For example, in the uniform distribution case, when the search cost increases,

the reservation frontier becomes longer such that the mass of marginal consumers rises

and thus the two products in each �rm become more like complements. As we shall see

below, this observation plays an important role in �rms� pricing decisions.

Similarly, one can derive the �rst-order condition for p1:

1 = 2p1

Z

B

f1(u1)dF (u) + p1

Z u2

a2

[1� F1(��1(u))]f(��1(u); u)du (11)

+ p2

Z u2

a2

[1� F2(u)]f(��1(u); u)du ;

17Notice that the complementarity caused by the joint search cost is di¤erent from intrinsic comple-

mentarity. If information is perfect and the two products are intrinsic complements, then reducing the

price of a �rm�s one product will not in�uence consumers� decisions of where to buy the other product.

Hence, considering a perfect information setting with intrinsic complements cannot reproduce the main

results in this paper.
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where ��1 is the inverse function of �. The �rst two terms on the right-hand side re�ect

the standard e¤ect of adjusting price p1, and the last term captures the joint search

e¤ect. I summarize the results in the following lemma:18

Lemma 2 Under the search cost condition (4), the �rst-order conditions for p1 and p2

to be the equilibrium prices are given in (10) and (11).

Both (10) and (11) are linear equations in prices, and the system of the two prices

has a unique solution. Thus, the symmetric equilibrium, if it is characterized by the

�rst-order conditions, will be unique. Notice that if �rms ignored the joint search e¤ect,

then the pricing problem would be separable between the two products. A special case

is when s = 0 (so ai = ui and B equals the whole match utility domain). Then the

e¤ect of a price adjustment on consumer search behavior (i.e., (8)) disappears, and the

�rst-order conditions simplify to

1

pi
= 2

Z ui

ui

fi(u)
2du : (12)

In this case, the multiproduct model yields the same equilibrium prices as the single-

product model.

In the following analysis, I will often rely on the case with two symmetric products.

Slightly abusing the notation, let the one-variable functions F (�) and f(�) denote the
common marginal distribution function and density function, respectively. Let a be the

common reservation utility in each dimension. In particular, with symmetric products,

we have f(u1; u2) = f(u2; u1) and the reservation frontier satis�es �(�) = ��1(�), i.e., it
is symmetric around the 45-degree line in the match utility space. If p is the equilibrium

price of each product, then both (10) and (11) simplify to

1

p
= 2

Z

B

f(ui)f(ui; uj)du+

Z u

a

[1� F (�(u))]f(u; �(u))du
| {z }

standard e¤ect: �

(13)

+

Z u

a

[1� F (u)]f(u; �(u))du
| {z }

joint search e¤ect: �

:

18One can also derive the �rst-order conditions by calculating the demand functions directly. For

example, when �rm I unilaterally deviates to (p1 � "1; p2 � "2), the demand for its product 1 is

1

2

Z u1

u
1

[1�H2(�(u1j")ju1)(1� F1(u1 + "1))] dF1(u1) +
1

2

Z u1

u
1

H2(�(v1)jv1)(1� F1(v1 � "1))dF1(v1) ;

where " = ("1; "2), �(u1j") = �(u1 + "1)� "2 is the reservation frontier associated with the deviation,
and Hi(�j�) is the conditional distribution function. Consumers who sample �rm I �rst will buy its

product 1 if they stop searching immediately or if they continue to search but �nd �rm II�s product 1

is a worse deal. Consumers who sample �rm II �rst will purchase �rm I�s product 1 if they come to

�rm I and �nd �rm I�s product 1 is a better deal. The deviation demand for product 2 is similar.
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Discussion: the second-order conditions and asymmetric equilibria. In our multi-

product search model, it is di¢cult to investigate the second-order conditions in general.

In the online supplementary document, I show that in the case of symmetric products

and independent match utilities, each �rm�s pro�t function is locally concave around the

price de�ned in (13) under fairly general conditions. In the examples with uniform and

exponential distribution (which are used for illustration below), it can be numerically

veri�ed that a �rm�s pro�t function is globally quasi-concave, and thus the �rst-order

conditions are su¢cient for the equilibrium prices.

A related issue is the possible existence of a type of asymmetric equilibrium where

�rms put di¤erent products on sale. For example, in the case with symmetric products,

one �rm may charge price pL for its product 1 and price pH > pL for its product 2,

and the other �rm sets prices in the opposite way. However, as shown in the online

supplementary document, this type of equilibrium cannot be sustained at least when

the two symmetric products have independent match utilities and f is logconcave.

For illustration of the equilibrium prices, I present two examples:

The uniform example: Suppose u1 and u2 are independent, and ui s U [0; 1]. Then

� i(x) = (1 � x)2=2. So a = 1 �
p
2s, and condition (4) requires s � 1=2. The

reservation frontier satis�es

(1� u)2 + (1� �(u))2 = 2s ;

so the stopping region A is a quarter-disk with radius
p
2s. Then (13) implies

p =
1

2� (1
2
� � 1)s ; (14)

where � � 3:14 is the mathematical constant. (The standard e¤ect is � = 2�s�=2,
and the joint search e¤ect is � = s.)19

The exponential example: Suppose u1 and u2 are independent, and fi(ui) = e
�ui for

ui 2 [0;1). Then � i(x) = e�x. So e�a = s, and the search cost condition (4)

requires s � 1. The reservation frontier satis�es

e�u + e��(u) = s ;

so �(u) is one branch of a hyperbola. Then (13) implies

p =
1

1 + 1
6
s3
:

(The standard e¤ect is � = 1, and the joint search e¤ect is � = s3=6.)

The price increases with search costs in the uniform example, but it decreases with

search costs in the exponential example. As I will explain below, the result that prices

can decline with search costs is not exceptional in the multiproduct search model.

19The �rst term in (13) is 2
R
B
du, so it equals two times the area of region B, i.e., 2(1�s�=2) = 2�s�.

The second term in (13) is
R 1
a
[1��(u)]du, which is the area of region A and so equals s�=2. The joint

search e¤ect is � =
R 1
a
(1� u)du = s according to the de�nition of a.
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3.3 Price and search cost

This section investigates how prices vary with search costs. When search costs rise,

there are two e¤ects: First, consumers will become more reluctant to shop around, and

so fewer of them will sample both �rms (i.e., the region of B shrinks). This always

induces �rms to raise their prices. Second, when search costs rise, the mass of mar-

ginal consumers on the reservation frontier also changes. If the number of marginal

consumers increases with search costs (which is true, for instance, in the uniform dis-

tribution case where the reservation frontier becomes �longer� as search costs rise in

the permitted range of (4)), �rms have an incentive to reduce prices. This incentive is

further strengthened in the multiproduct case due to the joint search e¤ect: stopping

a marginal consumer from continuing to search can boost demand for both products.

The �nal prediction depends on which e¤ect dominates.

I introduce the following regularity condition:

hi(uijuj)
1� Fi(ui)

increases with ui for any given uj . (15)

In particular, if the two products have independent match utilities, this condition is

just the standard regularity condition of increasing hazard rate in the single-product

case.

In the following, I focus on the case with two symmetric products, and so the

equilibrium price p is given in (13).20 One can see that p increases with search costs if

and only if @�
@s
+ @�

@s
< 0, where � is the standard e¤ect and � is the joint search e¤ect as

de�ned in (13). As the following proposition indicates, @�
@s
< 0 if the regularity condition

(15) holds. This means that if the joint search e¤ect were absent, prices would increase

with search costs under the condition (15), similar as in the single-product scenario.

However, taking into account the joint search e¤ect can qualitatively change the

picture. As indicated in the following proposition, the joint search e¤ect � can vary

with s in either direction. If @�
@s
< 0, the joint search e¤ect will reinforce the standard

e¤ect such that the price increases with search costs even faster. Conversely, if @�
@s
> 0

(e.g., when the conditional density is weakly decreasing), the joint search e¤ect will

mitigate or even overturn the usual relationship between price and search costs. As a

result, the regularity condition (15) is not enough to ensure that prices increase with

search costs in our model. The following result gives a new condition (all omitted proofs

can be found in Appendix A):

20Product asymmetry is another force that could in�uence the relationship between prices and search

costs. Intuitively, when one product has a lower pro�t margin than the other, the joint search e¤ect

from adjusting its price is stronger (i.e., reducing its price can induce consumers to buy the other

more pro�table product). Then this product�s price may go down with the search cost. For example,

when product 1 has a match utility uniformly distributed on [0; 1] and product 2 has a match utility

uniformly distributed on [0; 4], one can show that p1 decreases while p2 increases with s when s � 1=2.
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Proposition 2 Suppose the search cost condition (4) holds, and the two products are

symmetric. Then p de�ned in (13) increases with search costs if and only if

Z u

a

f(�(u))

1� F (�(u)) ff(u)h(uj�(u)) + [1� F (u)]h
0(uj�(u))g du

| {z }
� @�
@s

> f(a; u)�
Z u

a

h0(uj�(u))f(�(u))du
| {z }

@�
@s

:

(16)

If the two products further have independent match utilities, a su¢cient condition for

(16) is that the marginal density f(u) is (weakly) increasing.

The condition (16), however, can be easily violated (such that prices decrease with

search costs) even under the regularity condition of (15).21 For example, in the ex-

ponential example with independent match utilities, @�
@s
= 0 and @�

@s
> 0, and so the

opposite of (16) holds. Other simple examples include the distribution with decreasing

density f(u) = 2(1 � u) and the logistic distribution f(u) = eu=(1 + eu)2 when search
costs are relatively small. As we have argued, this surprising result is due to the joint

search e¤ect, the new economic force in our multiproduct search model.

If �rms supply (and consumers need) more products, the joint search e¤ect could

have an even more pronounced impact such that prices fall with search costs more

likely. In Appendix A, I extend the two-product model to the case with m products.

In particular, in the uniform case with m symmetric products, the equilibrium price p

has a simple expression:

1

p
= 2� Vm(

p
2s)

2m| {z }
standard e¤ect

+
(m� 1)Vm(

p
2s)

2m�1�| {z }
joint search e¤ect

; (17)

where s 2 [0; 1=2] and Vm(r) is the volume of an m-dimensional sphere with radius r.22
One can check that p increases with s if and only if m < 1+�=2 � 2:6. Therefore, when
consumers search for more than two products, even in the uniform example, prices start

to decrease with search costs.

Discussion: large search costs. Our analysis so far has been restricted to relatively

small search costs such that it is even worthwhile to search for one good alone. I now

discuss the case with larger search costs beyond condition (4). (In some circumstances,

21If the opposite of (15) holds, the left-hand side of (16) is negative, and meanwhile h0 must be

negative such that the right-hand side is positive. Thus, (16) will fail to hold and so the price p will

decrease with search costs. This is not surprising, because even in the single-product search case (5)

implies that the equilibrium price decreases with search costs if the match utility has a decreasing

hazard rate. What is more surprising in the multiproduct search model is that prices can decrease

with search costs even under the regularity condition.
22The volume of an m-dimensional sphere with radius r is Vm(r) =

(r
p
�)m

�(1+m=2) , where �(�) is the
Gamma function. One can show that for any �xed r, limm!1 Vm(r) = 0. Then as m goes to in�nity,

p will approach the perfect information price 1=2 in expression (12). This is because for a �xed search

cost, if each consumer is searching for a large number of products, they will almost surely sample both

�rms.
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a consumer conducts multiproduct search because it is not worthwhile to search for

each good separately.) As we shall see later, this discussion will also be useful for

understanding the results in the bundling case. For simplicity, let us focus on the case

of symmetric products. Suppose the condition (4) is violated such that s > � i(u) and

a < u. (But s cannot exceed 2� i(u) to ensure an active search market.) Then the

reservation frontier is shown in Figure 3 below, where c = �(u).

u1

u2

A

B

c

c

u2 = �(u1)

Figure 3: The optimal stopping rule with large search costs

The key di¤erence between this case and the case of small search costs is that now

the reservation frontier becomes �shorter� as search costs go up. This feature has a

signi�cant impact on how prices vary with search costs. For example, in the uniform

case, a higher search cost now leads to fewer marginal consumers on the reservation

frontier, which provides �rms with a greater incentive to raise prices. (In this case, the

joint search e¤ect strengthens the usual relationship between prices and search costs.)

I show in the online supplementary document that if the two products are symmetric

and they have independent match utilities, and if search costs are relatively high such

that � i(u) < s < 2� i(u), then the equilibrium price p increases with search costs if each

product�s match utility has a monotonic density and a (weakly) increasing hazard rate.

3.4 Price comparison with single-product search

As the end of this section, I compare the multiproduct search prices in section 3.2 with

the single-product search prices in section 3.1, and discuss one empirical implication of

the comparison result.

Proposition 3 Suppose the search cost condition (4) and the regularity condition (15)

hold. Then pi � p0i ; i = 1; 2; i.e., each product�s price is lower in multiproduct search
than in single-product search. (The equality holds when s = 0.)
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This result is intuitive. In our model, there are economies of scale in search (i.e.,

searching for two products is as costly as searching for only one), so more consumers

are willing to sample both �rms in multiproduct search, which intensi�es the price

competition. On top of that, the joint search e¤ect gives rise to a complementary

pricing problem and induces �rms to further lower their prices. For example, in the

uniform case with s = 0:1, the multiproduct search price in (14) is 0:51, lower than the

single-product search price 0:64 by 20%. (Notice that p0 = 1=(2 �
p
2s) in the single-

product case.) It is worth emphasizing that even if economies of scale in search are

weak (e.g., when single-product search is less costly than multiproduct search), the joint

search e¤ect can still induce substantial price reduction. For instance, in the uniform

case, if single-product search is half as costly as two-product search (i.e., if the single-

product search cost is s=2), then the single-product search price becomes 1=(2 �ps).
The multiproduct search price is still signi�cantly lower than that. For example, when

s = 0:1, the new single-product search price is 0:59, and the multiproduct search price

0:51 is still lower than it by 13:5%.

As documented inWarner and Barsky (1995), MacDonald (2000), Chevalier, Kashyap,

and Rossi (2003) and others, prices of many retail products fall during demand peaks

such as holidays and weekends. (All these paper use data from multiproduct retailers

such as supermarkets and department stores.) This phenomenon is termed counter-

cyclical pricing. A simple extension of the multiproduct search model can provide a

possible explanation for this phenomenon.23 Suppose there are now both single-product

and multiproduct searchers in the market. Suppose a higher proportion of consumers

become multiproduct searchers during high-demand periods such as weekends and hol-

idays. (For example, many households conduct their weekly grocery shopping during

weekends, and more people buy multiple gifts in Christmas season.24) Then Proposition

3 immediately implies that market prices will decline.

For illustration, I consider an example where there are two symmetric products and

each product is needed by a consumer with a probability � 2 [0; 1]. (Our basic model
corresponds to � = 1.) Suppose the need for each product occurs independently across

products and consumers. Then there are three groups of consumers in the market: a

fraction of �2 of consumers are searching for both products, a fraction of 2�(1 � �)
of consumers are searching for only one product, and the rest need none of them. A

demand rise can be re�ected by an increase of �.

23There are of course other possible explanations for countercyclical pricing. For example, it may

be due to the dynamic interaction among competing retailers, who are more likely to have a price war

during demand booms (Rotemberg and Saloner, 1986). It may also be because retailers advertise price

information more intensely during high-demand periods, or because more low-income consumers who

are usually more price sensitive enter the market.
24Another possible justi�cation is that the demand �uctuations may also arise endogenously: an-

ticipating �rms� pricing pattern, consumers may strategically accumulate their demand for various

products and shop intensively during low-price periods, which in turn justi�es �rms� pricing strategies.
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The equilibrium price for each product in this extended model is given by

1

p
= (1� �)�0 + �(� + �) ;

where �0 is the right-hand side of (5), and � and � are the standard e¤ect and the joint

search e¤ect in multiproduct search, respectively. (Conditional on a consumer buying

one product, this consumer is a single-product searcher with probability 1 � � and a
multiproduct searcher with probability �.) Proposition 3 implies that �0 < � + �, so

p decreases with �. This result is due to both �0 < � (which re�ects the economies of

scale in search) and � > 0 (which re�ects the joint search e¤ect).

Warner and Barsky (1995) have suggested an explanation based on consumer search

for countercyclical pricing, though they did not develop a formal search model. Their

idea is wholly based on economies of scale in search, while my model suggests that

even if economies of scale in search are weak, the joint search e¤ect can still induce

multiproduct �rms to reduce their prices substantially. In e¤ect, one argument in

Chevalier, Kashyap, and Rossi (2003) against Warner and Barsky�s explanation is that

they did not �nd clear evidence that consumers become signi�cantly more price elastic

during peak-demand periods. However, they only consider each product (category)�s

own-price elasticity. According to our model, the cross-price elasticity due to the joint

search e¤ect may play an important role in multiproduct retailers� pricing decisions.

Taking that into account may enhance the explanatory power of a search model for

countercyclical pricing.

4 Bundling in Search Markets

Bundling is a widely used multiproduct pricing strategy. One adopted form, termed

pure bundling, is that the �rm sells several products in a package (e.g., software suites,

TV program packages, and music albums), and none of them is available for individual

purchase. The other form, termed mixed bundling, is that alongside each separately

available product, a package is sold at a discount relative to the components. For ex-

ample, retailers such as electronic stores, travel agencies and online book shops often

o¤er a customer a discount if she buys more than one product from the same store. An-

other related example in the retail market is that the shipping fee is often independent

of the number of products (e.g., furniture items) in the same order.

The existing literature on competitive bundling assumes perfect information on the

consumer side (i.e., consumers know all price and product information). However, in

many circumstances where �rms use bundling strategies, imperfect information and

consumer search are clearly relevant and could have a signi�cant in�uence on �rms�

incentive to bundle and the welfare impacts of bundling. This section intends to �ll

this gap by allowing �rms to adopt bundling strategies in the multiproduct search

model.
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To illustrate the main insights in a simple way, I focus on the case of pure bundling.

(The case of mixed bundling is more complicated to analyze, but the main results

derived in the pure bundling case hold qualitatively there. See the online supplementary

document for the details.) I assume that when �rms bundle, consumers buy only one

of the two bundles, i.e., they will not buy both bundles to mix and match. This is the

case, for instance, when pure bundling introduces the compatibility problem, or when

the bundle price is so high that it is not worthwhile to buy both bundles.25

Bundling and search incentive. I �rst examine how bundling might a¤ect con-

sumers� search incentive. In the linear pricing case, given match utilities (u1; u2) at �rm

I, the expected bene�t from sampling �rm II is

E
�
max

�
0;
P2

i=1(vi � ui); v1 � u1; v2 � u2
��
: (18)

(This merely rewrites the left-hand side of (6). The expectation operator is over (v1; v2).)

If both products at �rm II are a worse match, the consumer will return and buy at �rm

I and so the gain from the extra search will be zero; if both products at �rm II are a

better match, the consumer will buy at �rm II and gain
P2

i=1(vi � ui); if only product
i at �rm II is the better match, she will mix and match and the gain will be vi � ui.
Suppose now both �rms adopt the pure bundling strategy and charge the same

prices. Then the expected bene�t from sampling �rm II becomes

E[ max(0;
P2

i=1(vi � ui))] ; (19)

since the opportunity to mix and match has been completely ruled out. This bene�t

is clearly smaller than (18). Therefore, compared to linear pricing, bundling reduces

consumers� search incentive and induces them to stop at the �rst sampled �rm more

often.26

When both �rms bundle, consumers in e¤ect face a single-product search problem:

�rm I o¤ers a composite product with a match utility U = u1 + u2, and �rm II o¤ers

another one with an independent match utility V = v1 + v2. Both U and V belong

to [U = u1 + u2; U = u1 + u2]. Let G(�) and g(�) denote their common cdf and pdf,
respectively. Denote by b the reservation utility level in this search problem. It satis�es

Z U

b

(U � b)dG(U) = s : (20)

The left-hand side is the expected bene�t from sampling the second bundle given the

�rst one has a match utility b. Hence, in a symmetric equilibrium a consumer will visit

25For example, in the uniform example below, when the search cost is relatively high, the bundle

price is greater than 1. Then even if �rm I�s products have match utilities (1; 0) and �rm II�s products

have match utilities (0; 1), it is not worthwhile to buy both bundles.
26In the case of mixed bundling, the joint-purchase discount, which is the di¤erence between the

sum of the two stand-alone prices and the bundle price, acts as a cost of mixing-and-matching and so

the bene�t from sampling one more �rm is also reduced.
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the second �rm if and only if the �rst bundle has a match utility u1+u2 below b. Since

pure bundling reduces consumers� search incentive, the acceptance set expands, i.e.,

b < u1 + �(u1) for any u1 2 [a1; u1].
Figure 4 below illustrates this change of the consumer stopping rule, where the linear

line is the reservation frontier in the pure bundling case and the new acceptance set is

A plus the shaded area.
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Figure 4: The optimal stopping rule: linear pricing vs pure bundling

As I will demonstrate below, this search-discouraging e¤ect of bundling may make �rms

compete less aggressively and reverse the usual welfare impact of competitive bundling.

Incentive to bundle. Starting from the linear pricing equilibrium, does a �rm

have a unilateral incentive to introduce bundling in a search environment? Suppose

that �rms choose prices and whether to bundle products simultaneously,27 and both

choices are unobservable to consumers until they reach the store.

When a �rm unilaterally introduces pure bundling, it will make more consumers who

visit it �rst stop searching and buy immediately. (For these consumers, the situation is

now actually equivalent to both �rms adopting the bundling strategy.) But bundling

will also exclude some consumers who continue to search and would otherwise come

back and buy a single product. The following result shows that with costly search, the

�rst positive e¤ect always dominates.

Proposition 4 In the duopoly model with costly search (s > 0), starting from the linear

pricing equilibrium, each �rm has a unilateral incentive to introduce the pure bundling

strategy.

Proof. Each �rm earns (p1 + p2)=2 in the linear pricing equilibrium. Now consider

the following deviation: �rm I unilaterally bundles its products and sells the bundle at

27In the retail market, bundling strategies are often as easy to adjust as pricing strategies.
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a price p1 + p2. (Before they reach �rm I, consumers still hold the equilibrium belief

that �rm I is setting linear prices.) Since this deviation does not change the bundle

price, it su¢ces to show that more than half of the consumers will buy the bundle from

�rm I after the deviation. Notice that if both �rms bundle and charge the same price,

each will have demand 1=2. So it su¢ces to show that more consumers will buy the

bundle from �rm I in the deviation case than in the pure bundling case with the bundle

price p1 + p2.

Consider �rm I�s two demand sources: (a) For those consumers who sample �rm I

�rst, they will act as in the pure bundling case. So the demand from them is the same

as in the pure bundling case. (b) For those consumers who sample �rm II �rst, they will

adopt the stopping rule in the linear pricing case. So compared to the pure bundling

case, more consumers (i.e., those on the shaded area in Figure 4) will come to �rm I.

(This argument relies on costly search. If the search cost is zero, all consumers who

sample �rm II �rst will come to �rm I in either case.) But once they arrive at �rm I

and �nd out its bundling strategy, they will make choices as in the pure bundling case.

Hence, in the deviation case, the demand from those consumers who sample �rm II �rst

is greater than in the pure bundling case. Combining (a) and (b) proves the result.

It is also easy to see that starting from the situation where both �rms bundle

(and consumers believe so), no �rm has a unilateral incentive to unbundle. This is

simply because given consumers� beliefs and the rival�s bundling strategy, unilaterally

unbundling has no impact at all on the market. Therefore, if �rms choose prices and

their bundling strategies simultaneously, the only symmetric equilibrium is a bundling

equilibrium.

Comparison with linear pricing. When �rms bundle, we have in e¤ect a single-

product search problem. Let P be the symmetric equilibrium bundle price. Then,

similar to (5), P is determined in

1

P
= g(b)[1�G(b)] + 2

Z b

U

g(U)2dU ; (21)

where the reservation utility b has been de�ned in (20). P increases with search costs

provided that U = u1 + u2 has an increasing hazard rate (which is true, for example,

when each ui has an increasing hazard rate and is independent from uj, as shown by

Miravete, 2002).

When information is perfect, Matutes and Regibeau (1988), Economides (1989), and

Nalebu¤ (2000) have shown in a two-dimensional Hotelling setting (with unit demand

and full market coverage) that pure bundling typically lowers price (and pro�t) and

boosts consumer welfare. This is mainly because pure bundling makes a price reduction

doubly pro�table, thereby intensifying price competition, and the price reduction is

large enough to outweigh the restriction of choices available with pure bundling.

The same argument applies in our setting when the search cost is zero. Suppose

the two products are symmetric. Then from (13) and (21) we can see that at s = 0 (so
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a = u and b = U) pure bundling results in a lower bundle price (P < 2p) if and only if

Z u

u

f(u)2du < 2

Z U

U

g(U)2dU : (22)

With independent match utilities, one can check that this condition holds for a large

range of distributions such as uniform, normal and logistic. But it does not always

hold. For instance, as we will see below, in the exponential case the equality of (22)

holds. (However, as implied by Proposition 5 below, if consumers buy a large number

of products, pure bundling always leads to a lower bundle price than linear pricing in

the perfect information case.)

When search is costly, the pro-competitive e¤ect of pure bundling still applies to

those consumers who sample both �rms. However, pure bundling weakens consumers�

search incentive and so reduces the number of informed consumers in the �rst place,

which tends to soften price competition. The net e¤ect hinges on the relative importance

of these two forces. Intuitively, when the search cost is higher, there will be fewer fully

informed consumers, and then the �rst e¤ect will be less important and pure bundling

may lead to a higher bundle price. This intuition is con�rmed in our two examples:

The uniform example: Suppose u1 and u2 are independent, and ui s U [0; 1]. To

facilitate the comparison with linear pricing, we keep the search cost condition

s � 1=2. One can show that G(U) = U2=2 and g(U) = U if U 2 [0; 1], and
G(U) = 1 � (2 � U)2=2 and g(U) = 2 � U if U 2 [1; 2]. According to (20), the
reservation utility b satis�es (2 � b)3=6 = s if s 2 [0; 1=6] (so b � 1 in this case),
and 1� b+ b3=6 = s if s 2 [1=6; 1=2] (so b < 1 in this case). Then (21) implies

P =

8
>>>><

>>>>:

1
4
3
� s if s 2 [0; 1

6
)

1
1
6
b3 + b

if s 2 [1
6
; 1
2
]

:

One can check that P increases with s, but the speed is much faster when s � 1=6.
(The upward sloping curve in Figure 5(a) below depicts how P � 2p varies with
search costs.) This is because in the range of s 2 [0; 1=6), b > 1 and so as

s increases, the reservation frontier gets �longer� (i.e., there are more marginal

consumers on the frontier), which mitigates �rms� incentive to raise prices. By

contrast, after s exceeds 1=6, b < 1 and so the reservation frontier gets �shorter�

as s increases, which strengthens �rms� incentive to raise prices. In other words,

when the reservation frontier is still getting longer in the linear pricing case, it

already starts to get shorter in the bundling case. In particular, when the search

cost exceeds about 0:26, the bundle price is higher in the pure bundling case than

in the linear pricing case.

The exponential example: Suppose u1 and u2 are independent, and fi(ui) = e
�ui for

ui 2 [0;1). Then G(U) = 1� (1+U)e�U and g(U) = Ue�U . (Note that U has a
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strictly increasing hazard rate, though ui has a constant one.) According to (20),

the reservation utility b satis�es (2 + b)e�b = s. Substituting G and g into (21)

yields

P =
2

1� e�2b ;

which increases with s and is always greater than the bundle price 2p in the linear

pricing case (except P = 2p at s = 0). (The upper curve in Figure 5(b) depicts

how P � 2p varies with search costs in this example.) With pure bundling, as s
increases the reservation frontier always gets �shorter� in the exponential case,

which explains why pure bundling reverses the relationship between price and

search costs.

Now let us examine the welfare impact of pure bundling relative to linear pricing.

The �rst observation is that total welfare�de�ned as the sum of industry pro�t and

consumer surplus�must fall with bundling. With the assumption of full market cover-

age, consumer payment is a pure transfer and so only the match e¢ciency (including

search costs) matters. Bundling reduces e¢ciency because it not only results in insu¢-

cient consumer search (i.e., too few consumers search beyond the �rst sampled �rm due

to bundling) but also rules out the opportunity to mix and match for the consumers who

sample both �rms. This general result holds no matter whether information frictions

exist or not.
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Figure 5: The welfare impact of pure bundling

However, how bundling a¤ects industry pro�t and consumer surplus depends on the

size of search frictions. First, each �rm earns a higher pro�t whenever pure bundling

leads to a higher bundle price (given the assumption of full market coverage). Hence,

given that total welfare always falls with bundling, consumers must become worse o¤

if the bundle price rises in the pure bundling case. But things are less clear when the

bundle price falls because consumers also end up consuming less well matched goods in

the pure bundling case. In the uniform example, as indicated by the downward sloping

curve in Figure 5(a) which represents the impact of pure bundling on consumer surplus
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relative to linear pricing, pure bundling bene�ts consumers when search costs are lower

than about 0:24, but it harms consumers when search costs exceed that threshold. In

the exponential case, pure bundling always harms consumers since it (weakly) raises

the bundle price for any search cost level. This is indicated by the lower curve in Figure

5(b). (Calculating consumer surplus directly in our multiproduct search framework is

complicated. In Appendix B, I develop a more e¢cient indirect method.)

In sum, in a search environment pure bundling can generate a signi�cant competition-

relaxing e¤ect such that relative to linear pricing it can bene�t �rms and harm con-

sumers, in contrast to the perfect information case.28

Nevertheless, this search-based e¤ect is most pronounced when the number of goods

a consumer is looking for is relatively small. If a consumer is looking for a large number

of goods and if the search cost is �xed, she will almost surely sample both �rms, and

the situation will be close to the perfect information case. Then, as the following result

shows, the pro-competitive e¤ect of pure bundling will dominate.

Proposition 5 For given search costs, if each �rm supplies (and each consumer needs)

a large number of symmetric products with independent match utilities, then compared

to linear pricing, pure bundling leads to a lower bundle price and so lower industry

pro�ts, and it bene�ts consumers if f is logconcave.

This result is not trivial, and it has not been noticed in the existing literature. Pure

bundling leads to lower prices, but it also lowers match e¢ciency. What I show in the

proof is that the bundle price increases with the number of products much slower in the

pure bundling case than in the linear pricing case, such that the price e¤ect eventually

dominates the match e¤ect and consumers become better o¤.

5 Concluding Discussion

This paper has two contributions: First, it developed a tractable multiproduct search

framework and showed how consumers and �rms may behave di¤erently compared to

the single-product search case. In particular, the presence of the joint search e¤ect can

induce prices to decline with search costs even in regular cases. Second, the multiprod-

uct search framework has been used to address economic issues such as countercyclical

pricing and bundling, and new insights emerged. For instance, compared to the perfect

information scenario, the welfare assessment of competitive bundling can be reversed

in a search environment.

28A more extreme example is when the two products are symmetric but have perfectly negatively

correlated match utilities. Then in the pure bundling case, the two bundles are in e¤ect homogenous.

With perfect information, we have Bertrand competition and price will be equal to marginal cost,

which is better than linear pricing for consumers; while with costly search, we have the Diamond

paradox in which all consumers stop at the �rst sampled �rm (if the �rst search is costless) and the

price will be the monopoly price, which is of course worse than linear pricing for consumers.
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In the remainder of this section, I discuss the case with an arbitrary number of �rms

and the case with costly recall, and I also discuss two other applications of the model.

5.1 More �rms

Considering an arbitrary number of �rms entails a more intricate analysis (see the online

supplementary document for the details). But the main insights from the duopoly case

survive.

When there are more than two �rms, if a �rm is not at the �rst position of a

consumer�s search process, the consumer may go back to a previous �rm to buy one

product when she ceases searching. Hence, the joint search e¤ect is weakened, but it

does not vanish. For instance, in the exponential example with more than two �rms,

prices still declines with s due to the joint search e¤ect.

Compared to linear pricing, if the maximum utilities so far are �xed, bundling

still reduces the bene�t from sampling more �rms, and so it has a tendency to restrain

consumers� search incentive. However, with more than two �rms, bundling also restricts

the opportunity of mixing-and-matching among previous o¤ers and thus lowers the

maximum utilities so far. This tends to increase consumers� search incentive. The

�nal e¤ect depends on which force dominates. But numerical simulations suggest that

the new force is relatively weak. For example, in the uniform case with n = 1, pure
bundling reduces consumer search intensity when s is greater than about 0:03; and in

the exponential case with n = 1, pure bundling reduces consumer search intensity
for all s permitted in condition (4). Numerical calculations in the two examples also

suggest that pure bundling lead to a higher bundle price and lower consumer surplus

when s is relatively large.

5.2 Costly recall

In many cases (e.g., in the case of high street shopping), returning to a previously visited

store is costly. The consumer search literature, however, often assumes free recall for

tractability.29 Another justi�cation for the assumption of free recall is that, if we

consider an in�nite number of �rms in the single-product search case, consumers never

return to previously visited �rms and the optimal stopping rule is always stationary,

independent of the recall assumption. But as I have argued before, in the multiproduct

search case, returning occurs even if there are an in�nite number of �rms and so the

recall assumption matters for the stopping rule.

When recall is costly, the optimal stopping rule in multiproduct search has a new

feature: when one product is a good match and the other is a bad match, a consumer

may buy the well-matched product �rst (to avoid paying the returning cost) and then

29Janssen and Parakhonyak (2010) studies the optimal stopping rule in the price search case with a

single product and costly recall. They �nd that when there are more than two (but a �nite number

of) �rms, the stopping rule is non-stationary and depends on the historical o¤ers in an intricate way.
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continue to search for the other. As a result, each �rm will (endogenously) face both

single-product searchers (who have bought one product from some previous �rm) and

multiproduct searchers (who have not bought any product). The main di¢culty in

dealing with the case with costly recall is that the optimal stopping rule does not have

a simple characterization (even in the duopoly case), which hinders demand analysis.

Although an analysis with costly recall is di¢cult, I anticipate that the joint search

e¤ect should survive given that there still exist multiproduct searchers in the search

process. However, the e¤ect of bundling on consumer search could be di¤erent. For

instance, in the polar case with no recall, since consumers cannot return to mix and

match anyway, bundling does not reduce consumers� search incentive. However, in a

more reasonable case where recall is costly but not impossible the search-discouraging

e¤ect of bundling, though reduced, will persist.

5.3 Search costs vs shopping costs

Search costs usually mean the costs that are incurred to �nd and evaluate a new option

when information is initially imperfect. The literature sometimes also considers shop-

ping costs that are not related to information search. For example, in a multiproduct

case, even if information is perfect, there may still exist shopping costs (e.g., the costs

of paying several bills) when the customer sources supplies from more than one �rm

(see, for instance, Klemperer, 1992, and Armstrong and Vickers, 2010). This kind of

search unrelated shopping costs also induce customers to one-stop shop more likely,

and can cause a similar e¤ect as the joint search e¤ect in this paper: they render two

independent products in each �rm complements and so have a tendency to intensify

price competition. But compared to search costs, this kind of shopping costs are often

less important in the retail market.

In addition, there is also an essential di¤erence between search costs and search

unrelated shopping costs: search costs always have an anti-competitive e¤ect by reduc-

ing the number of �rms a consumer considers in the market. However, how shopping

costs a¤ect competition may crucially depend on whether consumers face information

frictions and need to conduct costly information search. If information is initially per-

fect, shopping costs are pro-competitive due to the complementary pricing issue. While

if there is costly information search, shopping costs can work in the opposite way by

reducing the bene�t from mixing and matching and so dampening consumers� search in-

centive. (Notice that the search unrelated shopping cost is similar to the joint-purchase

discount in mixed bundling. When it is su¢ciently large, it works as the pure bundling

strategy.)

5.4 Other applications

In this part, I brie�y discuss two other applications of the multiproduct search model

which deserve separate research.
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Search and loss leader pricing. Retailers often adopt the loss leader pricing

strategy: they sell some products at very low prices (sometimes even below marginal

costs) to attract consumers to visit and then make money back from other products

with high pro�t margins. A variant of our multiproduct search model can be used to

study this pricing strategy.

Suppose consumers know some products� match utilities and prices before search,

but they need to visit �rms to �nd out the information of other products. This is

probably the case, for example, when some products are frequently purchased while

others are not, or when some products are advertised by �rms, or when �rms deliberately

hide the information of some products (e.g., add-ons). Speci�cally, suppose that product

i�s information is perfect but product j�s information is not. For simplicity, let us

consider the case where the two products have independent match utilities (and so

observing ui and vi does not provide any new information about uj and vj). Suppose

that each �rm simultaneously chooses Pi, the observable price of product i, and pj, the

unobservable price of product j. Then one can derive the �rst-order conditions for Pi

and pj in the symmetric equilibrium:
30

Pi =
1

2
R ui
ui
fi(u)2du

| {z }
perfect info price

� [1� Fj(aj)]2pj| {z }
loss leading e¤ect

and
1

pj
= fj(aj)[1� Fj(aj)] + 2

Z aj

uj

fj(u)
2du ;

where aj is the reservation utility in the single-product search case as de�ned in (3).

Notice that the unobservable price pj is the same as in the single-product search

case (since consumers will search as in a single-product case once they arrive at the

�rst �rm), while the observable price Pi equals the price in the perfect information case

adjusted by a loss leading e¤ect. Reducing the price of product i will attract more

consumers to visit �rst, and thus it will increase not only the demand for product i

but also the demand for product j. This is similar to the joint search e¤ect in our

base model. In our base model, when a �rm reduces a product�s price (privately), it

can cause some consumers who are already in the store to cease searching; but when

this price reduction is public, it can increase the store tra¢c in the �rst place. This

cross-price e¤ect, referred to as the loss leading e¤ect, is more pronounced than the

joint search e¤ect in our base model. As a result, �rms will compete intensely in the

observable price to attract consumers such that loss leading (i.e., Pi < 0) can occur.
31

Under the regularity condition of increasing hazard rate, one can show that (i) the

observable price Pi decreases while the unobservable price pj increases with search costs,

30The proofs of all analytical statements in the discussion are available upon request.
31In the base model, even with asymmetric products, I did not �nd any examples in which the joint

search e¤ect is strong enough such that loss leading occurs.
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and (ii) a su¢cient condition for loss leading is that product j has a (weakly) higher

pro�t margin than product i in the perfect information situation (i.e.,
R uj
uj
fj(u)

2du �
R ui
ui
fi(u)

2du) and search costs are su¢ciently high (but the search market is still active).

For example, in the uniform distribution example with two symmetric products, we have

Pi =
1
2
� 2s

2�
p
2s
and pj =

1
2�
p
2s
. The former is negative when s is greater than about

0:3. In e¤ect, there is evidence that in the grocery market, for instance, loss leaders

are usually staples such as milk and dairy, alcohol, bread and bakery products that

consumers purchase repeatedly and regularly. This is consistent with our prediction:

for these frequently purchased products, consumers may know their product and price

information, and they also usually exhibit little product di¤erentiation across retailers

such that their pro�t margins are low in a perfect information setting.

If we use advertising to justify the perfect information of loss leaders (as Lal and

Matutes, 1994, did), a few interesting questions deserve further investigation: Starting

from the base model without advertising, do �rms have incentives to advertise? If so,

what products (if products are asymmetric) will �rms choose to advertise, and what is

the welfare impact of advertising? (Notice that my model has a meaningful benchmark

without advertising, which will make welfare comparison more interesting.)

Search and retail market structure. In the retail market, large multiproduct

retailers such as department stores often coexist with smaller competitors such as spe-

cialist shops which have narrower product ranges. What is the value of being a large

multiproduct retailer? A large retailer may enjoy economies of scale in operations, and

may also have an advantage in bargaining with manufacturers. But from the demand

side, one important advantage of being a multiproduct retailer is to provide consumers

with the convenience of one-stop shopping. The multiproduct search framework de-

veloped in this paper can be modi�ed to study competition between large and small

retailers, and it can also be used to study endogenous retail market structure.

Consider, for example, a market with three �rms: one �rm supplies two products

(say, clothes and shoes), while the other two �rms are single-product shops (say, one

is a clothes shop, and the other is a shoe shop). Suppose consumers� costs of reaching

any �rm are identical for all �rms. Then in the setting with symmetric products and

independent match utilities, it can be shown that under the regularity condition of

increasing hazard rate, there is an equilibrium in which the multiproduct �rm charges

lower prices than the two single-product �rms, and consumers visit the multiproduct

�rm �rst.32 This result indicates that all else equal, a multiproduct retailer might have

an incentive to charge lower prices than its smaller competitors.

The multiproduct search model can also be extended to discuss endogenous retail

32Consumer search order reveals information about their preferences: a consumer will visit a single-

product shop only if she is unsatis�ed with the product in the multiproduct shop. This gives the

single-product shops extra monopoly power and induces them to charge higher prices. This logic is

similar to Armstrong et al. (2009) and Zhou (2011) which study non-random search in a single-product

search scenario.
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market structure. Suppose there are initially four single-product retailers in the market,

two supplying shoes and the other two supplying clothes. Each product is horizontally

di¤erentiated across its two suppliers. Suppose conglomerate merger between two shops

supplying di¤erent products is possible and costless (but horizontal merger between

two shops selling the same product is not permitted, for example, because of antitrust

reason). Retailers make their publicly observable merger choices before they engage in

price competition. In such an extended model, it can be shown, for example, in the

uniform distribution case that asymmetric market structure with a big and two small

retailers arises when search costs are relatively low, while for high search costs, two big

multiproduct stores emerge in equilibrium. (If conglomerate merger involves some (not

too high) �xed costs, the fragmented market structure with four single-product shops

is an equilibrium outcome when the search cost is su¢ciently small.) This suggests

that the size of search friction could be an important determinant of the retail market

structure.

Appendix A

Proof of Proposition 2: In the case of symmetric products, from (13) we know the

standard e¤ect is

� = 2

Z

B

f(ui)dF (u) +

Z u

a

[1� F (�(u))]f(u; �(u))du

=

Z u

u

(

2

Z �(u)

u

f(ui)h(uiju)dui + [1� F (�(u))]h(�(u)ju)
)

dF (u) :

(Note that for u < a, �(u) is independent of a and 1�F (�(u)) = 0.) Using the notation

�(xju) � f(x)h(xju) + [1� F (x)]h0(xju) ; (23)

we have

d�

ds
=

Z u

a

d�(u)

ds
�(�(u)ju)dF (u) =

Z u

a

�0(u)

1� F (u)�(�(u)ju)dF (u)

= �
Z u

a

f(�(x))

1� F (�(x))�(xj�(x))dx :

The second step used

d�(u)

ds
= � 1

1� F (�(u)) ; �
0(u) = � 1� F (u)

1� F (�(u)) ; (24)

which are both derived from the de�nition of �(�) in (6). The last step is from changing
the integral variable from u to x = �(u) and using the symmetry of �(�). Notice that
the regularity condition (15) implies �(xju) > 0 for any given u. So d�

ds
< 0 under (15).
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The joint search e¤ect is � =
R u
a
[1� F (u)]f(u; �(u))du, and so

d�

ds
= f(a; u)�

Z u

a

d�(u)

ds
[1� F (u)]h0(�(u)ju)f(u)du

= f(a; u)�
Z u

a

[��0(u)]h0(�(u)ju)f(u)du

= f(a; u)�
Z u

a

h0(xj�(x))f(�(x))dx :

The �rst step used da
ds
= �1=[1� F (a)], the second step used (24), and the last step is

again from changing the integral variable from u to x = �(u). Therefore, p = 1=(�+�)

increases with s if and only if d�
ds
+ d�

ds
� 0 or the condition (16) in the main text holds.

Now suppose the two products have independent valuations and the marginal density

satis�es f 0(u) � 0. Then

�d�
ds

=

Z u

a

f(�(x))

1� F (�(x))ff(x)
2 + [1� F (x)]f 0(x)gdx

�
Z u

a

f(�(x))

1� F (�(x))f(x)
2dx � f(a)

1� F (a)

Z u

a

f(x)2dx

� f(a)2

1� F (a)

Z u

a

f(x)dx = f(a)2 ;

and

�d�
ds
=

Z u

a

f 0(x)f(�(x))dx� f(a)f(u) � f(a)[f(u)� f(a)]� f(a)f(u) = �f(a)2 :

Therefore, d�
ds
+ d�

ds
� 0, i.e., p increases with s.

The case with m products: I �rst present the �rst-order conditions for the linear

pricing case with m products. Let u�i � (uj)j 6=i 2 Rm�1. In a symmetric equilibrium,
without loss of generality the reservation frontier can be de�ned as um = �(u�m), where

�(u�m) satis�es
m�1X

i=1

� i(ui) + �m(�(u�m)) = s :

As in the two-product case, let A denote the acceptance set and B denote its comple-

ment. Suppose �rm II sticks to the equilibrium prices, and �rm I lowers pm by a small

". Following the same logic as in the two-product case, the �rst-order condition for pm

is

1 = 2pm

Z

B

fm(um)dF (u) + pm

Z

A�m

[1� Fm(�(u�m))]f(u�m; �(u�m))du�m
| {z }

standard e¤ect

+
m�1X

i=1

pi

Z

A�m

[1� Fi(ui)]f(u�m; �(u�m))du�m
| {z }

joint search e¤ect

; (25)
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where A�m is the projection of A on an (m � 1)-dimensional hyperplane with a �xed
um.

Now consider the uniform case with m symmetric products and independent match

utilities. Then the �rst integral in (25) measures the volume of solid B, and thus it

equals one minus the volume of solid A. Since A is 1=2m of an m-dimensional sphere

with radius
p
2s, we get

1� Vm(
p
2s)

2m
:

(See the expression for Vm(�) in footnote 22.) The second integral equals
Z

A�m

[1� �(u�m)]du�m =
Vm(

p
2s)

2m
;

since it just measures the volume of A. Finally, the third integral equals
Z

A�m

(1� u1)du�m =
Vm(

p
2s)

2m�1�
: (26)

(This equality has no straightforward geometric interpretation. See its proof below.)

Then (17) in the main text follows.

Proof of (26): For m = 2, A�m = [a; 1] and (26) is easy to be veri�ed. Now consider

m � 3. Let A�1;m(u1) be a �slice� of A�m at u1. Then we have
Z

A�m

(1� u1)du�m =
Z 1

a

(1� u1)
 Z

A�1;m(u1)

du�1;m

!

du1 :

SinceA�1;m(u1) is 1=2
m�2 of an (m�2)-dimensional sphere with radius r =

p
2s� (1� u1)2,

the internal integral term equals

Vm�2(r)

2m�2
=
�(m�2)=2rm�2

2m�2�(m=2)
;

where �(�) is the Gamma function. Hence,
Z

A�m

(1� u1)du�m =
�(m�2)=2

2m�2�(m=2)
�
Z 1

a

(1� u1)
�p

2s� (1� u1)2
�m�2

du1

=
�(m�2)=2

2m�2�(m=2)
�
�p
2s
�m

m
=
Vm(

p
2s)

2m�1�
:

The second step used a = 1�
p
2s and the fact that the integrand is the derivative of

1
m
(
p
2s� (1� u1)2)m with respect to u1. The last step used the expression for Vm(�)

and the fact x�(x) = �(x+ 1).

Proof of Proposition 3: Let us consider product 2. (The proof for product 1 is

similar.) From (10), we have

1

p2
> 2

Z

B

f2(u2)dF (u) +

Z u1

a1

[1� F2(�(u1))]f(u1; �(u1))du1

=

Z u1

u
1

(

2

Z �(u1)

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(�(u1))]h2(�(u1)ju1)
)

dF1(u1) :
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Under the regularity condition (15), the curly-bracket term is an increasing function of

�(u1). Since �(u1) � a2, it is greater than

2

Z a2

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(a2)]h2(a2ju1) :

Realizing
R u1
u
1

h2(xju1)dF1(u1) = f2(x), we have

1

p2
>

Z u1

u
1

(

2

Z a2

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(a2)]h2(a2ju1)
)

dF1(u1)

= 2

Z a2

u
2

f2(u2)
2du2 + [1� F2(a2)]f2(a2) =

1

p02
:

Proof of Proposition 5: For a given search cost, when the number of products goes

to in�nity, consumers will always sample both �rms. Therefore, we only need to prove

the result in the perfect information scenario.

Suppose each �rm supplies m products, and each product�s match utility is dis-

tributed independently according to a cdf F (�) and has a mean � and variance �2.
When m is large, by applying the central limit theorem, the match utility of the bundle

distributes (approximately) according to a normal distribution N(m�;m�2), so

g(U) � 1p
2m��

exp

�
�1
2

(U �m�)2
m�2

�
:

When s = 0, one can check that (21) implies

1

P
= 2

Z 1

�1
g(U)2dU � 1p

m��
:

That is, the bundle price P rises at the speed of
p
m. However, in the linear pricing

case with s = 0 we have
1

mp
=
2

m

Z 1

�1
f(u)2du :

So the bundle price mp rises at the speed of m. Hence, when s = 0, P < mp for a

su¢ciently large m. (This generalizes Nalebu¤ (2000)�s observation in the Hotelling

model with a uniform distribution.)

Now turn to consumer surplus. Denote by v the consumer surplus in the linear

pricing case with s = 0. Then the expected surplus from each product is

v

m
= E[max(ui; vi)]� p :

Denote by V the consumer surplus in the pure bundling case with s = 0. Then

V

m
= E

�
max

�
1

m

Pm
i=1 ui;

1

m

Pm
i=1 vi

��
� P

m
:
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As P rises with m at the speed of
p
m, P=m tends to zero as m ! 1. On the other

hand, the expectation term tends to �. So

lim
m!1

V

m
= � :

Therefore, when s = 0 and m is large, pure bundling improves consumer welfare if

E[max(ui; vi)] � � < p. With linear pricing, consumers enjoy better matched goods

(which is re�ected by the left-hand side) but they also pay more (which is re�ected

by the right-hand side). Using 1=p = 2
R u
u
f(u)2du, this condition can be written as

R u
u
udF (u)2 �

R u
u
udF (u) < 1=(2

R u
u
f(u)2du). By integration by parts, it simpli�es to

�Z u

u

F (u)[1� F (u)]du
��Z u

u

f(u)2du

�
<
1

2
:

This is further equivalent to

�Z 1

0

t(1� t)
f(F�1(t))

dt

��Z 1

0

f(F�1(t))dt

�
<
1

2
(27)

by changing the integral variable from u to t = F (u). (27) holds if f is logconcave by

invoking the following lemma.33

Lemma 3 Suppose ' : [0; 1]! R is a nonnegative function such that
R 1
0

'(t)
t(1�t)dt <1,

and h : [0; 1]! R is a concave pdf. Then

Z 1

0

'(t)

h(t)
dt � max

�Z 1

0

'(t)

2t
dt;

Z 1

0

'(t)

2(1� t)dt
�
:

Let '(t) = t(1� t) and
h(t) =

f(F�1(t))
R 1
0
f(F�1(t))dt

:

Since f(F�1(t)) is concave if and only if f is logconave, the de�ned h(t) is indeed a

concave pdf. (The integral in the denominator is �nite since f(F�1(t)) is nonnegative

and concave.) Then the lemma implies that the left-hand side of (27) is no greater than

1=4.34 (For the exponential density f(x) = e�x, it equals 1=4.)

Proof. Since h is a concave pdf, it is a mixture of triangular distributions and

admits a representation of the form

h(t) =

Z 1

0

h�(t)�(�)d� ;

33I am grateful to Tomás F. Móri in Budapest for helping me to prove this lemma.
34Our result is not tight. However, if f is non-logconcave, it is easy to �nd counterexamples. For

instance, (27) fails to hold for a power distribution F (x) = xk with k close to 1=2, or for a Weibull

distribution F (x) = 1� e�xk with a small k 2 (0; 1).
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where �(�) is a pdf de�ned on [0; 1], h1(t) = 2t, h0(t) = 2(1� t), and for 0 < � < 1

h�(t) =

8
>>><

>>>:

2
t

�
if 0 � t < �

2
1� t
1� � if � � t � 1

:

(See, for instance, Example 5 in Csiszár and Móri, 2004.)

By Jessen�s inequality we have

1

h(t)
=

1
R 1
0
h�(t)�(�)d�

�
Z 1

0

1

h�(t)
�(�)d� :

Then
Z 1

0

'(t)

h(t)
dt �

Z 1

0

'(t)

�Z 1

0

1

h�(t)
�(�)d�

�
dt =

Z 1

0

�Z 1

0

'(t)

h�(t)
dt

�
�(�)d� � sup

1���1

Z 1

0

'(t)

h�(t)
dt :

Notice that Z 1

0

'(t)

h�(t)
dt =

�

2

Z �

0

'(t)

t
dt+

1� �
2

Z 1

�

'(t)

1� tdt :

This is a convex function of �, because its derivative is

1

2

Z �

0

'(t)

t
dt� 1

2

Z 1

�

'(t)

1� tdt ;

which is increasing in �. Hence, its maximum is attained at one of the endpoints of the

domain [0; 1]. This completes the proof.

Appendix B: Calculating Consumer Surplus

In our search model (especially in the case of linear pricing and the case of mixed

bundling analyzed in the supplementary document), it is complicated to calculate con-

sumer surplus directly. Here I develop a more e¢cient indirect method (which also

carries over to the case with more than two �rms).

For any given symmetric price vector p (which can be a linear or bundling pricing

scheme) and search cost s, consumer surplus is

v(sjp) = sup
�2�

[U(�jp)� s � t(�)] ; (28)

where � is the (well-de�ned) set of all possible stopping rules, U(�jp) is the expected
match utility minus payment if the consumer chooses a particular stopping rule �, and

t(�) is the expected search times. Let �(sjp) be the optimal stopping rule associated
with p and s. Since the objective function in (28) is linear in s, v(sjp) is convex in s
and so is di¤erentiable almost everywhere. Then the envelope theorem implies that

v0(sjp) = �t(�(sjp)) � �t̂(sjp) :

37



If p is an equilibrium price vector, then t̂(sjp) is just the corresponding equilibrium
number of searches. (In the duopoly case, it equals two minus the measure of the

stopping region.) We can then decompose consumer surplus into two parts:

v(sjp) = v(0jp)�
Z s

0

t̂(xjp)dx ; (29)

where the �rst term captures the surplus when the information is perfect (but given

prices p), and the second term re�ects the ine¢ciency caused by imperfect information

and costly search.

We can apply the general formula (29) to any case discussed in this paper. For

example, in the linear pricing case with two �rms, v(0jp) =
P2

i=1 (E[max (ui; vi)]� pi),
and the optimal stopping rule is independent of p and so t̂(x) = 2� A(x), where A(x)
is the measure of the acceptance set when the search cost is x. In the pure bundling

case, v(0jp) = E[max (U; V )]� P and t̂(x) = 1 +G(b(x)).
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