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Abstract

If Cournot oligopolists may sell their output prior to its production (forward

trading), competition intensifies. Potentially, it may intensify so far as to imply

convergence to the Bertrand equilibrium, as shown by Allaz and Vila (1993)

for the case of linear demand and costs. The present paper analyzes the lim-

iting outcome if demand or costs are non-linear, which still are open prob-

lems. Specifically, I consider a general family of convex demands and increas-

ing marginal costs. In both cases, the limiting outcomes are strictly between

Cournot and Bertrand. This shows that competitive futures markets improve

welfare (upon Cournot) also for non-linear costs or demands, but they do gen-

erally not imply social efficiency.
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1 Introduction

In many industries, firms conclude forward contracts to sell their eventual output.

Theoretically, forward trading is made for at least two reasons. On the one hand, it

allows to hedge positions in markets with uncertain spot prices (Allaz, 1992; Hughes

and Kao, 1997). On the other hand, strategic forward trading allows firms to increase

profits unilaterally (Allaz and Vila, 1993; Bolle, 1993; Powell, 1993). For, forward

trading increases a firm’s marginal revenue in the production period, and as a result,

marginal revenue equates with marginal costs at higher quantities. Thus, by forward

trading, firm i creates an incentive for itself to increase its quantity in the production

period, which is anticipated by its competitors. They reduce their quantities in re-

sponse, and due to this reduction of its opponents’ quantities, i benefits (Mahenc and

Salanié, 2004, show that the logic inverts in case of strategic complements). In equi-

librium, all firms trade forward, competition intensifies, and all firms are worse off.

In their seminal analysis, Allaz and Vila (1993) show that the resulting equilibrium

outcome approaches the Bertrand outcome (and thus social efficiency) as the number

of forward trading periods tends to infinity, assuming costs and demand are linear.

This finding has sparked off much interest in forward trades and their ability

to induce competitive pricing. In the process, various mitigating factors have been

identified. Ferreira (2003) shows that the equilibrium may exhibit tacit collusion if

there is no terminal trading period, and in repeated oligopoly, Liski and Montero

(2006) show that forward trades simplify penal strategies. Thille (2003) shows that

storage weakens the implications of forward trades, and Breitmoser (2012) shows

that heterogeneity of goods weakens them. The experimental analyses of Le Coq

and Orzen (2006), Brandts et al. (2008), and Ferreira et al. (2009) also suggest that

forward trading is weaker empirically than theoretically.

These cases, where mitigating factors have been identified, have in common

that Bertrand competition does not induce competitive pricing either. This raises the

question as to whether the limiting Allaz-Vila outcome induces social efficiency in

cases where factors that are generally known to be mitigating are not in effect. The

arguably most relevant such cases are those with non-linear demand or costs, which

surprisingly enough, have not yet been analyzed conclusively. Since non-linearity of

demands and costs is widespread empirically, understanding the properties of Allaz-
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Vila competition in these conditions even seems desirable. Bertrand competition

induces competitive pricing also if say demands are non-linear, and intuitively Allaz-

Vila competition appears to induce “undercutting” very similar to that of Bertrand

competition as long as goods are homogenous. The limiting Allaz-Vila outcomes are

difficult to analyze, however, as the closed-form solutions of T -round games with

T > 2 are fairly cumbersome in non-linear cases. This is illustrated, for example, by

Allaz (1987) and Bushnell (2007) who analyze non-linear two-round games.

I circumvent the known problems by transforming the induction on equilibrium

prices into an induction on the underlying conjectural variations, generalizing the ap-

proach of Breitmoser (2012). This transformation enables me to derive the limiting

equilibria of duopolies with inverse demands P =
(

1−a ∑i xi

)b
, which contains lin-

ear, quadratic, log-linear, and exponential demands as special or limiting cases, and

to derive the limiting equilibria of duopolists with quadratic costs. I characterize the

respective outcomes in closed form and find that competitive pricing does not obtain

for either form of non-linearity. Forward trading still intensifies competition in rela-

tion to the basic Cournot case, but it does not converge to Bertrand as the number of

forward trading periods approaches infinity. Thus, futures markets do not generally

suffice to induce social efficiency even in “clean conditions” where Bertrand suf-

fices, and Allaz-Vila competition in general is an intermediate form of competition,

differing distinctly from both Bertrand and Cournot.

Section 2 introduces the required notation and terms. Sections 3 and 4 analyze

non-linearity of demand and costs, respectively. Section 5 concludes.

2 Notation and definitions

The set of firms is N = {1,2} with typical elements i, j ∈ N. The firms produce

perfect substitutes for consumers with aggregate inverse demand P(x) for quantity

x. P is monotonically decreasing and weakly convex. Firm i’s quantity is denoted

as xi, its aggregate costs as Ci(xi), which are continuous and satisfy Ci(0) = 0, and

its average costs as ci(xi) :=Ci(xi)/xi ≥ 0. I will suppress the arguments of P and ci

when doing so may not cause confusion.

The interaction of the firms proceeds in rounds. Production takes place in t = 0,
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e.g. the year 2013. At time −T , the futures market opens, and in the T periods

prior to t = 0, the firms may sell or buy futures contracts for delivery in t = 0. The

firms’ aggregate trade balances become common knowledge after each round. In

round t = 0, the firms choose quantities and produce, and finally the market clears

in Cournot fashion. Production cannot take place prior to 2013, either because the

good is non-durable or because production in 2012 is needed to satisfy demand in

2012 (and demand in 2012 is left unmodeled). The futures markets are competitive,

i.e. there are rational expectations about the eventual market price and hence forward

selling or forward buying is not profitable in itself. This is a standard assumption that

allows us to focus on the strategic implications of forward trading.

To keep notation simple, the firms are assumed to play Markov strategies. Thus,

strategies may depend on the present state, which is characterized by the current bal-

ances of forward trades, but not on the specific history of actions that led to it. This

assumption is actually made without loss of generality, as the extensive-form game

is finite and the Markov perfect equilibrium (MPE) turns out to be unique. Hypo-

thetically, without uniqueness of MPE, subgame perfect equilibria (SPEs) exist that

are not Markov perfect and may exhibit tacit collusion, similarly to finitely repeated

games when constituent games have multiple Nash equilibria (Benoit and Krishna,

1985).

The set of states is R
2, and typical states will be denoted as f = ( f1, f2) ∈ R

2.

Here, fi denotes i’s aggregate amount of forward sales. If fi > 0, then i has gone

short (i.e. it has sold some of its future production); if fi < 0, then i has gone long.

The game with T ≥ 0 rounds of forward trading is denoted as ΓT . The (sub-)

game with T ≥ 0 rounds of forward trading and initial state f is denoted as ΓT (f).

A strategy of i ∈ N is denoted as (xi,yi) with yi =
(

yi,t

)−1

t=−T
, where xi : R2 →

R+ and yi,t : R2 → R for all t ∈ {−T,−T + 1, . . . ,−1}. Here, xi(f) is i’s quantity

conditional on the profile f of forward sales in t = 0, and yi,t(f) are the respective

amounts of forward sales after period t conditional on f. Note that i may forward

sell even more than it will eventually produce, i.e. both xi(f) ≥ fi and xi(f) < fi are

admissible, and that i may switch without restrictions between forward selling and

buying between periods, i.e. between yi,t(f)≥ fi and yi,t(f)< fi, respectively.

Denoting strategy profiles as (x,y) =
(

(x1,x2),(y1,y2)
)

, the equilibrium profits
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are defined as follows. Consider round t ∈ {−T,−T +1, . . . ,0} is reached in state ft .

The forward trades in the subsequent rounds t ′ = t + 1, t + 2, . . . ,0 can be resolved

recursively as fi,t ′ = yi,t ′−1(ft ′−1) for all i∈N. The eventual balance of forward trades

is f0 = ( f1,0, f2,0), and overall the profits as anticipated in round t are

Πi(x,y | t, ft) =
[

xi(f0)− fi,t

]

·P
[

xi(f0)+ x j(f0)
]

−Ci

[

xi(f0)
]

. (1)

Note that this expression ignores the sunk revenue fi,t ·P from forward trades con-

cluded in previous stages. Finally, the definition of MPEs is as usual (Maskin and

Tirole, 2001).

3 Non-linear demand

In this section, I analyze the implications of non-linear demand in relation to the

standard linear case. That is, linearity of Ci is maintained, and ci = Ci/xi ≡ C′
i is

therefore constant. The analysis proceeds by backward induction, starting with t = 0,

i.e. with the Cournot game Γ0(f) where the firms may have concluded forward trades.

In Γ0(f), firm i enters the production period T = 0 with quantity fi ∈ R being sold

forward and its profit function is

Πi =
(

xi − fi

)

·P(xi + x j)− ci xi. (2)

The first-order conditions in Γ0(f) therefore are

−(xi − fi)P′ = P− ci ∀ i ∈ N. (3)

Under typical assumptions on P and ci, the larger fi, the larger is the equilibrium

quantity xi and the lower is x j.
1 This represents the strategic motive underlying

forward trades discussed in the introduction. Condition (3) can be expressed as

−(xi − fi) ·µi,T = P− ci ∀ i ∈ N (4)

1In the case of constant average/marginal costs, a sufficient condition is P′+P′′ · (xi − fi)< 0 for

all i ∈ N, see Eqs. (8) and (9) below using µi = µ j = P′. For example, this condition holds for linear

demand, P′′ = 0, and non-linear demands such as those considered below (for all relevant xi, fi).
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with µi,0 = P′ for all i. By induction, I show that the equilibrium conditions of ΓT (f)

for all T ≥ 0 can be expressed through (4), and Lemma 3.1 derives how µi,T is to

be updated as the time horizon T increases. Note that this updating rule will be

derived for general inverse demands P, which is notationally less cumbersome than

using specific parametric forms such as P = (1−a∗ (x1 + x2))
b. This particular, but

general family of non-linear demand functions will be used subsequently, in turn, as

an abstract treatment of non-linear demand functions seems to be intractable due to

the terms
∂µ j,T

∂xi
and

∂µ j,T

∂x j
in the updating rule.

Lemma 3.1. If the equilibrium quantities (xi) in ΓT (f), T ≥ 0, satisfy Eq. (4), then

the equilibrium quantities in ΓT+1(f′) satisfy Eq. (4) with

µi,T+1 =

∂µ j,T

∂x j

(

P− c j

)

P′−
∂µ j,T

∂xi

(

P− c j

)

P′−µ2
j,T P′

∂µ j,T

∂x j

(

P− c j

)

−µ j,T

(

P′+µ j,T

)

∀i ∈ N. (5)

Proof. Define µi := µi,T for all i∈N. Totally differentiating the induction assumption

P− ci +µi(xi − fi) = 0 with respect to (xi,x j, fi) yields

[

P′+ ∂µi

∂xi
(xi − fi)+µi

]

·dxi +
[

P′+ ∂µi

∂x j
(xi − fi)

]

·dx j −µi d fi = 0 (6)

and totally differentiating the corresponding assumption P−c j+µ j(x j− f j) = 0 with

respect to (xi,x j, fi) yields

[

P′+
∂µ j

∂xi
(x j − f j)

]

·dxi +
[

P′+
∂µ j

∂x j
(x j − f j)+µ j

]

·dx j = 0. (7)

Solving Eqs. (6) and (7) with respect to dxi/d fi and dx j/d fi yields

dxi

d fi
=−

µi

(

P′−
∂µ j

∂x j

(

f j − x j

)

+µ j

)

∂µi
∂xi

( fi−xi)(P′+µ j)+
∂µ j
∂x j

( f j−x j)(P′+µi)−
∂µ j
∂xi

( f j−x j)P′−
∂µi
∂x j

( fi−xi)P′

−(µ j+µi)P′+

(

∂µi
∂x j

∂µ j
∂xi

−
∂µi
∂xi

∂µ j
∂x j

)

( fi−xi)( f j−x j)−µi µ j

(8)

dx j

d fi
=

µi

(

P′−
∂µ j

∂xi

(

f j − x j

)

)

∂µi
∂xi

( fi−xi)(P′+µ j)+
∂µ j
∂x j

( f j−x j)(P′+µi)−
∂µ j
∂xi

( f j−x j)P′−
∂µi
∂x j

( fi−xi)P′

−(µ j+µi)P′+

(

∂µi
∂x j

∂µ j
∂xi

−
∂µi
∂xi

∂µ j
∂x j

)

( fi−xi)( f j−x j)−µi µ j

. (9)
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Conditional on f′, the anticipated profits in ΓT+1(f′) are ΠT+1
i = (xi − f ′i )(P− ci),

and the respective first-order conditions for an equilibrium in ( fi, f j) chosen in T +1

are

dΠT+1
i

d fi
=
(

xi − f ′i
)

(

d x j

d fi
P′+

d xi

d fi
P′

)

+
d xi

d fi
(P− ci) = 0 (10)

for all i. Substituting dxi

d fi
and

dx j

d fi
by Eqs. (8) and (9), rearranging terms and focusing

on the numerator, we obtain

− (P− ci)P′−
∂µ j

∂x j

(

f ′i − xi

) (

f j − x j

)

P′+
∂µ j

∂xi

(

f ′i − xi

) (

f j − x j

)

P′

+µ j

(

f ′i − xi

)

P′+
∂µ j

∂x j

(

f j − x j

)

(P− ci)−µ j (P− ci) = 0. (11)

Substituting x j − f j by −(P− c j)/µ j, as implied the induction assumption Eq. (4),

and rearranging terms yields

(

∂µ j

∂xi
−

∂µ j

∂x j

)

(

f ′i − xi

)

(P− c j)P′−µ j (P− ci)P′−µ j (P− ci)µ j

+µ j µ j

(

f ′i − xi

)

P′+
∂µ j

∂x j
(P− ci)(P− c j) = 0. (12)

Finally, factorizing with respect to (xi − f ′i ) and (P− ci) yields an expression of the

form α · (xi − f ′i ) = β · (P− ci) where

α =
∂µ j

∂x j

(

P− c j

)

P′−
∂µ j

∂xi

(

P− c j

)

P′−µ2
j P′, β =

∂µ j

∂x j

(

P− c j

)

−µ j

(

P′+µ j

)

.

Using Lemma 3.1, the following analysis transforms the induction on prices and

quantities into an induction on first-order conditions characterized via (µi), which

allows me to derive tractable characterizations of the outcomes in cases with non-

linear demands or costs. A similar approach was applied previously to the case

of linear demands and costs in Breitmoser (2012). Note how (µi) relate to conjec-

tural derivatives. If firm i maximizes xi · (P− ci) assuming the conjectural derivative
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dx j/dxi = κi, the first-order condition is

−xi (1+κi)P
′ = P− ci. (13)

Thus, µi = (1+κi)P′. The difference to conjectural derivatives is that µi is endoge-

nous while κi is exogenous, and in this sense, the Allaz-Vila model rationalizes in-

termediate conjectural derivatives between Cournot and Bertrand.

In order to illustrate the induction, let us first apply Lemma 3.1 to the linear case

P = 1−a∗(x1+x2) and ci = b for all i. By Eq. (3), the induction starts with µi,0 = P′

for all i in Eq. (4), and by Lemma 3.1, for all T > 0 and all i 6= j,

∂µ j,T

∂x j
=

∂µ j,T

∂xi
= 0 µi,T+1 =

µ j,T P′

P′+µ j,T
=

µ j,T/P′

1+µ j,T/P′
·P′. (14)

Unraveling the iteration yields µi,T = P′

1+T
, and as T tends to ∞, µi,T converges to

0. Thus, competitive pricing P = ci obtains in the limit. The resulting equilibrium

quantities of ΓT , T ≥ 0, are xi,T = (1+T )(1− b)/(3+ 2 ∗T )a for all i. Of course,

these are nothing but the results of Allaz and Vila (1993). However, they show how

the linear case is technically convenient. For all T > 0, µi,T is the product of a factor

λi,T = 1/(1+T ) and P′. Critically, ∂λi/∂xi = ∂λi/∂x j = 0, as it implies ∂µi,T/∂xi =

∂µi,T/∂x j = 0 in the linear case.

As a result, the sequence (µi,T ) simplifies enormously, toward µi,0 = P′, µi,−1 =

P′/2, µi,−2 = P′/3, and so on, which in turn implies that closed-form expressions for

equilibrium quantities and prices are straightforward even for T > 0.

The derivatives of µi do not disappear if demand or costs are non-linear. In these

cases, closed-form expressions for equilibrium prices and quantities may become

intractable already after a few induction steps. In contrast, the induction on (µi) rather

than prices/quantities continues to be possible, as I show for non-linear demands

P = (1− a ∗ (x1 + x2))
b now. This family of inverse demands contains the linear

one as a special case (b = 1), the relation to which will be used in illustrations. In

addition, it contains many other forms used in empirical analysis as special cases,

such as quadratic, log-linear, and exponential demands, and thus it constitutes the

arguably most relevant generalization of linearity in the present context (for further

discussion, let me refer to Genesove and Mullin, 1998).
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Proposition 3.2. If inverse demand is P = (1−a∗ (x1 + x2))
b with a > 0 and b > 1

and costs are ci = 0 for all i ∈ N, then the equilibrium price of ΓT converges to
(

b−1
b+1

)b
> 0 as T approaches ∞.

Proof. The first-order condition if the game starts in T = 0 is Eq. (3), and hence it

satisfies Eq. (4) with µi,0 = P′ for all i. I claim that for all T > 0, the first-order

condition is Eq. (4) with

µi,T = λi,T P′ with λi,T =
bT

∑T
t=0 bt

∀i ∈ N. (15)

The claim is satisfied for T = 0. Next I show that if it holds in ΓT , T ≥ 0, then also

for ΓT+1. By Lemma 3.1, in particular Eq. (5), ci = c j = 0, and µ j,T = λ j,T P′,

µi,T+1 =

∂µ j,T

∂x j
PP′−

∂µ j,T

∂xi
PP′−µ j,T µ j,T P′

∂µ j,T

∂x j
P−µ j,T

(

P′+µ j,T

)

=
−λ j,T bP′

(b−1)− (1+λ j,T )b
. (16)

Now, the claim follows from the induction assumption on λi,T . The sequences

(µi,T ) = (µ j,T ) are equal and unique, and they converge to

lim
T→∞

bT

∑T
t=0 bt

·P′ = lim
T→∞

bT+1 −bT

bT+1 −1
·P′ =

b−1

b
·P′. (17)

By Eq. (4), the limiting quantities xi,x j are equal and solve

−
b−1

b
· xi P′ = P ⇒ (b−1) ·axi = (1−2axi). (18)

Hence, xi = 1/(ab+ a) in the limit, and P =
(

b−1
b+1

)b
. It remains to verify the suffi-

cient conditions. On the one hand, let Fi = P− ci + xi · µi,T for all i ∈ N denote the

conditions constituting the induction assumption. The determinant of the Jacobian at

the equilibrium quantities for T ≥ 0 is

∣

∣

∣

∣

∣

∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2

∣

∣

∣

∣

∣

=
((

a2 b2 λi,T +a2 b
)

λi,T +a2 bλi,T

)

P
2b−2

b 6= 0, (19)

exploiting that µi,T = µ j,T = λi,T P′, with λi,T > 0, and a,b,P > 0. Since the deriva-
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Figure 1: Comparison linear and quadratic demands (with ci = 0)

(a) Linear demand P = 1− x

xi

P,x j

1−2xi = P

xAV
i = xB

i

T = 0

T = 1

T = 2

T = 4

T = 8

T = 16

T = 64

T = 1024

x∗i (x j)

x∗j(xi)

(b) Quadratic demand P = (1− x)2

xi

P,x j

(1−2xi)
2 = P

xB
ixAV

i

T = 0

T = 1
T = 2

T = 4T = 8T = 16

Note: These are plots of the equilibrium prices of ΓT as T →∞ and the corresponding “best responses”

Eq. (20). Correspondingly, the vertical axes have two scales, price P and opponents’ quantity x j. xB
i

denotes the Bertrand quantities (i.e. the xi = x j such that P = ci = c j), and xAV
i denotes i’s limiting

Allaz-Vila quantity (as T → ∞).

tives are also continuous, the conditions of the implicit function theorem used above

are therefore satisfied. On the other hand, the sufficient condition for the maximum

derived from Eq. (10) can be expressed as, again exploiting µi,T = µ j,T = λi,T P′ and

using the optimal xi and P ≥
(

b−1
b+1

)b
,

d2ΠT+1
i

dy2
i

<−
a (b−1)b−1

b2 (b+1)1−b λ2
i,T λ j,T

(

ab2 λ j,T f ′i +abλ j,T f ′i +bλ j,T +2
)

(

bλi,T λ j,T +λ j,T +λi,T

)2
< 0,

since a,λi,λ j > 0 and b > 1. For, λi,T being decreasing as T increases implies that

the quantities sold forward are monotonically increasing along the equilibrium path,

i.e. yi,t(f)≥ fi for all t ≥−T . Hence, the cumulated forward trades are non-negative

in all rounds and f ′i ≥ 0 applies.

Figure 1 illustrates the difference between the linear case and the non-linear

one, for the inverse demand P = (1−x1−x2)
b. By Eq. (17), the equilibrium conduct
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parameters are µi,T =
(

bT+1 − bT
)

/
(

bT+1 − 1
)

. In conjunction with the first-order

condition Eq. (4), this allows us to express the optimal xi as a function of x j in ΓT .

xi =

(

bT+1 −1
) (

1− x j

)

bT+2 −1
(20)

This “best response” converges to xi =
(

1− x j

)

(T +1)/
(

T + 2) in the linear case

(b → 1), and to the Cournot response for T = 0. These best response functions are

displayed in Figure 1 for the linear case b = 1 and the quadratic case b = 2.

Notably, xi(x j) is linear even if the demands are non-linear. As b increases,

however, the slopes of the response functions dxi/dx j increase. That is, the response

functions become flatter, which moves the equilibrium outcome of ΓT inward and

thus b > 1 mitigates the implications of forward trading. Formally, as µi,T is updated

according to Eq. (16), b > 1 decelerates the updating and ultimately yields conver-

gence to µ∗ = (b−1)/b rather than convergence to competitive conduct µc = 0. Thus,

for all demand functions in the general non-linear family analyzed above, forward

trading still improves welfare in relation to the Cournot case, but it does not maxi-

mize welfare, which results for linear demands.

Corollary 3.3. Under the conditions of Proposition 3.2, the equilibrium price of ΓT

is strictly between Cournot and Bertrand prices, both for all finite T > 0 and in the

limit as T approaches ∞.

Proof. By Eq. (17), the first-order condition of ΓT satisfies Eq. (4) with µi,T = λi,T P′

with λi,T = bT/∑T
t=0 bt . The Cournot equilibrium corresponds to T = 0, which yields

λi,0 = 1, and the Bertrand equilibrium corresponds to λi = 0, i.e. P = 0. Since 0 <

λi,T < 1 for all T > 0, the claim follows for all finite T , and in the limit, as T → ∞,

we obtain λi,∞ = (b−1)/b ∈ (0,1) for all b > 1.

4 Non-linear costs

Non-linearity of costs implies that profits from previous forward sales are not fully

sunk until the production quantity is finally set. The eventual quantity decision affects

average costs and thus also costs of previous forward trades. Due to this effect, the
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recursion conditions needs to be adapted when costs are non-linear. Starting with the

profits in the Cournot case Γ0(f), see Eq. (2), the first-order condition in case c′i 6= 0

can be written as

−(xi − fi)P′ = P− ci − xi c′i ∀ i ∈ N. (21)

The difference to Eq. (3) is the last term xi c′i which represents the aforementioned

effect. Now if we set µi,0 = P′ for all i, then the first-order condition of Γ0(f) is

−(xi − fi)µi,T = P− ci − xi c′i ∀ i ∈ N, (22)

and as I show below, this condition can be iterated on to analyze ΓT (f) for all T > 0

with quadratic costs. The key implication of assuming quadratic costs is that the

profits continue to be quadratic (as in the linear case), thanks to which the property

∂µi,T/∂xi = ∂µi,T/∂x j = 0 continues to hold (as in the linear case) if the induction

is based on Condition (22).2 This is established next. Despite these similarities to

the linear case, I will then show that even quadratic costs imply that prices fail to

converge to Bertrand prices as T approaches ∞.

Lemma 4.1. Assume P′′ = c′′ = 0. If the equilibrium quantities (xi,x j) satisfy Eq.

(22) in ΓT (f), T ≥ 0, with ∂µi,T/∂xi = ∂µi,T/∂x j = 0 for all i, j ∈ N such that i 6= j,

then they satisfy Eq. (22) in ΓT+1(f′) with

µi,T+1 =

(

µ j,T −2c′j

)

P′

P′+µ j,T −2c′j
(23)

and ∂µi,T+1/∂xi = ∂µi,T+1/∂x j = 0 for all i, j ∈ N such that i 6= j.

Proof. Define µi = µi,T for all i. Totally differentiating the induction assumption Eq.

(22) with respect to (xi,x j, fi) yields (using P′′ = c′′ = 0 and ∂µi/∂xi = ∂µi/∂x j = 0)

dxi

(

P′+µi −2c′i
)

+dx j P′−µi d fi = 0. (24)

Totally differentiating the corresponding condition on j 6= i with respect to (xi,x j, fi)

2A joint analysis of non-linear demands and non-linear costs is intractable precisely because

∂µi,T/∂xi 6= 0 would follow, due to which an iteration on a condition such as (22) with c′i 6= 0 appears

to be impossible for general T . For this reason, previous analyses of non-linear costs and demands,

such as Allaz (1987) and Bushnell (2007), focus on two-round games.
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yields

dx j

(

P′+µ j −2c′j
)

+dxi P′ = 0. (25)

Solving these conditions for dxi/d fi and dx j/d fi yields

dxi

d fi
=

µi

(

P′+µ j −2c′j

)

−2c′i
(

P′+µ j

)

−2c′j (P
′+µi)+µ j P′+µi P′+µi µ j +4c′i c′j

(26)

dx j

d fi
=−

µi P′

−2c′i
(

P′+µ j

)

−2c′j (P
′+µi)+µ j P′+µi P′+µi µ j +4c′i c′j

. (27)

Conditional on f′, the anticipated profits in ΓT+1(f′) are ΠT+1
i = (xi − f ′i )P− xi ci,

and the respective first-order conditions for an equilibrium in ( fi, f j) in T +1 are

dΠT+1
i

d fi
=
(

xi − f ′i
)

(

d x j

d fi
P′+

d xi

d fi
P′

)

+
d xi

d fi
P− c′i xi

(

d xi

d fi

)

− ci

(

d xi

d fi

)

= 0

for all i. Substituting dxi

d fi
and

dx j

d fi
by Eqs. (26) and (27), rearranging terms and focus-

ing on the numerator, we obtain

2c′j
(

f ′i P′− xi P′−P+ ci

)

− c′i xi

(

P′+µ j

)

+PP′

−µ j f ′i P′+µ j xi P′− ci P′+µ j P+2c′i c′j xi − ci µ j = 0 (28)

and thus −
(

µ j −2c′j

)

(xi − f ′i )P′ = (P− c′i xi − ci)
(

P′+µ j −2c′j

)

.

Having established that an induction based on Eq. (22) is possible, let us look at

the implications. Substituting inverse demand P = 1−a∗(x1+x2) and average costs

ci = b1 +b2 xi into Eq. (23), it follows that µi is updated as

µi,T+1 =−
a
(

µ j,T −2b2

)

µ j,T −2b2 −a
. (29)

In relation to the linear case, which obtains for b2 = 0, this shows again that non-

linearity (now concavity of costs) mitigates the competition enhancing effect of for-

ward trades. As in the case of non-linear demands, non-linearity of costs decelerates

updating of µi, as ∂µi,T+1/∂b2 < 0, and it also prevents price from equating with av-

erage costs in the limit. Figure 2 illustrates the deceleration effect, and the following

13



Figure 2: Comparison of linear and quadratic costs (with P = 1− x1 − x2)

(a) Constant average/marginal costs ci = 1/10

xi

P,x j

1−2xi = P

ci

xAV
i = xB

i

T = 0

T = 1

T = 2

T = 4

T = 12

T = 48

T = 256

x∗i (x j)
x∗j(xi)

(b) Linear average costs ci = (1+ xi)/10

xi

P,x j

1−2xi = P

ci

MCi

xB
ixAV

i

T = 0

T = 1
T = 2T = 4T = 8T = 24

T = 96

Note: As in Figure 1, the equilibrium prices and “best responses” Eq. (20) of ΓT are plotted for various

T . MCi are i’s marginal costs, xAV
i are the limiting Allaz-Vila quantities, and xB

i indicate the Bertrand

quantities (linear case) and the range of Bertrand quantities (non-linear case).

result derives the relation of price and marginal costs in the limit. It shows that the

price is above marginal costs, and since marginal costs are above average costs if the

latter are increasing, the price is also above average costs. The relation to Cournot

and Bertrand equilibria is discussed below.

Proposition 4.2. Assume the inverse demand P = 1−a∗ (x1+x2) and average costs

ci = b1 +b2 xi for all i ∈ N, with a > 0, b1 ∈ [0,1) and b2 > 0. Limiting equilibrium

price and i’s marginal costs MCi at the equilibrium quantity in ΓT , as T approaches

∞, are

P =

√

b2 (b2 +2a)+b2 +2ab1
√

b2 (b2 +2a)+b2 +2a
>

b1

√

b2 (b2 +2a)+(2−b1)b2 +2ab1
√

b2 (b2 +2a)+b2 +2a
= MCi.

(30)

Proof. The first-order condition in Γ0(f) is Eq. (3) and can thus be represented

as Eq. (22) with µi,0 = P′ for all i. Lemma 4.1 implies, by induction, that the

equilibrium conditions in any ΓT , T ≥ 0, satisfy Eq. (22) for some µi,T = λi,T P′

14



where ∂λi,T/∂xi = ∂λi,T/∂x j = 0 for all i. By Eqs. (23) and (29), the sequences

(µi,T ) = (µ j,T ) are equal and have two possible fixed points: b2 −
√

b2
2 +2ab2 and

b2+
√

b2
2 +2ab2. The sequences converge to the former of these fixed points, which

I will denote as µ∗ = b2 −
√

b2
2 +2ab2. For, µi,T+1 is monotonically increasing in

µ j,T ,

dµi,T+1

dµ j,T
=

a2

(

µ j,T −2b2 −a
)2

> 0, (31)

which implies that for all T ≥ 0,

µi,T < µ∗ ∧µi,T < µi,T+1 ⇒ µi,T+1 < µ∗. (32)

Since µi,0 = −a < µ∗ and µi,0 < µi,1 hold, convergence toward µ∗ follows from Eq.

(32) by induction. Since µ∗ < 0 and −xi µ∗ = P−ci−xi c′i in the limiting equilibrium,

P > ci follows. Solving the limiting condition for xi yields

x∗i = (1−b1)/
(

√

b2
2 +2ab2 +b2 +2a

)

(33)

and limiting equilibrium price and marginal costs MCi = b1 + 2b2 xi as claimed in

Eq. (30). Their relation follows from b1,b2,a > 0, which implies

(1−b1)
√

b2 (b2 +2a)> (1−b1)b2.

Finally, I verify the sufficient conditions again. Using Fi = P− ci − xi c′i + xi ·

µi,T and µi,T = λi,T P′ (which implies λi,T ), the determinant of the Jacobian at the

equilibrium of ΓT , T ≥ 0, is

∣

∣

∣

∣

∣

∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2

∣

∣

∣

∣

∣

= a2
(

λi,T λ j,T +λ j,T +λi,T

)

+2ab2

(

λ j,T +λi,T +2
)

+4b2
2 6= 0,

since a,b2,λi,λ j > 0. In addition to continuity, this establishes admissibility of the

implicit function theorem. Similarly, the second-order condition for profit maximiza-
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tion is satisfied, as d2ΠT+1
i /d f 2

i is (in the equilibrium for any T ≥ 0)

−
2a2 λ2

i,T

(

a
(

λ j,T +1
)

+2b2

) (

ab2

(

λ j,T +3
)

+a2 λ j,T +2b2
2

)

(

a2
(

λi,T λ j,T +λ j,T +λi,T

)

+2ab2

(

λ j,T +λi,T +2
)

+4b2
2

)2

which is negative for all a,b2,λi,λ j > 0.

Finally, again, I relate the limiting Allaz-Vila outcome to Bertrand and Cournot

outcomes. The Cournot case is obvious, as the equilibrium price in ΓT decreases

monotonically as T increases. Since T = 0 represents Cournot competition, this

shows that the Allaz-Vila prices (T > 0) are strictly below the Cournot prices for all

T , which thus also holds in the limit. In turn, there are multiple Bertrand equilibria if

average costs are non-linear (and increasing). A sufficient condition for price P being

a Bertrand equilibrium price is that it is not greater than both firms’ marginal costs at

their respective quantities and not less than their respective average costs. It is easy

to see that this condition is also necessary if the firms can make “offers while stocks

lasts”, i.e. if they can ration customers after undercutting their opponents.3 Since

the Allaz-Vila prices are monotonically decreasing in T and strictly above marginal

costs even in the limit, as shown in Proposition 4.2, this shows that they are above all

“rationing–proof” Bertrand prices. Therefore, I conclude as follows.

Corollary 4.3. Under the conditions of Proposition 4.2, it also holds true that the

equilibrium price of ΓT is strictly between Cournot and Bertrand prices, for all finite

T > 0 and in the limiting case as T approaches ∞.

5 Conclusion

In this paper, I derived the limiting outcomes of Allaz-Vila competition if demand or

costs are non-linear. I considered quadratic costs and inverse demands of the form

P =
(

1−a ∑i xi

)b
, which contains linear demand and several other empirically rele-

vant functional forms as special cases. In relation to the standard linear case, either

form of non-linearity implies that the equilibrium price converges above marginal

3The possibility of rationing after undercutting opponents is realistic and standard practice, but

even assuming rationing is impossible, the limiting Allaz-Vila price is above the highest Bertrand

price for all b2 ≤ 2a/3 (i.e. if the curvature is not extremely strong).
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costs when the number of forward trading periods approaches infinity. Solving for

the limiting outcomes of Allaz-Vila competition under non-linearity was possible

through transforming the induction on the equilibrium prices into an induction on

“conduct parameters” relating to conjectural derivatives.

From a more general perspective, the results show that futures markets do not

restore social efficiency in Cournot oligopolies if factors such as repeated interaction,

storage, and product heterogeneity, which are known to be obstructive in general, are

not at play. The convergence of the limiting Allaz-Vila outcome to the Bertrand

outcome is specific to the assumption of linearity, while Allaz-Vila competition in

general seems to be a distinct form of competition.
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