
Munich Personal RePEc Archive

Judging statistical models of individual

decision making under risk using in- and

out-of-sample criteria

Drichoutis, Andreas and Lusk, Jayson

University of Ioannina, Oklahoma State University

19 May 2012

Online at https://mpra.ub.uni-muenchen.de/42019/

MPRA Paper No. 42019, posted 17 Oct 2012 19:55 UTC



Judging Statistical Models of Individual Decision

Making Under Risk Using In- and Out-of-Sample

Criteria

Andreas C. Drichoutis∗

University of Ioannina

Jayson L. Lusk†

Oklahoma State University

First Draft: May 19, 2012
This Version: October 17, 2012

Abstract

Despite the fact that conceptual models of individual decision making under risk are de-

terministic, attempts to econometrically estimate risk preferences require some assumption

about the stochastic nature of choice. Unfortunately, the consequences of making different

assumptions are, at present, unclear. In this paper, we compare two popular error spec-

ifications (Luce vs. Fechner), with and without accounting for contextual utility, for two

different conceptual models (expected utility and rank-dependent expected utility) using in-

and out-of-sample selection criteria. We find drastically different inferences about structural

risk preferences across the competing specifications. Overall, a mixture model combining

the two conceptual models assuming Fechner error and contextual utility provides the best

fit of the data both in- and out-of-sample.
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1 Introduction

Virtually all conceptual models of risky choice, including expected utility theory (EUT)

and the behavioral alternatives such as prospect theory, are deterministic. The deterministic

nature of the theories presents a challenge for applied economists attempting to economet-

rically estimate risk preferences in a sample of individuals. In essence, the analyst must

make assumptions about the decision making process that go above and beyond the content

of the theory, making it difficult to conduct clean tests of the underlying theory itself and

to confidently identify underlying structural parameters. While a few previous studies have

analyzed the extent to which different stochastic error specifications influence estimates of

risk preferences (e.g., Hey, 2005; Loomes, 2005), there have been new developments in the

field (e.g., Wilcox, 2011) that have not been addressed in previous model comparisons, and

there has been an almost exclusive focus on the ability of models to fit the data in-sample.

The focus on in-sample fit is particularly important in determining which decision making

theory, EUT or a behavioral alternative, best describes lottery choices. EUT is a relatively

parsimonious theory, characterizing risk preferences simply by the curvature of the utility

function over income or wealth. Some popular functional forms such as constant relative

(or constant absolute) risk aversion consist of a single parameter. Behavioral theories often

proceed by adding parameters to the basic EUT set-up. Cumulative prospect theory, for ex-

ample, allows for different degrees of curvature in the gain and loss-domains and for additional

parameters describing the extent to which individuals under- or over-weight low probability

events (both in the gain and loss domains). Given the additional parameters, there might be

a tendency for such behavioral models to over-fit the data, and while in-sample test statis-

tics, such as Akaike or Bayesian Information Criteria, suggest improvements in model fit, this

is no guarantee the model will perform better predicting out-of-sample. Although several

previous studies have compared different decision making models under risk (Harless and

Camerer, 1994; Hey and Orme, 1994), and Carbone and Hey (2000) have attempted to rec-

oncile differences between studies based on differential assumptions made about how choice
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errors are modeled, to our knowledge previous research has not systematically compared

different error specifications and risk models insofar as their ability to predict out-of-sample.

Because most experimental studies are performed with a relatively small sample of sub-

jects, it would seem that most analysts are attempting to extrapolate risk preferences out-

of-sample to the more general population, and as such, studying out-of-sample prediction

performance appears a worthwhile line of inquiry. Judging out-of-sample prediction per-

formance is not always easy for discrete choice problems, and as such, we turn to the out-

of-sample-log-likelihood function approach long used in the marketing literature for model

selection (Erdem, 1996; Roy et al., 1996) and further elucidated in the economics literature

by Norwood et al. (2004,?).

The purpose of this paper is to use several in- and out-of sample model selection criteria to

determine which stochastic error specification and theoretical model best fits lottery choice

data gathered in an experimental setting. In particular, we compare two different error

specifications (Luce vs. Fechner), with and without accounting for Wilcoxs (2011) contextual

utility specification, for two different conceptual models (EUT and rank-dependent EUT)

using in- and out-of-sample selection criteria. Moreover, we further investigate Harrison and

Rutströms (2009) claim that a combined model (combining EUT and rank-dependent EUT)

leads to improved inferences.

The next section of the paper describes the laboratory experiment we conducted to elicit

preferences for competing lotteries. Then, we describe the competing approaches used to

estimate risk preferences, after which we present the results from the competing models.

Following this discussion, we discuss different model selection criteria and indicate the best

fitting models. The last section concludes.
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2 Experimental Procedures

2.1 Description of the experiment

A conventional lab experiment was conducted using z-Tree software (Fischbacher, 2007).

Subjects consisted of undergraduate students at the University of Ioannina, Greece and

were recruited using the ORSEE recruiting system (Greiner, 2004). During the recruitment,

subjects were told that they would be given the chance to make more money during the

experiment.1

Subjects participated in sessions of group sizes that varied from 9 to 11 subjects per ses-

sion (all but two sessions involved groups of 10 subjects). In total, 100 subjects participated

in 10 sessions that were conducted between December 2011 and January 2012. Each session

lasted about 45 minutes and subjects were paid a 10 participation fee. Subjects were given

a power point presentation explaining the lottery choice tasks as well as printed copies of

instructions. They were also initially given a five-choice training task to familiarize them

with the choice screens that would appear in the tasks involving real payouts. Subjects were

told that choices in the training phase would not count toward their earnings and that this

phase was purely hypothetical.

Full anonymity was ensured by asking subjects to choose a unique three-digit code from a

jar. The code was then entered at an input stage once the computerized experiment started.

The experimenter only knew correspondence between digit codes and profits. Profits and

participation fees were put in sealed envelopes (the digit code was written on the outside)

and were exchanged with digit codes at the end of the experiment. No names were asked at

any point of the experiment. Subjects were told that their decisions were independent from

other subjects, and that they could finish the experiment at their own convenience. Average

total payouts including lottery earnings were 15.2e(S.D.=4.56).

1Subjects were told that “In addition to a fixed fee of 10, you will have a chance of receiving additional
money up to 25. This will depend on the decisions you make during the experiment.” Stochastic fees have
been shown to be able to generate samples that are less risk averse than would otherwise have been observed
(Harrison et al., 2009).
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2.2 Risk preference elicitation

We elicited risk preferences using the popular Holt and Laury (2002) multiple price list

(MPL) task, at two payout (low vs. high) amounts. The baseline H&L MPL presented

subjects with a choice between two lotteries, A or B, as illustrated in Table 1. In the first

row, the subject was asked to make a choice between lottery A, which offers a 10% chance

of receiving 2 and a 90% chance of receiving 1.6, and lottery B, which offers a 10% chance

of receiving 3.85 and a 90% chance of receiving 0.1. The expected value of lottery A is 1.64

while for lottery B it is 0.475, which results in a difference of 1.17 between the expected

values of the lotteries. Proceeding down the table to the last row, the expected values of

both lotteries increase, but the rate of increase is larger for option B. For each row, a subject

choose A or B, and one row was randomly selected as binding for the payout. The last row

is a simple test of whether subjects understood the instructions correctly.2 The high payout

task is identical to the control (shown in Table 1) except that all payouts are scaled up by

a magnitude of five.

Table 1: The H&L Multiple Price List

Lottery A Lottery B EVA
(e)

EVB
(e)

Difference
(e)

Open CRRA interval if
subject switches to Lot-
tery B (assumes EUT)p e p e p e p e

0.1 2 0.9 2 0.1 3.9 0.9 0.1 1.64 0.475 1.17 −∞ -1.71
0.2 2 0.8 2 0.2 3.9 0.8 0.1 1.68 0.85 0.83 -1.71 -0.95
0.3 2 0.7 2 0.3 3.9 0.7 0.1 1.72 1.225 0.5 -0.95 -0.49
0.4 2 0.6 2 0.4 3.9 0.6 0.1 1.76 1.6 0.16 -0.49 -0.15
0.5 2 0.5 2 0.5 3.9 0.5 0.1 1.8 1.975 -0.18 -0.15 0.14
0.6 2 0.4 2 0.6 3.9 0.4 0.1 1.84 2.35 -0.51 0.14 0.41
0.7 2 0.3 2 0.7 3.9 0.3 0.1 1.88 2.725 -0.85 0.41 0.68
0.8 2 0.2 2 0.8 3.9 0.2 0.1 1.92 3.1 -1.18 0.68 0.97
0.9 2 0.1 2 0.9 3.9 0.1 0.1 1.96 3.475 -1.52 0.97 1.37
1 2 0 2 1 3.9 0 0.1 2 3.85 -1.85 1.37 +∞

Note: Last four columns showing expected values and implied CRRA intervals were not
shown to subjects.

216 out of 100 subjects failed to pass this test concerning comprehension of lotteries and were omitted
from our sample.
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Instead of providing a table of choices arrayed in an ordered manner all appearing at

the same page as in H&L, each choice was presented separately showing probabilities and

prizes (as in Andersen et al., 2011). Subjects could move back and forth between screens

if they wanted to revise their choices. Once all ten choices in a table were made, the table

was effectively inaccessible. In addition to the choices shown in Table 1, subjects also made

a similar set of ten choices except the magnitudes of all payoffs were scaled up by a factor

of five. The order of appearance of the set of ten choices (low vs. high payouts) for each

subject was completely randomized to avoid order effects Harrison et al. (2005). An example

of one of the decision tasks is shown in Figure 1. For each subject, one of the choices was

randomly chosen and paid out.

Figure 1: Example Decision Task
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3 Structural estimation of risk preferences

3.1 Conceptual specification: Expected utility vs. Rank depen-

dent utility theory

To estimate risk preferences, we follow the framework of Andersen et al. (2008). Let the

utility function be the CRRA specification:

U(M) =
M1−r

1− r
(1)

where r is the CRRA coefficient and where r = 0 denotes risk neutral behavior, r > 0

denotes risk aversion behavior and r < 0 denotes risk loving behavior.

If we assume that expected utility theory (EUT) describes subjects risk preference tasks,

then the expected utility of lottery i can be written as:

EUi =
∑

j=1,2

(p(Mj) · U(Mj)) (2)

where p(Mj) are the probabilities for each outcome Mj that are induced by the experi-

menter (i.e., columns 1, 3, 5 and 7 in Table 1).

Despite the intuitive and conceptual appeal of EUT, a number of experiments suggest

that EUT often fails as a descriptive model of individual behavior. Although there are many

proposed alternatives to EUT, here we consider Rank Dependent Utility (RDU) Quiggin

(1982), which was incorporated into Tversky and Kahneman’s (1992) cumulative prospect

theory. RDU extends the EUT model by allowing for non-linear probabilitiy weighting

associated with lottery outcomes. To calculate decision weights under RDU, one replaces

expected utility in equation (2) with:

RDUi =
∑

j=1,2

w((p(Mj)) · U(Mj)) =
∑

j=1,2

wj · U(Mj)) (3)
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where w2 = w(p2 + p1)− w(p1) = 1− w(p1) and w1 = w(p1) with outcomes ranked from

worst (outcome 2) to best (outcome 1) and w(·) is the weighting function. We assume w(·)

takes the form proposed by Tversky and Kahneman (1992):

w(p) =
pγ

(pγ + (1− p)γ)1/γ
(4)

When γ = 1, it implies that w(p) = p and this serves as a formal test of the hypothesis

of no probability weighting.

3.2 Stochastic error specification: Fechner vs. Luce

To explain choices between lotteries, one option is to utilize the stochastic specifica-

tion originally suggested by Fechner (1966) and popularized by Hey and Orme (1994). In

particular, the following index:

∇EUF = (EUB − EUA)/µ (5)

can be calculated where EUA and EUB refer to expected utilities (or rank-dependent

expected utilities) of options A and B (the left and right lottery respectively, as presented

to subjects), and where µ is a noise parameter that captures decision making errors. The

latent index is linked to the observed choices using a standard cumulative normal distribution

function Φ(∇EU), which transforms the argument into a probability statement.

There are two observationally equivalent interpretations of the Fechner error specification.

The most natural, given the set-up above, is that the term µ literally captures the effect of

decision making errors on the part of the subjects. Another way to interpret this speciation is

through the random utility framework (McFadden, 1974). In this framework, utility consists

of a systematic component, EUA, observable to the analyst, and a stochastic component,

εA, unobserved by the analyst but presumed known to the subject. In the random utility

framework, the probability of choosing option A over B is the probability that EUA−EUB >
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εB − εA. If the difference is distributed normally with mean zero and standard deviation µ,

then the probability of choosing A over B is given by Φ(∇EU) which, of course, is the same

expression shown above.

An alternative to the Fechner error specification, is the Luce error (Luce, 1959) popular-

ized by Holt and Laury (2002). In this case the index in (5) can be written as:

∇EUL =
exp(EUB/µ)

exp(EUA/µ) + exp(EUB/µ)
(6)

3.3 Contextual utility

Wilcox (2011) proposed a “contextual utility” error specification which modifies the Fech-

ner and Luce error specifications, respectively as:

∇EUF = (EUB − EUA)/c/µ (7)

and

∇EUL =
exp(EUB/c/µ)

exp(EUA/c/µ) + exp(EUB/c/µ)
(8)

In (7) and (8), c is a normalizing term, defined as the maximum utility over all prizes in

a lottery pair minus the minimum utility over all prizes in the same lottery pair. It changes

from lottery pair to lottery pair, and thus it is said to be contextual. The contextual utility

correction is basically a way to accommodate lottery-specific heteroskedasticity.

3.4 Estimation

After defining the conceptual model, error specification, and contextual specification, the

conditional log-likelihood can then be written as:

lnL(r, µ; y,X) =
∑

i

((lnZ|yi = 1) + (ln(1− Z)|yi = −1)) (9)
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where Z = Φ(∇EU j) for the Fechner or the Fechner with contextual utility error story

(j = F,CF ) and Z = ∇EU j for the Luce or the Luce with contextual utility error story

(j = L,CL). yi = 1(−1) denotes the choice of the option B(A) lottery in the risk preference

task i. Subjects were allowed to express indifference between choices and were told that

if that choice was selected to be played out, the computer would randomly choose one of

the two options for them and that both choices had equal chances of being selected. The

likelihood function for indifferent choices is constructed such that it implies a 50/50 mixture

of the likelihood of choosing either lottery so that (9) can be rewritten as:

lnL(r, µ; y,X) =
∑

i

((lnZ|yi = 1)+(ln(1−Z)|yi = −1)+(
1

2
lnZ+

1

2
ln(1−Z)|yi = 0)) (10)

Equation (10) is maximized using standard numerical methods. The statistical specifi-

cation also takes into account the multiple responses given by the same subject and allows

for correlation between responses by clustering standard errors, which were computed using

the delta method.

Instead of discriminating between EUT and RDU models, one could allow the data

generating process to admit more than one choice models. Harrison and Rutstrom (2009)

allowed more than one process to explain observed behavior instead of assuming that the data

are generated by a single process. They estimated a model where some choices were allowed

to be EUT-consistent and other choices were allowed to be Prospect Theory-consistent (which

is also equivalent to the rank dependent model in our experimental design) and found roughly

equal support. A mixture model poses a different question to the data. As Harrison et al.

(2012) noted, “if two data-generating processes are allowed to account for the data, what

fraction is attributable to each, and what are the estimated parameter values?”3

Let πEUT denote the probability that EUT is correct and πRDU = 1 − πEUT denote the

3Note that with the mixture specification we adopt, choices as opposed to subjects are categorized as
completely EUT or RDU. Although it is possible to rewrite the likelihood in (11) such that the mixture is
defined over subjects, Harrison and Rutstrom (2009) discuss how allowing choices across the same subject
to differ, is consistent with experimental evidence that task domain can influence the strength of support for
EUT. Similarly, our approach allows us being agnostic about the interpretation of the mixing probability.
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probability that the RDU model is correct. We can then replace (10) with:

lnL(rEUT , rRDU , γ, µ; y,X) = ln(πEUT × LEUT + πRDU × LRDU) (11)

3.5 Estimated risk preferences

The purpose of this section is to demonstrate the implications of different assumptions

about error specification and conceptual model, and illustrate how these choices can lead to

significantly different characterizations of risk preferences; facts which make necessary the

possibility to discriminate between models based on model fit criteria.

Tables 2 and 3 show the estimated parameters from the EUT, RDU and mixture models

when we assume Fechner or Luce error, with and without contextual utility. First compare

the conceptual models, EUT and RDU, under the assumption of a Fehcner or Luce error

specification without accounting for contextual utility. Results show that subjects are on

average risk averse (estimates of r span between 0.638 to 0.682) and that the introduction

of probability weighting does not have a significant effect on risk aversion. This is mainly

because the estimate for γ in the probability weighting function of the RDU model is very

close to 1. Thus in the context of EUT and RDU the choice between a Fechner and a Luce

error specification does not seem to have a substantive effect on implied risk preferences.

However, when we consider the mixture model with Fechner or a Luce error, dramatically

shifts in implied risk preferences occur. First note, that the mixture probabilities πEUT and

πRDU are reversed in magnitude depending on which error specification is assumed. Under

Fechner error, roughly 14% of choices are explained by EUT (86% by RDU) while under

Luce error, roughly 85% of choices are supported by EUT (15% by RDU). In addition, the

estimated risk aversion coefficients imply risk loving preferences for EUT and risk aversion

for RDU under a Fechner error, while it is the exact opposite for the Luce error story. Clearly,

the results regarding underlying risk preferences are highly sensitivity to assumptions about

error specification, a fact which may well cause some skepticism over previous analyses
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Table 2: Estimates assuming Fechner error with and without contextual utility

Fechner error Fechner error with contextual utility
Coef. Std.Err. 95% C.I. LogL Coef. Std.Err. 95% C.I. LogL

EUT
r 0.682 0.05 0.584 0.780

-748.61
0.58 0.06 0.462 0.697

-723.63µ 0.428 0.058 0.314 0.542 0.242 0.02 0.203 0.28

RDU

r 0.65 0.04 0.571 0.728

-747.95

-0.038 0.105 -0.244 0.168

-702.76γ 0.908 0.061 0.788 1.028 3.345 0.35 2.659 4.032
µ 0.378 0.041 0.297 0.458 0.274 0.014 0.246 0.302

Mixture

rEUT -0.63 0.269 -1.16 -0.105

-713.87

0.409 0.081 0.251 0.566

-693.94

rRDU 0.672 0.028 0.616 0.727 -0.291 0.173 -0.63 0.047
γ 0.881 0.062 0.758 1.003 0.391 0.036 0.322 0.461
µ 0.229 0.023 0.183 0.275 0.106 0.017 0.073 0.14

πEUT 0.142 0.041 0.061 0.223 0.316 0.098 0.124 0.509
πRDU 0.858 0.041 0.777 0.939 0.684 0.098 0.491 0.876

Wald tests: Wald tests:

γ = 1: p-value=0.135 and 0.056 for
RDU and mixture models, respectively

γ = 1: p-value=0.00 and 0.00 for RDU
and mixture models, respectively

πEUT = 0 & πRDU = 1: p-value=0.00 πEUT = 0 & πRDU = 1: p-value=0.00
πEUT = 1 & πRDU = 0: p-value=0.00 πEUT = 1 & πRDU = 0: p-value=0.00

πEUT = 0.5 & πRDU = 0.5: p-value=0.00 πEUT = 0.5 & πRDU = 0.5: p-value=0.061
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Table 3: Estimates assuming Luce error with and without contextual utility

Luce error Luce error with contextual utility
Coef. Std.Err. 95% C.I. LogL Coef. Std.Err. 95% C.I. LogL

EUT
r 0.677 0.049 0.58 0.773

-738.1
0.598 0.06 0.48 0.717

-719.19µ 0.231 0.031 0.17 0.291 0.138 0.012 0.114 0.162

RDU

r 0.638 0.04 0.561 0.716

-737.25

-0.016 0.121 -0.254 0.222

-705.64γ 0.9 0.058 0.787 1.013 3.275 0.367 2.556 3.994
µ 0.199 0.021 0.157 0.241 0.163 0.01 0.144 0.181

Mixture

rEUT 0.687 0.061 0.569 0.806

-718

0.084 0.192 -0.292 0.46

-696.61

rRDU -0.558 0.275 -1.097 -0.019 0.059 0.125 -0.186 0.304
γ 0.413 0.23 -0.038 0.864 0.508 0.029 0.451 0.565
µ 0.145 0.03 0.086 0.205 0.071 0.012 0.048 0.094

πEUT0 0.853 0.058 0.739 0.966 0.064 0.178 -0.285 0.412
πRDU 0.147 0.058 0.034 0.261 0.936 0.178 0.588 1.285

Wald tests: Wald tests:

γ = 1: p-value=0.082 and 0.011 for
RDU and mixture models, respectively

γ = 1: p-value=0.00 and 0.00 for RDU
and mixture models, respectively

πEUT = 0 & πRDU = 1: p-value=0.00 πEUT = 0 & πRDU = 1: p-value=0.721
πEUT = 1 & πRDU = 0: p-value=0.011 πEUT = 1 & πRDU = 0: p-value=0.00

πEUT = 0.5 & πRDU = 0.5: p-value=0.00 πEUT = 0.5 & πRDU = 0.5: p-value=0.014
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reporting a single specification.

Now we turn to the impact of contextual utility. The EUT model is least affected by the

introduction of contextual utility in both the Fechner and Luce error specification. Although,

the CRRA estimates are lower in magnitude as compared to the non-contextual utility

specifications (compare for example, the 0.58 estimate with 0.68 for the Fechner error), the

estimates still imply significant risk aversion. The most significant effects are found in the

RDU specifications. CRRA coefficients span around zero, implying risk neutrality, while γ

is estimated to have an unusually large value of 3. While large, this particular value for

γ, is not totally unrealistic, and Figure 2 shows it implies significant under-weighting for

all probabilities. In fact, it implies that subjects totally ignore choices with probabilities

lower than 0.2. The most commonly observed values for γ, e.g. when γ = 0.6, also imply

under-weighting for probabilities larger than 0.35.

Figure 2: Comparison of probability weighting functions for three gamma (g) values

The introduction of a mixture specification not only produces different results as com-

pared to the non-contextual utility counterparts, but it also produces different character-

izations of risk preferences depending on whether the Fechner or Luce error are assumed.
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For example, under the Fechner error, the mixture probabilities imply that about 31.6%

of all choices are EUT consistent while under the Luce error only about 6% of the choices

are consistent with EUT. Under the Fechner error, the risk aversion coefficients imply risk

aversion for EUT and risk neutrality of RDU while both CRRA estimates under the Luce

error specification span around zero implying risk neutrality. Note that under Luce error,

πEUT fails to reject the null, which implies that the mixture model could collapse to the RDU

specification. In addition, γ values are estimated at the more commonly observed values of

0.4 and 0.5, respectively.

Taken together, the results in Tables 2 and 3 demonstrate that the menagerie of error

stories that one could adopt for modeling risk preference estimation can lead to a variety of

characterizations of risk preferences. In fact, in Tables 2 and 3, the estimated coefficient

or relative risk aversion spans across models from a low of -0.632 (extreme risk seeking)

to a high of 0.687 (extreme risk aversion). Moreover, the estimate of the shape of the

probability weighting function under RDU goes from γ = 0.391 (extreme under-weighting

of low probability events) to γ = 0.9 (near linear probability weighting implying EUT) to

γ = 3.345 (under-weighting of all probabilities) depending on what is assumed about the

error and contextual utility specification. Thus, it is critically important to be able to select

between competing models based on model fit criteria.

4 Model selection criteria

4.1 Information criteria

Information criteria like the Akaikes information criterion (AIC) and the Bayesian infor-

mation criterion (BIC) are common measures of goodness of fit; however, the statistics do

not reveal how well a model fits the data in an absolute sense, i.e., there is no null hypothesis

being tested. Nevertheless, these measures offer relative comparisons between models on the

basis of information lost from using a model to represent the (unknown) true model.
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Table 4 shows that based on AIC and BIC criteria, the contextual utility specifica-

tions are always preferred over their non-contextual utility counterpart specifications. When

comparing between EUT, RDU and the mixture specifications, AIC and BIC coincide in

indicating that the Luce error with contextual utility (for EUT) and the Fechner error story

with contextual utility (for RDU and mixture) are the error stories best fitting the data.

When comparing between models, the mixture specification with Fechner error and con-

textual utility shows the lowest AIC/BIC values.

Table 4: Information criteria and out-of-sample Log-Likelihood function summary statistics

AIC BIC OSLLF

EUT

F 1501.23 1512.08 -759.04
CF 1451.26 1462.12 -733.91
L 1480.19 1491.05 -747.64
CL 1442.37 1453.23 -729
RDU

F 1501.89 1518.17 -759.35
CF 1411.53 1427.81 -714.01
L 1480.5 1496.78 -747.69
CL 1417.28 1433.56 -715.76
Mixture

F 1437.74 1464.88 -724.7
CF 1397.88 1425.01 -705.56

L 1446 1473.13 -730.44
CL 1403.21 1430.35 -710.06

Note: CF=Fechner error with contextual utility, CL=Luce error with contextual
utility, F=Fechner error, L=Luce error. Best fitting model is indicated in bold.

4.2 Non-nested tests

The classical approach for testing between non-nested models is the Vuong test (Vuong,

1989). The Vuong test is a model selection test that compares between competing mod-

els and chooses the best model based on some predefined criteria. The Vuong test, as

many other model selection criteria, is based on the Kullback-Leibler Information Criterion

(KLIC), which measures the distance between a hypothesized likelihood function and the
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true likelihood function. The null hypothesis of the Vuong test is:

H0 : E[ln
f(Yi|Xi; θf )

g(Yi|Xi; θg
] = 0 (12)

where θf and θg are parameters and f(·), g(·) are the likelihood functions of the two com-

peting models. The null in (13) implies that the two models are equivalent. The alternative

hypothesis favors the model with the higher average log-likelihood, if it is significantly greater

than the average log-likelihood of the competing model.

Because the Vuong test is only normally distributed asymptotically, small sample sizes

may pose a problem. A non-parametric alternative to the Vuong test is the Clarke test

(Clarke, 2003). The Clarke test is a paired sign test of the differences in the individual

log-likelihoods from two non-nested models. The null hypothesis is that the probability of

the log-likelihood paired differences being greater than zero is equal to the probability of

the log-likelihood paired differences being less than zero, which in essence is a binomial test

with p = 0.5. The Clarke test is similar to the Wilcoxon sign-rank test, but without the

additional assumption that the distribution of paired differences is symmetric.

If the models are equally close to the true specification, half the log-likelihood differences

should be greater than zero and half should be less than zero. If one model is “better”, then

more than half the log-likelihood differences should be greater than zero. The null hypothesis

of the Clarke test is:

H0 : median of lnf(Yi|Xi; θf )− lng(Yi|Xi; θg) = 0 (13)

Table 5 shows results from Vuongs tests which are performed between error specifications for

the EUT, RDU and the mixture models. We first compare the errors with contextual utility

versus the errors without contextual utility. The large positive values, and the corresponding

low p-values, indicate that the null that the two competing models are equivalent is rejected

in all cases. In fact, the contextual utility specification is favored against the non-contextual
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utility specification across EUT, RDU and the mixture models.

Table 5: Vuongs non-nested tests

Vuong statistic p-value

EUT

CF vs. F 3.324 0.000
CL vs. L 2.927 0.002
CF vs. CL -3.038 0.999
RDU

CF vs. F 4.251 0.000
CL vs. L 3.451 0.000
CF vs. CL 6.568 0.000
Mixture

CF vs. F 3.872 0.000
CL vs. L 3.838 0.000
CF vs. CL 1.158 0.123

Note: CF=Fechner error with contextual utility, CL=Luce error with
contextual utility, F=Fechner error, L=Luce error.

Next, we compare the Fechner and Luce error specifications with contextual utility. The

large negative value for EUT favors the Luce error while for RDU the Fechner error is

favored. For the mixture model, we fail to reject the null when we compare between the two

contextual utility specifications, although the result is marginally not significant in favor of

the Fechner error. In all, results from Vuongs tests support the results from the AIC and

BIC model selection criteria.

Vuongs test is suitable for non-nested models, thus we do not compare error specifications

between EUT, RDU and the mixture models since these are, by construction, nested in each

other. For example, one can test whether the mixture model collapses to EUT or RDU by

testing whether the mixture probabilities are statistically significantly different from zero. Or

one can test whether RDU collapses in EUT by testing whether γ = 1. For the Fechner error

specification with contextual utility (note that although this specification is not favored by

Vuongs test, the test marginally fails to reject the null), Wald tests in Table 2 show that it

neither collapses to either EUT or RDU, nor does RDU in the mixture specification collapses

to EUT.
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Table 6 shows results from Clarkes non-parametric test. For each model (EUT, RDU,

mixture), we first compare the contextual utility with the non-contextual utility counterparts.

Each comparison involves two, one-sided tests. For EUT, RDU and the mixture models, the

Fechner error with contextual utility is favored as compared to the non-contextual utility

counterpart. The Luce error with contextual utility is favored in the RDU model, while

Clarkes tests show that in EUT and the mixture specification Luce error with and without

contextual utility are equivalent.

Further comparisons, show that the Fechner error with contextual utility is favored for

RDU and the mixture specifications. For EUT, Clarkes test shows that Luce error with

contextual utility performs better than Fechner error with contextual utility, while it is

equivalent with the Luce error without contextual utility. This is an indication that inferences

that involve assumptions about transitivity between pairs of models tested, may not follow

in these types of tests.

4.3 Out-of-sample predictions

The out-of-sample log likelihood (OSLLF) criterion evaluates models by their fit out of

sample. In essence, the OSLLF approach uses one set of data to estimate the parameters

of the model, and then, given these parameters, calculates the likelihood function values

observed at out-of-sample observations. The OSLLF value is calculated by using out-of

sample observations to calculate the likelihood function:

Î(f(·)|Y ) =
N∑

i=1

ln[f(yi|θ̂f,−i)] (14)

where θ̂f,−i is the parameter vector estimated without the ith set of observations. The

OSLLF value can be calculated in several ways (Norwood et al., 2004). The estimate θ̂f,−i

could be calculated using cross-validation where θ̂f,−i is estimated using every observation

except i. This is referred to as “leave one out at a time forecasting.” Alternatively, one could
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Table 6: Clarkes non-parametric non-nested tests

EUT

H1 : Median of CF − F > 0 Binomial(n = 1680, x ≥ 890, p = 0.5) = 0.0078
H1 : Median of CF − F < 0 Binomial(n = 1680, x ≥ 790, p = 0.5) = 0.9931

H1 : Median of CL− L > 0 Binomial(n = 1680, x ≥ 836, p = 0.5) = 0.587
H1 : Median of CL− L < 0 Binomial(n = 1680, x ≥ 844, p = 0.5) = 0.432

H1 : Median of CF − CL > 0 Binomial(n = 1680, x ≥ 620, p = 0.5) = 1.00
H1 : Median of CF − CL < 0 Binomial(n = 1680, x ≥ 1060, p = 0.5) = 0.00

H1 : Median of CF − L > 0 Binomial(n = 1680, x ≥ 836, p = 0.5) = 0.587
H1 : Median of CF − L < 0 Binomial(n = 1680, x ≥ 844, p = 0.5) = 0.432

RDU

H1 : Median of CF − F > 0 Binomial(n = 1680, x ≥ 950, p = 0.5) = 0.00
H1 : Median of CF − F < 0 Binomial(n = 1680, x ≥ 730, p = 0.5) = 1.00

H1 : Median of CL− L > 0 Binomial(n = 1680, x ≥ 926, p = 0.5) = 0.00
H1 : Median of CL− L < 0 Binomial(n = 1680, x ≥ 754, p = 0.5) = 1.00

H1 : Median of CF − CL > 0 Binomial(n = 1680, x ≥ 1030, p = 0.5) = 0.00
H1 : Median of CF − CL < 0 Binomial(n = 1680, x ≥ 650, p = 0.5) = 1.00

Mixture

H1 : Median of CF − F > 0 Binomial(n = 1680, x ≥ 966, p = 0.5) = 0.00
H1 : Median of CF − F < 0 Binomial(n = 1680, x ≥ 714, p = 0.5) = 1.00

H1 : Median of CL− L > 0 Binomial(n = 1680, x ≥ 838, p = 0.5) = 0.548
H1 : Median of CL− L < 0 Binomial(n = 1680, x ≥ 842, p = 0.5) = 0.471

H1 : Median of CF − CL > 0 Binomial(n = 1680, x ≥ 897, p = 0.5) = 0.003
H1 : Median of CF − CL < 0 Binomial(n = 1680, x ≥ 783, p = 0.5) = 0.997

H1 : Median of CF − L > 0 Binomial(n = 1680, x ≥ 947, p = 0.5) = 0.00
H1 : Median of CF − L < 0 Binomial(n = 1680, x ≥ 733, p = 0.5) = 1.00

Note: H0 : Median of model f − g = 0 for all tests, where f , g =CF , CL, F , L and
CF=Fechner error with contextual utility, CL=Luce error with contextual utility,
F=Fechner error, L=Luce error
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partition the observations into groups where each group is iteratively omitted and θ̂f,−i is

estimated. Then, the omitted group of observations can be used to calculate the OSLLF.

This procedure is known as grouped-cross-validation. In what follows, we carry out group-

cross validation with individuals being the partitions, where each partition contains twenty

observations (as many as the choices of the subject). Essentially, we leave one subject (and

their associated 20 choices) out at a time, estimate the model, and calculate (14) for the

subject. The process is repeated for every subject in the sample.

Table 4 reports OSLLF values for each of the error specification for each conceptual

model (EUT, RDU and the mixture model). The results reveal that the contextual utility

specifications rank higher than their non-contextual utility counterparts across all models.

For EUT, the error specification that ranks highest is the Luce error with contextual utility

while the Fechner error with contextual utility ranks higher for RDU and the mixture model.

Across all error specifications and conceptual models, the Fechner error with contextual

utility ranks highest both in terms of OSLLF.

4.4 Conclusion

To derive estimates of individuals risk preferences, analysts have to have some mechanism

for translating the conceptual models of risky decision making into an empirical model that

includes stochastic errors. The results presented in this paper reveal that seemingly innocu-

ous assumptions about this stochastic process can lead to substantially different inferences

about risk preferences. Indeed, one can estimate parameters consistent with a high level of

risk seeking or a high level of risk aversion depending on how errors are incorporated into

the statistical model; a finding which suggests caution in naively assuming adopting a single

error specification.

A battery of in- and out-of-sample model selection criteria suggest that the model that

best fits our data is an EUR-RDU mixture model assuming a Fechner error with contextual

utility. We find that 32% of the sample is characterized by EUT with a coefficient of relative
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risk aversion equal to 0.4, and 68% is characterized by RDU with a coefficient of relative

risk aversion statistically indistinguishable from zero but with a probability weighting func-

tion implying significant overweighting of low probability outcomes and under-weighting of

moderate to high probability outcomes.
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