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The aim of this study is to search for a better optimization algorithm in applying unit root tests 

that inherit nonlinear models in the testing process. The algorithms analyzed include Broyden, 

Fletcher, Goldfarb and Shanno (BFGS), Gauss-Jordan, Simplex, Genetic, and Extensive Grid-Search. 

The simulation results indicate that the derivative free methods, such as Genetic and Simplex, have 

advantages over hill climbing methods, such as BFGS and Gauss-Jordan, in obtaining accurate critical 

values for the Leybourne, Newbold and Vougos (1996, 1998) (LNV) and Sollis (2004) unit root tests. 

Moreover, when parameters are estimated under the alternative hypothesis of the LNV type of unit 

root tests the derivative free methods lead to an unbiased and efficient estimator as opposed to those 

obtained from other algorithms. Finally, the empirical analyses show that the derivative free methods, 

hill climbing and simple grid search can be used interchangeably when testing for a unit root since all 

three optimization methods lead to the same empirical test results.  

 

Keywords: Nonlinear trend; Deterministic smooth transition; Structural change; Estimation methods  
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   Testing stationarity properties of economic variables has attracted a great deal of attention among 

economists in the last three decades; and as a result, following the seminal work of Dickey and Fuller 

(1979) many unit root tests have been proposed. These unit root tests can be generally classified under 

three classes – standard linear unit root tests, unit root tests using a nonlinear framework
2
, and unit 

root tests that allow for a break in mean and/or trend. This study will concentrate on the third class, 

namely the unit root tests that allow for break in mean and/or trend.  

   Several researchers including Perron (1989, 1990), Rappoport and Rechlin (1989), Zivot and 

Andrews (1992), Lumsdaine and Papell, and Bai and Perron (1998) have recognized alternative trend 

specifications in testing for the unit root hypothesis. This strand of literature has focused on models 

with segmented line trends; and single or multiple breaks (Vougas, 2006). Yet, another strand of 

literature has developed unit root tests where the alternative hypothesis is that of stationarity around a 

smoothly changing trend.  Leybourne, Newbold and Vougos (1996, 1998) (LNV, hereafter) and Sollis 

(2004) used logistic trend functions
3
 that allow for a smooth break in the deterministic trend of the 

data. Bierens (1997) modeled nonlinear trend using Chebyshev polynomials, while Becker et al. 

(2006) used trigonometric functions (via means of Fourier transformations) to model possible gradual 

breaks in the data generating process. The use of either Chebyshev polynomials or trigonometric 

functions might be problematic, because there is no unique way of choosing the order of polynomials 

or the frequency components for the trigonometric functions. However, in the case of logistic trend 

functions the parameters of interest in the gradually changing trend function may be estimated using a 

convenient nonlinear estimation algorithm. By the same token, smooth transition regression (STR) 

models have also been proved to capture gradual structural breaks quite well (e.g., Granger and 

Teräsvirta, 1994; Lin and Teräsvirta, 1994; Greenaway et al. 1997). Moreover, the STR type trend 

modeling can incorporate broken or unbroken trend lines, thereby allowing for gradual as well as 

abrupt break (Vougas, 2006). Along these lines, the STR type of trend modeling can also be seen as a 

generalization of the first strand of trend modeling. Due to all these reasons, researchers should focus 

on STR type of trend modeling more seriously. Fortunately, Vougos (2006) has investigated the 

neglected numerical issues that necessitate the re-calculation of critical values for the LNV tests. The 

comparison of alternative estimation algorithms is yet another important issue within the context of 

LNV type unit root tests. Chan and Mc Aleer (2002) and Maugeri (2012) have compared the nonlinear 

optimization algorithms in the STAR-GARCH models and in non-linear co-integration frameworks, 

respectively. According to these authors, concentrating the sum of squares method and some other 

popular nonlinear optimization algorithms were not found as efficient as they were expected to be. 

Therefore, the comparison of alternative nonlinear optimization algorithms for unit root estimation 

serves as an important research question that has only been partially answered so far in the literature.  

   Nonlinear estimation inherits various problems such as convergence and good starting values. These 

problems may represent an obstacle for the estimation process like the inability to find global optima. 

Consequently, these kinds of problems lead to biased and inefficient estimates of the true data 

generating process. In this study our main focus is on the LNV type unit root tests which naturally 

encounter these kinds of problems due to the STR type nonlinearity inherent in the deterministic 

components of the testing process. For this purpose, we organize a simulation study by generating data 

under the alternative hypothesis of the LNV unit root tests and compare the estimation results of 

different optimization algorithms by employing statistical tools such as mean square error (MSE) and 

root mean square error (RMSE).  Comparing the estimation results of the nonlinear data generation 

processes by using different optimization algorithms is crucial to measure the losses and gains (by 

means of MSE and RMSE) of the specific type of optimization algorithm employed. Such an analysis 

is therefore needed to obtain better critical values and to carry out power and size analysis at a 

                                                           

2
 Such as; Kapetanios et al., G. (2003) in time series, and the Ucar and Omay (2009) in panel analysis.  

3
 Vougos (2006) pointed out that the trend models employed by LNV are deterministic and must be distinguised 

from stochastic STR models.  



minimum cost where the minimum cost principle forms the basis of virtually every statistical analysis 

of data
4
.   

  The purpose of this paper is to investigate the performance of the various optimization algorithms 

that can be applied to the LNV type of unit root testing. The five methods analyzed in this study are 

BFGS, Gauss-Jordan, Simplex, Genetic, and Extensive Grid-Search. We have especially 

included in this study the algorithms that are commonly used within the context of the LNV type of 

nonlinear unit root tests, and found out that derivative free methods have advantage over hill climbing 

methods while obtaining the accurate critical values. On the other hand, increasing the complexity of 

data generating process simple algorithms has advantages over more complex algorithms in computing 

the parameter estimates. Finally, we have found out that depending empirical study no matter which 

the optimization algorithms are employed the empirical tests results are not changing.   

   The rest of the paper is structured as follows. Section 2 introduces and discusses the various 

optimization algorithms employed in the study. Section 3 investigates the performance of the 

alternative optimization algorithms through Monte Carlo simulation studies. It reports and compares 

the critical values of the LNV and Sollis (2004) unit root tests obtained by employing each 

optimization algorithm along with the biases of the estimated parameters for each alternative 

optimization method under the alternative hypotheses of these tests. Section 4 provides an empirical 

application of the aforementioned optimization methods to the purchasing power parity (PPP) 

hypothesis for 9 countries. Section 5 is reserved for concluding remarks. 
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   The model that is employed in this paper is a logistic trend model that allows for a smooth break in 

the deterministic trend of the data. Following the model of LNV, we consider the following 

representation for the logistic trend function; 

 

 ( )1 2 ,t t ty Fα α γ τ ε= + +  , 0 0iµ =
 , 

~ (0,1)t NIDε
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Estimation of the parameters in the STR model is a relatively straightforward application of 

the nonlinear least squares (NLS) technique.  The parameters 1 2( , , , ) 'ψ α α γ τ=  of the STR 

model can be estimated as;  
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where ( ) ( )1 2 ,t tS Fψ α α γ τ ε= + +  is the skeleton of the model, that is equation (1). 

 

   If the assumption that tε  is normally distributed prevails, NLS is equivalent to maximum likelihood; 

otherwise, the NLS estimates can be interpreted as quasi maximum likelihood estimates. The STR 

models can be estimated using any conventional nonlinear optimization procedure.). Potscher and 

                                                           

4
 A cost arises because Monte Carlo simulations conducted to obtain critical values are time consuming. For an 

accurate critical value, 50000 replications are needed. Under these circumstances, a researcher would want to 

optimize this process with the best possible solution available and that involves improving the simulation time 

and obtaining exact critical values.  



Prucha (1997) have demonstrated that NLS is consistent and asymptotically normal under appropriate 

regularity conditions. However, some issues deserve particular attention; such as the choice of starting 

values for the optimization algorithms, concentrating the sum of squares function (CSQ) and the 

estimate of the smoothness parameter γ  in the transition function.  

   We have mentioned above that the STR models can be estimated using any conventional nonlinear 

optimization procedure and the burden on the optimization algorithm can be alleviated by using good 

starting values. For fixed values of the parameters γ  and τ  in the transition function, the STR model 

is linear in the parameters 1α  and 2α ; and therefore, can be estimated by OLS. Hence, a convenient 

way to obtain sensible starting values for the nonlinear optimization algorithm is to perform a two-

dimensional grid search over γ  andτ ; and then to select those parameter estimates that minimize the 

variance of the residual term or the residual sum of squares.   

   In this study, we suggest an extensive grid search (EGS) method to initiate the parameter estimates 

of the STR model. This EGS methodology displays characteristics similar to the procedure used to 

estimate the Threshold Autoregressive Regression models (TAR). Hence, to explain this methodology 

it is better to first give a brief explanation of the way TAR estimation is conducted when the threshold 

parameter τ is unknown.  The popularity of the TAR models stems from the fact that it allows for 

different degrees of autoregressive decay. Consider the following two-regime version of the threshold 

autoregressive (TAR) model developed by Tong (1983): 

 

( ) t

p

t

itit

p

t

ititt yIyIy εββαα +







+−+








+= ∑∑

=

−

=

−

1

0

1

0 1  
 

(2) 

 

 

where ty  is the series of interest, the iα , and iβ  are coefficients to be estimated, τ is the value of the 

threshold, p is the order of the TAR model and tI  is the Heaviside indicator function such that; 
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   The nature of the system is that there are two states of the world. In one state of the world, 1−ty  

exceeds the value of the threshold τ so that, 1=tI and ( ( ) 01 =− tI . As such, ty  follows the 

autoregressive process ∑ −+ iti yαα 0 . Similarly, in the low state 1−ty  falls short of the threshold τ, so 

that 0=tI and ( ( ) 11 =− tI and ty  follows the autoregressive process ∑ −+ iti yββ0 . In a sense, 

there are two attractors or potential “equilibrium” values. In the ‘high’ state, the system is drawn 

towards ∑ −− iti yαα 10 ; whereas in the ‘low’ state the system is drawn towards ∑ −− iti yββ 10 . 

Moreover, the degree of autoregressive decay will differ across the two states if for any value of i 

ii βα ≠ . The key feature of the TAR model is that a sufficiently large tε  shock can cause the system 

to switch between states. Chan (1993) shows how to obtain a super-consistent estimate of the 

threshold parameter. To estimate a TAR model, the procedure is to order the observations from 

smallest to largest such that: 

 
Tyyyy <<< ...321

 

 

   For each value of 
jy  let  

jy=τ  set the Heaviside indicator according to this potential threshold 

and estimate a TAR model. The regression equation with the smallest residual sum of squares contains 

the consistent estimate of the threshold. In practice, the highest and lowest 15% of the {
jy } values 

are excluded from the grid search so as to ensure an adequate number of observations on each side of 

the threshold.  



   Likewise the methodology outlined above, in our EGS method the first stage starts with the 

consistent estimation of the parameters τ andγ , where γ  is the slope parameter of the STR model. 

Simultaneous estimation of the parameters τ and γ carried out using Tong’s (1983) methodology can 

be categorized as two dimensional grid searches for STR type models. Tong (1983) has introduced 

limitations on the highest and lowest 15% of the state variable, however in our case the state variable 

is time and we are searching for the break instead of the threshold values. Thus, we have changed this 

restriction for our purposes and discarded different highest and lowest percents for the parameterτ  

and ranged it in these intervals by 0.01 increments in order to obtain the most efficient estimate. For 

the slope parameter (γ ) we have followed the same computation method and ranged it (after scaling) 

from 1 to 10 or 1 to any arbitrary positive integer number by 0.1 increments.  

   As recommended by Leybourne et al. (1998), concentrating the sum of squares function is another 

method used to simplify the estimation problem like grid search. Since the STR model is linear in the 

autoregressive parameters for given values of γ  and τ , the nonlinear least square sum of squares 

function can be concentrated with respect to 1α  and 2α  as  
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Therefore, the NLS estimation reduces to minimizing the sum of squares function with respect to just 

the two parameters γ andτ .  

   These two computational approaches (grid search and concentrated sum of squares) greatly 

simplified the estimation process for STR models; hence, different optimization algorithms which use 

the hill climbing methodology, such as BFGS and Gauss-Jordan, were employed to obtain parameter 

estimates of STR models. Nonetheless, we have used two derivative free methods in this study. These 

derivative free methods, namely “Simplex” and “Genetic” are provided in RATS (Regression Analysis 

for Time Series) software package. These two methods are explained as follow
5
:  

    Although the Simplex method requires the underlying function to be continuous, it is essentially a 

derivative free method that does not necessitate the function to be also differentiable. In the first step, 

the algorithm chooses K+1 points in K-space, where K refers the number of parameters. Simplex is the 

name of the geometrical object that is created when these points are connected. Initial values 

correspond to one of these vertices
6
. The RATS program equalizes each other point to the initial value 

plus a perturbation to only one of the parameters. As opposed to a general grid search method, the 

initial values obtained need not encompass the optimum. At each step the worst K+1 vertices are 

selected and replaced with their reflection through face opposite. While the hill climbing optimization 

algorithms search for a direction where the function increases, the Simplex method progresses uphill 

by omitting the directions where the function decreases. Although this makes the Simplex method 

more immune to the way the function behaves and the choice of initial conditions, it is found to 

                                                           

5
 See RATS 8 user manual. 

6
 The only relationship between this and the Simplex method of linear programming is that each method utilizes 

a Simplex. 



converge more slowly than hill-climbing methods where the latter is deemed to be more suitable
7
. On 

the other hand, Genetic algorithms, by administering great computational power and an elegant model 

of “evolution” with random “mutations, are created to tackle troublesome optimization problems. The 

RATS software utilizes the so called differential evolution. In this model, at each iteration every 

parameter vector is compared with a feasible successor from a given “population” of parameter 

vectors. The parameter vector that gives the better function value is maintained and the other is 

eliminated. For developing successors a number of ways exist and in all at least one parameter must be 

mutated, in other words some random number should be added to it. In differential evolution, the 

discrepancy between the parameter in two randomly chosen elements of the population determines the 

magnitude of mutation in a parameter. These mutations will be large in size when the values that a 

specific parameter takes are widely scattered throughout the population. However, the mutations will 

be fairly small if the parameter in question can be well determined, so that it takes values that can be 

tightly gathered in a group
8
.    
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In this section the performances of different optimization algorithms are compared using Monte 

Carlo simulations. The algorithms considered in the study include BFGS, Gauss-Jordan, Genetic, 

Simplex and EGS. To this end, first, the effects of using different algorithms on the critical values of 

the LNV statistics are assessed. Vougos (2006) has argued that he has obtained the accurate critical 

values for the LNV statistics based on constrained optimization via sequential quadratic programming 

(SQP) method. In the light of Vougos’s conclusion, the critical values obtained under each algorithm 

can be evaluated according to whether they closely match the accurate critical values or not. However, 

a critical question emerges here: “Is it sufficient to compare the results of other algorithms to the 

critical values obtained using SQP?” In order to find an answer to this question and to analyze the 

efficiency of different optimization algorithms, we have organized a Monte Carlo design
9
. In this 

design, alternative hypothesis of the LNV unit root test is used in which the STR type trend function is 

directly parameterized. Hence, the use of different optimization algorithms will allow us to see 

whether the true parameter values can be obtained. In order to calculate the biases of the estimated 

parameters, the mean square error (MSE) and root mean square error (RMSE) criteria are used.  

In the table given below five different sets of critical values are reported for the LNV statistics 

using the methods explained in section 2, where the sample range is T=100. The original critical 

values of Leybourne et al. (1998) obtained by concentrating the sum of squares (CSQ) function via the 

BFGS algorithm are tabulated in column 4 of this table. In column 1, the more accurate critical values 

of Vogous (2006) are presented. In columns 2, 3, 5, and 6, the critical values obtained from the 

Genetic, Simplex, Gauss-Jordan algorithms and the extensive grid search (EGS)
10

 methods are given, 

respectively. The ordering of the columns is important because the optimization algorithms that are 

placed in the columns are sorted by their proximity to the accurate critical values given by Vogous 

                                                           

7
 For further information see RATS (8) user’s guide page-116. 

8
 For further information see RATS (8) user’s guide page-117. 

9
 In implementing the Genetic, Simplex and EGS algorithms; while the parameter values can be obtained, the 

standard errors cannot be computed as they could be with normal estimation. Estimation or obtaining the trend 

function is the first and the most crucial step of LNV type of unit root testing. Therefore, obtaining the true trend 

function is very important to acquire the accurate critical values. Hence, any method which gives the true trend 

function can be used in this stage of the LNV type of unit root testing.     

10
 We have obtained the critical values from EGS method, directly using the computed initial values of slope and 

threshold values by using the ordinary least square (OLS) estimation. May be this type of evaluating critical 

values named as two stage optimization procedure.  



(2006) in column 1. In other words, starting with the second column the consequent columns are 

arranged in a descending order with respect to the closeness of the critical values to the accurate 

critical values reported in column1.  

�

T	�������������
����	��$	��������	�
����
��������
�
���������	���
�	���
��������
�%&'�(�))*+ 

 1 2 3 4 5 ,�

%1 -4.87 -4.887 -4.865 -4.882 -4.788 -4.757 

%5 -4.25 -4.257 -4.240 -4.232 -4.142 -4.108 

%10 -3.93 -3.937 -3.911 -3.909 -3.818 -3.788 

1)     Constrained optimization via sequential quadratic programming (Vougos, 2006), 

2)� Concentrating the sum of squares using the Genetic method, 

3)� Concentrating the sum of squares using the Simplex method, 

4)� Concentrating the sum of squares using the BFGS method (used by LNV, 1998), 

5)� Concentrating the sum of squares using the Gauss Jordan method, 

6)� Direct implementation of extensive grid search (EGS) by using OLS.�

 Note: The results are reported for T=100. 

   The comparison of critical values obtained in using different algorithms clearly reveals that the 

accuracies of the critical values’ can be increased. From Table 1 we can recognize that the use of the 

Genetic method to concentrate the sum of squares function yields critical values that are very close to 

those obtained via SQP, which is the method claimed to produce the most accurate critical values. 

Hence, it is possible to use Genetic algorithm instead of SQP to obtain the accurate critical values for 

the LNV type of unit root testing. On the other hand, Gauss-Jordan and the EGS methods seem to be 

the most inefficient methods to obtain the said critical values. Nevertheless, the differences among the 

critical values obtained using the four methods (the ones given in columns 1, 2, 3, and 4) are trivial. 

Hence, using different optimization algorithms in empirical studies would barely alter the test results. 

In order to robustify this conclusion, we have organized a Monte Carlo design as follows (which we 

mentioned above).        

 

   The data generation process for the first simulations is: 

 

( )1 2 ,t t ty Sα α γ τ ε= + +  ,   0 0iµ = ,              ~ (0,1)t NIDε
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,1 1.0iα = , 2 10.0α = , 0.5γ = , and 0.5τ = 8

.   
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1α  

MSE 0.02540 0.02475 0.02478 0.02480 0.02731 

RMSE 0.15938 0.15733 0.15743 0.15747� 0.16526�

 

2α  

MSE 0.05040 0.05008 0.05015 0.04979 0.05222�

RMSE 0.22449 0.22378 0.22394 0.22314 0.22851�

 
γ  

MSE 0.01054 0.02725 0.00872 0.01011 0.00825�

RMSE 0.10268 0.16508 0.09340 0.10055 0.09082�

τ  MSE 2.269
5e−  1.871

5e−  1.877
5e−  1.852

5e−  1.881
5e− �

RMSE 0.00476 0.00433 0.00433 0.00430 0.00434�

&���3 The other relevant statistics and density functions obtained from these simulations are given in Appendix 

A. 

Table 2 reports the MSE and RMSE criteria for the parameters 1α , 2α , γ and τ  obtained using the 

five different algorithms considered in this study. When Table 2 is analyzed, the first thing to note is 

that among the five methods employed none of them is superior to the other in terms of estimating the 

parameters. For obtaining 1α  Gauss-Jordan seems to be the best algorithm. Gauss-Jordan algorithm is 

followed by BFGS, Simplex, and EGS methods; and the Genetic algorithm appears to be the last in 

this raking. For 2α  the ordering of the estimation algorithms from best to worst changes to Simplex, 

Gauss-Jordan, BFGS, EGS, and the Genetic algorithm. The algorithm ordering totally changes when 

we compute the MSE and RMSE for the slope parameterγ .  An inspection of Table 2 clearly reveals 

that; while the best algorithm for the estimation of γ  is the Genetic algorithm, the worst one is Gauss 

Jordan. For the parameter τ we observe a similar pattern, with Simplex yielding the best algorithm 

and EGS the worst. From all of these results we can deduce that the accuracy of the estimates of the 

parameters γ  and τ  are crucial for unit root testing. From the accuracy comparison made in Table 1, 

we have seen that the Genetic algorithm produces the most accurate LNV statistics. The Genetic 

algorithm is followed by the Simplex, BFGS and Gauss-Jordan algorithms in terms of obtaining the 

accurate LNV critical values. Table 2 reveals that the EGS algorithm estimates the parameters 1α  and 

2α  as accurate as any other optimization algorithm. However, we cannot arrive at the same conclusion 

for the parametersγ  andτ . Similar arguments can be made with respect to the Gauss-Jordan 

optimization algorithm except for the estimation ofτ . The Gauss-Jordan algorithm estimates τ  as 

better as any other optimization algorithm. Regarding the BFGS, Simplex and Genetic algorithms; all 

of the parameter estimates are similar in accuracy except for the estimation of parameter 1α  via the 

Genetic algorithm. On the other hand, the Genetic algorithm is found to be the best algorithm for 

estimating the parameter γ  with respect to MSE and RMSE criteria. Specifically, the precise 

estimation of γ  directly affects the accuracy of the critical values of the LNV type of unit root testing.  

   In order to explain these stated points more pertinently, we organize another simulation study in 

which a variant of the LNV type of unit testing is applied. This LNV variant unit root test proposed by 



Solis (2004) applies the threshold unit root testing methodology utilized by Enders and Granger (1998) 

instead of the ADF test regression in the last step of the LNV unit root test. Therefore, in the 

alternative hypothesis of the LNV test now we are dealing with a TAR type of data generation process 

for the residual term. As a first empirical investigation, we obtained the critical values of Solis (2004) 

unit root test by using the aforementioned methods
11

. The acquired critical values are tabulated in 

Table 3 given below. 

T	���� ��������
����	��$	��������	�
����
��������
�
���������	���
�	���
��������
�������(�445+ 

 �� ��  � 5� 6�

   Solis t   

%1 -3.994 -3.971 -3.935 -3.882 -3.854 

%5 -3.417 -3.424 -3.418 -3.366 -3.326 

%10 -3.169 -3.177 -3.155 -3.105 -3.062 

   Solis F   

%1 12.244 12.090 11.963 11.613 11.518 

%5 9.191 9.212 9.115 8.758 8.602 

%10 7.844 7.897 7.770 7.458 7.325 

1)    Concentrating the sum of squares with using the BFGS method (Solis, 2004), 

2)� Concentrating the sum of squares with using the Genetic method 

3)� Concentrating the sum of squares with using the Simplex method, 

4)� Concentrating the sum of squares with using the Gauss Jordan method. 

5)� Direct implementation of extensive grid search (EGS) by using OLS. 

Note: The results are reported for T=100. 

Table 3 reveals a similar pattern to that described previously in Table 1, namely the 

comparison of different optimization algorithms based on critical values obtained shows that the 

accuracies of  the critical values’ can be increased. The critical values obtained using the Genetic 

algorithm (in column 2) were found to be in close agreement with those obtained by Solis (2004) 

using the BFGS algorithm, ascertaining the use of Genetic algorithm instead of the BFGS method to 

obtain the accurate critical values for the Solis unit root tests. Following the argument of Vogous 

(2006), we can also claim that the critical values obtained using the Genetic algorithm are accurate 

critical values for the Solis (2004) unit root test. On the other hand, the most inefficient methods to 

obtain critical values for the Sollis (2004) unit root test seem to be the Gauss-Jordan and EGS 

algorithms. However, among the three methods (1, 2, and 3) the critical value differences are trivial. 

                                                           

11
 In this study the RATS program is used to analyze the performance of different algorithms. Hence, the study is 

constrained with the programs available in the RATS 8.1 software package. Therefore, in order to use the same 

simulated data for all algorithms and thereby to be internally consistent, the SQP algorithm was not employed in 

the rest of the study. 



The evidence based on careful examination of these results leads us once more to conclude that using 

different optimization algorithms in empirical studies would not cause much difference in the 

interpretation of the empirical test results.  In order to robustify this conclusion, we again re-organize a 

Monte Carlo study that is the same with the first one. If the Genetic algorithm is again found to 

generate the most accurate critical values using the MSE and RMSE criteria, then this will clearly 

demonstrate the value of using the Genetic algorithm in conducting the LNV type of unit root tests in 

many of its extensions like the Sollis (2004) test.    

 As discussed above, in the next simulation exercise we have used an alternative data generation 

specification especially for the noise term: 

( )1 2 ,t t ty Sα α γ τ ε= + +  ,   0 0iµ = , 

( )1 1 2 11t t t t t tI Iε α ρ ε ρ ε η− −∆ = + + − +  ,              ~ (0,1)it NIDη  

 

where  
,1 1.0iα = , 2 10.0α = , 0.5γ = , and 0.5τ =  is defined as before, and the following parameter 

values are used; 1 0.3ρ = − and 2 0,1ρ = − .  
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1α  

MSE 1.43143 7.31656 1.62272� 1.61982 1.44381�

RMSE 1.19643 2.70491 1.27386� 1.27272 1.20159�

 

2α  

MSE 1.38531 9.78787 1.83266� 1.82542 1.54451�

RMSE 1.17699 3.12856 1.35376� 1.35108 1.24278�

 
γ  

MSE 0.07407 0.08382� 0.08356� 0.08107 0.07521�

RMSE 0.27215 0.28951 0.28907� 0.28472 0.27425�

τ  MSE 4.168
4e−  0.00146 5.103

4e− � 5.072
4e−  4.592

4e− �

RMSE 0.02042 0.03819 0.02259� 0.02252 0.02143�

�

The results from these power experiments for a sample size of 100 and employing 50000 replications 

are given in Table 4. The simulation results obtained from this data generation process do not deviate 

much from those of the first simulation reported in Table 2, except for the performance of the EGS 

method, which was not unanticipated given the evidence presented in Table 3. From Table 4 we notice 

that among the five methods; now EGS is superior in estimating the four parameters with respect to 

the MSE and RMSE criteria. This is the only crucial difference between this and the first simulation 

results that we have presented in Table 2.  For estimating 1α , EGS seems to be the best algorithm. The 

EGS algorithm is followed by the Genetic, Simplex, and BFGS algorithms with Gauss-Jordan being 

the worst algorithm for estimating this parameter. For all the other three parameters this ordering does 

not change using both the MSE and RMSE criteria. This ordering can be referred as the accuracy 



ordering of the Solis (2004) critical values as well. Therefore, the EGS method which we have 

proposed in section 2 is the best way to conduct power analysis for the Solis (2004) unit root test than 

the Genetic, Simplex, BFGS and Gauss Jordan algorithms. Although the Genetic algorithm is still the 

best method to obtain critical values for the Solis (2004) type of unit root test, a careful investigation 

of Table 4 reveals that the MSE and RMSE of the Genetic algorithm are in close agreement with those 

obtained using the EGS algorithm. Hence, we can conclude that the difference is trivial. The 

superiority of Genetic algorithm in obtaining the LNV type trend function is authenticated by all 

simulation studies. In line with Vougas (2006) we can claim that the Genetic algorithm is superior as 

much as the SQP approaches in computing the desired critical values of the LNV type of unit root 

tests. Moreover, the Genetic algorithm is a derivative free method which is easier to use in the 

estimation process then the BFGS, Gauss-Jordan and the rest of the algorithms which can be classified 

as hill-climbing methods using derivatives (i.e, BHHH
12

 and SQP).  The same argument follows for 

the Simplex method. From this perspective, considering the results with respect to the EGS method 

from Table 4, we can conclude that using simpler optimization algorithms as the complexity of the 

data generating process increases leads to unbiased and efficient parameter estimates.   

5�� -���
��	���.	�����

   In this section we empirically apply all the methods explained in section 2 to examine the validity of 

the purchasing power parity (PPP) hypothesis for 9 countries over the period 2003:6-2011:10. 

Monthly data on bilateral exchange rates of the national currency against the U.S. dollar and on 

consumer price indices (CPI) were taken from International Monetary Fund’s International Financial 

Statistics (IFS) database. The base year for the CPI is 1997. The analysis includes 9 countries, namely 

Argentina, China, Canada, Germany, France, Italy, Japan, Saudi Arabia, Turkey and the United 

Kingdom. All variables were put into natural logarithms before the analysis.  In addition to the LNV 

tests, we have also applied the Solis t and F tests to the real exchange rate series (RERs). The results 

are tabulated below in Table 5.  

   As can be readily seen from Table 5, the application of the LNV unit root tests suggests a random 

walk behavior of the RERs for 3 countries (or in other words PPP holds only in 3 countries out of 9).  

However, the crucial issue here is that the test results obtained using all the optimization algorithms 

are the same for all countries. This phenomenon clearly demonstrates that all the optimization 

algorithms can be used for obtaining valid tests statistics for the LNV unit root test
13

. The test results 

in given in italic; such as the test results obtained using the Simplex algorithm for Germany, test 

results obtained using the Genetic algorithm for Japan and tests results obtained using the EGS method 

for all countries except Argentina and China, deviate from those obtained via other methods. For the 

EGS method, the deviations seem to be very minor due to the increments which are taken for the 

search algorithm. For this study we have chosen 0.1 and 0.01 increments for γ  andτ , respectively; 

and used these increments for the simulation studies as well. From the tests results one can note that 

even this level of grid search accuracy is sufficient for obtaining the true LNV statistics. In order to 

have a deeper understanding of the process by which critical values are obtained, we have tabulated 

the estimated values of γ  andτ  in Table 6.       

 

                                                           

12
  We have obtained the critical values and simulation studies of BHHH method. The obtained results are similar 

with BFGS. The results are shown that BHHH algorithm is not better than BFGS, but the discrepancies are 

trivial. The results are available upon request. 

13
  We have obtained similar results for the Solis t and F tests. The tests results are available upon request. 
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C Name Lag LNV Lag LNV Lag LNV Lag LNV Lag LNV 

Argentina 1 -2,156 1 -2,156 1 -2,156 1 -2,156 1 -2,156 

China 9 -0,338 9 -0,338 9 -0,336 9 -0,338 9 -0,338 

Germany 5 7584)6� 5 7584)6� 5 7584)6� 5 7584)6� 5 �������

France 5 7584)9� 5 7584)9� 5 7584)9� 5 7584)9� 5 �������

Italy 5 758�94� 5 758�94� 5 758�94� 5 758�94� 5 �������

Japan 0 -1,945 1 -2,150 0 -1,945 0 -1,945 0 -1,941 

Saudi Arabia 0 -2,277 0 -2,277 0 -2,277 0 -2,277 0 -2,262 

Turkey 0 -3,118 0 -3,118 0 -3,118 0 -3,118 0 -3,125 

:;� 0 -2,765 0 -2,765 0 -2,765 0 -2,765 0 -2,796 

Notes: The maximum critical value obtained for the LNV statistics among the algorithms used equals -3.937 and 

corresponds to that obtained using the Genetic algorithm. The minimum critical value is obtained using the EGS 

method and is equal to -3.788 at the 10% significance level. The values written in bold represent significance at 

10% level and lower levels. 
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C Name γ̂ � τ̂ � γ � τ �

Argentina 0.204 (4.712) 0.250 (15.301) 0.2 0.24 

China 0.192 (5.077) 0.147 (7.064) 0.2 0.15 

Germany 0.431 (2.840) 0.454 (23.985) 0.4 0.44 

France 0.458 (2.795) 0.454 (25.433) 0.5 0.44 

Italy 0.387 (3.558) 0.456 (27.872) 0.4 0.45 

Japan 0.204 (3.905) 0.743 (24.685) 2.8 0.65 

Saudi Arabia 0.187 (9.335) 0.682 (78.974) 0.2 0.66 

Turkey 0.086  (6.038) 0.291 (8.503) 0.1 0.30 

:;� 3.257 (0.915) 0.662 (196.201) 2.4 0.64 

�

�



   Inspection of Table 6 reveals that the slope of transitions and locations of the threshold for breaks 

are different for all countries. In spite of this fact, however, we can still classify all countries into three 

groups with respect to the gamma parameter as follows: slow change, moderate change and abrupt 

change. This type of grouping can be made with respect to threshold value as well, depending on 

whether the location of the threshold is at the beginning of the sample, at the middle or at the end of 

the sample. According to these groupings, Germany, France and Italy can be classified under the 

Moderate and Middle group where the transition is moderate and the threshold location is in the 

middle; Argentina and China in the Moderate and Beginning group; and Japan and Saudi Arabia under 

the Moderate and End group. Turkey and the UK have different slope parameters than the rest of the 

sample, with Turkey categorized as Slow and Beginning and UK can be classified under Abrupt and 

End.   The biggest deviation in the test results presented in Table 6 occurs for the Genetic Algorithm in 

the Japanese case, where the deviation equals 0.205. This result can be attributed to the fact that only a 

different lag structure is chosen for the Genetic algorithm in Japan using the Akaike Information 

Criteria (AIC). Although for the EGS algorithm, the AIC criteria produces results that are same with 

those obtained under other algorithms; still there are deviations in the test results except for Argentina 

and China due to the fact mentioned above. Therefore, these groupings do not seem to be that much 

effective on the test results.  

   If the data had been well behaved with respect to the STR type of trend function (or if the data 

generating process of series were consistent with STR type trend), the slope and threshold parameters 

for the break would not be detrimental in obtaining the LNV type of unit root test. In the case that the 

data generating process of series are not consistent with STR type trend function, different trend 

specifications can be tried. For example in the linear trend function case, ADF type of unit root testing 

can be employed in line with Leybourne et al. (1998). If there is more than one break in trend, multiple 

break type STR function can be employed using the double transition function.  These are the 

alternative solutions for the LNV type of unit root testing. However, although sometimes the STR type 

of trend function can be consistent with the data, there can still be convergence problems due to the 

gamma parameter and the threshold parameters. These kinds of problems can be solved using good 

initial values, by imposing constraints in nonlinear optimization problems and by other suitable 

methods. But, the general solution to these problems is to use identification tests that specify the 

features of the series in hand. The first appropriate identification test for this purpose may be the 

linearity test used in Teräsvirta (1992) and Lin and Teräsvirta (1994). By using this linearity test under 

the alternative of STR type nonlinearity, we can investigate whether the series are linear or nonlinear. 

The second appropriate identification test may be a break test such as the one developed in Bai-Perron 

(1998). And the last one may be the remaining structural shift test as done in the STAR literature in 

order to identify the second transition function.  Thus, we can determine the features of the series in 

hand and employ the most appropriate unit root test at the beginning without facing any difficulties. 

These kinds of identification tests are not used in this study, because these issues are beyond the scope 

of this study. However, the EGS method can be used as a diagnostic test depending on the simulation 

study and empirical analysis. In the EGS method, we are not confronted with any problem such as 

good starting values or convergence problem. Hence, it is better to start with the EGS method to 

obtain the LNV test results. If there is a big deviation in the obtained gamma and threshold values; and 

tests results using the EGS method from those obtained using the other optimization algorithms (i.e., 

BFGS, Gauss-Jordan), then employ the other identification tests (i.e., break tests) that we have 

suggested to obtain better LNV type unit root test results. The visual inspection of STR type trends can 

be seen below in Figure 1.  

 

 

 

 

 



Argentina China Germany 

���� ���� ���� ���� ���� ���	 ���
 ���� ����

�����

�����

�����

�����

�����

�����

�����

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

���	

����

����

����

����

���	

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

��	�

��	�

��	�

��		

��
�

��
�

��
�

��
�

 

France Italy Japan 

���� ���� ���� ���� ���� ���	 ���
 ���� ����

��	��

��	��

��	��

��
��

��
��

��
��

��
��

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

��	�

��	�

��	�

��		

��
�

��
�

��
�

��
�

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

���

���

���

���

��	

	��

	��

	��

 

South Africa Turkey UK 

���� ���� ���� ���� ���� ���	 ���
 ���� ����

���

���

���

���

���

���

���

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

��
�

����

����

����

����

����

����

 
���� ���� ���� ���� ���� ���	 ���
 ���� ����

����

����

����

���	

��	�

��	�

��	�

��	�

 

2���
�����-����	��������������
�
����
����
����
�	������
�
����

 



6�� "�
�����
�����	
<��

   In this study we have compared different optimization algorithms in conducting LNV type of unit 

root tests in order to obtain more accurate critical values, to conduct better power analysis and to 

arrive at consistent empirical results. From all of the simulation exercises undertaken in this study, we 

arrive at the general conclusion that the Genetic algorithm has more advantages than the other 

methodologies. This can be attributed to the fact that we have obtained the most accurate critical 

values for the LNV and Solis (2004) unit root tests by using the Genetic algorithm. The second best 

method seems to be the Simplex method, which is the second derivative free method used in our 

study. In general, we can claim that the derivative free methods have advantages over hill climbing 

algorithms in obtaining more accurate critical values. On the other hand, the BFGS algorithm is the 

best hill climbing method that has a similar performance with the Simplex method in obtaining the 

accurate critical values for the LNV and Solis (2004) unit root tests. However, the Gauss-Jordan 

optimization algorithm as a hill climbing method was expected to display a better performance than 

that observed in this study. From the simulation studies we have seen that its performance is not better 

than a simple grid search methodology.     

   From the simulation studies, depending on whether the alternative hypothesis is of LNV or Solis 

type of unit root test, as expected, we have obtained similar results with the critical value accuracy 

results. In the first simulation exercise tabulated in Table 2, the Genetic algorithm has outperformed 

the other algorithms with respect to the gamma parameter. For the rest of the other three parameters, 

the performance of the Genetic algorithm is similar with that of other methods. From the second 

simulation study, which is tabulated in Table 4, again the Genetic algorithm is found to outperform all 

the other algorithms except the EGS method with respect to all parameters considered. In the empirical 

part, we have estimated the gamma and threshold parameters using the EGS method. These estimation 

results reveal that the algorithm that we have used works well for estimating the STR trend function. 

However, these results seem to be good approximations of the estimated parameters γ̂  andτ̂   due to 

the increments selected (0.1 and 0.01 for gamma and threshold, respectively) for the grid search 

analysis. In the power analysis, the selected parameter values for the slope and the threshold 

parameters are: 0.5γ =  and 0.5τ = . Therefore, the selected increments for γ  andτ  give advantages 

to the EGS method over other methods in the simulation study. Fortunately, when the table values of 

second simulation study are investigated we realize that the differences between the MSE and RMSE 

values of the Genetic and EGS methods are trivial. This fact is another piece of evidence that 

corroborates the conclusion that the Genetic algorithm outperforms the other methods used in the 

study. Even though we have obtained similar results for the EGS algorithm with respect to other 

algorithms in the first simulation study, we have observed that the performance of this algorithm is 

better in the second simulation study. This fact gives us a general conclusion about the structure of 

optimization algorithms in the sense that as the complexity of the data generation process increases, it 

is better to use simpler optimization algorithms to obtain unbiased and efficient parameter estimates.  

   In the empirical part of the study we have found same test results for the LNV and Solis (2004) unit 

root tests for all countries by using all the optimization algorithms employed. Hence, while conducting 

empirical studies the researchers may use any optimization algorithm without loss of generality. If the 

data generating process of the series are consistent with a STR type of trend, then the slope and 

threshold parameters for the break are not detrimental in obtaining LNV type unit root tests, otherwise, 

different trend specifications can be experimented with. This approach is the alternative solution for 

the LNV type of unit root testing. However, sometimes the STR type of trend function can be 

consistent with the data, but still convergence problems may arise due to the gamma and threshold 

parameters. These kinds of problems can be solved using good initial values, by imposing constraints 

to the nonlinear optimization algorithms and by other suitable methods. The general solution to these 

problems aforementioned in section 4 is to use identification tests to specify the features of the series 

in hand. However, dealing with these problems is beyond the scope of this study; and further 

elaborations on these areas can be considered as recommendations for further research.  
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1 1.0α =  2 10.0α =  

 Ex. Grid 

Search 

Gauss 

Jordan 

BFGS Simplex Genetic Ex. Grid 

Search 

Gauss 

Jordan 

BFGS Simplex Genetic 

!�	
� 0.973 0.972 0.972 0.972 0.973 10.028 10.030 10.031 10.030 10.030 

!���	
� 0.974 0.973 0.972 0.973 0.973 10.026 10.029 10.029 10.029 10.028 

'	
�	
��� 0.026 0.024 0.024 0.024 0.027 0.051 0.049 0.049 0.049 0.052 

����-

�
� 0.163 0.154 0.155 0.155 0.164 0.227 0.221 0.221 0.221 0.228 

�<��
���� 4.760 -0.019 -0.028 -0.121 -8.700 -1.695 0.020 0.023 0.059 3.340 

;�
������ 295.792 0.148 0.258 2.057 656.679 76.046 0.076 0.110 0.608 182.739 

!�
����� 0.209 -0.323 -0.600 -1.802 -11.483 -0.020 9.017 9.017 9.017 9.164 

!	.����� 11.113 1.659 1.660 1.659 1.558 11.031 11.446 11.724 12.928 22.613 

4�7=� 0.607 0.609 0.610 0.610 0.611 9.513 9.518 9.518 9.518 9.164 

))7=� 1.339 1.331 1.331 1.331 1.332 10.550 10.549 10.550 10.549 10.548 
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 0.5γ =  0.5τ =  

 Ex. Grid 

Search 

Gauss 

Jordan 

BFGS Simplex Genetic Ex. Grid 

Search 

Gauss 

Jordan 

BFGS Simplex Genetic 

Mean 0.513 0.512 0.511 0.511 0.511 0.499 0.499 0.499 0.499 0.499 

Median 0.500 0.500 0.500 0.500 0.500 0.500 0.499 0.499 0.499 0.499 

Variance 0.010 0.027 0.008 0.008 0.008 0.000 0.000 0.000 0.000 0.000 

St. Error 0.101 0.164 0.092 0.091 0.090 0.004 0.004 0.004 0.004 0.004 

Skewness 16.716 131.730 4.118 1.883 1.684 2.496 -27.443 -27.797 -27.996 -28.889 

Kurtosis 1500.535 24654.31 179.76 37.804 26.097 132.178 3048.61 3100.54 3130.73 3264.86 

Minumum 0.300 0.262 0.262 0.262 0.274 0.480 0.019 0.016 0.015 0.009 

Maximum 10.000 31.356 5.573 3.846 3.471 0.720 0.514 0.514 0.514 0.516 

01-% 0.400 0.350 0.350 0.350 0.351 0.490 0.491 0.491 0.491 0.491 

99-% 0.800 0.781 0.781 0.781 0.776 0.510 0.508 0.508 0.508 0.508 
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