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1. Introduction

It is well-known that under standard convexity, continuity, and monotonicity

assumptions on preferences, one may prove the existence of equilibrium using

Kakutani’s fixed point theorem. In a series of papers (Barbolla and Corchon

(1989), Fraysse (2009), Greenberg (1977), John (1999), Quah (2008)) ef-

forts were undertaken to deliver proofs of existence of economic equilibrium

without the use of Kakutani’s fixed point theorem. But this can only be

achieved at the price of generality: the above-mentioned papers assume that

the economy’s aggregate excess demand function (or correspondence) satisfies

a version of gross substitutability or the weak axiom of revealed preference

(WARP).

A central feature of the assumptions in these papers is that they guarantee

convexity of the equilibrium price set (see Arrow and Hahn (1971) pages

222 and 232, John (1998), Mas-Colell et al. (1995), p. 607, and in the

case of multivalued excess demand - see the corollary after Lemma 2 in this

paper). We show that it is possible to avoid convexity of the equilibrium price

set and still use ‘elementary’ tools for proving the existence of equilibrium.

However, the tools should not be too elementary because the existence of

economic equilibrium under standard assumptions is equivalent to Brouwer’s

fixed point theorem (Toda (2006)) and if one reaches too far, then either

one is wrong or a new proof of Brouwer’s/Kakutani’s fixed point theorem is

delivered.

The crucial assumption we make on the excess demand correspondence

(Assumption 4) is a weakening of the WARP assumption made by Quah

(2008). Let p and p′ be two price vectors such that the price of the last
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good is the same; formally pn = p′n. For such price pairs, our assumption

states that if a bundle of goods y is an excess demand at price p and is just

affordable at price p′ (i.e., p′y = 0), then every bundle y′ from the excess

demand set at price p′ is either not affordable at price p or just affordable

(i.e., py′ ≥ 0). Our condition weakens the WARP assumption used in Quah

(2008) in two ways: the first is that we only require the WARP condition

to hold for price vector pairs in which the last good has the same price; the

second is that we only require py′ ≥ 0 when p′y = 0 but not necessarily when

p′y < 0.

There are economies in which WARP may fail but where our weaker ver-

sion of WARP is satisfied. For example, it is well-known that WARP holds

for the excess demand function of an exchange economy in which endow-

ments are collinear and all agents have demand functions obeying the law of

demand; we show that our weaker version of WARP allows for a weakening

of the collinearity assumption.

Our proof of equilibrium existence (Theorem 1) uses induction and relies

heavily on the connectedness of the unit interval. Our approach is a kind of

generalization of the proof of Lemma 4.1 in John (1999) which, according to

John (in the same paper), was employed by Wald in his proof of the exis-

tence of a competitive equilibrium. We also need a version of the separating

hyperplane theorem to prove an intermediate step (Lemma 1). While the set

of equilibrium prices is not necessarily convex under our assumptions, this

‘convexity feature’ is partially preserved. Specifically, we show in Lemma 2

that Assumption 4 guarantees the convexity of the equilibrium price set of

a lower-dimensional excess demand correspondence. Finally, we present an
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algorithm for computing equilibrium prices under a strengthened version of

Assumption 4.

2. Notation

In what follows [0, 1] ⊂ R is unit interval of the real line and R++ denotes

the set of positive real numbers. For vectors x = (x1, . . . , xn) ∈ Rn, y =

(y1, . . . , yn) ∈ Rn we write x ≥ y, when xi ≥ yi, i = 1, . . . , n; x < y is for

strict component-wise inequalities: xi < yi, i = 1, . . . , n. For all x, y ∈ Rn,

xy :=
∑n

i=1
xiyi. For x ∈ Rn and A ⊂ Rn xA = {xy : y ∈ A} and xA ≤ 0

means ∀y ∈ A : xy ≤ 0 and xA = 0 is equivalent to ∀y ∈ A : xy = 0. If

A,B ⊂ Rn, then A+B := {x+y : x ∈ A, y ∈ B}. S ⊂ Rn is open standard

(price) simplex of dimension n− 1:

Sn−1 := {(p1, . . . , pn) ∈ Rn
++ : p1 + . . .+ pn = 1}.

For a fixed number q ∈ (0, 1) we define the section of Sn−1 w.r.t. its last

coordinate at q as Sn−1
q := {p ∈ S : pn = q}.

3. Assumptions and results

We make the following assumptions.

Assumption 1. Z : Sn−1 → Rn is an upper hemicontinuous multival-

ued mapping with convex, compact and non-empty values. Moreover, Z is

bounded from below, i.e. ∃M ∈ R ∀p ∈ Sn−1∀y ∈ Z(p) : yi ≥ M, i =

1, . . . , n.
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A mapping Z : Sn−1 → Rn is upper hemicontinuous if ∀v = 1, 2, . . . , pv ∈

Sn−1 and pv →v p ∈ Sn−1 and yv ∈ Z(pv), v = 1, 2, . . . , imply that yv has a

limit point, which belongs to Z(p).

Assumption 2. The mapping Z satisfies Walras’ Law, i.e.,

∀p ∈ Sn−1 pZ(p) = 0.

Assumption 3. The mapping Z obeys the boundary condition: if ∀v =

1, 2, . . . pv ∈ Sn−1 and pv →v p and pi = 0 for some i and ∀v = 1, 2, . . . :

yv ∈ Z(pv), then maxi=1,...,n{y
v
i } →v +∞.

Assumptions (1)-(3) are sufficient for the existence of equilibrium though

to prove it requires a fixed point theorem. To provide a proof without using

a fixed point theorem, we impose a variant of the weak axiom of revealed

preference on the excess demand correspondence. Recall that for an excess

demand function Z, WARP says the following: given any pair of prices p, p′,

pZ(p′) ≤ 0 implies p′Z(p) > 0, whenever Z(p) 6= Z(p′). In Quah (2008) the

following extension of WARP to correspondences is employed in his elemen-

tary proof of equilibrium existence: for any pair of prices p, p′, if there exists

y′ ∈ Z(p′) s.t. py ≤ 0, then p′Z(p) ≥ 0. Our assumption, which is weaker

than Quah’s, is stated below.

Assumption 4. If p, p′ ∈ Sn−1 and pn = p′n, and y ∈ Z(p) satisfies p′y = 0,

then pZ(p′) ≥ 0.

To see that this assumption is strictly weaker than WARP we need only

note that it is trivially satisfied in any exchange economy with two commodi-

ties while it is well-known that WARP need not be (see Example 4.C.1 in
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Mas-Colell et al. (1995)). We now provide two examples of economies that

obey Assumption 4 but not necessarily WARP.

It is well known that WARP holds in exchange economies where endow-

ments are collinear and all agents have demand functions obeying the law

of demand. Let the individual demand function of consumer j, denoted by

f j(p, wj), where wj > 0 is consumer’s j income, j = 1, . . . , m, satisfy the law

of demand,1 i.e, given any two non-equal price vectors p and p′,

(p′ − p)
(
f j(p′, wj)− f j(p, wj)

)
< 0.

Aggregating demands across the economy we obtain under the given incomes

w1, . . . , wm, that

(p′ − p)

(
m∑

i=1

(f j(p′, wj)− f j(p, wj)

)
< 0. (1)

In an exchange economy, wj = paj , where aj ∈ Rn
++ is the endowment

of consumer j, j = 1, . . . , m. Without loss of generality we can assume

that
∑m

j=1
aj = (1, . . . , 1︸ ︷︷ ︸

×n

) =: 1n, which implies that the aggregate income

is independent of prices p ∈ Sn−1 though individual incomes may change as

prices change. If endowments aj are collinear, i.e. aj = αj1n and
∑m

j=1
αj =

1, then ∀p ∈ Sn−1 ∀j : paj = αj = wj, so income does not depend on prices2

and we obtain ∀p, p′ ∈ Sn−1, p 6= p′ : (p′−p)(Z(p′)−Z(p)) < 0. This in turn

implies that Z obeys WARP and consequently Assumption 4 is valid too.

1Sufficient conditions for the Law of Demand are some curvature properties of the con-

sumer’s utility function (Mas-Colell et al. (1995), proposition 4.C.3, p. 112) or homothetic

preferences (Mas-Colell et al. (1995), p. 112, and Moore (2007), p. 287).
2This defines a distribution economy, see Hildenbrand (1983), p.1002-1009.

6



Now suppose that the total endowment of the economy is 1n, but aj =

(αj1n−1, bj), j = 1, . . . , m – so that the endowment vectors are collinear in

the first n−1 commodities but not necessarily in all n commodities. We shall

call such an exchange economy an n−1-distribution economy. If p, p′ ∈ Sn−1
q

for some q ∈ (0, 1), then wj(p) = paj = αj(1− q) + qbj = p′aj = wj(p′) and

it follows that if the price of the n-th good is fixed, then the income wj(p) is

constant. Therefore, it follows from (1) that

∀q ∈ (0, 1) ∀p, p′ ∈ Sn−1

q p 6= p′ : (p′ − p)(Z(p′)− Z(p)) < 0. (2)

This guarantees that Assumption 4 is satisfied, even though WARP need not

hold.

Another justification for Assumption 4 is motivated by Quah (1997).

Quah shows that Z obeys WARP in an exchange economy where prefer-

ences and endowments are independently distributed and all preferences are

homothetic. We weaken his assumptions along the following lines. Consider

an exchange economy in which all agents have homothetic preferences and

the distribution of endowments of goods 1, . . . , n − 1 is independent of the

distribution of preferences. With no loss of generality assume that that the

aggregate endowment is 1n. Let A denote the set of different preference types

in the economy and denote the demand function for preference type α ∈ A by

f(p, w, α). Given the distribution of preferences among agents it follows from

the independence assumption that the aggregate/mean income of agents with

type α equals p(1n−1, e
n(α)), where en(α) is the aggregate endowment of n-th

good owned by consumers of type α, α ∈ A. Since preferences are homoth-

etic, the demand functions are linear in income and the aggregate demand

of consumers with type α is f(p, p(1n−1, e
n(α)), α). The aggregate demand
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in this economy is obtained by summing the aggregate demands across the

types α ∈ A. Clearly we are back in a situation of an n−1-distribution econ-

omy discussed in the previous paragraph. Furthermore, since preferences are

homothetic, they generate demand functions that obey the law of demand,

so the reasoning we used in the previous example may be applied again to

obtain (2) (and hence Assumption 4).

From now on we take Assumptions 1-4 as granted. To prove equilibrium

existence we require the following two lemmas.

Lemma 1. Let C ⊂ Rn be a non-empty compact and convex set s.t. ∀p ∈

Sn−1 ∃y ∈ C : py ≤ 0 and for some p ∈ Sn−1 : pC = 0. Then 0 ∈ C.

Proof: Let C and p satisfy the hypothesis. Suppose that 0 /∈ C. This

implies 0 /∈ (Rn
+ + C). Since C is compact and convex, Rn

+ is closed and

convex, then Rn
+ + C is closed and convex. By the separating hyperplane

theorem there exists p′ ∈ Rn\{0} s.t. for all y ∈ C and x ∈ Rn
+ we have

p′y + p′x > 0 (Florenzano and LeVan (2001), p. 24, Proposition 2.1.6).

Therefore p′ ≥ 0 and p′C > 0. W.l.o.g. we may assume that p ∈ clSn−1, the

closure of Sn−1. Take any t ∈ (0, 1) and let pt := tp′ + (1 − t)p ∈ Sn−1. We

have ∀y ∈ C pty > 0, which implies ptC > 0 for pt ∈ Sn−1 - contradiction. �

Lemma 2. Fix q ∈ (0, 1). Suppose that p′, p′′ ∈ Sn−1
q and y′ ∈ Z(p′), y′′ ∈

Z(p′′), with y′i +
q

1−q
y′n = 0, y′′i + q

1−q
y′′n = 0, i = 1, . . . , n − 1. Then ∀t ∈

[0, 1] ∃y ∈ Z(tp′ + (1− t)p′′) :

yi +
q

1− q
yn = 0, i = 1, . . . , n− 1. (3)
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Proof: Let p′, p′′ ∈ Sn−1
q and y′ ∈ Z(p′), y′′ ∈ Z(p′′) satisfy the hypothesis

for some q ∈ (0, 1). For every t ∈ (0, 1) put pt := tp′ +(1− t)p′′. Since for all

p ∈ Sn−1
q it holds

py′ = py′′ = p1

(
y′′1 +

q

1− q
y′′n

)
+ . . .+ pn−1

(
y′′n−1 +

q

1− q
y′′n

)
= 0 (4)

then by Assumption 4 ∀p ∈ Sn−1
q we get p′Z(p) ≥ 0 and p′′Z(p) ≥ 0, from

which it follows ∀p ∈ Sn−1
q : ptZ(p) ≥ 0. For any arbitrarily fixed p ∈ Sn−1

q

put pλ := λpt + (1− λ)p, where λ ∈ (0, 1). We obtain

0 = pλZ(pλ) ⇔ ∀y ∈ Z(pλ) : λpty + (1− λ)py = 0.

Since pλ ∈ Sn−1
q and y ∈ Z(pλ) imply pty ≥ 0, then ∀λ ∈ (0, 1) ∀y ∈ Z(pλ) :

py ≤ 0.3 By upper hemicontinuity of Z, we obtain in the limit λ → 1 that

for each p ∈ Sn−1
q there exists y ∈ Z(pt) s.t. py ≤ 0. Since ptZ(pt) = 0,

pt ∈ Sn−1
q and ∀p ∈ Sn−1

q ∃y ∈ Z(pt) : py ≤ 0, then we may apply lemma 1

to compact convex set

C = (1− q)

{(
yi +

q

1− q
yn

)n−1

i=1

: y ∈ Z(pt)

}

with p = (pt1, . . . , p
t
n−1). Therefore 0 ∈ C and this implies the existence of

y ∈ Z(pt), which satisfies (3). �

Corollary 1. The WARP axiom (defined in (Quah (2008))) implies that our

Assumption 4 holds. We immediately conclude from the proof of Lemma 2

that under WARP the equilibrium price set is convex.

3This part of proof is motivated by the proof of proposition 2.1 in John (1998).
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The main result of the paper follows.

Theorem 1. Fix some integer n ≥ 1. If Z : Sn−1 → Rn satisfies Assump-

tions 1-4, then

∃p ∈ Sn−1 : 0 ∈ Z(p).

Proof: It is clear that the theorem is true for n = 1. Suppose that the

thesis is valid for n− 1, n ≥ 1. We shall prove that it holds true for n. The

proof goes by contradiction. So suppose that the thesis is false for n. Fix

any q ∈ (0, 1) - q plays the role of n-th good price. If Z satisfies Assumptions

1-4, then the mapping Z̃q : Sn−2 → Rn−1 defined as

Z̃q(p1, . . . , pn−1︸ ︷︷ ︸
p̃

) := {(1− q)(yi + q(1− q)−1yn)
n−1

i=1︸ ︷︷ ︸
ỹ

: y ∈ Z((1− q)p̃, q)}

satisfies them too: Assumptions 1 and 3 are satisfied since Zq is compact,

convex and non-empty valued since it may be viewed as the composition (g ◦

Z ◦h)(p1, . . . , pn−1) of linear function g(y1, . . . , yn) = (1−q)
(
yi +

q

1−q
yn

)n−1

i=1

,

mapping Z and affine function h(p1, . . . , pn−1) = ((1−q)p1, . . . , (1−q)pn−1, q)

restricted to Sn−2; Walras’ Law p̃ỹ = 0, ỹ ∈ Z̃q(p̃) comes easily from con-

struction of points in Z̃q(p̃) and expansion (4) of the scalar product of vectors

((1− q)p̃, q) and y ∈ Z((1− q)p̃, q) corresponding to ỹ. Assumption 4 is also

met: suppose p̃ỹ′ = 0 some ỹ′ ∈ Z̃q(p̃′), where p′n−1 = pn−1. It holds that

p = ((1 − q)p̃, q), p′ = ((1 − q)p̃′, q) ∈ Sn−1
q and we have p̃ỹ′ = py′ for some

y′ ∈ Z(p′) corresponding to ỹ′ (again by expansion (4) and the definition of

Z̃q(p̃′)). Using Assumption 4 (applied to Z), we obtain that p′Z(p) ≥ 0. But

y ∈ Z(p), p′ ∈ Sn−1
q imply 0 ≤ p′y =

∑n−1

i=1
pi[(1−q)(yi+q(1−q)−1yn)] = p̃′ỹ,

which proves the claim, since to each ỹ ∈ Z̃q(p̃) corresponds some y ∈ Z(p).
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So, by the inductive assumption we conclude that ∃p ∈ Sn−1
q ∃y ∈ Z(p) which

satisfies (3). We have that ∀q ∈ (0, 1) set L(q) defined as

L(q) := {p ∈ Sn−1

q : ∃y ∈ Z(p) which satisfies (3)}

is non-empty. By the contradictory assumption, for all points p ∈ Sn−1 s.t.

∃y ∈ Z(p) satisfying (3), it holds: yn 6= 0. Define

A := {q ∈ (0, 1) : ∀p ∈ L(q)∀y ∈ Z(p) satisfying (3) it holds yn > 0},

B := {q ∈ (0, 1) : ∀p ∈ L(q)∀y ∈ Z(p) satisfying (3) it holds yn < 0}.

Obviously, A∩B = ∅. Moreover - by Assumptions 1 and 3 - for q sufficiently

close to 0 we have q ∈ A: to see this suppose that q → 0 and yq ∈ Z(pq)

satisfies (3) for some pq ∈ Sn−1
q . Since q(1− q)−1 →q 0, then it must be that

yqn →q +∞ - if not, then by Assumption 3 yqi →q +∞, i = 1, . . . , n−1, which

entails yqn < 0 and by boundedness from below q(1− q)−1yqn →q 0, so that for

small values of q equation (3) could not hold - therefore A 6= ∅. Moreover,

from Assumption 3 it follows that q → 0 ⇒ yqn → +∞, for yq satisfying (3).

If q → 1 and yq ∈ Z(pq) satisfies (3) for some pq ∈ Sn−1
q and q(1−q)−1yqn > 0

(for q’s close to 1) then yqn →q +∞, so that q(1 − q)−1yqn →q +∞ and

assumption 1 implies contradiction. Therefore A 6= ∅, B 6= ∅. Suppose that

there exists q ∈ (0, 1)\(A ∪ B). So, it holds that for some p, p′ ∈ L(q) there

exist vectors y ∈ Z(p) and y′ ∈ Z(p′) meeting conditions (3) with yn > 0 and

y′n < 0. It follows from Lemma 2 that ∀t ∈ (0, 1)∃yt ∈ Z(tp+(1− t)p′) which

fulfills (3). From convexity of Zt := Z(tp + (1− t)p′) and the contradictory

assumption it follows that if y, y′ ∈ Zt satisfy (3), then yn and y′n are of the

same sign. If

A′ := {t ∈ (0, 1) : ∀y ∈ Zt s.t. (3) is satisfied ⇒ yn > 0},
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B′ := {t ∈ (0, 1) : ∀y ∈ Zt s.t. (3) is satisfied ⇒ yn < 0},

then we get (0, 1) = A′ ∪ B′. Since both sets A′ and B′ are open (by

the contradictory assumption and upper hemicontinuity of Z (Assumption

1)) and disjoint - this leads to contradiction with connectedness of (0, 1), if

A′ 6= ∅ 6= B′. Let’s suppose for a while that B′ = (0, 1). For vectors yt ∈ Zt

satisfying equation (3), where t → 0, we get by upper hemicontinuity of Z

that there exists y ∈ Z(p), which meets (3) with yn < 0. Since y ∈ Z(p)

satisfies (3) with yn > 0, then by convexity of Z(p) we again are led to con-

tradiction. If A′ = (0, 1), then the similar reasoning results in contradiction.

From this follows that A∪B = (0, 1). But for the same reasons as in the case

of sets A′ and B′ both sets A and B are open. We know that A 6= ∅ 6= B

and (0, 1) = A ∪ B, which is contradiction and the proof is finished. �

To develop an algorithm for finding an equilibrium price vector, we now

assume that Z is a function (rather than a correspondence) from Sn−1 to Rn

that satisfies Assumptions 1-3. We replace Assumption 4 with the following

assumption.

Assumption 5. If q ∈ (0, 1) and p, p′ ∈ Sn−1
q , then p′Z(p) ≤ 0 implies

pZ(p′) > 0.

Assumption 5 is stronger than 4 but it is implied by (2) and hence by

the two examples given earlier in which (2) holds. Assumption 5 implies

the uniqueness of equilibrium of the dimension-reduced excess demand given

price of the last good pn = p′n = q (see function Ẑq below).
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Let us fix q ∈ (0, 1) and define a function Ẑq : Rn−1
++ → Rn−1 as

∀p ∈ Rn−1

++ Ẑq(p) := (Ẑq
1(p), . . . , Ẑ

q
n−1(p)),

where

Ẑq
i (p) := (1− q)

(
Zi(p̂(p, q)) +

q

1− q
Zn(p̂(p, q))

)
,

p̂(p, q) :=

(
(1− q)∑n−1

i=1
pi
p, q

)
.

The above construction is correct since ∀p, p′ ∈ Rn−1
++ : p̂(p, q) ∈ Sn−1. The

construction of Ẑq - which is analogous to the construction of Z̃q in the

above proof - implies that it exhibits at least the same properties as Z̃q.

Moreover, the function Ẑq is homogeneous of degree 0 and since ∀p ∈ Rn−1
++ :

pẐq(p) = p̂(p, q)Z(p̂(p, q)), then - by Assumption 5 - it satisfies a version

of the WARP axiom for excess demand functions: ∀p, p′ ∈ Rn−1
++ which are

not collinear it holds pẐq(p′) ≤ 0 implies p′Ẑq(p) > 0 - this property and

Theorem 1 guarantee that given q ∈ (0, 1) there exists exactly one structure of

equilibrium prices, say p ∈ Rn−1
++ s.t. Ẑq(p) = 0. The tâtonnement dynamics

of prices
dp(t)

dt
= Ẑq(p), p(0) = p0, (5)

where p0 ∈ Rn−1
++ is a fixed initial prices vector, implies convergence of prices

p(t) to the equilibrium price vector p ∈ Rn−1
++ (see proposition 17.H.1 in

Mas-Colell et al. (1995), p. 623), whose (Euclidean) length equals the length

of p0. Assumption 5 entails that for any pair p, p′ ∈ Rn−1
++ of equilibrium

vectors (given the same q) it holds: p̂(p, q) = p̂(p′, q) - this implies that given

q there exists unique p ∈ (1− q)Sn−2 s.t. Ẑq(p) = 0. Let p(q) ∈ (1− q)Sn−2

denote the unique equilibrium price and put L(q) := Zn(p(q), q). The proof
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guarantees that if q → 0 then L(q) → +∞, and if q → 1 then L(q) < 0 4.

Moreover L(·) is a continuous function of q - this comes from continuity of

Ẑq and from the fact that L(·) is a function.

Now we can state an algorithm for finding an equilibrium price vector

in economies with an excess demand function that satisfies Assumptions 1-3

and 5.

Step 0: Fix v = 1, q0 ∈ (0, 1). Compute p0 := p(q0) and L0 := L(q0). Go

to step 1.

Step 1: Put

qv :=





qv−1 + (1− qv−1)/2, if L0 < 0

qv−1/2, if L0 > 0

Put pv := p(qv), Lv := L(qv), v := v + 1. If Lv−1Lv−2 > 0, then

repeat this step. In other case go to step 2.

Step 2: Put

qv :=





(qv−1 + qv−2)/2, if Lv−1Lv−2 < 0

(qv−1 + qv−3)/2, otherwise

Put v := v+1, pv := p(qv−1), Lv := L(qv−1) and repeat this step.

At each step of the algorithm, Walras’ tâtonnement (5) may be employed

for finding equilibrium prices - the last found equilibrium price vector is then

used as initial price vector in the next iteration. At Step 1 the first pair

of consecutive values of L with opposite signs is found - such pair exists

by properties of L(·). Step 2 bisects intervals with ends at which values

of Lq−1, Lq are opposite in sign and determines next interval with the same

4This comes from non-emptiness of the sets A and B and the boundary condition.
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property. It is assumed that Lq 6= 0 when the algorithm is executed (if Lq = 0

- equilibrium has been found). A stopping rule could be e.g. |L(qv)| < ǫ for

some ǫ > 0.
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