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Department of Mathematical Economics, Poznań University of Economics,
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Abstract

Here we prove the goodnes property of adaptive rolling plans a multisector optimal
growth model under decreasing returns in deterministic environment. Further, while
searching for goodness, we give a new proof of strong concavity of an indirect utility
function - just with help of some matrix algebra and differential calculus.
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1 Introduction

The idea of this paper comes from Kaganovich (1996) where there is stated a hypoth-
esis that adaptive rolling plans are good (in Gale’s sense, see Gale (1967)), if there is
uniform strong convexity of technology. Goodnes of rolling plans in one sector models
was proven in Bala et al. (1991). Fast convergence (at, asymptotically, geometric rate)
toward turnpike under linear technology (with suitably defined opitmality criterion)
is known from Kaganovich (1998). We extend these results to the case where produc-
tion of goods is described by neoclassical technology.
Rolling planning is a procedure of constructing infinite horizon programs. After find-
ing an optimal process starting from a given initial state and under a fixed and finite
horizon length of planning, only the first step of the plan is executed and a new op-
timal plan is constructed starting from just achieved state (Goldman (1968)). When
feasible processes of growth are those in which initial and final state of the economy is
the same (changes may occur beetwen initial and final periods), then we have to deal
with adaptive rolling planning procedure. It is known that in one-sector case adap-
tive rolling plans are efficient and good (Bala et al. (1991)). In Kaganovich (1996) it
was proven that rolling plans converge toward turnpike, 1 which is a necessary but

1 A summary of turnpike theory can be found in McKenzie (2002).



not sufficient condition for goodnes. In Kaganovich (1998) it was shown that under
linear technology and maximal growth rate as optimality criterion (for constructing
adaptive rolling plans) rolling plans approach von Neumann ray at (asymptotically)
maximal growth rate that can be achieved among all balanced growth processes. We
prove that rolling plans are good 2 under neoclassical technology of goods (theorem
2) and while proving it we use strong concavity (Vial (1983)) of an indirect utility
function near turnpike. To this goal we firstly costruct indirect utility function (defini-
tion 4). Our construction differs from typical one (Venditti (1997)) in that we express
utility as function of today’s and tommorow’s inputs and not as a function of today’s
and tommorow’s outputs (stocks of goods). Strong concavity was proven in Venditti
(1997) for an economy where there is only one consumption good and all other goods
are capital goods. In our case - to be in compliance with Kaganovich’s (Kaganovich
(1996)) approach - all goods are treated as consumption/production goods at a time,
so that Venditti’s approach is not applicable here. 3 We also show that strong con-
cavity of indirect utility function holds (under our assumptions) only if at most one
production function is positively homogeneous of degree one and the other are subject
to decreasing returns to scale. 4

The next two sections set notation and preliminaries. In section 4 and 5 we included
main results. Section 6 is a summary.

2 Notation and conventions

Rn denotes n-dimensional real linear space, and Rn
+ is its non-negative orthant. A

point x ∈ Rn possess coordinates x1, . . . , xn. If an element of Rn is named xj, where
j is a nonnegative integer, then xj = (x1j, . . . , xnj). For x, x

′ ∈ Rn we write x ≥ x′

iff xi ≥ x′
i, i = 1, . . . , n; x 
 x′ means x ≥ x′ and x 6= x′; x > x′ is equivalent to

xi > x′
i, i = 1, . . . , n. If n and m are positive itegers, then for a ∈ R symbol an×m

denotes a matrix composed of n rows and m columns with a on each coordinate; an
stands for an×1. For two matrices A, B their (right) Kronecker product is written
as A ⊗ B (see Lancaster and Tismenetsky (1985), p. 407). Transposition of A is
denoted by AT . Euclid norm of x ∈ Rn is denoted as ‖x‖. Writing (x, y) ∈ A × B,
A ⊂ Rn, B ⊂ Rm we mean x ∈ A, y ∈ B. Given matrices A (m rows, n columns)
and B (n rows, k columns) and equation AB = 0, we deduce zero on right-hand-side
is 0m×k (without explicitly writing it). Analogously: if Rn ∋ x ≥ 0, then zero on the
right-hand-side is 0n. Unit matrix of rank n is denoted as In.

2 So that the procedure of constructing adaptive rolling plans can be used to build an
evolutionary mechanism - more on this see in Bala et al. (1991) or Kaganovich (1996).
3 We tried to prove strong concavity of indirect utility function when its arguments were
outputs - but we did not manage to do it beacuase in that approach we could not determine
definiteness of counterpart of matrix V

′′
(equation 21), which is crucial.

4 Assumptions on production functions similar to ours were taken in Hirota and Kuga
(1971), Benhabib and Nishimura (1979a), Benhabib and Nishimura (1979b), Benhabib and
Nishimura (1981).
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3 Preliminaries

To achieve our goal we have to give more detailed description of technology set Z

than it has been done in Kaganovich (1996). Technology set Z is defined as

Z = {(x, y) ∈ Rn
+ ×Rn

+ : ∃xj ∈ Rn
+, j = 1, . . . , n,

n∑

j=1

xj ≤ x,

∃lj ∈ R+, j = 1, . . . , n,
n∑

j=1

lj ≤ 1, yj ≤ fj(x
j, lj)}, (1)

where fj : Rn+1
+ → R+ is production function of j-th good, xj = (x1j, . . . , xnj)

represents producible goods inputs and lj stands for labor input, j = 1, . . . , n. We
assume for j = 1, . . . , n

(i) fj is continuous on Rn
+, twice continuously differentiable on intRn+1

+ , strictly in-

creasing on intRn+1
+ with ∂fj(x

j ,lj)

∂xij
> 0 ∂fj(x

j ,lj)

∂lj
> 0, i = 1, . . . , n, strictly concave

concave on intRn+1
+ and fj(x

j, lj) > 0 only if xj > 0, lj > 0. Moreover Hessian
of fj is negative definite everywhere on intRn+1

+ .
(ii) There exists β > 0 s.t. if ‖x‖ > β, then for (x, y) ∈ Z : y ≤ x.
(iii) There exists expansible stocks vector x ∈ Rn

+: y > x for some y ∈ Rn
+, (x, y) ∈ Z.

Construction of Z and assumption (i) guarantee that set Z is closed and convex set;
free disposal is allowed and Z admits weak strict convexity (external effects) on inputs:

(x, y) ∈ Z, (x′, y′) ∈ Z, x 6= x′ implies that there exists z > y+y′

2
:
(
x+x′

2
, z

)

∈ Z. These

properties imply that assumptions imposed on production set in Kaganovich (1996)
are met, and we can use results stated therein.
Consumption c is valuated by an instantaneous utility function U : Rn

+ → R+ which
satistfies

(iv) U is continuous, strictly concave and twice continuously differentiable on intRn
+

with negative defined Hessian.
(v) U is strictly increasing on intRn

+: c 
 c′ ≥ 0 ⇒ U(c) > U(c′), with ∂U(c)
∂cj

> 0.

Let us fix initially available input x ∈ Rn
+ and N ∈ N. A sequence {(xt, yt, ct)}

N
t=1 ⊂

Rn
+ ×Rn

+ ×Rn
+ is called feasible N -process from x to b ∈ Rn

+, if

(x, y1) ∈ Z

(xt, yt+1) ∈ Z, t = 1, . . . , N − 1,

xt + ct ≤ yt, t = 1, . . . , N,

xN ≥ b.

(2)

Sequence {(xt, yt, ct)}
∞
t=1 ⊂ Rn

+ ×Rn
+ ×Rn

+ is called feasible ∞-process from x if for
all t ≥ 1 it holds (xt, yt+1) ∈ Z, ct + xt ≤ yt and (x, y1) ∈ Z. A N -feasible process
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from x ∈ Rn
+ to b ∈ Rn

+ is called N -optimal from x to b if it maximizes

∑N
t=1 U(ct) (3)

over the set of all N -feasible processes from x0 to b. We are interested in properties
of adaptive rolling plans defined as follows 5

Definition 1 Fix x ∈ Rn
+. A {(xt, yt, ct)}

∞
t=1, xt, yt, ct ∈ Rn

+, ∀t = 1, 2, . . . , is called
adaptive rolling plan from x if for all t = 1, 2, . . . sequence

((xt, yt, ct), (xt+1, yt+1, ct+1)),

is 2-optimal process from xt−1 to xt−1, where x0 = x.

From now on we assume that there exists an adaptive rolling plan for a given initial
inputs vector x0.

Definition 2 Triplet (x, y, c) ∈ Rn
+ ×Rn

+ ×Rn
+ is called turnpike if it solves

maxU(c)

x+ c ≤ y,

(x, y) ∈ Z,

c, x, y ∈ Rn
+.

Under our assumptions turnpike exists and is unique. In what follows we denote
turnpike as (x, y, c) and U = U(c). We also assume

(vi) Turnpike consumption c is positive, i.e. c > 0.

We shall show that adaptive rolling plans enjoy a goodness property Gale (1967)
defined as

Definition 3 Let x0 ∈ Rn
+. A feasible ∞-process from x0, {(ct, xt, yt)}

∞
t=0, is called

good if

lim inf
N→∞

N∑

t=1

(U(ct)− U) > −∞. (4)

It is known that for any ∞-process lim sup of left-hand-side in (4) series is always
finite and if lim inf is finite then the series converges Gale (1967). Further, if a process
is good then it converges to the turnpike - it is a necessary condition for goodness -
and as it has been said this property holds in our setting (by results of Kaganovich
(1996)). Our goal is to prove that the speed of convergence toward turnpike is high
enough to assure condition (4). To achieve the end we need to show that indirect
utility function (to be defined below) is twice continuously differentiable and strictly
concave near the turnpike and that its Hessian is negative definite at the turnpike.

5 Compare it to definitions in Bala et al. (1991) or Kaganovich (1996).
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Definition 4 Indirect utility function V : Rn
+ × Rn

+ → Rn
+ is constructed in the

following manner 6

∀x, x′ ∈ Rn
+ V (x, x′) := max

y∈Rn
+
:x′≤y, (x,y)∈Z

U(y − x′). (5)

Certainly, function V is concave and continuous, for x, x′ near the turnpike (x, x).

4 Strong concavity of indirect utility function near turnpike

Now we shall use the strength of definition of technology set Z and assumptions. Fix
x, x′ ∈ intRn

+. Optimization problem defining function V :

maxU(y − x′)

x′ ≤ y,

(x, y) ∈ Z,

y ∈ Rn
+,

(6)

is - due to assumptions (i), (iv) - equivalent to concave maximization problem

maxU(f1(x
1, l1)− x′

1, . . . , fn(x
n, ln)− x′

n)

x′
j ≤ fj(x

j, lj),

x−
∑n

j=1 x
j ≥ 0,

∑n
j=1 lj ≤ 1,

xj ∈ Rn
+,

j = 1, . . . , n,
(7)

in the following sense: if x1, . . . , xn, with some choice of l1, . . . , ln, solves (7), then
y = (f1(x

1, l1), . . . , fn(x
n, ln)) solves (6) and every solution of (6) is obtained by some

choice of x1, . . . , xn and l1, . . . , ln solving (7) - in fact this choice is unique (again by
assumptions (i), (iv)).

4.1 Non-homogeneous case

We just keep assumption (i) in force.

Lemma 1 There exists a neigbourhood W of (x, x) such that V is a twice continu-
ously differentiable and strongly concave on W . 7

6 If a set is empty then maximum value of a function over it is −∞, as usual convention.
7 Symmetric matrix A is called negative definite (nonpositive definite) if all its eigenvalues
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Proof: We divide the proof into three steps. 8

Step 1 Lagrange multipliers λ and sectoral inputs xi as twice continuously differen-
tiable functions of x, x′.
We know that there is one-to-one relationship between solutions of (6) and (7). We
shall show that solution of (7) depends twice continuously differentiably on (x, x′)
in a neighbourhood of (x, x). Let yj = fj(x

j, lj) for x
1, . . . , xn, l1, . . . , ln solving (7).

By assumption (vi) fj(x
j, lj) > xj, j = 1, . . . , n. Obviously, by assumptions (i) and

(v), for any solution x1, . . . , xn, l1, . . . , ln of (7) (under any given x, x′ > 0), it holds
that x =

∑n
j=1 x

j and xj > 0, j = 1, . . . , n, near (x, x), since solution of (7) depends
continuously on (x, x′) (by Berge’s maximum theorem, Lucas and Stokey (1989), p.
62). Therefore Lagrange function for (x, x′) near (x, x) can be written as

L(x1, l1, . . . , x
n, ln, λ1, . . . , λn, λn+1, x, x

′) =

U(f1(x
1, l1)− x′

1, . . . , fn(x
n, ln)− x′

n) +
n∑

i=1

λi(xi −
n∑

j=1

xij) + λn+1(1−
n∑

j=1

lj), (8)

where λi, i = 1, . . . , n+1 denote Lagrange multipliers. Necessary and sufficient condi-

tions for optimality (Takayama (1985), p.91) of a feasible solution x1, . . . , xn, l
1
, . . . , l

n

of (7) at (x, x) reads as

∂U(F−x)
∂cj

∂fj(x
j ,l

j
)

∂xij
− λi = 0, ∂U(F−x)

∂cj

∂fj(x
j ,l

j
)

∂lj
− λn+1 = 0 (9)

for all i, . . . , n, j = 1, . . . , n, for some positive optimal multipliers λi, where F =
F (x1, l1, . . . , x

n, ln) and

F (x1, l1, . . . , x
n, ln) = (f1(x

1, l1), . . . , fn(x
n, ln)).

Conditions (9) in matrix notation can be written as

U
′
F

′
− 11×n ⊗ λ = 0, (10)

where U
′

is first derivative of U evaluated at F (x1, l1, . . . , x
n, ln) − x,

F
′
= F ′(x1, l1, . . . , x

n, ln) and

F ′(x1, l1, . . . , x
n, ln) =













∂f1(x1)
∂x1 0 0 . . . 0

0 ∂f2(x2)
∂x2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 ∂fn(xn)
∂xn













,

are negative (nonpositive). If A is nonpositive definite and is not negative definite then we
call it negative semidefinite (Lancaster and Tismenetsky (1985), p. 179). It is known that a
twice continuously differentiable concave function is strongly concave on W iff its Hessian
is negative definite on W with eigenvalues strictly separated from 0 - proof of this fact and
definiction of strong concavity (convexity) is contained in Vial (1983).
8 The first one is rather standard when it goes about its idea, see Benhabib and Nishimura
(1979a), Benhabib and Nishimura (1979b), Hirota and Kuga (1971).
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where xj = (xj, lj),
∂fj(x

j)

∂xj =
[
∂fj(x

j ,lj)

∂x1j
, . . . ,

∂fj(x
j ,lj)

∂xnj
,
∂fj(x

j ,lj)

∂lj

]

,

λ = (λ1, . . . , λn, λn+1). Define function G : (intR+)
n(n+1) × intRn+1

+ × intRn
+ ×

intRn
+ → R

n(n+1)
+ ×Rn+1

+ as

G(x11, . . . , xn1, l1
︸ ︷︷ ︸

x1

, x12, . . . , xn2, l2
︸ ︷︷ ︸

x2

, . . . x1n, . . . , xnn, ln
︸ ︷︷ ︸

xn

︸ ︷︷ ︸

x

, λ1, . . . , λn, λn+1
︸ ︷︷ ︸

λ

, x, x′) =

=



U ′(F (x)− x′)F ′(x)− 11×n ⊗ λ, x−
n∑

j=1

xj, 1−
n∑

j=1

lj



 . (11)

By assumption of optimality of x = (x1, l1
︸ ︷︷ ︸

x
1

. . . , xn, ln
︸ ︷︷ ︸

x
n

) at (x, x) it holds that

G(x, λ, x, x) = 0

and since G is of class C1 in a neighbourhood of (x, λ, x, x), then - by the implicit
function theorem - we could express x and λ as continuously differentiable functions

of x, x′ at a neighbourhood of (x, x) if we knew that ∂G(x,λ,x,x)
∂(x,λ)

were invertible. After
some manipulations one gets

∂G(x, λ, x, x)

∂(x, λ)
=






F
′T
U

′′
F

′
+ (diag(U

′
)⊗ In+1)F

′′
−1n×1 ⊗ In+1

−11×n ⊗ In+1 0(n+1)×(n+1)




 =:






A B

BT 0(n+1)×(n+1)




 , (12)

where U
′′
= U ′′(F (x)− x) is Hessian of U evaluated at F (x)− x, F

′′
= F ′′(x) and

F ′′(x) = diag(f ′′
1 (x

1, l1), . . . , f
′′
n(x

n, ln)),

diag(U ′) is diagonal matrix of rank (n + 1)2 with ∂U
∂c1

, . . . , ∂U
∂cn

on the diagonal. We

shall show first that A is a negative definite matrix. Certainly U
′′
is a negative definite

and so is F
′′
. Further (diag(U

′
) ⊗ In+1)F

′′
is by assumption (i) negative definite, so

that A is negative definite. It is easily seen that that for any 0 6= x ∈ Rn(n+1) which

satisfies (−11×n ⊗ In+1)x = 0, it holds that xT ∂2L(x,λ,x,x)
∂x2 x < 0. Therefore matrix (12)

is non-singular. Further,

∂G(x, λ, x, x)

∂(x, x′)
=










0n(n+1)×n −F
′T
U

′′

In 0n×n

01×n 01×n










, (13)

By the implicit function theorem (Nikaido (1968), p. 85) there exists a neighbour-
hood W of (x, x) and continuously differentiable function g : W → (intR+)

n(n+1) ×
intRn

+ such that ∀(x, x′) ∈ W : G(g(x, x′), x, x′) = 0 and if (x, λ) 6= g(x, x′) then
G(x, λ, x, x′) 6= 0 and it follows that x does not solve (7) at (x, x′). Since g(x, x′) ∈
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R
n(n+1)
+ ×Rn+1

+ we write g(x, x′) = (x(x, x′), λ(x, x′)) and it holds ∀(x, x′) ∈ W :

V (x, x′) = U(F (x(x, x′))− x′), (14)

∂g(x, x)

∂(x, x′)
= −

[

∂G(x, λ, x, x)

∂(x, λ)

]−1
∂G(x, λ, x, x)

∂(x, x′)
(15)

By envelope theorem (see Takayama (1985), p. 138) we get from (8)

∂V (x, x′)

∂(x, x′)
= (λ1(x, x

′), . . . , λn(x, x
′), −U ′(F (x(x, x′)− x′)) (16)

and since λ(·, ·), x(·, ·) are continuously differentiable on W then V is twice continu-
ously differentiable on W .
Step 2 Hessian of indirect utility function
All we need now is to show that Hessian V ′′(x, x) is negative definite. It holds

V
′′
= V ′′(x, x) =





∂(λ1,...,λn)(x,x)
∂x

∂(λ1,...,λn)(x,x)
∂x′

−∂U(F (x(x,x))−x)
∂x

−∂U(F (x(x,x)−x)
∂x′



 =

=





∂(λ1,...,λn)(x,x)
∂x

∂(λ1,...,λn)(x,x)
∂x′

−U
′′
F

′ ∂x
∂x

−U
′′
F

′ ∂x
∂x

+ U
′′



 =

=




0n×n(n+1) In 0n×1

−U
′′
F

′
0n×n 0n×1









∂x
∂x

∂x
∂x′

∂λ
∂x

∂λ
∂x′



+




0n×n 0n×n

0n×n) U
′′



 . (17)

By (14), (15) and (17)

V
′′
= −




0n×n(n+1) In 0n×1

−U
′′
F

′
0n×n 0n×1





[

∂G(x, λ, x, x)

∂(x, λ)

]−1







0n(n+1)×n −F
′T
U

′′

In 0n×n

01×n 01×n






+

+




0n×n 0n×n

0n×n U
′′



 . (18)

By (12) can write
[

∂G(x, λ, x, x)

∂(x, λ)

]−1

=






C D

DT E




 , (19)

where 9

E = −(BTA−1B)−1,

D = −A−1BE,

C = A−1 + A−1BEBTA−1,

(20)

9 See (12).
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and by (18) we get

V
′′
=













−
[

In 0n×1

]

E






In

01×n






[

In 0n×1

]

DTF
′T
U

′′

U
′′
F

′
D






In

01×n




 −U

′′
F

′
CF

′T
U

′′













+






0n×n 0n×n

0n×n U
′′




 . (21)

Step 3 Negative definiteness of Hessian
Since V is concave, then V

′′
is at least nonpositive definite. To show that V

′′
is

negative definite we need to prove that it is non-singular. Suppose that there exists
Rn ×Rn ∋ (x, x′) such that

−
[

In 0n×1

]

E






In

01×n




 x+

[

In 0n×1

]

DTF
′T
U

′′
x′ = 0,

U
′′
F

′
D






In

01×n




 x− U

′′
F

′
CF

′T
U

′′
x′ + U

′′
x′ = 0.

This system of equations is equivalent (by (20)) to

−E






x

0




− EBTA−1F

′T
U

′′
x′ =






0n×1

a




 , (22)

− U
′′
F

′
A−1BE






x

0




− U

′′
F

′
A−1F

′T
U

′′
x′ − U

′′
F

′
A−1BEBTA−1F

′T
U

′′
x′+

+ U
′′
x′ = 0, (23)

where a is some real number. Substituting E






x

0




 into (23) we get

U
′′
F

′
A−1B






0n×1

a




− U

′′
F

′
A−1F

′T
U

′′
x′ + U

′′
x′ = 0,

which is equivalent to (after left-multiplying by F
′T
) 10

RA−1




F

′T
U

′′
x′ − B






0n×1

a









 = −B






0n×1

a




 , (24)

10 Since partial derivatives of fi at x
i are positive and F

′T
U

′′
F

′
= A−R.
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where
R := (diag(U

′
)⊗ In)F

′′
. (25)

By invertibility of R, A and since AR−1 = I + F
′T
U

′′
F

′
R−1 we get from (24) after

simple transformations that

F
′T
U

′′
x′ = −F

′T
U

′′
F

′
R−1B






0n×1

a






which is equivalent to

x′ = −F
′
R−1B






0n×1

a




 .

Putting x′ into (22), observing that EBTA−1F
′T
U

′′
F

′
R−1B = EBTR−1B − In and

due to invertibility of E we get





x

0




 = BTR−1B






0n×1

a




 . (26)

But by definition of R (see (25)) R−1 is a quasi-diagonal matrix with negative definite

matrices
[
∂U(F (x)−x)

∂cj
f ′′
j (x

j)
]−1

on the diagonal. Moreover B = −1n×1 ⊗ In+1 and (26)

implies





x

0




 =





n∑

j=1

[

∂U(F (x)− x)

∂cj
f ′′
j (x

j)

]−1









0n×1

a




 ,

which is possible only if a = 0, x = 0. From this we get x′ = 0 (by the equation above

to (26)), so that we have shown that equality V
′′






x

x′




 = 0 (see (21)) is possible only

if x = x′ = 0, therefore V
′′
is negative definite and w.l.o.g. we can assume that V ′′ is

negative definite on W , which ends the proof. �

Remark 1 It should be noted that the proof above ,,works” for all point (x, x′) ∈
intRn

+× intRn
+ for which optimal consumption (see (7)) is positive. This observation

allows us to broaden the class of ,,base” models for which indirect utilty function is
strongly concave: models of type (7) generate strongly concave indirect utility functions
if assumptions (i)-(vi) are met and for (x, x′) ∈ intRn

+× intRn
+ optimal consumption

level is positive. 11

4.2 Homogeneous production functions

Let’s put aside assumption of strict concavity and negative definiteness of Hessians
of production functions. Suppose that for at least two j’s (w.l.o.g j = 1, 2, ...) it holds

11 Our approach eliminates inputs x, x′ and consumption c = y − x′ with 0 entries - corner
solutions are not tractable by our approach.
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(vii) fj is continuous on Rn+1
+ , twice continuously differentiable on intRn+1

+ , posi-

tively homogeneous of degree 1, strictly increasing on intRn+1
+ with ∂fj(x

j ,lj)

∂xij
>

0, ∂fj(x
j ,lj)

∂lj
> 0, i = 1, . . . , n, concave on intRn+1

+ and

fj(x
j, lj) > 0 only if xj > 0, lj > 0, j = 1, . . . , n. Moreover rank of negative

semidefinite Hessian of fj is n everywhere on intRn+1
+ .

We shall proceed keeping in mind that - by Eulers theorem (Lancaster (1968), p.
335-336) - if fj satisfies assumption (vii) then

fj(x
j) = f ′

j(x
j)xj,

yTf ′′
j (x

j)y = 0 iff y = λxj some λ ∈ R,

where xj = (xj, lj) ∈ intRn
+ × intR+.

We shall show that if at f1, f2 fulfill (vii) (the other ones satisfy (i) or (vii)) then Hes-
sian of indirect utility function V is nonpositive definite. Since the way of construction
of V is as before, then to show that V is twice continuously differentiable (near (x, x))
it is sufficient to show that matrix A is negative definite (see (12)). Certainly, A is
nonpositive definite. It is negative semidefinite iff singular. Suppose that for some
0 6= x = (x1, . . . ,xn) ∈ Rn(n+1) : Ax = 0. It implies xTAx = 0, which is possible only

if xTF
′T
U

′′
F

′
x = 0 and xTF

′T
x. Since f ′′

3 (x
3), . . . , f ′′

n(x
n) are negative defined and

by construction of F
′′
, then x3 = . . . = xn = 0. By Eulers theorem and assumption

(vii) on rank of Hessian f ′′
j there exist such scalars αj that x

j = αjx
j, j = 1, 2 (this

observation comes from Hirota and Kuga (1971)). Since xTF
′T
U

′′
F

′
x = 0 only if

F
′
x = 0, then using again Eulers theorem

0 = αj

∂fj(x
j)

∂x
xj = αjfj(x

j),

which is possible only if αj = 0, since fj(x
j) > 0 by assumption. This implies x = 0

- contradiction, so that A is non-singular, and therefore negative definite. We can
use (21) to express V

′′
. Hessian V

′′
is negative definite iff solution x, x′ of (22), (23)

(or equivalently (22), (24)) is trivial (if it exists for a given value of a). We know
that turnpike labor inputs are positive: lj > 0, j = 1, . . . , n. Take any α1, α2 non-
vanishing simultaneously such that α1l1 + α2l2 = 0. Let’s define x = (x1, . . . ,xn) ∈
Rn+1 × . . . × Rn+1 as xj = αjx

j, j = 1, 2,xj = 0, j = 3, . . . , n. Put a = 0, x′ =

(α1f1(x
1), α2f

2(x2), 0, . . . , 0)T , and x ∈ Rn :






x

0




 = α1x

1 + α2x
2. Substituting the

values into system (22), (24) and observing that x′ = [α1, α2, 0, . . . , 0]F
′
x, F

′T
U

′′
F

′
=

A−R and E is non-singular we see that x, x′ solves the system for a = 0 and x′ 6= 0.
This means that V

′′
is singular and therefore negative semidefinite.

Suppose now that only f1 satisfies (vii) and f2, . . . , fn satisfy (i). We shall show first
that system (22), (24) has solution iff a = 0. Let x = (x1, 0n, . . . , 0n). Left-multiplying

11



(24) by xT we get

0 = xTRA−1




F

′T
U

′′
x′ − B






0n×1

a









 = −xTB






0n×1

a




 = al1.

which is possible only if a = 0. So that (22), (24) become

−






x

0




− BTA−1F

′T
U

′′
x′ = 0,

RA−1F
′T
U

′′
x′ = 0,

(27)

which - by Eulers theorem - imply A−1F
′T
U

′′
x′ = (αx1, 0n, . . . , 0n) for some α ∈ R

and





x

0




 = −BTA−1F

′T
U

′′
x′ = −αx1.

Since l1 > 0 it can hold only if x = 0, α = 0, but this shows that under a = 0 (22),
(24) has only trivial solution (if a 6= 0 then it is an infeasible system). We have shown

that V
′′






x

x′




 = 0 iff x = x′ = 0, so that Hessian V

′′
is negative definite. Now we can

state 12

Theorem 1 Suppose assumptions (ii)-(vi) hold and production function fj satisfies
assumption (i) or (vii), j = 1, . . . , n. Reduced utility function V (see (6)) is strongly
concave in a neighbourhood of turnpike if and only if the number of production func-
tions satisfying (vii) is less than 2.

5 Rolling Plans Are Good

From Kaganovich (1996) we know that for every rolling plan {(xt, yt, ct)}
∞
t=1 it holds

13

lim
t→∞

(xt, yt, ct) = (x, y, c). (28)

To prove that rolling-plan is good we shall show that it converges toward turnpike
fast in a neighbourhood of turnpike. The main result of the paper is

Theorem 2 Fix x ∈ Rn
+. Let sequence {(xt, yt, ct)}

∞
t=1, xt, yt, ct ∈ Rn

+, ∀t = 0, 1, . . . ,
be adaptive rolling plan from x. The sequence is a good process.

12 Similar results, but for social production frontier only (not for utility), were drerived in
Lancaster (1968), p. 127-133.
13 After some mild modification of proof of theorem 1, p. 181, in Kaganovich (1996).
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Proof: By (28) we have limt→∞ xt = x. Let us choose a neighbourhood W ′ of x
s.t. W ′ × W ′ ⊂ W for W satisfying the thesis of lemma 1. By interiority of x for
sufficiently large t’s xt+1 is the unique solution of

max
x′∈W ′

{V (xt, x
′) + V (x′, xt)} (29)

To prove that rolling plans are good it is sufficient (by concavity of V ) to show that
mapping x 7→ argmax{V (x, x′)+V (x′, x) : x′ ∈ W ′} is contractive at x. 14 But V |W is

a C2-class function and it must hold for any t : xt+1 ∈ W ′ ∧ ∂V (xt,xt+1)
∂x′

+ ∂V (xt+1,xt)
∂x

= 0.
Define a function S of x, x′ ∈ W ′ as

S(x, x′) =
∂V (x, x′)

∂x′
+

∂V (x′, x)

∂x
.

Then
∂S(x,x′)

∂x
= ∂2V (x,x′)

∂x∂x′
+ ∂2V (x′,x)

∂x∂x′

T
,

∂S(x,x′)
∂x′

= ∂2V (x,x′)
∂x∂x

+ ∂2V (x′,x)
∂x′∂x′

.

For all x, x′ ∈ W ′ it holds that ∂S(x,x′)
∂x′

is an invertible matrix and therefore, since
S(x, x) = 0 then there exists 15 h : W ′ → W ′ such that S(x, h(x)) = 0, x ∈ W ′ and h

is C1 on W ′. Moreover

h′(x) = −

[

∂S(x, x)

∂x′

]−1
∂S(x, x)

∂x
.

Denote V21 = ∂2V (x,x)
∂x∂x′

, V11 = ∂2V (x,x)
∂x∂x

, V22 = ∂2V (x,x)
∂x′∂x′

. We shall show that −[V11 +
V22]

−1[V T
21 + V21] possess no eigenvalue with modulus greater or equal to one - this

will finish the proof, since then h is contractive at x. By symmetry of V11 + V22 and
V T
21 + V21 eigenvalues of interest are real. Suppose that 0 6= x ∈ Rn and λ ∈ R:

−[V11 + V22]
−1[V T

21 + V21]x = λx

and therefore

−[V T
21 + V21]x = λ[V11 + V22]x.

Left-multiplying last equality by xT , and using negative definiteness of [V11 + V22] we
get

λ = −
xT [V T

21 + V21]x

xT [V11 + V22]x
. (30)

14 For a neighbourhood W of x we call mapping h : W → W contractive at x if ∃α ∈
(0, 1) ∀x ∈ W : ‖hq(x)− hq(x)‖ ≤ α‖x− x‖, where q is a fixed positive integer number and
hq(x) := h ◦ . . . ◦ h

︸ ︷︷ ︸

q times

(x).

15 If needed, instead of W ′ we can choose an open subset W ′′ ⊂ W ′ with x ∈ W ′′.
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By assumption, V
′′
= V ′′(x, x) =






V11 V T
21

V21 V22




 is negative definite so that we have

0 > [xT − xT ]






V11 V T
21

V21 V22











x

−x




 = xT [V11 + V22]x− xT [V T

21 + V21]x

and

0 > [xTxT ]






V11 V T
21

V21 V22











x

x




 = xT [V11 + V22]x+ xT [V T

21 + V21]x.

Therefore
xT [V11 + V22]x < xT [V T

21 + V21]x < −xT [V11 + V22]x,

and

−1 < −
xT [V T

21 + V21]x

xT [V11 + V22]x
< 1,

which shows that |λ| < 1 (see 30). This allows us to state that the thesis is true. �

6 Summary

In this paper we have shown that adaptive rolling plans are good under assumption
of neoclassical technology. We also have shown (by use of rather elementary tools)
strong concavity of indirect utility function. As we mentioned, in Bala et al. (1991)
it was proven that in one-sector case adaptive rolling plans are good and efficient.
”Efficiency puzzle” of adaptive rolling plans in multiproduct economy seems to have
been unsolved, so far.
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