Munich Personal RePEc Archive

Forecasting 2012 United States Presidential election using Factor Analysis, Logit and Probit Models

Sinha, Pankaj and Thomas, Ashley Rose and Ranjan, Varun (2012): Forecasting 2012 United States Presidential election using Factor Analysis, Logit and Probit Models.

[img]
Preview
PDF
MPRA_paper_42062.pdf

Download (3016Kb) | Preview

Abstract

Contemporary discussions on 2012 U.S Presidential election mention that economic variables such as unemployment rate, inflation, budget deficit/surplus, public debt, tax policy and healthcare spending will be deciding elements in the forthcoming November election. Certain researchers like Bartells and Zaller (2001), Lewis-Beck and Rice (1982), and Lichtman and Keilis-Borok (1996) have investigated the significance of non-economic variables in forecasting the U.S election. This paper investigates the influence of combination of various economic and non-economic variables as factors influencing the outcome of 2012 U.S Presidential election, using statistical factor analysis. The obtained factor scores are used to predict the vote share of the incumbent using regression model. The paper also employs logit and probit models to predict the probability of win for the incumbent candidate in 2012 U.S Presidential election. It is found that the factors combining above economic variables are insignificant in deciding the outcome of the 2012 election. The factor combining the non-economic variables such as Gallup Ratings, GIndex, wars and scandals has been found significantly influencing the public perception of the performance of the Government and its policies, which in turn affects the voting decision. The proposed factor regression model forecasts that the Democrat candidate Mr. Barack Obama is likely to get a vote share between 51.84% - 54.26% with 95% confidence interval in the forthcoming November 2012 U.S Presidential election. While, the proposed logit and probit models forecast the probability of win for the Democrat candidate Mr. Barack Obama to be 67.37% and 67.00%, respectively.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.