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Abstract
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1 Introduction

According to the basic New Keynesian model, inflation is driven by expected future

marginal costs, and this is embodied in the new Keynesian Phillips curve (NKPC).

Unfortunately, taking the NKPC to data is hampered by the fact that marginal costs

are not directly observable, and therefore, a number of theoretically well-motivated

proxies have been proposed in the previous literature, including the labor’s share

of total income, various measures of the output gap, and more traditionally, the

unemployment rate. However, different proxies tend to produce different estimates

of the parameters of the NKPC and even yield different conclusions concerning its

validity.

There are a large number of studies that find evidence in favor of each of the

commonly proposed drivers of inflation (see, e.g., Galí and Gertler (1999), and Rudd

and Whelan (2005)). In contrast to the previous literature, in this paper, we com-

pare the three commonly proposed drivers of inflation mentioned above in a unified

framework which also allows for the possibility that none of the suggested candidate

variables is the true driver. In our analysis, the starting point is the implication of

the new Keynesian model that in order for a certain variable to drive inflation, lagged

inflation must be its useful predictor, provided inflation dynamics are well described

by an autoregression (see Section 2 below). In other words, there should be Granger

causality from inflation to its driver. While such Granger causality tests have pre-

viously been conducted, they have been isolated, considering only one variable at a

time, and, thus the possibility that the true driver is not included in the set of the

candidate variables considered has not been explicitly entertained.

In our analysis, we rank a number of restricted vector autoregressive (VAR) models

by their Bayesian posterior probabilities. The models comprise inflation and the can-

didate driving variables, and each of them embodies Granger causality from inflation

to only one of the candidates or none of them. In addition to the benefit of explicitly

including the alternative that none of the candidates is the true driver, our procedure
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has statistical advantages. In particular, our Monte Carlo simulation experiments

indicate superiority of the proposed procedure compared to the conventional Granger

causality test that seems unable to discriminate against proxies correlated with the

true driver.

With U.S. data since 1955, we find it very unlikely that any of our three candi-

dates (real labor cost, output gap and unemployment rate) is driving inflation. The

conventional Granger causality test, in contrast, lends support to both the output

gap and unemployment rate as the driver. Our findings need not be interpreted as

evidence against the New Keynesian model, but it may be that the true driver of

inflation is not satisfactorily measured by the candidate variables considered in the

previous literature, and hence care must be taken when interpreting results based on

these proxies.

The plan of the rest of the paper is as follows. In Section 2, we discuss the new

Keynesian Phillips curve and briefly survey a number of previous empirical results.

Our econometric methodology is described in Section 3, while simulation results illus-

trating its properties and making comparisons to the conventional Granger causality

test are presented in Section 4. Empirical results on U.S. data are discussed in Section

5. Finally, Section 6 concludes.

2 New Keynesian Phillips Curve

As already pointed out in the Introduction, according to the basic New Keynesian

model, inflation πt is driven by expected future marginal costs mct, i.e.,

πt = λ

∞∑

k=0

βkEt (mct+k) , (1)

where β is the subjective discount factor and λ depends on the frequency of price

adjustment and β. This result arises from the assumption due to Calvo (1983) that

in every period, each identical firm has a fixed probability of adjusting the price of

the differentiated product that it produces. Equation (1) can equivalently be written
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as

πt = λmct + βEt (πt+1) , (2)

which is often referred to as the New Keynesian Phillips curve (NKPC). As shown by

Galí and Gertler (1999), there is an approximate log-linear relationship between the

marginal cost and the output gap xt, defined as the deviation of (the logarithm of)

aggregate output from its equilibrium level in the absence of nominal rigidities, such

that mct = κxt with κ the output elasticity of marginal cost. Hence, model (2) can

alternatively be written as

πt = λκxt + βEt (πt+1) . (3)

While equation (3) has been prominent in earlier empirical work on the Phillips

curve, empirical research concerning the NKPC has been based on both (2) and (3),

and there is an ongoing debate on which of these variables actually drives inflation (if

either) and how they should be measured. Since neither variable is directly observ-

able, a number of proxies have been entertained. Recently, Nason and Smith (2008)

compared the properties of the U.S. output gap estimated by seven different meth-

ods and found little difference between them as drivers of inflation. In our empirical

analysis, following the previous literature, we compute the output gap by applying the

Hodrick-Prescott filter to the logarithmic real GDP per capita. As to equation (2),

Galí and Gertler (1999) advocated measuring the real marginal cost by labor’s share

of income. This measure has subsequently been used in a number of empirical studies

of the NKPC, and it has, to some extent, turned out more successful in producing

results in accordance with prior expectations. However, Rudd and Whelan (2005),

inter alia, have forcefully criticized against its use in estimating the NKPC. Another

proxy for the marginal cost used in the empirical literature is the unemployment rate.

Instead of fixing a certain proxy variable, Basistha and Nelson (2007), Lanne and

Luoto (2011), and Matthes and Wang (2012) have attempted to estimate the driver

of inflation in the New Keynesian model as a latent variable that fits the NKPC or its

hybrid version including also lagged inflation (Galí and Gertler, 1999) by construction.
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The time series of the output gap produced by Basistha and Nelson’s (2007) model

exhibits rather strong correlation with some of the output gap proxies entertained

in the previous literature. Matthes and Wang (2012), on the other hand, find their

latent driver of inflation the most strongly correlated with the labor share, while the

correlations with various measures of the output gap are negligible. However, such

inference on the strength of correlation between the latent and observed time series is

potentially problematic for a number of reasons. First, it does not take into account

the estimation error involved in computing the latent variable. Second, the process

of the latent variable is dependent on the details of the assumed model that need not

be correct. Finally, it is difficult to judge how large correlation is sufficient to deem

one candidate variable as the true driver.

In gauging the validity of the different proxies as drivers of inflation, our starting

point is the implication of the NKPC that in order for a certain variable yt to drive

inflation, it must be predictable by lagged inflation. That this is the case can be seen

by noting the well-known fact that (U.S.) inflation dynamics are well captured by the

reduced-form equation

πt = A (L) πt−1 + αyt, (4)

where A(L) is a polynomial in the usual lag operator L. If the NKPC is the correct

structural description of inflation dynamics, it must be the case that the significance

of lags of inflation in (4) stems purely from its serving as a proxy for expected future

values of yt in an equation of the form (1). Augmenting the NKPC by lagged inflation

does not overturn this, i.e., inflation must have predictive power for future values of its

driver even in the case of the hybrid NKPC. Rudd and Whelan (2005), inter alia, have

tested this implication for the labor share by running tests of Granger causality from

inflation, finding little predictive power. Our empirical results in Section 5 reconfirm

this result for the labor share, but suggest that the output gap could potentially be

a driver of U.S. inflation.

The aforementioned approach based on Granger causality tests is somewhat re-
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strictive in that it considers only one proxy variable at a time which makes it difficult

to determine the overall size of the procedure in case none of the candidate variables

is the true driver of inflation. Moreover, our simulation results in Section 4 indicate

that when the proxy and true driver are correlated, the Granger causality test tends

to overreject, failing to rule out a false driver. Therefore, we propose a new Bayesian

procedure where the idea is to incorporate all potential drivers into the analysis si-

multaneously. Specifically, as will be discussed in detail in Section 3, the procedure

involves estimating a number of restricted vector autoregressive (VAR) models con-

taining all the candidate proxy variables, with inflation acting as a predictor of only

one or none of them at a time. These models are subsequently compared by means of

their posterior probabilities to find out whether any of the candidate variables is likely

to drive inflation, and in case there are multiple drivers with positive probability, how

they are ranked.

3 Methodology

The starting point of our econometric analysis is a VAR(p) model for inflation πt and

the q candidate variables x1t ,..., x
q
t , and we estimate q+1 models, denoted by Mi (i =

0, 1,..., q), obtained by placing different restrictions on it. In modelMi, the coefficients

of the lags of inflation in the equations of all the other candidate variables but xit are

set to zero, indicating that inflation Granger causes only xit.
1 Repeating this for all

the candidate variables xit, i = 1, 2,..., q, thus yields a set of models, each of which

corresponds to one potential driver of inflation. Finally, model M0 is obtained by

restricting to zero the lags of inflation in the equations of all the candidate variables,

in accordance with the idea that none of the proposed variables is the true driver.

1To be able to rank the restricted models, they must all be based on the same dependent variables.

Thefore, all the candidate variables are included in the VAR model. Without further restrictions,

these models are potentially overparametrized. Thus, to reduce the number of estimated parameters,

we also set to zero the coefficients of the lags of the other candidate variables in all equations except

in that of inflation.
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The comparison of the q+1 different models is based on their posterior model

probabilities, which can be interpreted as probabilities of Granger causality from

inflation to each of the candidate variables in turn (models M1,M2, ...,Mq) or to

none of them (model M0). If model M0 turns out to have the greatest posterior

probability, this can be interpreted in favor of none of the candidate variables being

a plausible driver of inflation. Otherwise, model Mi obtaining the greatest posterior

probability is interpreted as xit being the likeliest driver. Of course, the more the

greatest probability deviates from the rest, the stronger is the evidence in favor of

the model in question. Compared to the conventional pairwise Granger-causality

test, our approach has a number of benefits. First, because model M0 is included, it

provides a straightforward way of checking whether any of the candidate variables is

the driver. Second, it yields a ranking of the different candidate variables in terms

of posterior probabilities unlike separate Granger-causality tests that only allow for

precluding some of the variables. Furthermore, the simulation experiments reported

in Section 4, indicate that our procedure is superior in detecting the true driver of

inflation among a set of candidate variables correlated with the true driver.

The posterior model probability of model Mi is given by

p (Mi|Y ) =
p (Y |Mi) p (Mi)
q∑

j=0

p (Y |Mj) p (Mj)

, (5)

where Y contains all the variables in the VAR model, p(Mi) denotes the prior prob-

ability that Mi is the true model (given that one of them is)2 and p (Y |Mi) =
∫
p (Y |θi,Mi) p (θi|Mi) dθi is the marginal likelihood with p(θi|Mi) the prior den-

sity of all the parameters in θi in model Mi, and p(Y |θi,Mi) is the likelihood of Y in

2Note that in case all the models are misspecified, i.e., when none of them is the true model, the

weight (posterior probability) of the best model in the Kullback—Leiber metric tends to 1 asymp-

totically (see, for example, Fernández-Villaverde and Rubio-Ramírez, 2004). Hence, in particular,

model M0 obtaining the greatest posterior probability can be interpreted either as evidence against

the New Keynesian model in general or as an indication that the true driver of inflation is not

included in the set of candidate variables.
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model Mi.

To facilitate estimation of the restricted models, the unrestricted VAR(p) model

is first written in the SUR form (see, e.g., Hamilton (1994, 315)). Model compar-

isons are based on approximate posterior model probabilities corresponding to the

Schwarz Bayesian Information Criterion (BIC) (Schwarz, 1978). The logarithm of

the approximate marginal likelihood of Mi is defined as

ln p (Mi|Y ) ≈ c−
1

2
BICi (6)

where, for a model i with k free parameters, BICi = −2×l+k×ln(T ) with l the value

of the log likelihood function evaluated at the maximum likelihood (ML) estimate of

θi, and c is a constant. The approximation (6) can be obtained from the posterior

density p (θi|Y,Mi) by using the so-called Unit Informative Prior (UIP) for θi, which

is multivariate normal with mean and covariance matrix equal to the ML estimate

and T times its asymptotic covariance matrix, respectively (see Raftery, 1995, and

Sala-i-Martin et al., 2004). Perhaps the most popular parameter priors considered

in the variable selection literature are Zellner’s (1986) natural conjugate g-prior and

some of its variants such as those proposed by Fernández et al. (2001), but we prefer

to use the UIP because of its superior predictive performance (see, e.g., Eicher et

al. (2011)).3 In addition to the parameter priors, we also need to specify the model

prior probabilities p(Mi). Given our empirical problem (in which the set of potential

drivers of inflation is relatively small), it seems reasonable to assume that the models

are equally likely a priori, that is, p(Mi) = 1/ (q + 1) for each i = 0,..., q.

4 Simulation Study

We demonstrate the performance of the method put forth in Section 3 and compare

it to the conventional Granger causality test by means of Monte Carlo simulation ex-

periments. The data are generated from a typical three-equation dynamic stochastic

3Notice that the UIP prior depends on the data and thus violates the Bayes rule (see, e.g.,

Fernández et al., 2001), but this is the case for the g-priors here as well.
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general equilibrium (DSGE) model consisting of the (hybrid) NKPC generating infla-

tion πt, the dynamic IS curve for the output gap xt, and the Taylor rule determining

the interest rate Rt:

πt = γfEtπt+1 + γbπt−1 + γxt + επt

xt = βfEtxt+1 + βbxt−1 − βr (Rt − Etπt+1) + εxt

Rt = (1− ρ) (ωππt + ωxxt) + ρRt−1 + εRt

The errors are assumed to follow AR(1) processes:

επt = ρπεπ,t−1 + uπt, uπt ∼ N
(
0, 0.52

)
,

εxt = ρxεx,t−1 + uxt, uxt ∼ N
(
0, 0.2882

)
, and

εRt = ρRεR,t−1 + uRt, uRt ∼ N(0, 0.252
2).

In the simulation experiments, we use the following benchmark parameter values.

The variances of all the shocks as well as the AR(1) coefficients ρx and ρR, which

are assumed to take the values ρx = 0.5 and ρR = 0.8, respectively, are obtained

from Lindé (2005). Following Galí and Gertler (1999), γ in the NKPC is set at

0.05, while different combinations of the values of the parameters γf and γb are

entertained with varying weights of inflation expectations and past inflation. However,

to facilitate comparison, we fix the sum of these coefficients (at 0.96). Following Smets

and Wouters (2007), among others, we assume that the price mark-up shock (cost

push shock) επt is (positively) serially correlated. We experimented with a number of

different values of ρπ, and found that the higher ρπ is, the better is the performance

of our method. The reported results are based on ρπ = 0.3, which is relatively small

compared to the empirical evidence of Smets and Wouters (2007). As far as the IS

curve is concerned, we set βf = 0.28, βb = 0.68, and, following Nason and Smith

(2008), βr = 0.5.
4 Following Lindé (2005), the Taylor rule parameters are set at ωπ

= 1.5, ωx = 0.5 and ρ = 0.5, allowing for moderate interest rate smoothing.

4In addition to these benchmark parameter values of the IS curve, we also considered setting

βf = 0.68 and βb = 0.28, indicating a larger role for forward-looking behavior. The conclusions
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In addition to the true driver of inflation xt (denoted x
1
t henceforth), we generate

two proxies with varying degrees of similarity with it. The first proxy is obtained as

x2t = x1t + τzt, where zt is an independent standard normal random variable. This

formulation allows us to analyze how our method (and the Granger causality test)

perform when the proxy and the true driver are correlated. We present the results

based on τ = 1, yielding a relatively close proxy for x1. Simulations based on τ = 3

yielding a less accurate proxy (not reported), produce qualitatively identical results.

The other proxy that is completely unrelated to x1t is generated by an AR(1) process

x3t = φx
3
t−1 + εt for t = 1, ..., T , where εt ∼ N (0, 1) . The reported results are based

on φ = 0.7, but our experimentation with a number of different values of φ indicates

the results hardly depend on the particular value of φ.

For each combination of the parameter values, we generate 10 000 realizations of

T = 100 and T = 200 observations, roughly corresponding to the sample sizes to be

considered in Section 5. To mitigate initialization effects, the first 200 observations

at the beginning of each realization are discarded. For every realization, we calculate

the posterior probabilities of Granger causality from inflation to each of the candidate

variables in turn.

In the upper panel of Table 1, we report, for each model, the relative frequency

of the posterior model probability exceeding 50%. These figures indicate how often

each model would result by the decision rule of selecting the model if its posterior

probability is greater than 50%. With relatively backward-looking inflation (γf =

0.28 and γb = 0.68), the true model, i.e., the true driver of inflation, would always

be selected, and even with more forward-looking inflation (γf = 0.68), it would be

selected 96.6% and 99.9% of the time with 100 and 200 observations, respectively.

The average posterior probabilities reported in the lower panel of the table tell a

similar story. They are virtually indistinguishable from unity for the the true driver,

with slightly smaller values with more forward-looking inflation and smaller sample

remained virtually intact irrespective of the parameterization used, with our method performing

slightly worse. The detailed results (not reported) are available upon request.
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size. Hence, it indeed seems that if the true driver is included in the set of candidate

variables, our procedure is extremely efficient in finding it.

We also considered the case, where the true driver of inflation is not included

among the candidate variables. Here the three candidate variables are two AR(1)

processes generated as above with the autoregressive parameter φ taking values 0.4

and 0.7, and an independent standard normal random variable. Irrespective of spe-

cific parameter values or sample size, our procedure coupled with the 50% posterior

probability rule selects the correct model where none of the candidates is included,

approximately 90% of the time.

For comparison, we checked the performance of the standard Granger causality

test discussed in Section 3. In other words, for each realization, we computed the p

value of the test of Granger causality from inflation to each of the candidate variables

in turn in bivariate VAR(1) models including inflation and the candidate variable

in question. The rejection rates in Table 2 indicate that, irrespective of the sample

size or of how forward-looking inflation is, the test has very high power against the

hypothesis of no Granger causality from inflation to the true driver (x1t ) as well as

the proxy correlated with the true driver (x2t ). Conversely, for the other proxy (x
3
t )

uncorrelated with true driver, the power of test is close to its size. Thus, the standard

Granger causality test seems reliable in indicating the true driver, but it does not

necessarily help in discriminating against proxies correlated with it.

5 Results

In this section, we present the empirical results on U.S. inflation. All estimations are

based on the seasonally adjusted quarterly U.S. inflation series based on the GDP

implicit price deflator series for the period from 1955:1 to 20011:2. In addition to

the entire sample period, results are reported for two subsample periods of equal

length, 1955:1—1983:1 and 1983:2—2011:2, to gauge robustness. The latter period is

characterized by the decline in macroeconomic volatility and the ensuing relatively
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tranquil era, often referred to as the Great Moderation. We consider two commonly

used candidate drivers of the U.S. inflation discussed in Section 2 above, namely the

output gap and the real unit labor cost, as well as a more traditional explanatory

variable for inflation, the unemployment rate (specifically, the seasonally adjusted

total civilian unemployment rate (16 years of age and older)). In line with the previous

literature, the output gap is proxied by the logarithm of the real GDP per capita

detrended using the Hodrick-Prescott filter.5 Following Galí and Gertler (1999), inter

alia, we use the real unit labor cost measured as the logarithm of the nominal unit

labor cost in the nonfarm business sector divided by the implicit GDP deflator as a

proxy for real marginal costs. The source of all data is the FRED database of the

Federal Reserve Bank of St. Louis.

As outlined in Section 3, we estimate four restricted VAR models and compute

their posterior probabilities. In all models, four lags are required to make the residuals

white noise (according to their autocorrelation and partial autocorrelation functions).6

The posterior model probabilities p (Mi|Y ) are presented in Table 3. As already dis-

cussed in Section 3, these can be interpreted as the probabilities of Granger causality

from inflation to each of the candidate variables in turn (models M1 (output gap),

M2(real unit labor cost), and M3 (unemployment rate)) or to none of them (model

M0). In all sample periods considered, M0 is by far the likeliest model with the other

models taking only negligible probabilities. Hence, there seems to be quite convinc-

ing evidence in favor of none of the candidate variables commonly entertained in the

previous literature driving U.S. inflation. This need not be evidence against the New

Keynesian model, but it may be that the true driver of inflation is not satisfactorily

measured by the candidate variables considered.

5We set the smoothing parameter of the Hodrick-Prescott filter at 1600. We also experimented

with measures of the output gap based on linear and quadratic trends. Furthermore, the logarithm

of the real GDP (instead of the GDP per capita) was considered. The conclusions remained intact

irrespective of the series used. The detailed results (not reported) are available upon request.
6As a robustness check, we also calculated posterior model probabilities using VAR(p) models

with p = 2,..., 5. The conclusions remain intact irrespective of the VAR(p) model.
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For comparison, we also report the results of the standard test of pairwise Granger

causality from inflation to each of the candidate variables in Table 4. In accordance

with Rudd and Whelan (2005), there is little sign of Granger causality from inflation

to the real unit labor cost, indicating that it cannot be driving inflation. As far as

the other two candidates are concerned, Granger causality from inflation is found at

the 10% level (for the output gap even at the 5% level) in the entire data as well as

in the first subsample period. However, in the latter subsample period, none of the

candidate variables appears a plausible driver of inflation at reasonable significance

levels. Thus, it is only in this period that the results in Tables 3 and 4 yield the same

conclusion. Given our simulation results in Section 4, the standard Granger causality

test is useful only in ruling out some of the candidate variables, but it may spuriously

indicate false drivers. This shows up in the results in Table 4 in that they only suggest

that the real labor cost cannot be driving inflation, but two plausible candidates are

still remaining. It is only our procedure, simultaneously allowing for each candidate

or none of them being the driver, that leads us to reject all candidates.

6 Conclusion

In this paper, we have proposed a new procedure for checking which one of a number

of candidate variables is driving inflation in a new Keynesian model. Our approach is

based on the simple idea that for a certain variable to drive inflation in that model,

inflation must have predictive ability for it. We compute the posterior probabilities

of a set of VAR models, each of which incorporates Granger causality from inflation

to one candidate driver at a time, or, to none of them. Compared to the previous

literature, the benefits are twofold. First, our unified framework explicitly allows

for the possibility that none of the candidate variables is driving inflation. Second,

our method yields a ranking of the different candidate variables in terms of posterior

model probabilities. Furthermore, Monte Carlo simulation results suggest that our

procedure is superior in detecting the true driver, especially when the candidate
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variables are correlated.

Our empirical results indicate that neither the labor share nor the output gap

are likely drivers of U.S. postwar inflation. Also the more traditional candidate,

unemployment rate, gets little support. As a matter of fact, with more than 98%

probability, none of these variables most commonly used in empirical studies of the

NKPC, is the true driver of U.S. inflation. These findings should not necessarily

be interpreted as evidence against the new Keynesian model, but they cast doubt

on many previous empirical results inasmuch as they rely on these proxies for the

marginal cost.
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Table 1: Simulation results of the Bayesian model averaging procedure.

Sample Size

γf γb T = 100 T = 200

Posterior Model Probability > 50%

M1 M2 M3 M0 M1 M2 M3 M0

0.28 0.68 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.48 0.48 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.68 0.28 0.966 0.000 0.002 0.016 0.999 0.000 0.000 0.000

Average Posterior Model Probability

M1 M2 M3 M0 M1 M2 M3 M0

0.28 0.68 0.999 0.000 0.000 0.001 1.000 0.000 0.000 0.000

0.48 0.48 0.999 0.000 0.000 0.001 1.000 0.000 0.000 0.000

0.68 0.28 0.945 0.007 0.009 0.039 0.998 0.000 0.000 0.002

The entries are relative frequencies of the posterior model probability exceeding 50%,

and average posterior model probabilities in the upper and lower panels, respectively. The

DGP is as described in Section 4 apart from the values of the parameters γf and γb given

in the first two columns. Models Mi, (i = 1, 2, 3), are VAR(1) models for inflation and the

three candidate variables with the lags of inflation excluded from all the equations except

that of the ith candidate, while model M0 is a VAR(1) model with the lags of inflation

excluded from the equations of all the cadidate variables. The number of replications is

10 000.

Table 2: Simulation results of the Granger causality tests.

Sample Size

γf γb T = 100 T = 200

x1t x2t x3t x1t x2t x3t

0.28 0.68 0.997 0.996 0.067 1.000 1.000 0.063

0.48 0.48 0.992 0.982 0.066 1.000 1.000 0.061

0.68 0.28 0.718 0.666 0.065 0.927 0.902 0.057

The DGP is as described in Section 4 apart from the values of

the parameters γf and γb given in the first two columns.The entries are

rejection rates of the 5% level tests of Granger causality from inflation to

each candidate variable xit, with x
1

t the true driver, x
2

t a proxy correlated

with it, and x3t the unrelated proxy.
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Table 3: Posterior model probabilities.

Sample Period

Model Granger Causality to 1955:1—2011:2 1955:1—1983:1 1983:2—2011:2

M1 Output Gap 0.009 0.008 0.000

M2 Real Labor Cost 0.000 0.001 0.000

M3 Unemployment Rate 0.007 0.042 0.001

M0 None of the above 0.984 0.948 0.999

The entries are posterior probabilities of VAR(4) models where the coefficients of the lags of

inflation in the equations of the variables other than the one in the first column are restricted to

zero.

Table 4: Granger causality tests.

Sample Period

Granger Causality to 1955:1—2011:2 1955:1—1983:1 1983:2—2011:2

Output Gap 0.002 0.009 0.503

Real Labor Cost 0.682 0.722 0.909

Unemployment Rate 0.077 0.007 0.101

The entries are p values of the standard test of Granger causality from inflation to

the variable in the first column. In each case, the test is based on a VAR(4) model.
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