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Anglers’ fishing problem

Anna Karpowicz and Krzysztof Szajowski

Abstract The considered model will be formulated as related to ”the fishing prob-

lem” even if the other applications of it are much more obvious. The angler goes

fishing. He uses various techniques and he has at most two fishing rods. He buys a

fishing ticket for a fixed time. The fishes are caught with the use of different methods

according to the renewal processes. The fishes’ value and the inter arrival times are

given by the sequences of independent, identically distributed (i.i.d.) random vari-

ables with the known distribution functions. It forms the marked renewal–reward

process. The angler’s measure of satisfaction is given by the difference between the

utility function, depending on the value of the fishes caught, and the cost function

connected with the time of fishing. In this way, the angler’s relative opinion about the

methods of fishing is modelled. The angler’s aim is to have as much satisfaction as

possible and additionally he has to leave the lake before a fixed moment. Therefore

his goal is to find two optimal stopping times in order to maximize his satisfaction.

At the first moment, he changes the technique of fishing e.g. by excluding one rod

and intensifying on the rest. Next, he decides when he should stop the expedition.

These stopping times have to be shorter than the fixed time of fishing. The dynamic

programming methods have been used to find these two optimal stopping times and

to specify the expected satisfaction of the angler at these times.
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1 Introduction

Before we start the analysis of the double optimal stopping problem (cf. idea of

multiple stopping for stochastic sequences in Haggstrom [8], Nikolaev [16]) for

the marked renewal process related to the angler behavior, let us present the so

called ”fishing problem”. One of the first authors who considered the basic version

of this problem was Starr [19] and further generalizations were done by Starr and

Woodroofe [21], Starr, Wardrop and Woodroofe [20], Kramer, Starr et al. [14]. The

detailed review of the papers related to the ”fishing problem” was presented by Fer-

guson [7]. The simple formulation of the fishing problem, where the angler changes

the fishing place or technique before leaving the fishing place, has been done by

Karpowicz [12]. We extend the problem to a more advanced model by taking into

account the various techniques of fishing used the same time (the parallel renewal–

reward processes or the multivariate renewal–reward process). It is motivated by the

natural, more precise models of the known, real applications of the fishing problem.

The typical process of software testing consists of checking subroutines. At the be-

ginning many kinds of bugs are being searched. The consecutive stopping times are

moments when the expert stops general testing of modules and starts checking the

most important, dangerous type of errors. Similarly, in proof reading, it is natural

to look for typographic and grammar errors at the same time. Next, we are looking

for language mistakes.

As various works are done by different groups of experts, it is natural that we

would compete with each other. If in the first period work is meant for one group

and the second period needs other experts, then they can be players of a game be-

tween them. In this case the proposed solution is to find the Nash equilibrium where

strategies of players are the stopping times.

The applied techniques of modelling and finding the optimal solution are similar

to those used in the formulation and solution of the optimal stopping problem for the

risk process. Both models are based on the methodology explicated by Boshuizen

and Gouweleeuw [1]. The background mathematics for further reading are mono-

graphs by Brémaud [3], Davis [4] and Shiryaev [18]. The optimal stopping problems

for the risk process are subject of consideration in papers by Jensen [10], Ferenstein

and Sierociński [6], Muciek [15]. A similar problem for the risk process having dis-

ruption (i.e. when the probability structure of the considered process is changed at

one moment θ ) has been analyzed by Ferenstein and Pasternak–Winiarski [5]. The

model of the last paper brings to mind the change of fishing methods considered

here, however it should be made by a decision maker, not the type of the environ-

ment.

The following two sections usher details of the model. It is proper to emphasize

that the slight modification of the background assumption by adopting multivariate

tools (two rods) and the possible control of their numbers in use extort a different

structure of the base model (the underlining process, sets of strategies – admissible

filtrations and stopping times). This modified structure allows the introduction of

a new kind of knowledge selection which consequently leads to a game model of

the anglers’ expedition problem in the section 1.2 and 2.2. After a quite general
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formulation a version of the problem for a detailed solution will be chosen. However,

the solution is presented as the scalable procedure dependent on parameters which

depends on various circumstances. It is not difficult to adopt a solution to wide range

of natural cases.

1.1 Single Angler’s expedition

The angler goes fishing. He buys a fishing ticket for a fixed time t0 which gives him

the right to use at most two rods. The total cost of fishing depends on real time of

each equipment usage and the number of rods used simultaneously. He starts fishing

with two rods up to the moment s. The effect on each rod can be modelled by the

renewal processes {Ni(t), t ≥ 0}, where Ni(t) is the number of fishes caught on the

rod i, i ∈A := {1,2} during the time t. Let us combine them together to the marked

renewal process. The usage of the i-th rod by the time t generates cost ci : [0, t0]→
ℜ (when the rod is used simultaneously with other rods it will be denoted by the

index dependent on the set of rods, e.g. a, cai ) and the reward represented by i.i.d.

random variables X
{i}
1 ,X

{i}
2 , . . . (the value of the fishes caught on the i-th rod) with

cumulative distribution function Hi
1. The streams of two kinds of fishes are mutually

independent and they are independent of the sequence of random moments when the

fishes have been caught. The 2-vector process
−→
N (t) = (N1(t),N2(t)), t ≥ 0, can be

represented also by a sequence of random variables Tn taking values in [0,∞] such

that
T0 = 0,

Tn < ∞ ⇒ Tn < Tn+1,
(1)

for n ∈ N, and a sequence of A-valued random variables zn for n ∈ N∪{0} (see

Ch. II Brémaud [3], Jacobsen [9]). The random variable Tn denotes the moment of

catching the n-th fish (T0 = 0) of any kind and the random variable zn indicates to

which kind the n-th fish belongs. The processes Ni(t) can be defined by the sequence

{(Tn,zn)}
∞
n=0 as:

Ni(t) =
∞

∑
n=1

I{Tn≤t}I{zn=i}. (2)

Both the 2-variate process
−→
N (t) and the double sequence {(Tn,zn)}

∞
n=0 are called

2-variate renewal process. The optimal stopping problems for the compound risk

process based on 2-variate renewal process was considered by Szajowski [22].

Let us define, for i ∈ A and k ∈ N, the sequence

n
{i}
0 = 0,

n
{i}
k+1 = inf{n > n

{i}
k : zn = i}

(3)

1 The following convention is used in all the paper: −→x = (x1,x2, . . . ,xs) for the ordered collection

of the elements {xi}
s
i=1
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and put T
{i}

k = T
n
{i}
k

. Let us define random variables S
{i}
n = T

{i}
n −T

{i}
n−1 assuming that

they are i.i.d. with continuous, cumulative distribution function Fi(t) = P(S
{i}
n ≤ t)

and the conditional distribution function Fs
i (t) = P(S

{i}
n ≤ t|S

{i}
n ≥ s). In the sec-

tion 2.1 the alternative representation of the 2-variate renewal process will be pro-

posed. There is also mild extension of the model in which the stream of events after

some moment changes to another stream of events.

Remark 1. In various procedures it is needed to localize the events in a group of the

renewal processes. Let C be the set of indices related to such a group. The sequence

{nCk }
∞
k=0 such that nC0 = 0, nCk+1 := inf{n > nCk : zn ∈ C} has an obvious meaning.

Analogously, nC(t) := inf{n :Tn > t,zn ∈ C}.

Let i, j ∈ A. The angler’s satisfaction measure (the net reward) at the period

a from the rod i is the difference between the utility function gai : [0,∞)2 ×A×
ℜ+ → [0,Ga

i ] which can be interpreted as the reward from the i-th rod when the

last success was on rod j and, additionally, it is dependent on the value of the fishes

caught, the moment of results’ evaluation, and the cost function cai : [0, t0]→ [0,Ca
i ]

reflecting the cost of duration of the angler’s expedition. We assume that gai and cai
are continuous and bounded, additionally cai are differentiable. Each fishing method

evaluation is based on different utility functions and cost functions. In this way, the

angler’s relative opinion about them is modelled.

The angler can change his method of fishing at the moment s and decide to use

only one rod. It could be one of the rods used up to the moment s or the other one.

Even though the rod used after s is the one chosen from the ones used before s its

effectiveness could be different before and after s. After moment s the modelling

process is the renewal–reward one with the stream of i.i.d. random variables X
{3}
n at

the moments T
{3}

n (i.e. appearing according to the renewal process N3(t)). Following

these arguments, the mathematical model of catching fishes, and their value after s,

could (and in practice should) be different from those for the rods used before s. The

reason for reduction of the number of rods could be their better effectiveness. The

value of the fishes which have been caught up to time t, if the change of the fishing

technology took place at the time s, is given by

Ms
t = ∑

i∈A

Ni(s∧t)

∑
n=1

X
{i}
n +

N3((t−s)+)

∑
n=1

X
{3}
n = Ms∧t +

N3((t−s)+)

∑
n=1

X
{3}
n ,

where M
{i}
t = ∑

Ni(t)
n=1 X

{i}
n , and Mt = ∑

2
i=1 M

{i}
t We denote

−→
M t = (M

{1}
t ,M

{2}
t ). Let

Z(s, t)denote the angler’s pay-off for stopping at time t (the end of the expedition) if

the change of the fishing method took place at time s. The natural filtration related

to the double indexed process Z(s, t) is F s
t = σ{0 ≤ u ≤ s ≤ v ≤ t : Z(u,v)}.If the

effect of extending the expedition after s is described by gbj : ℜ+2
×A× [0, t0]×ℜ×

[0, t0]→ [0,Gb
j ], j ∈B, minus the additional cost of time cbj (·), where cbj : [0, t0]→

[0,Cb
j ] (when card(B) = 1 then index j will be abandoned, also cb = ∑ j∈B cbj will

be used, which will be adequate). The payoff can be expressed as:
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Z(s, t) =





ga(
−→
M t ,zN(t), t)− ca(t) if t < s ≤ t0,

ga(
−→
M s,zN(s),s)− ca(s)

+gb(
−→
M s,zN(s),s,M

s
t , t)− cb(t − s) if s ≤ t ≤ t0,

−C if t0 < t.

(4)

where the function ca(t), ga(−→m , i, t) and the constant C can be taken as follows:

ca(t) = ∑
2
i=1 cai (t), ga(

−→
M s, j, t) = ∑

2
i=1 gai (

−→
M t , j, t), C =Ca

1 +Ca
2 +Cb. With the no-

tation wb(−→m , i,s, m̃, t) = wa(−→m , i,s)+gb(−→m , i,s, m̃, t)− cb(t − s) and wa(−→m , i, t) =
ga(−→m , i, t)− ca(t), formula (4) is reduced to:

Z(s, t) = Z
{zN(t)}(s, t)I{t<s≤t0}+Z

{zN(s)}(s, t)I{s≤t},

where

Z{i}(s, t) = I{t<s≤t0}wa(
−→
M t , i, t)+ I{s≤t≤t0}wb(

−→
M s, i,s,M

s
t , t)− I{t0<t}C.

1.2 The competitive fishing

When the methods of fishing are operating by separated anglers then the stopping

random field can be built based on the structure of the marked renewal–reward pro-

cess as a model of the competitive expedition results. One possible definition of

pay-off is based on the assumption that each player has his own account related to

the exploration of the fishery. The states of the accounts depend on who forces the

first stop for changing technique, under which circumstances and what techniques

they choose. The first stopping moment, the minimum of stopping moments chosen

by the players, is after the moment of the event (catching fish) Tn by the rod zn and

the reward functions depend on the type of fishing which gives recent fish (i.e. j,

where j = zn). The player’s pay-off wa
i (
−→m , j, t) = gai (

−→m , j, t)− cai (t) . The part of

the pay-off which depends on the second chosen moment, which stops the expedi-

tion, is different for the player who forces the change of fishing methods (the leader)

by himself and the other for the opponent. The leader is the responsible angler for

determining the expedition deadline.

Lets assume for a while that the i-th player, i = 1,2, will take the rod of the

opponent and gives his rod to him. It is not a crucial assumption anyway and the

method of fishing after the change can be different from both available before the

considered moment. The method of treatment of the case without this assumption

will be explained later (see page 9), when the behavior of the player in the second

part of the expedition will be formulated. Define the function

w̃b
i (
−→m , j,s,k, m̃, t) = w̃a

i (
−→m , j,s)+ g̃bi (

−→m , j,s,k, m̃, t)− cb(t − s)

for j ∈A, k ∈B, where j is the rod by which the fish had been caught just before the

moment of the first stop and k is the technique used by i-th player after the change
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(the denotation −k is used for a complimentary rod or player who has decided,

which is appropriate). It describes the case when the player deciding to change the

method chooses the perspective technique of fishing as the first one. Presumably he

will explore the best methods with improvements and the second angler will use the

rod which is not used by the leader. The pay-off of the players, when i-th is the one

who forces the first stop, has the following form:

Zi( j,s, t) = I{t≤s≤t0}g̃ai (
−→
M t , j, t)+ I{s<t≤t0}w̃b

i (
−→
M s, i,s,−i,Ms

t , t)− I{t0<t}C (5)

Z−i( j,s, t) = I{t≤s≤t0}g̃a−i(
−→
M t , j, t)+ I{s<t≤t0}w̃b

−i(
−→
M s, i,s, i,M

s
t , t)− I{t0<t}C.(6)

In the above pay–offs it is assumed that the final stop can be declared at any moment.

The change of techniques declaration each player makes just after an event at his rod

(the catching fish at his rod) as long as on the opponent’s rod there is no event. The

details of the strategy sets and the solution concept are formulated in the further

parts of the paper.

The extension considered here is motivated by the natural, more precise mod-

els of the known real applications of the fishing problem. The typical process of

software testing consists of checking subroutines. Various types of bugs can be dis-

covered. Each problem with subroutines generates the cost of a bug removal and

increases the value of the software. It depends on the types of the bug found. The

preliminary testing requires various types of experts. The stable version of subrou-

tines can be kept by less educated computer scientists. The consecutive stopping

times are moments when the expert of the defined class stops testing one module

and the another tester starts checking. Similarly as in the proof reading.

2 The optimization problem and a two person game

2.1 Filtrations and Markov moments

Let the sequences of pairs {(Tn,zn)}
∞
n=0 be 2-variate renewal process (A-marked

renewal process) defined on (Ω ,F ,P). According to the denotation of the previ-

ous section there are three renewal processes {T
{i}

n }∞
n=0, i = 1,2,3, and denoted by

Tn = T
{zn}

Nzn (Tn)
. There are also three renewal–rewarded processes {(T

{i}
n ,X

{i}
n )}∞

n=0,

i = 1,2,3 . By convention let us denote Xn = X
{zn}
Nzn (Tn)

. The following σ -field gener-

ated by the history of the A-marked renewal processes are defined

Ft = F
A
t = σ(X0,T0,z0 . . . ,XN(t),TN(t),zN(t)), (7)

for t ≥ 0. This σ -field can be defined as

F
A
t = σ{(

−→
N (s),XN(s),zN(s)),0 ≤ s ≤ t, i ∈ A}.
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Definition 1. Let T be a set of stopping times with respect to σ -fields {Ft}, t ≥ 0,

defined by (7). The restricted sets of stopping times are

Tn,K = {τ ∈ T : τ ≥ 0, Tn ≤ τ ≤ TK} (8)

for n ∈ N, n < K are subsets of T . The elements of Tn,K are denoted τn,K .

The stopping times τ ∈T have nice representation which will be helpful in the solu-

tion of the optimal stopping problems for the renewal processes (see Brémaud [3]).

The crucial role in our subsequent considerations plays such a representation. The

following lemma is for the unrestricted stopping times.

Lemma 1. If τ ∈ T then there exist Rn ∈ Mes(Fn) such that the condition τ ∧
Tn+1 = (Tn +Rn)∧Tn+1 on {τ ≥ Tn} a.s. is fulfilled.

Various restrictions in the class of admissible stopping times will change this repre-

sentation. Some examples of subclasses of T are formulated here (see Lemma 1).

Only a few of them are used in the optimization problems investigated in the paper

(see page 9, Corollary 1).

Let Fs,t = σ(FA
s ,X

{3}
0 ,T

{3}
0 , . . . ,X

{3}
N3((t−s))+

,T
{3}

N3((t−s)+)
) be the σ -field gener-

ated by all events up to time t if the switch at time s from 2-variate renewal

process to another renewal process took place. For simplicity of notation we set2

F
{i}
n := F

T
{i}
n

, Fn := FTn , F s
n := F

s,T
{3}
n

. Let Mes(Fn) (Mes(F
{i}
n )) denote the

set of non-negative and Fn (F
{i}
n )-measurable random variables. From now on,

T and T s stands for the sets of stopping times with respect to σ -fields Fs and

{Fs,t ,0 ≤ s ≤ t}, respectively. Furthermore, we can define for n ∈ N and n ≤ K the

sets

1. T
{i}

n,K = {τ ∈ T : τ ≥ 0, T
{i}

n ≤ τ ≤ TK};

2. T
{i}

n = {τ ∈ T : τ ≥ T
{i}

n };

3. T̄
{i,A{−i}}

n,K = {τ ∈ T : τ ≥ 0, T
{i}

n ≤ τ ≤ TK , ∀kτ /∈ [TA−i

k ,TA−i

k+1 ∨T
{i}

n{i}(TA−i

k
)
]}

where A{−i} := A\{i}, TA−i

k := min{ j∈A{−i}}{T
{ j}

n{ j}(T
{i}
k

)
};

4. T̄
{i}

n = {τ ∈ T : τ ≥ T
{i}

n ,∀kτ /∈ [TA−i

k ,TA−i

k+1 ∨T
{i}

n{i}(TA−i

k
)
]};

5. T s
n,K = {τ ∈ T s : 0 ≤ s ≤ τ, T

{3}
n ≤ τ ≤ TK}.

The stopping times τ ∈T {i} and τ ∈ T̄ {i} can also be represented in the way shown

in Lemma 1.

Lemma 2. Let the index i ∈ A be chosen and fixed.

2 For the optimization problem there are two epochs: before the first stop, where there are some

pay-offs, the model of stream of events, and after the first stop, when there are other pay-offs and

different streams of events. In section 3 this will be emphasized, by adopting adequate denotations.
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1. For every τ ∈ T {i} and n ∈N there exist R
{i}
n ∈ Mes(F

{i}
n ) such that τ ∧T

{i}
n+1 =

(T
{i}

n +R
{i}
n )∧T

{i}
n+1 on {τ{i} ≥ T

{i}
n } a.s. is fulfilled.

2. If τ ∈ T̄ {i} and n ∈ N there exist R
{i}
n ∈ Mes(F

{i}
n ) such that the condition τ ∧

T
{i}

n+1 = (T
{i}

n +R
{i}
n )∧T

{i}
n+1 on {τ ≥ T

{i}
n } a.s. is fulfilled.

Obviously the angler wants to have as much satisfaction as possible and he has

to leave the lake before the fixed moment. Therefore, his goal is to find two optimal

stopping times τa
∗

and τb
∗

so that the expected gain is maximized

EZ(τa
∗
,τb

∗
) = sup

τa∈T

sup
τb∈T τa

EZ(τa,τb), (9)

where τa
∗

corresponds to the moment, when he eventually should change the two

rods to the more effective one and τb
∗
, when he should stop fishing. These stop-

ping moments should appear before the fixed time of fishing t0. The process Z(s, t)
is piecewise-deterministic and belongs to the class of semi-Markov processes. The

optimal stopping of similar semi-Markov processes was studied by Boshuizen and

Gouweleeuw [1] and the multivariate point process by Boshuizen [2]. Here the

structure of multivariate processes is discovered and their importance for the model

is shown. We use the dynamic programming methods to find these two optimal

stopping times and to specify the expected satisfaction of the angler. The way of the

solution is similar to the methods used by Karpowicz and Szajowski [13], Karpow-

icz [12] and Szajowski [22]. Let us first observe that by the properties of conditional

expectation we have

EZ(τa
∗
,τb

∗
) = sup

τa∈T

E{E
[
Z(τa,τb

∗
)|Fτa

]
}= sup

τa∈T

EJ(τa),

where

J(s) = E
[
Z(s,τb

∗
)|Fs

]
= esssup

τb∈T s

E
[
Z(s,τb)|Fs

]
. (10)

Therefore, in order to find τa
∗

and τb
∗
, we have to calculate J(s) first. The process

J(s) corresponds to the value of the revenue function in one stopping problem if the

observation starts at the moment s.

2.2 Anglers’ games

Based on the consideration of the section 1.2 a version of competitive fishing is

formulated here. There are two anglers, each using one method of fishing at the

beginning of an expedition and an additional fishing period after a certain moment

by another method up to the moment chosen by a certain rule. The random field

which is the model of payoffs in such a case is given by (5) and (6). The final

segment starts at the moment when one of the anglers wants it. Let τi ∈ T̄ {i}, i =A,

be the strategies of the players to stop individual fishing period and switch to the
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time segment which is stopped at moment σ determined by one angler (let us call

them a leader). The payoffs of the players are

ψi(τ1,τ2) = Zi(zN(τ1∧τ2),τ1 ∧ τ2,σ
τ1∧τ2)I{τ1 6=τ2} (11)

+Zi(zN(τ1∧τ2)∧ zN(τ1∧τ2),τ1 ∧ τ2,σ
τ1∧τ2)I{τ1=τ2}.

Assignment of the leader in the case τ1 = τ2 is arbitrary but defined. The aim is to

find a pair (τ⋆1 ,τ
⋆
2 ) of stopping times such that for i ∈ {1,2} we have

Eψi(τ
⋆
i ,τ

⋆
−i)≥ Eψi(τi,τ

⋆
−i). (12)

The optimization problem of the angler and the game between two anglers will

involve the construction of the optimal second stopping moment.

3 Construction of the optimal second stopping time

In this section, we will find the solution of one stopping problem defined by (10).

We will first solve the problem for the fixed number of fishes caught, next we will

consider the case with the infinite stream of fishes caught. In this section we fix

s - the moment when the change took place and m = Ms - the mass of the fishes

at the time s. Taking into account various models of fishing after the first stop it

is needed to admit various models of stream of events. Assume that the moments

of successive fishes catching after the first stop are T
{3}

n and the times between

the events are i.i.d. with continuous, cumulative distribution function F(t) with the

density function f(t)and the fishes value represented by i.i.d. random variables with

distribution function H(t) (for conveniences this part of expedition is modelled by

the renewal process denoted (T
{3}

n ,X
{3}
n )).

3.1 Fixed number of fishes caught

In this subsection we are looking for the optimal stopping time τb
∗

0,K := τbK
∗

E
[
Z(s,τbK

∗
)|Fs

]
= esssup

τbK∈T s
0,K

E
[
Z(s,τbK)|Fs

]
, (13)

where s ≥ 0 is a fixed time when the position was changed and K is the maximum

number of fishes which can be caught. Let us define

Γ s
n,K = esssup

τbn,K∈T s
n,K

E
[
Z(s,τbn,K)|F

s
n

]
= E

[
Z(s,τb

∗

n,K)|F
s
n

]
, n = K, . . . ,1,0 (14)
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and observe that Γ s
K,K = Z(s,T

{3}
K ). In the subsequent considerations we will use the

representation of stopping time formulated in Lemma 1 and 2. The exact form of

the stopping strategies are given in the following corollary.

Corollary 1. Let i∈A. If τa ∈T {i}, τb ∈T s, then there exist Ra
n ∈ Mes(F

{i}
n ) and

Rb
n ∈ Mes(F s

n) respectively, such that for conditions τa∧T
{i}

n+1 = (T
{i}

n +Ra
n )∧T

{i}
n+1

on {τa ≥ T
{i}

n } a.s. and τb∧T
{3}

n+1 = (T
{3}

n +Ra
n )∧T

{3}
n+1 on {τa ≥ s∧T

{3}
n } a.s. are

valid.

Now we can derive the dynamic programming equations satisfied by Γ s
n,K . To

simplify the notation we can write Mt = Ms
t for t ≤ s, M̂

{1}
n = MT 1

n
, Ms

n = Ms

T
{3}
n

and

F̄i = 1−Fi. The payoff functions are simplified here to ĝa(m)= ga(m1,m2, i, t)I{m1+m2=m}(m1,m2),

ĝb(m) = gb(m1,m2, i,s, m̃, t)I{m̃−m1−m2=m}

Lemma 3. Let s ≥ 0 be the moment of changing fishery. For n = K −1,K −2, . . . ,0

Γ s
K,K = Z(s,T

{3}
K ),

Γ s
n,K = esssupRb

n∈Mes(F s
n)

ϑn,K(Ms,s,M
s
n,T

{3}
n ,Rb

n ) a.s.,
(15)

where

ϑn,K(m,s, m̃, t,r) = I{t≤t0}

{
F̄(r)[I{r≤t0−t}ŵb(m,s, m̃, t + r)−CI{r>t0−t}]

+ E

[
I
{S

{3}
n+1≤r}

Γ s
n+1,K |F

s
n

]}
−CI{t>t0}

and there exists Rb
n

⋆
∈ Mes(F s

n) such that

Γ s
n,K = ϑn,K(Ms,s,M

s
n,T

{3}
n ,Rb

n

⋆
) a.s., (16)

τb
∗

n,K =

{
τb

∗

n+1,K if Rb
n

∗
≥ S

{3}
n+1,

T
{3}

n +Rb
n

∗
if Rb

n

∗
< S

{3}
n+1,

(17)

τb
∗

K,K = T
{3}

K and ŵb(m,s, m̃, t) = ŵa(m,s)+ ĝb(m̃−m)−cb(t−s) where ŵa(m, t) =
ĝa(m)− ca(t).

Remark 2. Let {Rb∗

n }K
n=1, Rb∗

K = 0, be a sequence of F s
n–measurable random vari-

ables, n= 1,2, . . . ,K, and η⋆s
n,K =K∧ inf{i≥ n : Rb

i

⋆
< S

{3}
i+1}. Then Γ s

n,K =E
[
Z(s,τb

∗

n,K)|F
s
n

]

for n ≤ K −1, where τb
∗

n,K = Tη⋆s
n,K

+Rb⋆

η⋆s
n,K

.

PROOF OF REMARK. 2. It is a consequence of an optimal choice Rb
n

⋆
in (15).

�
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PROOF OF LEMMA. 3 First observe that the form of the Γ s
n,K for the case T

{3}
n > t0

is obvious from (4) and (14). Let us assume (15) and (16) for n+1,n+2, . . . ,K. For

any τ ∈T s
n,K (i.e. τ ≥ T

{3}
n we have {τ < T

{3}
n+1}= {τ∧T

{3}
n+1 < T

{3}
n+1}= {T

{3}
n +Rb

n <

T
{3}

n+1}. It implies

{τ < T
{3}

n+1}= {S
{3}
n+1 > Rb

n}, {τ ≥ T
{3}

n+1}= {S
{3}
n+1 ≤ Rb

n}. (18)

Suppose that T
{3}

K−1 ≤ t0 and take any τbK−1,K ∈ T s
K−1,K . According to (18) and the

properties of conditional expectation

E [Z(s,τ)|F s
n ] = E

[
I
{S

{3}
n+1≤Rb

n }
E[Z(s,τ ∨T

{3}
n+1)|F

s
n+1]|Fn

]

+ E

[
I
{S

{3}
n+1>Rb

n }
Z(s,τ ∧T

{3}
n+1)|F

s
n

]

= I{Rb
n≤t0−Tn}

F̄(Rn)ŵ
b(Ms,s,M

s
n,T

{3}
n +Rb

n )

+ E

[
I
{S

{3}
n+1≤Rb

n }
E[Z(s,τ ∨T

{3}
n+1)|F

s
n+1|F

s
n

]
.

Let σ ∈ T b
n+1. For every τ ∈ T s

n we have

τ =

{
σ if Rb

n ≥ S
{3}
n+1,

T
{3}

n +Rb
n if Rb

n < S
{3}
n+1.

We have

E[Z(s,τ)|F s
n ] = E

[
I
{S

{3}
n+1≤Rb

n }
E[Z(s,σ)|F s

n+1]|Fn

]

+ I{Rb
n≤t0−Tn}

F̄(Rb
n )ŵ

b(Ms,s,M
s
n,T

{3}
n +Rb

n )

≤ sup
R∈Mes(F s

n)

{E

[
I
{S

{3}
n+1≤R}

Γ s
n+1,K |Fn

]

+ I{R≤t0−Tn}F̄(R)ŵb(Ms,s,M
s
n,T

{3}
n +R)}= E[Z(s,τ⋆n,K)|F

s
n ]

It follows supτ∈T s
n

E[Z(s,τ)|F s
n ]≤E[Z(s,τ⋆n,K)|F

s
n ]≤ supτ∈T b

n
E[Z(s,τ)|F s

n ] where

the last inequality is because τ⋆n,K ∈T s
n,K . We apply the induction hypothesis, which

completes the proof.

z

Lemma 4. Γ s
n,K = γs,Ms

K−n(M
s
n,T

{3}
n ) for n = K, . . . ,0, where the sequence of functions

γs,m
j is given recursively as follows:
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γs,m
0 (m̃, t) = I{t≤t0}ŵb(m,s, m̃, t)−CI{t>t0},

γs,m
j (m̃, t) = I{t≤t0} sup

r≥0

κb
γ

s,m
j−1

(m,s, m̃, t,r)−CI{t>t0}, (19)

where

κb
δ (m,s, m̃, t,r) = F̄(r)[I{r≤t0−t}ŵb(m,s, m̃, t + r)−CI{r>t0−t}]

+
∫ r

0
dF(z)

∫ ∞

0
δ (m̃+ x, t + z)dH(x).

PROOF OF LEMMA. 4. Since the case for t > t0 is obvious let us assume that

T
{3}

n ≤ t0 for n ∈ {0, . . . ,K−1}. Let us notice that according to Lemma 3 we obtain

Γ s
K,K = γs,Ms

0 (Ms
K ,T

{3}
K ), thus the proposition is satisfied for n = K. Let n = K − 1

then Lemma 3 and the induction hypothesis leads to

Γ s
K−1,K = esssup

Rb
K−1∈Mes(Fs,K−1)

{
F̄(Rb

K−1)[I{Rb
K−1≤t0−T

{3}
K−1}

ŵb(Ms,s,M
s
K−1,T

{3}
K−1 +Rb

K−1)

− CI
{Rb

K−1>t0−T
{3}
K−1}

]+E

[
I
{S

{3}
K ≤Rb

K−1}
γs,Ms

0 (Ms
K ,T

{3}
K )|Fs,K−1

]}
a.s.,

where Ms
K = Ms

K−1 + X
{3}
K , T

{3}
K = T

{3}
K−1 + S

{3}
K and the random variables X

{3}
K

and S
{3}
K are independent of Fs,K−1. Moreover Rb

K−1, Ms
K−1 and T

{3}
K−1 are Fs,K−1-

measurable. It follows

Γ s
K−1,K = esssup

Rb
K−1∈Mes(Fs,K−1)

{
F̄(Rb

K−1)[I{Rb
K−1≤t0−T

{3}
K−1}

ŵb(Ms,s,M
s
K−1,T

{3}
K−1 +Rb

K−1)

− CI
{Rb

K−1>t0−T
{3}
K−1}

]+
∫ Rb

K−1

0
dF(z)

∫ ∞

0
γs,Ms

0 (Ms
K−1 + x,T

{3}
K−1 + z)dH(x)

}

= γs,Ms

1 (Ms
K−1,T

{3}
K−1) a.s.

Let n∈{1, . . . ,K−1} and suppose that Γ s
n,K = γs,Ms

K−n(M
s
n,T

{3}
n ). Similarly like before,

we conclude by Lemma 3 and induction hypothesis that

Γ s
n−1,K = esssup

Rb
n−1∈Mes(F s

n−1)

{
F̄(Rb

n−1)[I{Rb
n−1≤t0−T

{3}
n−1}

ŵb(Ms,s,M
s
n−1,T

{3}
n−1 +Rb

n−1)

− CI
{Rb

n−1>t0−T
{3}
n−1}

]+
∫ Rb

n−1

0
dF(s)

∫ ∞

0
γs,Ms

K−n(M
s
n−1 + x,T

{3}
n−1 + s)dH(x)

}
a.s.

therefore Γ s
n−1,K = γs,Ms

K−(n−1)
(Ms

n−1,T
{3}

n−1).

z
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From now on we will use αi to denote the hazard rate of the distribution Fi (i.e.

αi = fi/F̄i) and to shorten notation we set ∆ •(a) = E
[
ĝ•(a+X{i})− ĝ•(a)

]
, where

• can be a or b.

Remark 3. The sequence of functions γs,m
j can be expressed as:

γs,m
0 (m̃, t) = I{t≤t0}ŵb(m,s, m̃, t)−CI{t>t0},

γs,m
j (m̃, t) = I{t≤t0}

{
ŵb(m,s, m̃, t)+ ybj (m̃−m, t − s, t0 − t)

}
−CI{t>t0}

and ybj (a,b,c) is given recursively as follows

yb0 (a,b,c) = 0

ybj (a,b,c) = max
0≤r≤c

φb
ybj−1

(a,b,c,r),

where φb
δ (a,b,c,r) =

∫ r
0 F̄(z){α(z)

[
∆b(a)+Eδ (a+X{3},b+ z,c− z)

]
− cb

′
(b +

z)}dz, and F is the c.d.f. of S{3} (α(t) is the hazard rate of the distribution of S{3}).

PROOF OF REMARK. 3 Clearly

∫ r

0
dF(s)

∫ ∞

0
γs,m

j−1(m̃+ x, t + s)dH(x) = E
[
I{S{3}≤r}γs,m

j−1(m̃+X{3}, t +S{3})
]
,

where X{3} has the c.d.f. H. Since F is continuous and κb
γ

s,m
j−1

(m,s, m̃, t,r) is bounded

and continuous for t ∈ R
+ \{t0}, the supremum in (19) can be changed into maxi-

mum. Let r > t0 − t then

κb
γ

s,m
j−1

(m,s, m̃, t,r) = E
[
I{S{3}≤t0−t}γs,m

j−1(m̃+X{3}, t +S{3})
]
−CF̄(t0 − t)

≤ E
[
I{S{3}≤t0−t}γs,m

j−1(m̃+X{3}, t +S{3})
]
+ F̄(t0 − t)ŵb(m,s, m̃, t0)

= κb
γ

s,m
j−1

(m,s, m̃, t, t0 − t).

The above calculations cause that γs,m
j (m̃, t) = I{t≤t0} max0≤r≤t0−t ϕ j(m,s, m̃, t,r)−

CI{t>t0}, where ϕ j(m,s, m̃, t,r)= F̄(r)ŵb(m,s, m̃, t+r)+E
[
I{S{3}≤r}γs,m

j−1(m̃+X{3}, t +S{3})
]
.

Obviously for S{3} ≤ r and r ≤ t0−t we have S{3} ≤ t0 therefore we can consider the

cases t ≤ t0 and t > t0 separately. Let t ≤ t0 then γs,m
0 (m̃, t) = ŵb(m,s, m̃, t) and the

hypothesis is true for j = 0. The task is now to calculate γs,m
j+1(m̃, t) given γs,m

j (·, ·).
The induction hypothesis implies that for t ≤ t0
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ϕ j+1(m,s, m̃, t,r) = F̄(r)ŵb(m,s, m̃, t + r)+E
[
I{S{3}≤r}γs,m

j (m̃+X{3}, t +S{3})
]

= ĝa(m)− ca(s)+ F̄(r)
[
ĝb(m̃−m)− cb(t − s+ r)

]

+
∫ r

0
f(z){Eĝb(m̃−m+X{3})− cb(t − s+ z)

+ Eybj (m̃−m+X{3}, t − s+ z, t0 − t − z)}dz.

It is clear that for any a and b

F̄(r)
[
ĝb(a)− cb(b+ r)

]
= ĝb(a)− cb(b)

−
∫ r

0
{f(z)

[
ĝb(a)− cb(b+ z)

]
+ F̄(z)cb

′
(b+ z)}dz,

therefore

ϕ j+1(m,s, m̃, t,r) = ŵb(m,s, m̃, t)+
∫ r

0
F̄(z){α(z)[∆b(m̃−m)

+ Eybj (m̃−m+X{3}, t − s+ z, t0 − t − z)]− cb
′
(t − s+ z)}dz,

which proves the theorem. The case for t > t0 is trivial.

�

Following the methods of Ferenstein and Sierociński [6], we find the second op-

timal stopping time. Let B=B([0,∞)× [0, t0]× [0, t0]) be the space of all bounded,

continuous functions with the norm ‖δ‖= supa,b,c |δ (a,b,c)|. It is easy to check

that B with the norm supremum is complete space. The operator Φb : B → B is

defined by

(Φbδ )(a,b,c) = max
0≤r≤c

φb
δ (a,b,c,r). (20)

Let us observe that ybj (a,b,c) = (Φbybj−1)(a,b,c). Remark 3 now implies that there

exists a function rbj
∗
(a,b,c) such that ybj (a,b,c) = φb

ybj−1

(a,b,c,rb
∗
j(a,b,c)) and this

gives

γs,m
j (m̃, t) = I{t≤t0}

{
ŵb(m,s, m̃, t)

+φb
ybj−1

(m̃−m, t − s, t0 − t,rb
∗

j (m̃−m, t − s, t0 − t))

}
−CI{t>t0}.

The consequence of the foregoing considerations is the theorem, which determines

the optimal stopping times τb
∗

n,K in the following manner:

Theorem 1. Let Rb
i

∗
= rb

∗

K−i(M
s
i −Ms,T

{3}
i − s, t0 −T

{3}
i ) for i = 0,1, . . . ,K more-

over ηs
n,K = K∧ inf{i ≥ n : Rb

i

∗
< S

{3}
i+1}, then the stopping time τb

∗

n,K = T
{3}

ηs
n,K

+Rb∗

ηs
n,K

is optimal in the class T s
n,K and Γ s

n,K = E
[
Z(s,τb

∗

n,K)|F
s
n

]
.
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3.2 Infinite number of fishes caught

The task is now to find the function J(s) and the stopping time τb
∗
, which is optimal

in the class T s. In order to get the solution of one stopping problem for infinite

number of fishes caught it is necessary to put the restriction F(t0)< 1.

Lemma 5. If F(t0)< 1 then the operator Φb : B→ B defined by (20) is a contrac-

tion.

PROOF OF LEMMA. 5. Let δi ∈B for i∈{1,2}. There exists ρi such that (Φbδi)(a,b,c)=
φb

δi
(a,b,c,ρi). We thus get

(Φbδ1)(a,b,c)− (Φbδ2)(a,b,c) = φb
δ1
(a,b,c,ρ1)−φb

δ2
(a,b,c,ρ2)

≤ φb
δ1
(a,b,c,ρ1)−φb

δ2
(a,b,c,ρ1)

=
∫ ρ1

0
dF(z)

∫ ∞

0
[δ1 −δ2](a+ x,b+ z,c− s)dH(x)

≤
∫ ρ1

0
dF(z)

∫ ∞

0
sup
a,b,c

|[δ1 −δ2](a,b,c)|dH(x)

≤ F(c)‖δ1 −δ2‖ ≤ F(t0)‖δ1 −δ2‖ ≤ C‖δ1 −δ2‖ ,

where 0 ≤ C < 1. Similarly, like as before, (Φbδ2)(a,b,c)− (Φbδ1)(a,b,c) ≤
C‖δ2 −δ1‖. Finally we conclude that

∥∥Φbδ1 −Φbδ2

∥∥ ≤ C‖δ1 −δ2‖ which com-

pletes the proof.

z

Applying Remark 3, Lemma 5 and the fixed point theorem we conclude

Remark 4. There exists yb ∈ B such that yb = Φbyb and limK→∞ ‖ybK − yb‖= 0.

According to the above remark, yb is the uniform limit of ybK , when K tends to

infinity, which implies that yb is measurable and γs,m = limK→∞ γs,m
K is given by

γs,m(m̃, t) = I{t≤t0}

[
ŵb(m,s, m̃, t)+ yb(m̃−m, t − s, t0 − t)

]
−CI{t>t0}. (21)

We can now calculate the optimal strategy and the expected gain after changing the

place.

Theorem 2. If F(t0)< 1 and has the density function f, then

(i) for n ∈ N the limit τb
⋆

n = limK→∞ τb
∗

n,K a.s. exists and τb
⋆

n ≤ t0 is an optimal

stopping rule in the set T s ∩{τ ≥ T
{3}

n },

(ii)E
[
Z(s,τb

⋆

n )|F s
n

]
= γs,m(Ms

n,T
{3}

n ) a.s.

PROOF. (i) Let us first prove the existence of τb
⋆

n . By the definition of Γ s
n,K+1 we

have
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Γ s
n,K+1 = esssup

τ∈T s
n,K+1

E [Z(s,τ)|F s
n ] = esssup

τ∈T s
n,K

E [Z(s,τ)|F s
n ]∨ esssup

τ∈T s
K,K+1

E [Z(s,τ)|F s
n ]

= E
[
Z(s,τb

∗

n,K)|F
s
n

]
∨E [Z(s,σ∗)|F s

n ]

thus we observe that τb
∗

n,K+1 is equal to τb
∗

n,K or σ∗, where τb
∗

n,K ∈ T s
n,K and σ∗ ∈

T s
K,K+1 respectively. It follows that τb

∗

n,K+1 ≥ τb
∗

n,K which implies that the sequence

τb
∗

n,K is nondecreasing with respect to K. Moreover Rb
i

∗
≤ t0 − T

{3}
i for all i ∈

{0, . . . ,K} thus τb
∗

n,K ≤ t0 and therefore τb
⋆

n ≤ t0 exists.

Let us now look at the process ξ s(t) = (t,Ms
t ,V (t)), where s is fixed and V (t) =

t −T
{3}

N3(t)
. ξ s(t) is Markov process with the state space [s, t0]× [m,∞)× [0,∞). In a

general case the infinitesimal operator for ξ s is given by

Aps,m(t, m̃,v) =
∂

∂ t
ps,m(t, m̃,v)+

∂

∂v
ps,m(t, m̃,v)

+ α(v)

{∫

R+
ps,m(t,x,0)dH(x)− ps,m(t, m̃,v)

}
,

where ps,m(t, m̃,v) : [0,∞)× [0,∞)× [0,∞)→R is continuous, bounded, measurable

with bounded left-hand derivatives with respect to t and v (see [1] and [17]). Let

us notice that for t ≥ s the process Z(s, t) can be expressed as Z(s, t) = ps,m(ξ s(t)),
where

ps,m(ξ s(t)) =

{
ĝa(Ms)− ca(s)+ ĝb(Ms

t −Ms)− cb(t − s) if s ≤ t ≤ t0,
−C if t0 < t.

It follows easily that in our case Aps,m(t, m̃,v) = 0 for t0 < t and

Aps,m(t, m̃,v) = α(v)[Eĝb(m̃+X{3}−m)− ĝb(m̃−m)]− cb
′
(t − s) (22)

for s ≤ t ≤ t0. The process ps,m(ξ s(t))− ps,m(ξ s(s))−
∫ t

s (Aps,m)(ξ s(z))dz is a mar-

tingale with respect to σ{ξ s(z),z ≤ t} which is the same as F s
t . This can be found

in [4]. Since τb
∗

n,K ≤ t0, applying the Dynkin’s formula we obtain

E
[

ps,m(ξ s(τb
∗

n,K))|F
s
n

]
− ps,m(ξ s(T

{3}
n )) = E

[∫ τb
∗

n,K

T
{3}
n

(Aps,m)(ξ s(z))dz|F s
n

]
a.s.

(23)

From (22) we conclude that

∫ τb
∗

n,K

T
{3}
n

(Aps,m)(ξ s(z))dz = [Eĝb(Ms
n +X{3}−m)− ĝb(Ms

n −m)]
∫ τb

∗
n,K

T
{3}
n

α(z−T
{3}

n )dz

−
∫ τb

∗
n,K

T
{3}
n

cb
′
(z− s)dz.
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Moreover let us check that
∣∣∣∣∣

∫ τb
∗

n,K

T
{3}
n

α(z−T
{3}

n )dz

∣∣∣∣∣≤
1

F̄(t0)

∫ τb
∗

n,K

T
{3}
n

f(z−T
{3}

n )dz ≤
1

F̄(t0)
< ∞,

∣∣∣∣∣

∫ τb
∗

n,K

T
{3}
n

cb
′
(z− s)dz

∣∣∣∣∣=
∣∣∣cb(τb∗n,K − s)− cb(T

{3}
n − s)

∣∣∣< ∞,

∣∣∣Eĝb(Ms
n +X{3}−m)− ĝb(Ms

n −m)
∣∣∣< ∞,

where the two last inequalities result from the fact that the functions ĝb and cb are

bounded. On account of the above observation we can use the dominated conver-

gence theorem and

lim
K→∞

E

[∫ τb
∗

n,K

T
{3}
n

(Aps,m)(ξ s(z))dz|F s
n

]
= E

[∫ τb
⋆

n

T
{3}
n

(Aps,m)(ξ s(z))dz|F s
n

]
. (24)

Since τb
⋆

n ≤ t0 applying the Dynkin’s formula to the left side of (24) we conclude

that

E

[∫ τb
⋆

n

T
{3}
n

(Aps,m)(ξ s(z))dz|F s
n

]
= E

[
ps,m(ξ s(τb

⋆

n ))|F s
n

]
− ps,m(ξ s(T

{3}
n )) a.s.

(25)

Combining (23), (24) and (25) we can see that

lim
K→∞

E
[

ps,m(ξ s(τb
∗

n,K))|F
s
n

]
= E

[
ps,m(ξ s(τb

∗

n ))|F s
n

]
, (26)

hence limK→∞ E
[
Z(s,τb

∗

n,K)|F
s
n

]
= E

[
Z(s,τb

∗

n )|F s
n

]
. We next prove the optimality

of τbn
∗

in the class T s ∩{τbn ≥ T
{3}

n }. Let τ ∈ T s ∩{τbn ≥ T
{3}

n } and it is clear that

τ ∧T
{3}

K ∈ T s
n,K . As τb

∗

n,K is optimal in the class T s
n,K we have

lim
K→∞

E
[

ps,m(ξ s(τb
∗

n,K))|F
s
n

]
≥ lim

K→∞
E
[

ps,m(ξ s(τ ∧T
{3}

K ))|F s
n

]
. (27)

From (26) and (27) we conclude that E
[
ps,m(ξ s(τb

∗

n ))|F s
n

]
≥ E [ps,m(ξ s(τ))|F s

n ]

for any stopping time τ ∈T s∩{τ ≥ T
{3}

n }, which implies that τb
∗

n is optimal in this

class.

(ii) Lemma 4 and (26) lead to E
[
Z(s,τbn

∗
)|F s

n

]
= γs,Ms(Ms

n,T
{3}

n ).

�

The remainder of this section will be devoted to the proof of the left-hand differ-

entiability of the function γs,m(m,s) with respect to s. This property is necessary to

construct the first optimal stopping time. First, let us briefly denote δ (0,0,c) ∈ B by

δ̄ (c).
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Lemma 6. Let ν̄(c) = Φbδ̄ (c), δ̄ (c) ∈ B and
∣∣δ̄ ′

+(c)
∣∣ ≤ A1 for c ∈ [0, t0) then∣∣ν̄ ′

+(c)
∣∣≤ A2.

PROOF OF LEMMA. 6. Let us first observe that the derivative ν̄ ′
+(c) exists because

ν̄(c) = max0≤r≤c φ̄b(c,r), where φ̄b(c,r) is differentiable with respect to c and r.

Fix h ∈ (0, t0−c) and define δ̄1(c) = δ̄ (c+h)∈B and δ̄2(c) = δ̄ (c)∈B. Obviously,

‖Φbδ̄1−Φbδ̄2‖≥ |Φbδ̄1(c)−Φbδ̄2(c)|= |Φbδ̄ (c+h)−Φbδ̄ (c)| and on the other

side using Taylor’s formula for right-hand derivatives we obtain

∥∥δ̄1 − δ̄2

∥∥= sup
c

∣∣δ̄ (c+h)− δ̄ (c)
∣∣≤ hsup

c

∣∣δ̄ ′
+(c)

∣∣+ |o(h)| .

From the above and Remark 8 it follows that

−C

{
sup

c

∣∣δ̄ ′
+(c)

∣∣+ |o(h)|

h

}
≤

ν̄(c+h)− ν̄(c)

h
≤ C

{
sup

c

∣∣δ̄ ′
+(c)

∣∣+ |o(h)|

h

}

and letting h → 0+ gives
∣∣ν̄ ′

+(c)
∣∣≤ CA1 = A2.

z

The significance of Lemma 6 is such that the function ȳ(t0 − s) has bounded left-

hand derivative with respect to s for s ∈ (0, t0]. The important consequence of this

fact is the following

Remark 5. The function γs,m can be expressed as γs,m(m,s)= I{s≤t0}u(m,s)−CI{s>t0},

where u(m,s) = ĝa(m)−ca(s)+ ĝb(0)−cb(0)+ ȳb(t0− s) is continuous, bounded,

measurable with the bounded left-hand derivatives with respect to s.

At the end of this section, we determine the conditional value function of the second

optimal stopping problem. According to (10), Theorem 2 and Remark 5 we have

J(s) = E
[
Z(s,τb

∗
)|Fs

]
= γs,Ms(Ms,s) a.s. (28)

4 Construction of the optimal first stopping time

In this section, we formulate the solution of the double stopping problem. On the

first epoch of the expedition the admissible strategies (stopping times) depend on

the formulation of the problem. For the optimization problem the most natural are

the stopping times from T (see the relevant problem considered in Szajowski [22]).

However, when the bilateral problem is considered the natural class of admissible

strategies depends on who uses the strategy. It should be T {i} for the i-th player.

Here the optimization problem with restriction to the strategies from the T {1} at the

first epoch is investigated.

Let us first notice that the function u(m,s) has a similar properties to the function

ŵb(m,s, m̃, t) and the process J(s) has similar structure to the process Z(s, t). By

this observation one can follow the calculations of Section 3 to get J(s). Let us
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define again Γn,K = esssupτa∈Tn,K
E [J(τa)|Fn] , n = K, . . . ,1,0, which fulfills the

following representation

Lemma 7. Γn,K = γK−n(M̂
{1}
n ,T

{1}
n ) for n = K, . . . ,0, where the sequence of func-

tions γ j can be expressed as:

γ0(m,s) = I{s≤t0}u(m,s)−CI{s>t0},

γ j(m,s) = I{s≤t0}

{
u(m,s)+ yaj (m,s, t0 − s)

}
−CI{s>t0}

and yaj (a,b,c) is given recursively as follows:

ya0 (a,b,c) = 0

yaj (a,b,c) = max
0≤r≤c

φa
yaj−1

(a,b,c,r)

where

φa
δ (a,b,c,r) =

∫ r

0
F̄1(z)

{
α1(z)

[
∆a(a)+Eδ (a+ x{1},b+ z,c− z)

]

− (ȳb′−(c− z)+ ca
′(b+ z))

}
dz.

Lemma 7 corresponds to the combination of Lemma 4 and Remark 3 from Subsec-

tion 3.1. Let the operator Φa : B→ B be defined by

(Φaδ )(a,b,c) = max
0≤r≤c

φa
δ (a,b,c,r). (29)

Lemma 7 implies that there exists a function r∗1, j(a,b,c) such that

γ j(m,s) = I{s≤t0}

{
u(m,s)+φa

yaj−1
(m,s, t0 − s,r∗1, j(m,s, t0 − s))

}
−CI{s>t0}.

We can now state the analogue of Theorem 1.

Theorem 3. Let Ra∗

i = ra
∗

K−i(Mi,T
{1}

i , t0 −T
{1}

i ) and ηn,K = K ∧ inf{i ≥ n : Ra
i
∗ <

S
{1}
i+1}, then τa

∗

n,K =T
{1}

ηn,K
+Ra∗

ηn,K
is optimal in the class Tn,K and Γn,K =E

[
J(τa

∗

n,K)|Fn

]
.

The following results may be proved in much the same way as in Section 3.

Lemma 8. If F1(t0)< 1 then the operator Φa : B→ B defined by (29) is a contrac-

tion.

Remark 6. There exists ya ∈ B such that ya = Φaya and limK→∞ ‖yaK − ya‖= 0.

The above remark implies that γ = limK→∞ γK is given by

γ(m,s) = I{s≤t0} [u(m,s)+ ya(m,s, t0 − s)]−CI{s>t0}. (30)

We can now formulate our main results.
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Theorem 4. If F1(t0)< 1 and has the density function f1, then

(i) for n ∈ N the limit τa
∗

n = limK→∞ τa
∗

n,K a.s. exists and τa
∗

n ≤ t0 is an optimal stop-

ping rule in the set T ∩{τ ≥ T
{1}

n },

(ii)E
[
J(τa

∗

n )|Fn

]
= γ(Mn,T

{1}
n ) a.s.

PROOF. The proof follows the same method as in Theorem 2. The difference lies

in the form of the infinitesimal operator. Define the processes ξ (s) = (s,Ms,V (s))

where V (s) = s−T
{1}

N1(s)
. Like before ξ (s) is the Markov process with the state space

[0,∞)× [0,∞)× [0,∞). Notice that J(s) = p(ξ (s)) and p(s,m,v) : [0, t0]× [0,∞)×
[0,∞)→R continuous, bounded, measurable with the bounded left-hand derivatives

with respect to s and v. It is easily seen that Ap(s,m,v) = α1(v)[Eĝa(m+ x{1})−

ĝa(m)]−
[
ȳb

′

− (t0 − s)+ ca′(s)
]

for s ≤ t0. The rest of the proof remains the same as

in the proof of Theorem 2.

�

Summarizing, the solution of a double stopping problem is given by

EZ(τa
∗
,τb

∗
) = EJ(τa

∗
) = γ(M0,T

{1}
0 ) = γ(0,0),

where τa
∗

and τb
∗

are defined according to Theorem 2 and Theorem 4 respectively.

5 Examples

The form of the solution results in the fact that it is difficult to calculate the solution

in an analytic way. In this section we will present examples of the conditions for

which the solution can be calculated explicitly.

Remark 7. If the process ζ2(t) = Aps,m(ξ s(t)) has decreasing paths, then the second

optimal stopping time is given by τb
∗

n = inf{t ∈
[
T
{3}

n , t0

]
: Aps,m(ξ s(t)) ≤ 0} on

the other side if ζ2(t) has non-decreasing paths, then the second optimal stopping

time is equal to t0.

Similarly, if the process ζ1(s) = Ap(ξ (s)) has decreasing paths, then the first opti-

mal stopping time is given by τa
∗

n = inf{s ∈
[
T
{1}

n , t0

]
: Ap(ξ (s))≤ 0} on the other

side if ζ1(s) has non-decreasing paths, then the first optimal stopping time is equal

to t0.

PROOF. From (25) we obtain E
[
Z(s,τb

∗

n )|F s
n

]
=Z(s,T

{3}
n )+E

[∫ τb
∗

n

T
{3}
n

(Aps,m)(ξ s(z))dz

]

a.s. and the application results of Jensen and Hsu [11] completes the proof.

�
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Corollary 2. If S{3} has exponential distribution with constant hazard rate α , the

function ĝb is increasing and concave, the cost function cb is convex and t2,n = T
{3}

n ,

ms
n = Ms

n then

τb
∗

n = inf{t ∈ [t2,n, t0] : α[Eĝb(ms
n + x{3}−m)− ĝb(ms

n −m)]≤ cb
′
(t − s)}, (31)

where s is the moment of changing the place. Moreover, if S{1} has exponential

distribution with constant hazard rate α1, ĝa is increasing and concave, ca is convex

and t1,n = T
{1}

n , mn = M̂
{1}
n then

τa
∗

n = inf{s ∈ [t1,n, t0] : α1

[
Eĝa(mn + x{1})− ĝa(mn)

]
≤ ca

′(s)}

PROOF. The form of τa∗n and τbn
∗

is a consequence of Remark 7. Let us observe

that by our assumptions ζ2(t) = α∆b(Ms
t −m)−cb

′
(t − s) has decreasing paths for

t ∈ [T
{3}

n ,T
{3}

n+1). It suffices to prove that ζ2(T
{3}

n )− ζ2(T
3

n−1) = α[∆b(Ms
n −m)−

∆b(Ms
n−1 −m)]< 0 for all n ∈ N.

It remains to check that ȳb
′

− (t0−s)= 0. We can see that τb
∗
= τb

∗
(s) is deterministic,

which is clear from (31). Let us notice that if s ≤ t0 then combining (25), (26) and

(28) gives γs,m(m,s) = E
[
Z(s,τb

∗
)|Fs

]
= Z(s,s)+E

[∫ τb
∗

s (Aps,m)(ξ s(z))dz|Fs

]
.

By Remark 5 it follows that

ȳb(t0 − s) = E

[∫ τb
∗
(s)

s
(Aps,m)(ξ s(z))dz

]
=

∫ τb
∗
(s)

s

[
α∆b(0)− c′2(z− s)

]
dz

and this yields

ȳb
′

− (t0 − s) =
∫ τb

∗
(s)

s
c′′2(z− s)dz+ τb

∗′
(s)

[
α∆b(0)− c′2(τ

b∗
2(s)− s)

]
(32)

−
[
α∆b(0)− c′2(0)

]

= c′2(τ
b∗(s)− s)− c′2(0)−

[
α∆b(0)− c′2(0)

]
= 0.

The rest of proof runs as before.

�

Corollary 3. If for i = 1 and i = 2 the functions g•i are increasing and convex, ci are

concave and S{i} have the exponential distribution with constant hazard rate αi (i.e.

α = α2) then τa
∗

n = τb
∗

n = t0 for n ∈ N.

PROOF. It is also the straightforward consequence of Remark 7. It suffices to check

that ȳb
′

− (t0 − s) is non-increasing with respect to s. First observe that τb
∗
(s) = t0.

Considering (32) it is obvious that ȳb
′

− (t0 − s) = α2∆b(0)− c′2(t0 − s) and this com-

pletes the proof.

�
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6 Conclusions

This article presents the solution of the double stopping problem in the ”fishing

model” for the finite horizon. The analytical properties of the reward function in

one stopping problem played the crucial rule in our considerations and allowed us

to get the solution for the extended problem of a double stopping. Let us notice that

by repeating considerations from Section 4 it is easy to generalize our model and

the solution to the multiple stopping problem but the notation can be inconvenient.

The construction of the equilibrium in the two person non-zero sum problem formu-

lated in the section 2 can be reduced to the two double optimal stopping problems

in the case when the payoff structure is given by (5), (6) and (11). The key assump-

tions were related to the properties of the distribution functions. Assuming general

distributions and the infinite horizon one can get the extensions of the above model.
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Index

filtrations

F
{i}
n –the short denotation of F

T
{i}
n

, 7

Ft ,F
A
t –the filtration generated by the

A-marked renewal–rewarded process to

the moment t, 6

Ft –the filtration generated by the A-marked

renewal–rewarded process to the

moment t, 6

F s
t –the filtration generated by the double

indexed process Z(s, t), 0 ≤ s ≤ t, 4

pay-off functions

Cb
j –the bounds of the costs, 4

Z(s, t)–the angler’s pay-off for stopping at

time t (the end of the expedition) if the

change of the fishing method took place

at time s, 4

Zi( j,s, t)–the pay–off process of the anglers,

when the first stop has been forced by

i-th one, 6

w̃a
i (
−→m , j,s,k, m̃, t)–the pay-off of the angler

i-th at moment t, when his change of

fishing method to k ∈B has been forced

by the angler j at s(≤ t) and the state of

the renewal-reward process −→m , 5

cbj (t)–the cumulative costs of fishing after

the change of fishing method using

method j, 4

ci, cai , ca–the cumulative cost of usage the

i-th rod at the period a, 4

ga(−→m , j, t), (gai (
−→m , j, t))–the utility of fishes

gotten to the moment t (at the i-th rod)

when the last catch was at the j-th rod

and the state of the renewal-reward

process is −→m , 5

gbj (
−→m , i,s, m̃, t)–the reward function after

the change of the fishing methods when

the state of the renewal-reward processes

at s has been −→m and the final state of

the renewal-reward process at t(≥ s) has

been m̃, 4

wa
i (
−→m , j, t)–the i-th player’s pay-off at

moment t when the stop has been

made by the j-th and the state of the

renewal-reward process −→m , 5

renewal–reward processes

(T
{i}

n ,X
{i}
n )–the renewal–rewarded

processes, 6

Fi(t)–the distribution function of the holding

times of the i-th type, 4

M
{i}
t –the renewal-reward process at moment

t related to the rod i-th, 4

Mt (Ms
t )–the renewal-reward process at

moment t (with change of a structure at

moment s), 4

Ni(t)–the number of fishes caught on the rod

i to the moment t, 3

S
{i}
n –n-th holding time of the i-th type, 4

T
{i}

k –k-th jump time of the i-th type, 4

Tn–n-th jump moment, 3

X
{i}
k –the value of the k-th fish cached on the

i-th rod, 3

F(t), f(t)–the distribution and density

functions of the holding times after the

change of fishing method, 9

H(t)–the distribution function of the rewards

after the change of fishing method, 9

zn–the index of n-th jump, 3
−→
N (t)–the 2-dimensional renewal process, 3

n
{i}
k –the index of k-th jump of i-th type, 4

sets of stopping times

25



26 Index

T , Tn,K–sets of stopping times with respect

to σ -fields {Ft}, 7

T
{i}

n,K –the stopping times bounded by T
{i}

n

and TK , 7

T
{i}

n –the stopping times bounded by T
{i}

n , 7

Tn,K–the subset of stopping times τ ∈ T

with respect to the filtration {Ft} such

that Tn ≤ τ ≤ TK , 7

stopping times

τa
∗
–the optimal moment of the first

decision, 8

τb
∗
–the optimal moment of the second

decision, 8

τn,K–the element of the set Tn,K , 7

τb0,K
∗
, τbK

∗
–the second optimal stopping time

in a restricted problem, 9
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