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Abstract

A recent advance in our understanding of repeated PDs is the detection of a

threshold δ⋆ at which laboratory subjects start to cooperate predictively. This

threshold is substantially above the classic threshold “existence of Grim equi-

librium” and has been characterized axiomatically by Blonski, Ockenfels, and

Spagnolo (2011, BOS). In this paper, I derive its behavioral foundations. First,

I show that the threshold is equivalent to existence of a “Semi-Grim” equi-

librium σcc > σcd = σdc > σdd . It is cooperative (σcc > 0.5), non-reciprocal

(σcd = σdc), and robust to imperfect monitoring (“belief-free”). Next, I show

that the no-reciprocity condition σcd = σdc also follows from robustness to

random-utility perturbations (logit equilibrium). Finally, I re-analyze strategies

in four recent experiments and find that the majority of subjects indeed plays

Semi-Grim when it is an equilibrium strategy, which explains δ⋆’s predictive

success.
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1 Introduction

The infinitely repeated Prisoner’s Dilemma has received much interest in economic

research. It is a proto-typical model of cooperation between self-interested agents,

but it is notoriously resistant to equilibrium refinement, which severely obstructs re-

liable predictions. Early experimental work, e.g. Rapoport and Mowshowitz (1966),

showed that subjects indeed cooperate, and the results of Axelrod (1980a,b) show

that tit-for-tat (TFT) is a theoretically successful strategy in response to opponents

with unknown strategies. However, TFT is an not a subgame-perfect equilibrium,

and the related “perfect tit-for-tat” (PTFT) strategy (σcc,σcd,σdc,σdd)= (1,0,0,1),1

which tends to be even more effective in response to cooperative strategies (Nowak

et al., 1993; Imhof et al., 2007), exists only under the strict condition that one round

of punishment suffices to deter defection. Experimental research has shown that

subjects cooperate robustly even if one round of punishment does not suffice and

that σdd ≈ 0 actually holds on average (see e.g. Table 1). Thus, only few, if any,

subjects seem to play PTFT, and existence of PTFT equilibrium is not necessary for

cooperation to be sustained in laboratory experiments.

In turn, existence of the Grim equilibrium (1,0,0,0) is not sufficient for co-

operation to be sustained (Dal Bo, 2005), and overall, puzzling strategy estimates

such as (σcc,σcd,σdc,σdd) = (0.81,0.43,0.37,0.22) by Rapoport and Mowshowitz

(1966), which relates to neither Grim, TFT, nor PTFT, suggested that cooperation

between human players is as fuzzy a concept as predicted by Folk theorems (see

e.g. Stahl et al., 1991). Surprisingly, however, cooperation between human play-

ers is not fuzzy, as two recent studies, Blonski et al. (2011, BOS) and Dal Bo and

Fréchette (2011), showed. They analyzed play in a large variety of experimental

treatments, and both concluded that the δ⋆-criterion defined axiomatically by BOS

is a predictive threshold for cooperation. In addition, the puzzling strategy relation

σcc > σdc ≈ σcd > σdd of Rapoport and Mowshowitz (1966) can be found implicitly

in the binary regression models of Bruttel and Kamecke (2012, Table 4), where it

obtains for three ways of eliciting strategies (hot play, strategy method, and a Moore

1σs′,s′′ is the probability of cooperation if one’s previous choice was s′ ∈ {c,d} and the opponent’s

choice was s′′ ∈ {c,d}
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Table 1: On average, σcc > σdc ≈ σcd > σdd obtains in most treatments of four recent experiments, and individually, at least

50% play Semi-Grim in treatments where Semi-Grim MPEs exist (otherwise, the Semi-Grim share is zero).

Standard. parameters Average behavior Share Individual classification (Section 5)

Treatment b a δ σ̂cc σ̂dc σ̂cd σ̂dd σ̂cc > 0.25 Alw-Def Grim Semi-G TFT

Blonski et al. (2011)

1 3 2 0.75 0.902 ≫ 0.288 < 0.399 ≫ 0.02 0.475 0.31 0.14 0.52 0.03

2 1.25 1.12 0.75 1 ≫ 0.333 ≈ 0.238 ≫ 0.003 0.075 0 0.7 0 0.3

3 2.5 1.5 0.5 0.917 ≫ 0.19 ≈ 0.095 ≫ 0.011 0.3 1 0 0 0

4 2.5 1.5 0.75 0.947 ≫ 0.188 ≈ 0.211 ≫ 0.027 0.333 0.54 0.24 0 0.21

5 2.5 1.5 0.875 0.989 ≫ 0.282 ≈ 0.323 ≫ 0.026 0.525 0.29 0 0.59 0.12

6 1.43 1.29 0.5 0 ≈ 0 ≈ 0.118 ≈ 0.007 0 0.8 0.2 0 0

7 1.43 1.29 0.75 0.977 ≫ 0.372 ≈ 0.279 ≫ 0.004 0.2 0 0.46 0.54 0

8 1.43 1.29 0.875 0.967 ≫ 0.205 ≈ 0.289 ≫ 0.017 0.4 0.4 0 0.6 0

9 2.4 1.8 0.75 0.927 ≫ 0.196 ≈ 0.196 ≫ 0.021 0.7 0.22 0.31 0.47 0

10 4.67 3 0.75 0.88 ≫ 0.277 ≈ 0.192 ≫ 0.042 0.725 0.17 0 0.73 0.1

Dal Bo and Fréchette (2011)

1 2.92 1.54 0.5 0.665 ≫ 0.46 ≫ 0.252 ≫ 0.037 0.364 1 0 0 0

2 2.92 1.54 0.75 0.732 ≫ 0.384 ≈ 0.406 ≫ 0.057 0.682 0.47 0.15 0 0.38

3 2.92 2.15 0.5 0.553 ≫ 0.273 ≈ 0.316 ≫ 0.092 0.5 0.45 0.17 0 0.37

4 2.92 2.15 0.75 0.927 ≫ 0.51 ≈ 0.443 ≫ 0.124 0.921 0.08 0 0.87 0.06

5 2.92 2.77 0.5 0.828 ≫ 0.227 ≪ 0.431 ≫ 0.074 0.696 0.35 0 0.52 0.13

6 2.92 2.77 0.75 0.943 ≫ 0.311 ≈ 0.383 ≫ 0.146 1 0 0 0.85 0.15

Duffy and Ochs (2009), “random rematching” treatment

3 2 0.9 0.964 ≫ 0.36 ≈ 0.337 ≫ 0.11 0.929 0 0 0.89 0.11

Fudenberg et al. (2012), treatments 1–5 are “noisy” PDs (actions are perturbed), treatment 6 is “no-noise”

1 2.5 1.5 0.875 0.842 ≫ 0.33 ≫ 0.245 ≫ 0.064 0.833

2 3 2 0.875 0.872 ≫ 0.417 ≈ 0.42 ≫ 0.108 0.885

3 3.5 2.5 0.875 0.887 ≫ 0.513 ≈ 0.473 ≫ 0.161 0.875

4 5 4 0.875 0.911 ≫ 0.453 ≈ 0.469 ≫ 0.159 0.8

5 5 4 0.875 0.93 ≫ 0.602 ≈ 0.664 ≫ 0.252 0.948

6 5 4 0.875 0.971 ≫ 0.425 ≈ 0.5 ≫ 0.074 0.917 0 0 0.61 0.39

Note: The payoff parameters are standardized to be of the same form as the PD in Fig. 1b. σ̂cc, σ̂cd , σ̂dc, σ̂dd are the relative frequencies of cooperation in the four

states (across the all subjects, not counting the first rounds of each game). The relation signs indicate the p-values of Fisher tests on these relative frequencies

(“≫,≪” indicate α < .01, “>,<” indicate α < .05, and “≈” indicate insignificance). The relative frequencies of σcd,dc have been pooled in tests against either

σcc or σdd (as σcd ,σdc mostly do not differ significantly).

Individual classification: The population weights of the various strategies preview the estimation results of Section 5. Shares of inexistent or insignificant

components are set to zero. Always Defect is (σcc,σcd ,σdc,σdd) = (0,0,0,0) and Grim is (1,0,0,0). Tit-for-tat classification contains TFT itself (1,0,1,0),
“weak” perfect TFT (1,0,0,0.5), and Always-Cooperate (1,1,1,1); below, their shares are also reported separately. Semi-Grim contains regular Semi-Grim

≈ (1,0.3,0.3,0) and belief-free Semi-Grim ≈ (0.9,0.5,0.5,0.1); both as defined below (the actual frequencies depend on the treatment parameters).
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procedure following Engle-Warnick and Slonim, 2004, 2006), and similarly in many

more experiments—although it had never been reported anymore. To examine its

generality, I re-analyzed behavior in four recent experiments, and Table 1 shows that

the average strategy satisfies σcc > σdc = σcd > σdd in most treatments, including

Prisoner’s Dilemmas with exogenous noise. These results show that reliable point

predictions concerning strategies and cooperation actually are possible, but since

σcc > σdc = σcd > σdd does not relate to a known strategy and δ⋆ has been defined

by means of axioms on the set of games rather than the set of strategies (see Def. 2.1

below), it is unclear whether these findings admit a behavioral interpretation.

The present paper extends this work in two ways. First, I show that the BOS ax-

ioms are equivalent to existence of what I propose to call “Semi-Grim” equilibrium,

and the Semi-Grim strategy is indeed the puzzling construct σcc > σdc = σcd > σdd

observed by Rapoport and Mowshowitz (1966) and in Table 1. Second, I show in a

latent class analysis (the results of which are previewed in Table 1) that the Semi-

Grim strategy is played by the majority of subjects when it is an equilibrium. In turn,

only a minority plays always-defect, always-cooperate, Grim, tit-for-tat, or similar

strategies when the Semi-Grim MPE exists.

Combined, this shows that Semi-Grim is predictive at both, the aggregate level

and the individual level, and since it is the Markov perfect equilibrium correspond-

ing to the BOS axioms, this explains their predictiveness. I also show that the

“no-reciprocity” condition σcd = σdc underlying Semi-Grim equally follows from

“Markov logit equilibrium”, i.e. by requiring robustness with respect to random util-

ity perturbations in the sense of McKelvey and Palfrey (1995), which lends fur-

ther validity to this deviation from TFT. Finally, I identify two kinds of Semi-Grim

equilibria, namely a regular one, which admits purification (Bhaskar et al., 2008;

Doraszelski and Escobar, 2010), and a fully mixed one, which is included in the

belief-free equilibria constructed by Ely and Välimäki (2002). Belief-free equilibria

have received much attention in the recent theoretical literature (Ely et al., 2005;

Hörner and Olszewski, 2006; Hörner and Lovo, 2009; Fudenberg and Yamamoto,

2010; Kandori, 2011), as they are robust to private monitoring, such as the possi-

bility that the opponent forgets the current state. Thus, both kinds of Semi-Grim

equilibria are normatively plausible, which seems to explain their joint occurrence
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in the four considered experiments.

Implications of these results are discussed in Section 6. Aside from this, Section

2 introduces notation and basic definitions, Section 3 reviews belief-free equilibria,

Section 4 theoretically analyzes Semi-Grim equilibria, and Section 5 estimates the

individual strategies in recent experiments. Proofs are relegated to the appendix.

2 Preliminary remarks

Notation The players are denoted as i, j ∈ N = {1,2}. They play an infinitely

repeated Prisoner’s dilemma (PD) as defined in Figure 1a. Any such PD can be

transformed into the “standardized” form Figure 1b, and the best-known examples of

PDs are even “simple” in the sense of Figure 1c, with a= 2 or a= 3. These particular

PDs are simple, as (i) playing (c,c) is socially efficient (i.e. it maximizes the sum

of payoffs), and (ii) the gain from defecting in response to a cooperating opponent

exactly offsets the loss when cooperating in response to a defecting opponent (which

simplifies many algebraic expressions on repeated PDs).

The set of actions of the constituent game is S = {c,d}, and the set of states of

the repeated game is S× S. A Markov strategy σ ∈ [0,1]S×S maps each state to a

probability of choosing c in that state.2 For example, σs′,s′′ denotes the probability

that the respective player cooperates conditional on s′ ∈ S being his previous action

and s′′ ∈ S being his opponent’s previous action. I focus on strategy profiles that are

symmetric between players, and those will be denoted as (σ,σ). This assumption is

standard in analyses of experimental data, and it allows me to drop the player index

in denoting strategies. Note the implied inversion of indices, however, i.e. if player

i cooperates with probability σs′,s′′ in state (s′,s′′), then his opponent j 6= i considers

the same state to be (s′′,s′) and thus cooperates with probability σs′′,s′ .

2Such strategies are also known as 1-memory strategies (Barlo et al., 2009) and are special cases

of strategies with bounded recall (Sabourian, 1998). Bruttel and Kamecke (2012) show that choices

other than the previous ones (i.e. lag 2 and higher) are often insignificant, although they are not

entirely irrelevant.

5



Figure 1: Prisoner’s dilemma (PD) games (with pdc > pcc > pdd > pcd and b > a >
1)

(a) The “General” PD

c d

c pcc, pcc pcd , pdc

d pdc, pcd pdd , pdd

(b) “Standardized” PD

c d

c a,a 0,b

d b,0 1,1

(c) The “Simple” PD

c d

c a,a 0,a+1

d a+1,0 1,1

Payoffs and equilibria Given strategy profile (σ,σ), the expected payoff of choos-

ing c in state (s′,s′′)∈ S×S is denoted as πs′,s′′(c), the expected payoff of choosing d

is denoted as πs′,s′′(d), and the expected payoff overall is πs′,s′′ in state (s′,s′′). These

payoffs satisfy, for all (s′,s′′) ∈ S×S,

πs′,s′′ = σs′,s′′ ·πs′,s′′(c)+(1−σs′,s′′) ·πs′,s′′(d) (1)

πs′,s′′(c) = σs′′,s′ ·
(

δπcc +(1−δ) pcc

)

+(1−σs′′,s′) ·
(

δπcd +(1−δ) pcd

)

(2)

πs′,s′′(d) = σs′′,s′ ·
(

δπdc +(1−δ) pdc

)

+(1−σs′′,s′) ·
(

δπdd +(1−δ) pdd

)

. (3)

Solving the Equation system (1)–(3) for (πs′,s′′) over all states yields the expected

payoffs as functions of σ. This is algebraically straightforward, but the resulting

expressions are fairly cumbersome (see e.g. Lemma A.1 in the appendix for the

respective solutions of simple PDs). Finally, a strategy profile (σ,σ) is a Markov

perfect equilibrium (MPE) if for all (s′,s′′) ∈ S×S,

σs′,s′′ > 0 ⇒ πs′,s′′(c)≥ πs′,s′′(d) and σs′,s′′ < 1 ⇒ πs′,s′′(c)≤ πs′,s′′(d).

(4)

Figure 2 reviews the three well-known pure MPEs that may exist in repeated

PDs. The always-defect MPE exists in general. The Grim MPE (σcc,σcd,σdc,σdd)=

(1,0,0,0) exists if

pcc ≥ (1−δ) pdc +δ pdd ⇔ δ ≥ pdc − pcc

pdc − pdd

=: δGrim. (5)

An equilibrium sustaining (at least) temporary cooperation along the path of play
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Figure 2: Pure Markov perfect equilibria

(a) Always defect

c,c

d,c

c,d

d,d

(b) Grim

c,c

d,c

c,d

d,d

(c) Perfect TFT

c,c

d,c

c,d

d,d

exists if and only if the Grim equilibrium exists. Thus, the condition δ ≥ δGrim is

theoretically necessary for cooperation to be sustained in equilibrium. Since always-

defect is an equilibrium in general, δ > δGrim is not theoretically sufficient.

A threshold for “sufficient” patience Roth and Murnighan (1978) show that co-

operation increases if Grim and PTFT equilibria exist, and Murnighan and Roth

(1983) as well as Dal Bo (2005) confirm that the discount rate is of major relevance

with respect to the emergence of cooperative play. Applied research therefore of-

ten assumes that players select cooperative equilibria if δ exceeds a given threshold,

usually the threshold for existence of Grim (see Blonski et al., 2011, for further

discussion). Dal Bo and Fréchette (2011) and Blonski et al. (2011, BOS) specifi-

cally designed experiments to test the hypothesis that existence of Grim equilibrium

is sufficient in practice. They found that it is not sufficient, while the cooperation

rate can be predicted well based on the discount factor’s relation to a higher thresh-

old characterized axiomatically by BOS. To review the BOS axioms, let the tuple

〈pcc, pcd, pdc, pdd,δ〉 denote a repeated “general” PD, let Γ denote the set of repeated

PDs, and let Γ
c ⊂Γ denote the subset of repeated PDs where players “likely” cooper-

ate. BOS characterize Γ
c

through three “parsimonious” axioms, which they argue to

be generally plausible, and two “comprehensive” axioms, which ensure uniqueness

of the selection criterion, i.e. of the implied δ-threshold.

Definition 2.1 (BOS axioms). Γ
c

satisfies all of the following conditions.
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A1 (Positive linear payoff transformation invariance). For all τ(x)=αx+β, α>

0, 〈pcd, pdc, pcc, pdd,δ〉 ∈ Γ
c

implies 〈τ(pcd),τ(pdc),τ(pcc),τ(pdd),δ〉 ∈ Γ
c
.

A2 (δ-monotonicity). If pdc > pcc > pdd > pcd and pdc+ pcd < 2 pcc, then there

exists δ⋆(pcc, pcd, pdc, pdd)∈ (0,1] such that for all δ′: 〈pcc, pcd, pdc, pdd,δ
′〉 ∈

Γ
c ⇔ δ′ > δ⋆(pcc, pcd, pdc, pdd).

A3 (Boundary conditions). pcd →−∞ ⇒ δ⋆(pcc, pcd, pdc, pdd)→ 1 and pcd →
pdd ⇒ δ⋆(pcc, pcd, pdc, pdd)→ (pdc − pcc)/(pdc − pdd).

A4 (Incentive independence). There exists an additively separable function µ(x1,x2,x3)

such that 〈pcd, pdc, pcc, pdd,δ〉 ∈ Γ
c

iff µ(pcc − pdd, pdc − pcc, pdd − pcd)≥ 0.

A5 (Equal weight). 〈pcd, pdc, pcc, pdd,δ〉 ∈Γ
c

if and only if
〈

p′cd, p′dd, pcc, pdd,δ
〉

∈
Γ

c
with pdc − pcc = pdd − p′cd and p′dd − pcc = pdd − pcd .

Proposition 2.2 (BOS, Proposition 2). If Γ
c

satisfies A1–A5 from Definition 2.1,

then

〈pcd, pdc, pcc, pdd,δ〉 ∈ Γ
c ⇔ δ ≥ pdc + pdd − pcd − pcc

pdc − pcd

=: δBOS. (6)

For a comprehensive discussion of these axioms, let me refer to Blonski et al.

(2011). Briefly, the first two axioms require invariance with respect to linear payoff

transformations (A1) and that more patient players are not less likely to cooperate

(A2), which implies that the selection criterion can be characterized by a δ-threshold.

A3 requires that players stop cooperating if the risk gets high (pcd →−∞) and that

they always cooperate if there is no risk (pcd → pdd), conditional on the existence

of Grim equilibria. The other two axioms ensure uniqueness of the δ-threshold by

restricting the relevance of the long-run gains from cooperation (pcc − pdd), in re-

lation to that of the short-run gains from defection (pdc − pcc) and to the risk of

cooperation (pdd − pcd). A4 requires additive separability of the selection criterion

with respect to these incentives, and A5 requires equality of the implied weights of

the two short-run incentives. The δ-thresholds from existence of Grim and PTFT

satisfy A4 but not A5.
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The axioms do not bear an obvious relation to a strategy or an equilibrium con-

cept. In this way, they differ from other axiomatic theories of equilibrium selection,

such as Govindan and Wilson (2006, 2012). As established below, requiring A1−A5

is equivalent to requiring existence of belief-free Semi-Grim MPEs, i.e. of equilibria

corresponding with the observations in Table 1.

3 Belief-free equilibria in relation to the BOS axioms

Given strategy profile (σ,σ), define the cooperation incentive in state (s′,s′′)∈ S×S

to be the difference of expected payoffs from one-time cooperation and one-time

defection π̃s′,s′′ := πs′,s′′(c)−πs′,s′′(d), with continuation play evolving according to

σ. The player is strictly best off cooperating in state (s′,s′′) if π̃s′,s′′ > 0, he is best off

defecting if π̃s′,s′′ < 0, and he randomizes only if π̃s′,s′′ = 0. In “simple” repeated PDs

(Figure 1c), the differences of the cooperation incentives in the four states satisfy

π̃cc − π̃cd = (σdc −σcc) ·µ π̃cc − π̃dc = (σcd −σcc) ·µ (7)

π̃cc − π̃dd = (σdd −σcc) ·µ π̃cd − π̃dc = (σcd −σdc) ·µ (8)

with µ = δ(1−δ)(a−1)(σdc +σcd −σcc −σdd)/r and r > 0. Thus, if µ = 0, i.e. if

σdc +σcd = σcc +σdd in simple PDs, then π̃cc = π̃cd = π̃dc = π̃dd . If π̃cc = 0 holds

in addition, the underlying strategy profile (σ,σ) is a fully mixed MPE, i.e. an MPE

where players are indifferent in all states. These are the “robust” equilibria derived

by Ely and Välimäki (2002). As players are always indifferent, their best responses

are independent of their beliefs about the opponent’s history (in case the history

is not common knowledge, i.e. under private monitoring). Hence, such belief-free

MPEs (Ely et al., 2005) are robust to private monitoring, which is not the case for

strict MPEs (Kandori, 2002). I refer to these equilibria also as belief-free MPEs, al-

though the repeated game considered here is theoretically one of perfect monitoring

(the subjects in the experiments may disagree, of course).

Solving Eqs. (7)–(8) for σcd,σdc yields a two-dimensional manifold of MPEs

(as previously observed by Bhaskar et al., 2008). Proposition 3.1 derives these equi-

librium strategies and their existence conditions for standardized PDs. It refines the
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results of Ely and Välimäki (2002) and Bhaskar et al. (2008), who characterize strat-

egy and existence condition implicitly, in relation to the terms πcc and πcd defined in

Eq. (1). Proposition 3.1 eliminates these endogenous entities, which will allow us to

relate the existence condition to the BOS criterion.

Proposition 3.1. In any standardized PD with 1/δ< a< b< (a−δ)/(1−δ), a two-

dimensional manifold of belief-free MPEs exists. It consists of all strategy profiles

(σ,σ) satisfying

σcd =
(a−b) δσdd +(b−1) δσcc +a−b

(a−1) δ
, σdc =

aδσdd −δσcc +1

(a−1) δ
. (9)

All MPEs that are not belief-free in the above sense are locally isolated, and

hence they are regular and finitely many (Doraszelski and Escobar, 2010). Thus,

almost all MPEs are belief-free (if the latter exist). Now, their existence condition

1/δ < a < b < (a−δ)/(1−δ) can be alternatively expressed as

δ ≥ min

{

1

a
,
b−a

b−1

}

⇔ δ ≥ min

{

pdd − pcd

pcc − pcd

,
pdc − pcc

pdc − pdd

}

=: δBF-MPE.

(10)

This condition satisfies the “parsimonious” BOS axioms A1,A2,A3, but it violates

A4, since the minimum function is not additively separable, and as can be verified

easily, it also violates weight equality A5. Thus, requiring existence of belief-free

MPEs violates both comprehensive axioms of BOS, whereas existence of Grim or

PTFT violated only A4. The latter violation is comparably minor, though, as each

branch of the criterion in (10) is additively separable in the way it is required. Thus,

A4 holds locally for almost all games if the criterion was “existence of belief-free

MPEs”. Axiom A5, equality of weights of defection gains (pdc − pcc) and cooper-

ation risk (pdd − pcd), continues to be violated though, as for the Grim condition

δ ≥ δGrim. This violation is obvious in the latter case, since pcd is strategically ir-

relevant in Grim equilibria, and the violation obtains similarly in all equilibria with

strict cooperation in any state. Then, pcd is irrelevant in that state, and the implicit

weights of pdc− pcc and pdd − pcd cannot be equal. In belief-free equilibria, in turn,

players randomize in all states, i.e. all possible outcomes are relevant. Due to the
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asymmetry σcd 6= σdc, however, the implicit weights of “defection gains” and “co-

operation risks” still do not equate exactly. This will change in belief-free equilibria

where the two players are equally likely to cooperate in all states, as shown next.

4 Semi-Grim equilibria

I call a strategy “Semi-Grim” if it satisfies σcc > σcd = σdc > σdd , as observed in

most treatments in Table 1. First, I show that the central sub-condition σcd = σdc

follows from robustness to random utility perturbations. To be precise, conditional

on σcc > 0.5 > σdd , logit equilibrium implies σcd = σdc. Logit equilibrium is a

special case of quantal response equilibrium (McKelvey and Palfrey, 1995) and ex-

tends to dynamic games as “Markov logit equilibrium” (as defined in Breitmoser

et al., 2010). Logit equilibrium has been shown to explain experimental observations

in many circumstances, including the centipede game (Fey et al., 1996), traveler’s

dilemma (Capra et al., 1999), auctions (Goeree et al., 2002b), public goods games

(Goeree et al., 2002a), monotone contribution games (Choi et al., 2008), and beauty

contests (Breitmoser, 2012). Thus, it is a plausible starting point for explaining be-

havior also in repeated games. Formally, a strategy profile (σ,σ) is a Markov logit

equilibrium (MLE) if there exists λ ∈ R+ such that for all (s′,s′′) ∈ S×S,

σs′,s′′ =
exp{λ ·πs′,s′′(c)}

exp{λ ·πs′,s′′(c)}+ exp{λ ·πs′,s′′(d)}
. (11)

Rearranging Eq. (11) yields the alternative expression log
(

(1 − σs′,s′′)/σs′,s′′
)

=

λ ·
(

πs′,s′′(d)−πs′,s′′(c)
)

. Thus, in MLE, differing cooperation rates, e.g. σcc > σdd ,

require corresponding differences in cooperation incentives, e.g. π̃cc > π̃dd . To es-

tablish the aforementioned claim on MLEs, it therefore suffices to show that π̃cc 6=
π̃dd and π̃cd 6= π̃dc cannot be satisfied simultaneously. The following proposition

does that, and thus the general observation σcc > 0.5 > σdd theoretically implies

σdc = σcd (as observed). In addition, it shows that the alternative class of “alternat-

ing” equilibria σdc 6= σcd require σdc > σcc. As σdc > σcc has never been observed

in experiments, I therefore conclude that logit equilibrium implies σdc = σcd .
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Proposition 4.1. Let (σ,σ) be an MLE of a repeated PD with max{σcc,σcd,σdc,σdd}>
0.5. Then,

1. σcd 6= σdc implies σcd < σcc = σdd < σdc ,

2. σcc 6= σdd implies σcd = σdc < σcc .

With the additional restriction σcd = σdc, the two-dimensional manifold of

belief-free MPEs reduces to a one-dimensional manifold of belief-free Semi-Grim

MPEs satisfying 0 < σdd < σdc = σcd < σcc < 1. The next proposition establishes

that belief-free Semi-Grim MPEs exist if and only if the BOS axioms are satisfied

(for comparability with BOS, the result is established for repeated “general” PDs).

Proposition 4.2. In any repeated “general” PD, a one-dimensional manifold of

belief-free Semi-Grim MPEs exists iff δ > δBOS. It consists of all strategy profiles

(σ,σ) satisfying

σdd =
(pdc − pcd) δ σcc − pdd − pdc + pcd + pcc

δ(pdc − pcd)
, (12)

σdc = σcd =
(pdc − pcd)δ σcc − pdc + pcc

δ (pdc − pcd)
. (13)

Eqs. (12), (13) yield a strategy profile (i.e. probabilities) if σcc ≥ δBOS/δ. At the

threshold δ = δBOS, a mixed Semi-Grim MPE satisfying σcc = 1, σcd = σdc ∈ (0,1),

and σdd = 0 appears, and considering the average behavior reviewed in Table 1, this

seems to relate closely to the Markov strategy played by the cooperating players.

This will be verified in detail in the next section.

Bhaskar et al. (2008) argue that robustness to imperfect monitoring (i.e. being

belief-free) may not be the only plausible criterion for equilibrium selection. If a

mixed equilibrium does not admit purification, then there is no reason why players

should randomize in the specific way σcc > σdc = σcd > σdd prescribed by the equi-

librium. After all, the players are indifferent in all states. The standard argument

justifying the mixed equilibrium is based on purification, but Bhaskar et al. show

that the belief-free equilibria constructed above do not admit purification (in Markov

strategies with one-period memory). In turn, Doraszelski and Escobar (2010) show

12



that locally isolated MPEs satisfy a regularity condition that implies purifiability in

Markov strategies.

Next, I show that (and when) such a regular Semi-Grim MPE (σ,σ) exists, i.e.

an MPE satisfying σcc = 1, σcd = σdc ∈ (0,1), σdd = 0 and inducing strict coop-

eration incentives π̃cc > 0 and π̃dd < 0 in the states (c,c) and (d,d). The strictness

of these constraints implies local isolation, and thus regularity and purifiability (Do-

raszelski and Escobar, 2010). Regular Semi-Grim exists under the same conditions

as belief-free Semi-Grim equilibrium if pdc + pcd ≥ pcc + pdd and under slightly

weaker conditions otherwise.

Proposition 4.3. A regular Semi-Grim MPE exists for all δ > δBOS in general, and

if pcc + pdd > pdc + pcd , then also for all

δ> 1−
√

2
√

pcc−pcd

√
pdc−pcc

√
pdd−pcd

√
pdc−pdd+(pdc+pcd−2 pcc) pdd+(pcc−2 pcd) pdc+pcc pcd

pdc − pcd

.

(14)

The case pdc + pcd ≥ pcc + pdd is particularly illustrative. If δ = δBOS, the

aforementioned equilibrium σcc = 1, σcd = σdc ∈ (0,1), and σdd = 0 exists, then

with π̃cc = π̃dd = 0. As δ increases, the belief-free MPE inducing π̃cc = π̃dd = 0

moves into the interior of the strategy space, while the corner solution turns into

the strict, regular Semi-Grim MPE. If pdc + pcd < pcc + pdd , in turn, the gains from

short-term defections are comparably low, and in this case, regular Semi-Grim MPEs

exist under weaker conditions than belief-free Semi-Grim MPEs. The correspond-

ing existence condition (14) clearly violates axiom A4, additive separability of the

incentives, but interestingly, it also violates axiom A5, weight equality, despite the

symmetry condition σs′,s′′ = σs′′,s′ for all s′,s′′. The reason is the same as with Grim.

Since players are strictly best off cooperating in state (c,c), the payoff pcd is irrele-

vant there, and hence pdc − pcc and pdd − pcd do not have equal weight overall.

Finally, note that the set of belief-free Semi-Grim MPEs characterized in Prop.

4.2 and the regular Semi-Grim MPE characterized in Prop. 4.3 are the only Semi-

Grim MPEs, i.e. the only MPEs with the structure σcc > σcd = σdc > σdd . For, any

other MPE with this structure would require randomization in state (c,c) or (d,d),
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with µ 6= 0 in Eqs. (7), (8) to separate it from belief-free MPEs. For example, assume

there exists an MPE with σcc = 1 > σcd = σdc > σdd > 0. This requires π̃cd =

π̃dc = π̃dd , and by µ 6= 0 in Eqs. (7), (8), this implies σcd = σdc = σdd , contradicting

σdc > σdd . Similar contradictions obtain in the other two cases, and thus, the set of

Semi-Grim MPEs has been characterized completely.

5 Estimation of individual strategies

Table 1 shows that the average strategy is Semi-Grim in most treatments, and the

previous section has shown that existence of the (belief-free) Semi-Grim MPE is

equivalent to the predictive BOS criterion. Next, I show that the majority of in-

dividual subjects indeed uses Semi-Grim strategies when the respective equilibria

exist. This establishes that the average behavior in Table 1 is not a weighted sum of

entirely unrelated strategies, but of Semi-Grim strategies as claimed.

The econometric approach and the considered strategies closely follows Dal Bo

and Fréchette (2011). The considered strategies are always-defect, always-cooperate,

Grim, TFT, and a reciprocal strategy with prolonged punishment (σcc,σcd,σdc,σdd)=

(1,0,0,0.5). The latter strategy is a Markov variant of the T2 strategy considered

by Dal Bo and Fréchette (2011), and it it is a weakened version of perfect TFT

(1,0,0,1), which is theoretically plausible3 but in its strict form not identified in the

data (see Dal Bo and Fréchette, 2011, and Fudenberg et al., 2012). In addition, I

consider regular Semi-Grim and belief-free Semi-Grim (of the linear continuum of

belief-free Semi-Grim MPEs, the median one is taken).

Econometric model

Similarly to Dal Bo and Fréchette (2011), we have to account for noise in the analy-

sis. I assume that subjects of a given type play their equilibrium action with proba-

bility 1− γ, γ ∈ (0,1), and that they randomize uniformly with probability γ (in each

3PTFT is theoretically more effective than TFT if most subjects play cooperative strategies

(Nowak et al., 1993) and (Imhof et al., 2007), as original TFT struggles to restore cooperation af-

ter unilateral defection. PTFT is also called “win-stay, lose-shift”.
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round, taking independent draws). This approach estimates the same population

weights as Dal Bo and Fréchette’s approach if only pure equilibria are considered,

and it generalizes their approach straightforwardly to mixed MPEs. Econometri-

cally, the population is described as a mixture of a finite set K of components, where

for all k ∈ K, members of component k cooperate with (perturbed) probability σω(k)

in state ω and they have weight ρ(k) in the population. Using os,t ∈ {0,1} and

ωs,t = { /0,cc,cd,dc,dd} to denote choice and state of the decision number t of sub-

ject s ∈ S, where os,t = 1 denotes cooperation and os,t = 0 denotes defection, the

log-likelihood of the model is

LL = ∑
s∈S

log ∑
k∈K

∏
t

(

σωs,t (k)
)os,t ·

(

1−σωs,t (k)
)1−os,t . (15)

The likelihood is maximized jointly over all parameters using the robust, gradient-

free NEWUOA algorithm (Powell, 2006), and convergence has been verified using

a Newton-Raphson algorithm. Thus, standard errors can be taken from the informa-

tion matrix (McLachlan and Peel, 2000). I consider all four experiments reviewed

in Table 1, but in the case of Fudenberg et al. (2012), I focus on the “standard”

treatment without exogenous noise (as equilibrium predictions are not available oth-

erwise). In all cases, I use the observations from the second halves of the experi-

ments, i.e. when individual behavior has largely stabilized, which follows Dal Bo

and Fréchette (2011) and Fudenberg et al. (2012).

The set of relevant strategies (i.e. the model dimension) is estimated as follows.

First, I eliminate all components with equilibria that do not exist, and similarly, I

eliminate the non-equilibrium strategies Always-Coop, TFT, T05 if Grim is not an

equilibrium. Second, I eliminate components with insignificant weights. Here I

use the conservative “BIC criterion” and eliminate a component if its elimination

does not increase BIC = −LL+ logn ·D/2 (with n as number of subjects and D as

number of parameters). In our case, this seems sufficient, as it leaves us with just

2-4 components in most cases. In general, alternative approaches may suggest the

elimination of further components (Biernacki et al., 2000).

Finally, actions in round 1 are not prescribed uniquely in MPEs and there usu-

ally are three possible equilibria for round-1 behavior. The standard assumption is
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that players treat the initial state equivalently to the way they treat (c,c), but I intend

to estimate the weights of the various MPEs without testing the joint assumption on

MPE and round-1 behavior. For this reason, I allow that all players may either be

“cautious”, and cooperate with a maximal probability of σ /0 in round 1, or not cau-

tious, and cooperate with probability σcc in round 1. Regardless of whether they are

cautious in round 1 or not, all players are assumed to play their (perturbed) equilib-

rium strategies in all subsequent rounds. Both σ /0 and the weight ρCaut of cautious

players are estimated from the data.

Results

Table 2 presents the estimated strategy weights for the four experiments discussed

before, and supplementing it, Table 3 shows which equilibria exist in the various

treatments and how the Semi-Grim predictions relate to the respective choices of the

average “cooperating” subject, i.e. to the subjects with σ̂cc > 0.25. The remaining

subjects (i.e. those with σ̂cc ≤ 0.25) usually play always-defect, i.e. their relation

to Semi-Grim is irrelevant. The equilibrium predictions for the remaining states σcc

and σdd are equal or close to 1 and 0 (respectively) in all cases, which is as observed.

The main observations can be summarized first; their discussion follows.

Result 5.1. If Semi-Grim equilibria exist, then the majority of subjects plays Semi-

Grim. Otherwise, the majority plays Always-defect or Grim. The reciprocal strate-

gies TFT and T05 are assigned to minorities in either case: to 10%–20% of the

subjects if Semi-Grim equilibria exist, and to 20%–40% if not.

Thus, the results clearly support the hypothesis that the majority of subjects

plays Semi-Grim, which followed from Table 1. Most importantly, the inclina-

tion to play Semi-Grim actually increases as the overall inclination to cooperate

increases. To see this, look at the four treatments where subjects cooperate most

consistently in state (c,c), i.e. at the treatments where the share of “cooperating sub-

jects” (σ̂cc > 0.25) is at least 80%. By Table 3, these are the treatments DF4, DF6,

DO, and FRD. In three of these four treatments, more than 80% of the subjects play

Semi-Grim, i.e. regular or belief-free Semi-Grim. In the remaining treatments, be-

tween 47% and 73% of the subjects play Semi-Grim if it exists, i.e. the majority
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Table 2: Weights of the various strategies in the four experiments

(a) Duffy and Ochs (2009)

A-Def A-Coop Grim BF-SG Reg-SG TFT T05 γ σ /0 ρCaut LL

− − − 0.5
(0.07)

0.39
(0.08)

0.11
(−)

− 0.01
(0)

0.1
(0.04)

0.29
(0.06)

−946.3

(b) Fudenberg et al. (2012), treatment 6 (“no noise”)

A-Def A-Coop Grim BF-SG Reg-SG TFT T05 γ σ /0 ρCaut LL

− 0.2
(0.07)

− 0.24
(0.06)

0.37
(0.08)

0.19
(−)

− 0.01
(0)

0.06
(0.05)

0.17
(0.06)

−429.1

(c) Blonski et al. (2011)

Treat A-Def A-Coop Grim BF-SG Reg-SG TFT T05 γ σ /0 ρCaut LL

Agg 0.29
(0.03)

0
(0)

0.15
(0.03)

0.21
(0.04)

0.23
(0.04)

0.11
(0.02)

0.01
(−)

0.03
(0)

0.33
(0.02)

0.6
(0.04)

−3115.9

1 0.31
(0.08)

0.03
(0.02)

0.14
(0.07)

0.52
(−)

− − − 0.01
(0)

0.17
(0.04)

0.55
(0.1)

−412.2

2 − − 0.7
(0.13)

− − 0.3
(−)

− 0.01
(0)

0.02
(0.01)

0.97
(0.02)

−115

3 1
(−)

− − − − − − 0.14
(0.02)

1.21
(NaN)

0.51
(NaN)

−168.6

4 0.54
(0.07)

− 0.24
(0.07)

− − 0.18
(0.06)

0.03
(−)

0.04
(0.01)

0.37
(0.04)

0.81
(0.08)

−542.1

5 0.29
(0.09)

− − 0.29
(0.1)

0.3
(0.12)

0.12
(−)

− 0.01
(0.01)

0.27
(0.06)

0.59
(0.1)

−368.9

6 0.8
(0.09)

− 0.2
(−)

− − − − 0.02
(0.01)

0.57
(0.17)

0.63
(0.33)

−53.3

7 − − 0.46
(0.12)

− 0.54
(−)

− − 0.01
(0)

0.04
(0.01)

0.88
(0.05)

−161.1

8 0.4
(0.09)

− − 0.04
(0.04)

0.56
(−)

− − 0.02
(0)

0.38
(0.07)

0.66
(0.11)

−278.7

9 0.22
(0.07)

− 0.31
(0.11)

0.11
(0.08)

0.36
(−)

− − 0.02
(0.01)

0.4
(0.05)

0.49
(0.09)

−359

10 0.17
(0.06)

− − 0.25
(0.1)

0.48
(0.1)

0.1
(−)

− 0.05
(0.01)

0.5
(0.05)

0.52
(0.1)

−516.6

(d) Dal Bo and Fréchette (2011)

Treat A-Def A-Coop Grim BF-SG Reg-SG TFT T05 γ σ /0 ρCaut LL

Agg 0.14
(0.03)

0.03
(0.02)

0.14
(0.04)

0.2
(0.04)

0.17
(0.06)

0.24
(0.04)

0.07
(−)

0.08
(0)

0.33
(0.01)

0.49
(0.04)

−9435.8

1 1
(−)

− − − − − − 0.1
(0)

0.35
(NaN)

0.5
(NaN)

−1412.7

2 0.47
(0.08)

− 0.15
(0.07)

− − 0.38
(−)

− 0.09
(0)

0.32
(0.02)

0.83
(0.08)

−1530.4

3 0.45
(0.07)

− 0.17
(0.06)

− − 0.25
(0.07)

0.12
(−)

0.08
(0.01)

0.29
(0.01)

0.96
(0.04)

−2216.8

4 0.08
(0.04)

− − 0.87
(0.06)

− − 0.06
(−)

0.01
(0)

0.18
(0.02)

0.2
(0.07)

−1112.8

5 0.35
(0.07)

− − 0.41
(0.08)

0.11
(0.06)

0.13
(−)

− 0.03
(0)

0.37
(0.02)

0.58
(0.09)

−1953.4

6 − − − 0.1
(0.05)

0.75
(0.09)

− 0.15
(−)

0.03
(0)

0.7
(0.03)

0.39
(0.09)

−1008.2

Legend: “A-Def” is Always-Defect (σcc,σcd ,σdc,σdd) = (0,0,0,0), “A-Coop” is Always-Cooperate

(1,1,1,1), Grim is (1,0,0,0), “BF-SG” is belief-free Semi-Grim ≈ (0.9,0.5,0.5,0.1) (depending on

treatment parameters, see also Prop. 4.2), “Reg-SG” is regular Semi-Grim ≈ (1,0.3,0.3,0) (depend-

ing on treatment parameters, see also Prop. 4.3), “TFT” is (1,0,1,0), and “T05” is a TFT strategy

with prolonged punishment (1,0,0,0.5). Subjects of a given type are assumed to play always-defect

if their strategy is not a best response to itself (i.e. if it is not an equilibrium).

γ is the noise parameter (probability of randomizing uniformly instead of playing the strategy),

ρCaut is the share of cautious players, and σ /0 is the probability of cooperation of cautious players in

round 1.
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Table 3: Behavior of the “cooperating” subjects (σ̂cc > 0.25) in relation to the δ-thresholds in the various treatments

δ-thresholds Threshold met Behavior of “cooperators” Semi-Grim pred. σcd,dc

Treatment δ δGrim δBF-SG δReg-SG δGrim δBF-G δReg-SG Share σ̂cc σ̂dd σ̂cd,dc Regular Belief-free

Blonski et al. (2011)

1 0.75 0.5 0.667 0.667 × × × 0.475 0.92 0.043 0.44 0.256 0.5

2 0.75 0.52 0.904 0.865 × 0.075 1 0.014 0.375 - -

3 0.5 0.667 0.8 0.8 0.3 0.917 0.024 0 - -

4 0.75 0.667 0.8 0.8 × 0.333 0.982 0.063 0.326 - -

5 0.875 0.667 0.8 0.8 × × × 0.525 0.993 0.046 0.449 0.228 0.5

6 0.5 0.326 0.797 0.741 × 0 0 0 0 - -

7 0.75 0.326 0.797 0.741 × × 0.2 0.977 0 0.424 0.667 -

8 0.875 0.326 0.797 0.741 × × × 0.4 0.98 0.017 0.455 0.329 0.843

9 0.75 0.429 0.667 0.661 × × × 0.7 0.956 0.017 0.201 0.299 0.611

10 0.75 0.455 0.572 0.572 × × × 0.725 0.903 0.04 0.201 0.132 0.405

Dal Bo and Fréchette (2011)

1 0.5 0.719 0.815 0.815 0.364 0.701 0.108 0.457 - -

2 0.75 0.719 0.815 0.815 × 0.682 0.755 0.082 0.48 - -

3 0.5 0.401 0.606 0.605 × 0.5 0.625 0.151 0.432 - -

4 0.75 0.401 0.606 0.605 × × × 0.921 0.927 0.161 0.492 0.214 0.553

5 0.5 0.078 0.394 0.343 × × × 0.696 0.832 0.129 0.429 0.333 0.789

6 0.75 0.078 0.394 0.343 × × × 1 0.943 0.146 0.34 0.137 0.693

Duffy and Ochs (2009)

0.9 0.5 0.667 0.667 × × × 0.929 0.969 0.127 0.351 0.094 0.5

Fudenberg et al. (2012), “no-noise” treatment

6 0.875 0.25 0.4 0.4 × × × 0.917 0.973 0.098 0.555 0.041 0.5

Note: The “δ-thresholds” refer to the minimal δ such that the respective equilibria exist (Grim, Belief-free Semi-Grim, Regular Semi-Grim), see Eqs.

(5), (6), (14). In addition, shares and average strategies of “cooperators” (subjects with σ̂cc > 0.25) are provided, and the cooperation rates σdc = σcd

predicted by the two Semi-Grim equilibria.

1
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of subjects across all experiments. The strategies of the subjects not playing Semi-

Grim in these cases (i.e. when Semi-Grim exists) depend on the experiment. In

Fudenberg et al. (2012), they play heuristics such as Always-Cooperate or TFT, in

Blonski et al. (2011) they play Always-Defect or Grim, and in Dal Bo and Fréchette

(2011) they play Always-Defect or TFT/T05. Thus, the observation that most sub-

jects play Semi-Grim (when it is an equilibrium) is the only observation common to

all experiments, and it shows that the majority of subjects adapt Semi-Grim strate-

gies regardless of how the minority of “other players” behaves.

Finally, look at the strategies of subjects when Semi-Grim equilibria do not

exist. These are the strategies in the treatments BOS 2–4,6 and DF 1–3. In these

cases, the majority of subjects is classified as Always-Defect or Grim (note that the

weight of Semi-Grim is set to zero in the cases, as the mixed equilibrium strategies

cannot be computed if the equilibria do not exist). As Table 3 shows, in treatments

BOS 2,4 and DF 2,3, Grim equilibria exist, and the discount factor δ is about 0.1

below the threshold for existence of Semi-Grim. In these cases, the average cooper-

ating subject already plays Semi-Grim σcc > σcd,dc > σdd , with σ̂cd,dc ∈ (0.3,0.5)

as reported in Table 3. These cooperation probabilities are similar to those in treat-

ments where Semi-Grim equilibria exist, which in turn are equal to the Semi-Grim

predictions in these cases, but due to non-existence of Semi-Grim equilibria, the

cooperating subjects are to be classified as playing Grim or TFT in these cases. Ar-

guably, these subjects actually play Semi-Grim ε-equilibria, which suggests that the

weights of Grim and TFT are overestimated in these cases. An evaluation of such

mixed ε-equilibria is left as further research, however.

6 Conclusion

This paper proposed a novel explanation of behavior in repeated Prisoner’s Dilem-

mas that fits both subjects’ strategies and the BOS criterion. Accordingly, subjects

play a mixed, non-reciprocal Semi-Grim strategy σcc > σdc ≈ σcd > σdd . This strat-

egy closely fits choices in four recent experiments, i.e. both average and individual

behavior in these experiments, and it relates closely to several recent developments
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in related literature: axiomatic equilibrium selection in repeated PDs (Blonski et al.,

2011), robustness to imperfect monitoring (Ely and Välimäki, 2002) and purifiabil-

ity (Doraszelski and Escobar, 2010), and Markov logit equilibrium (McKelvey and

Palfrey, 1995; Breitmoser et al., 2010). The results appear to be very robust, as the

majority of subjects plays Semi-Grim strategies whenever a Semi-Grim equilibrium

exists, and the weights of Semi-Grim strategies is actually the largest (above 80%) in

treatments where most subjects cooperate. These results further strengthen the ob-

servation that subjects’ behavior in repeated PDs seems to be predictable, following

Blonski et al. (2011) and Dal Bo and Fréchette (2011) who showed that the emer-

gence of cooperation is predictable. This positive result appears to be very promising

in relation to the embarrassment of riches implied by Folk theorems, suggesting that

substantial equilibrium selection actually takes place in repeated games.

At the same time, the analysis departs from the literature following Axelrod

(1980a,b), which focused on reciprocal strategies, i.e. Markov strategies satisfying

either σdc > σcd or σdd > σcd . The support for this department is fairly strong, as

perfect TFT is not played by subjects (see Dal Bo and Fréchette, 2011, Fudenberg

et al., 2012, and the weight of the T05 strategy in 2), and as TFT is played by few,

if any, subjects. For, if TFT would have substantial weight, then σdc 6= σcd should

be significant, since all otherwise discussed strategies (including Semi-Grim) imply

σdc = σcd .

Finally, this paper has been the first to consider usage of mixed strategies such as

Semi-Grim in econometric analyses of repeated PDs, and thus also the first to show

that subjects play belief-free equilibria. Hence, there is ample opportunity to extend

this research. In particular, it appears to be most interesting to see how predictive

non-reciprocal, mixed equilibria are with respect other repeated games. While the

concept of belief-free equilibria generalizes straightforwardly to other constituent

games, based on the results of Ely et al. (2005), a generalization of the no-reciprocity

condition σdc = σcd does not seem to be available immediately. This may be an

obstacle in such generalizations, but the observed relation to logit equilibrium may

be of help here. In light of the above results, however, further research along these

lines seems warranted.
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A Proofs

Proof of Proposition 3.1. In standardized PDs, it is cumbersome but straightforward

to verify that π̃s′,s′′ := πs′,s′′(c)−πs′,s′′(d) for all s′,s′′ ∈ S satisfy Eqs. (7)–(8) with

µ=
(1−δ) (δ (bσdd −σdc −σcd −bσcc +2σcc)−aδ (2σdd −σdc −σcd)+b−a−1)

1−δ(σ2
dd−2σdd−2σcd σdc+σdc+σcd+σ2

cc)
−δ2 (σdd−σcc)(σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd)

.

Thus, µ = 0 implies π̃cc = π̃cd = π̃dc = π̃dd . Solving its enumerator for σdc yields

σdc =−(b−2a) δσdd +(a−1) δσcd +(2−b) δσcc +b−a−1

(a−1) δ
(16)

and substituting this for σcd in π̃cc = 0, and straightforward but tedious algebraic

manipulations, yields σcd as claimed above. Substituting this for σcd in Eq. (16),

finally, this yields σdc as claimed above. Finally, the set of strategy profiles satisfying

these constraints is not empty if σcd > 0 and σdc < 1, while σcd < 1 and σdc > 0
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hold true in any standardized PD. At the critical point σcc = 1,σdd = 0, σdc < 1 is

equivalent to a > 1/δ and σcd > 0 is equivalent to b < (a−δ)/(1−δ).

Proof of Proposition 4.1. Recall π̃s′,s′′ as defined in Eqs. (7)–(8) and that log
[

(1−
σs′,s′′)/σs′,s′′

]

=−λπ̃s′,s′′ in all (s′,s′′) if (σ,σ) is an MLE.

1. First, by π̃cd − π̃dc = (σcd −σdc) · µ, σdc 6= σcd implies µ > 0. For, µ = 0

implies π̃cd = π̃dc and thus σdc = σcd in MLE, while in case µ < 0, σcd ≷ σdc

implies π̃cd ≶ π̃dc and thus σcd ≶ σdc, a contradiction. Next, by µ > 0, σdc ≶

σcc implies π̃cc ≶ π̃cd and thus σcc ≶ σcd , and vice versa. Thus, either σcd <

σcc = σdd < σdc or σdc < σcc = σdd < σcd . It remains to show σcd < σdc. For

contradiction, assume σdc < σcc = σdd < σcd . If σcc = σdd , π̃cd is falling in

σcd and increasing in σdc, and in the limiting case σdc = σcc = σdd = σcd , it

evaluates to

π̃cd =−(d −1) (−bσcc +aσcc +σcc −1) .

Thus, π̃cd < 0, which implies σcd < 0.5 and thus contradicts the assumption

that max{σcc,σcd,σdc,σdd}> 0.5.

2. First, by π̃cc − π̃dd = (σdd −σcc) · µ, σcc 6= σdd implies µ < 0. For, µ = 0

implies σcc = σdd , and in case µ > 0, σcc ≷ σdd implies π̃cc ≶ π̃dd and thus

σcc ≶ σdd (contradiction). In turn, µ < 0 implies σcd = σdc, as σcd 6= σdc

implies µ > 0 by the argument made in point 1. It remains to show that σdc <

σcc, or equivalently π̃cc < π̃dc. Using σcd = σdc, π̃cc − π̃dc simplifies toward

π̃cc − π̃dc =
(d−1)(σdc−σcc)(d (bσdd−2aσdd+2aσdc−2σdc−bσcc+2σcc)+b−a−1)

d (σ2
dd−2σdd−2σ2

dc+2σdc+σ2
cc)+2d2 (σdc−σcc)(σdd−σcc)(σdd−σdc)−1

.

For contradiction assume σdc ≥ σcc. The denominator of the fraction is gen-

erally decreasing in σdd , and in the limiting case σdd = 0 it is

2d (d σcc −1) σ2
dc −2d

(

d σ2
cc −1

)

σdc +d σ2
cc −1 < 0.

Thus, it is generally negative. The numerator of the right-hand side is negative
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if

σdd <
(2a−2) d σdc +(2−b) d σcc +b−a−1

(2a−b) d
=: σ̃dd.

Thus, in case σdd < σ̃dd , π̃cc− π̃dc is positive, contradicting the initial assump-

tion σcc < σdc. Alternatively, in case σdd ≥ σ̃dd , the cooperation incentive π̃dc

is decreasing in σdd , and in the limiting case σdd = σ̃dd ,

π̃dc =
(d −1) (bd σdc −bd σcc +b−a)

2d σdc −2d σcc +1
.

Thus, π̃dc < 0 follows if σdc > σcc. Since π̃dc < 0 also implies σdc < 0.5, this

contradicts max{σcc,σcd,σdc,σdd}> 0.5.

Proof of Proposition 4.2. Eqs. (7)–(8) hold equivalently here, now with µ = r1/r2

where

r1 = δ (pdc + pcd) (σdd −σcc)−2δ pcc (σdd −σdc)

−2δ pdd (σdc −σcc)− pdd + pdc + pcd − pcc

and r2 6= 0. Thus, r1 = 0 again yields π̃cc = π̃cd = π̃dc = π̃dd . Solving r1 = 0 for σdc,

σdc =
2δ(pcc σdd − pdd σcc)−δ (pdc + pcd) (σdd −σcc)+ pdd − pdc − pcd + pcc

2δ(pcc − pdd)
,

and substituting this into π̃cc = 0 yields

δ2 (pdc − pcd) (σdd −σcc)−δ (pdc − pcd) (σdd −σcc −1)

+δ(pdd − pcc)− pdd − pdc + pcd + pcc = 0.

Solving these two conditions for (σdd,σdc) yields Eqs. (12), (13). As for existence

of these MPEs, σdd ≥ 0 holds true (at σcc = 1) iff δ≥ (pdc+ pdd − pcd − pcc)/(pdc−
pcd), while σdd < σdc ≤ 1 is satisfied for all σcc ∈ [0,1].

Proof of Proposition 4.3. If σcc = 1, σcd = σdc, and σdd = 0, the cooperation incen-
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tive in state (d,c), π̃dc := πdc(c)− π̃dc(d), is

π̃dc =
δ(pdd+δ(pdc−pcd)−pdc+pcd−pcc)σ2

dc−(δ2 (pdc−pcd)+2δ(pdd−pdc)+pdc+pcd−pdd−pcc)σdc−(1−δ)(pdd−pcd)

2δ (σdc −1) σdc +1
.

(17)

First, I show that the two conditions π̃cc > π̃dc and π̃dc = 0 imply that σ is a mixed

MPE. By σdc = σcd and Eq. (8), π̃dc = π̃cd , i.e. π̃dc = 0 implies π̃cd = 0. Further, by

π̃cc > π̃dc and Eqs. (7)–(8), σcc = 1 > σdc implies µ < 0, and by σdd = 0 < σdc this

implies π̃dd < π̃dc = 0. Hence, any strategy profile satisfying π̃cc > π̃dc = 0 (besides

σcc = 1,σdd = 0) is mixed MPE with the claimed incentive structure.

Second, I derive the existence condition. π̃dc = 0 obtains if

σdc =
(2δ−1) pdd +(1−δ)2

pdc +
(

1−δ2
)

pcd − pcc ±
√

r

(2δ2 −2δ) (pdc − pcd)−2δ(pcc − pdd)
(18)

with

r =(pdd − pdc − pcd + pcc)
2+4δ

(

(pdc + pcd) pdd + pcc (pdc + pcd −2 pdd)− p2
dc − p2

cd

)

−2δ2
(

(pdc + pcd) pdd + pcc (pdc + pcd −2 pdd)−3 p2
dc +4 pcd pdc −3 p2

cd

)

+ δ4 (pdc − pcd)
2 −4δ3 (pdc − pcd)

2

These strategy profiles exist if r ≥ 0, and solving r = 0 for δ, this yields the lower

bound claimed in Eq. (14). Now, evaluating π̃cc− π̃dc at σcc = 1, σcd = σdc, σdd = 0

yields

π̃cc − π̃dc =
(1−σdc)(δ(2 pdd σdc−2 pcc σdc−2 pdd+pdc+pcd)+pdd−pdc−pcd+pcc)

2δ (σdc −1) σdc +1
(19)

and at the limiting strategy σdc

∣

∣

r=0
, it is positive if and only if

(d −1)2 (pdc − pcd) (pdd − pdc − pcd + pcc)

pcc − pdd +(1−δ) (pdc − pcd)
> 0. (20)

This is satisfied if and only if pcc+ pdd > pdc+ pcd . Otherwise, the limiting strategy
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σdc does not solve r = 0. Instead, it solves π̃cc = π̃dc, which yields

σdc =
(2δ−1) pdd +(1−δ) pdc +(1−δ) pcd − pcc

2δ(pdd − pcc)
. (21)

Substituting it into π̃dc = 0, and solving for δ yields δ > δBOS.
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Lemma A.1. If both players play strategy σ in a “simple” repeated PD, then the expected payoffs in the four states are

πcc =
δ
(

aσcc σ2
dd−σcc σ2

dd+σ2
dd−aσ2

cc σdd+σ2
cc σdd−aσdd−σdd−2aσcc σcd σdc+2σcc σcd σdc−2σcd σdc+aσ2

cc σdc−σ2
cc σdc+σdc+aσ2

cc σcd−σ2
cc σcd+σcd+σ2

cc+aσcc−σcc

)

+aδ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−aσcc+σcc−1

δ
(

σ2
dd−2σdd−2σcd σdc+σdc+σcd+σ2

cc

)

+δ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−1
,

πcd =

δ2
(

aσ2
dc σ2

dd−aσcc σdc σ2
dd−σcc σdc σ2

dd+σdc σ2
dd−aσ2

cd σ2
dd+aσcc σcd σ2

dd+σcc σcd σ2
dd+aσcd σ2

dd−aσcc σ2
dd−σcc σ2

dd−2aσcd σ2
dc σdd+2aσ2

cd σdc σdd−aσcd σdc σdd−σcd σdc σdd+aσ2
cc σdc σdd+σ2

cc σdc σdd−aσ2
cc σcd σdd−σ2

cc σcd σdd+

aσ2
cc σdd+σ2

cc σdd+2σcc σcd σ2
dc+aσcd σ2

dc−σcd σ2
dc−σ2

cc σ2
dc−2σcc σ2

cd σdc−aσ2
cd σdc+σ2

cd σdc+aσcc σcd σdc+σcc σcd σdc−aσ2
cc σdc+σ2

cc σ2
cd−σ2

cc σcd

)

+δ
(

aσdc σ2
dd−σcd σ2

dd+σ2
dd−aσcd σdc σdd+σcd σdc σdd−aσdc σdd−σdc σdd+aσcd σdd+σcd σdd

−aσdd−σdd−aσcd σ2
dc−σcd σ2

dc+σ2
dc+aσ2

cd σdc+σ2
cd σdc−aσcc σcd σdc+σcc σcd σdc−2σcd σdc+aσ2

cc σdc+aσdc−σ2
cd−σ2

cc σcd+σcd+σ2
cc

)

−aσdc+σcd−1
(

δ
(

σdc−σcd

)

+1
)(

δ
(

σ2
dd−2σdd−2σcd σdc+σdc+σcd+σ2

cc

)

+δ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−1
) ,

πdc =

−δ2
(

σ2
dc σ2

dd−aσcc σdc σ2
dd−σcc σdc σ2

dd−aσdc σ2
dd−2σdc σ2

dd−σ2
cd σ2

dd+aσcc σcd σ2
dd+σcc σcd σ2

dd+σcd σ2
dd+aσcc σ2

dd+σcc σ2
dd−2σcd σ2

dc σdd+2σ2
cd σdc σdd+aσcd σdc σdd+σcd σdc σdd+aσ2

cc σdc σdd+σ2
cc σdc σdd+2aσdc σdd+2σdc σdd

−aσ2
cc σcd σdd−σ2

cc σcd σdd−2aσcd σdd−2σcd σdd−aσ2
cc σdd−σ2

cc σdd+2aσcc σcd σ2
dc+aσcd σ2

dc+3σcd σ2
dc−aσ2

cc σ2
dc−aσ2

dc−σ2
dc−2aσcc σ2

cd σdc−aσ2
cd σdc−3σ2

cd σdc−aσcc σcd σdc−σcc σcd σdc−σ2
cc σdc+aσ2

cc σ2
cd+aσ2

cd+σ2
cd+aσ2

cc σcd+2σ2
cc σcd

)

−δ
(

σdc σ2
dd−aσcd σ2

dd−σ2
dd+aσcd σdc σdd−σcd σdc σdd−aσdc σdd−σdc σdd+aσcd σdd+σcd σdd+aσdd+σdd−aσcd σ2

dc−σcd σ2
dc+aσ2

dc+aσ2
cd σdc+σ2

cd σdc+aσcc σcd σdc−σcc σcd σdc+2σcd σdc+σ2
cc σdc+σdc−aσ2

cd−aσ2
cc σcd−aσcd−2σcd−σ2

cc

)

+
(

a+1
)

δ3
(

σdc−σcd

)(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

+σdc−aσcd−1
(

δ
(

σdc−σcd

)

+1
)(

δ
(

σ2
dd−2σdd−2σcd σdc+σdc+σcd+σ2

cc

)

+δ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−1
) ,

πdd =
δ
(

aσdc σ2
dd−σdc σ2

dd+aσcd σ2
dd−σcd σ2

dd−aσcc σ2
dd+σcc σ2

dd+σ2
dd−2aσcd σdc σdd+2σcd σdc σdd+aσ2

cc σdd−σ2
cc σdd−2σdd−2σcd σdc+σdc+σcd+σ2

cc

)

+δ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−aσdd+σdd−1

δ
(

σ2
dd−2σdd−2σcd σdc+σdc+σcd+σ2

cc

)

+δ2
(

σdd−σcc

)(

σdc σdd+σcd σdd−2σcc σdd−2σcd σdc+σcc σdc+σcc σcd

)

−1

Proof. These results follow straightforwardly from algebraic manipulations of Eqs. (1)-(3).

Lemma A.2. (σ,σ) is an MLE of a “simple” repeated PD if and only if log(1−σs′,s′′)/σs′,s′′ =−λπ̃s′,s′′ for all s′,s′′ ∈ S, where

π̃s′,s′′ := πs′,s′′(c)− π̃s′,s′′(d) are

π̃cc =

(

d −1
)(

−δ
(

bσ2
dd −aσ2

dd −2bσcc σdd +aσcc σdd +aσdd −bσ2
dc +aσ2

dc +σ2
dc +2bσcc σdc −2σcc σdc −aσdc −aσ2

cc +σ2
cc

)

+aδ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

+bσcc −aσcc +σcc −1
)

δ
(

σ2
dd −2σdd −2σ2

dc +2σdc +σ2
cc

)

+2δ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

−1

π̃dc =

(

d −1
)(

−δ
(

bσ2
dd −aσ2

dd −2bσdc σdd +aσdc σdd +aσdd +bσ2
dc +aσ2

dc −σ2
dc −aσcc σdc +2σcc σdc −aσdc −σ2

cc

)

+aδ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

+bσdc −aσdc +σdc −1
)

δ
(

σ2
dd −2σdd −2σ2

dc +2σdc +σ2
cc

)

+2δ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

−1

π̃dd =

(

d −1
)(

δ
(

bσ2
dd −2bσdc σdd +2σdc σdd +aσcc σdd −2σcc σdd −aσdd +bσ2

dc −aσ2
dc −σ2

dc +aσdc +σ2
cc

)

+aδ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

+bσdd −aσdd +σdd −1
)

δ
(

σ2
dd −2σdd −2σ2

dc +2σdc +σ2
cc

)

+2δ2
(

σdc −σcc

)(

σdd −σcc

)(

σdd −σdc

)

−1
.

Proof. σcd = σdc implies π̃cd = π̃dc and the remainder follows from the definition Eq. (11), using Eq. (1) and Lemma A.1.
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